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For convenience, the following notation will be used throughout:

• bxc (x ∈ R): the integer part of x.
• Jx, yK (x, y ∈ R, x ≤ y): interval of integers, i.e. Jx, yK = {n ∈ Z : x ≤
n ≤ y}.

• Card(X) or |X|: the cardinality of a finite set X.
• A×: the set of invertible elements of a ring A.
• P: the set of prime numbers.
• π: any prime number.
• ϕ(n): Euler’s totient function.
• τ(n): the number of divisors of a positive integer n.
• ω(n): the number of distinct prime factors dividing an integer n ≥ 2

(ω(1) = 0).

1. Introduction and statement of the result. The well-known theo-
rem of Duffin and Schaeffer [5] in metric number theory extends the classical
theorem of Khintchine in the following way:

Theorem 1.1 (Duffin & Schaeffer, 1941). Let (qk)k≥1 be a strictly in-
creasing sequence of positive integers and let (αk)k≥1 be a sequence of non-
negative real numbers which satisfies the conditions:

(a)
∑∞

k=1 αk =∞,
(b)

∑n
k=1 αkϕ(qk)/qk > c

∑n
k=1 αk for infinitely many integers n ≥ 1

and a real number c > 0.
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Then for almost all x ∈ R there exist infinitely many relatively prime integers
pk and qk such that ∣∣∣∣x− pk

qk

∣∣∣∣ < αk
qk
·

Here as elsewhere, almost all must be understood in the sense that the
set of exceptions has Lebesgue measure zero.

Several generalizations of Theorem 1.1 have been considered: on the one
hand, the conjecture of Duffin and Schaeffer asks whether assumption (b)
may be weakened to the divergence of the series

∑n
k=1 αk ϕ(qk)q

−1
k . Even if

the analogue of this issue has been proved in higher dimensions [15] or with
some extra assumptions on the sequence (αk)k≥1 [12], the full conjecture is
still open. On the other hand, one may try to see to what extent Theorem 1.1
remains true when the numerators pk and the denominators qk of the frac-
tional approximations are related by some stronger relationship (in a sense
to be made precise) than coprimality.

Indeed, metric Diophantine approximation results in one dimension when
the denominators of the rational approximants are confined to a prescribed
set are numerous (see for instance [3, Theorem 5.9]). However, restrictions
on numerators introduce new difficulties which do not always seem to be
easy to overcome (see [3, p. 114], for an account on this fact). In a series of
articles, [8]–[11], G. Harman tackled the problem and gave several results in
the case where denominators and numerators were confined to vary within
independent sets of integers.

The main theorems proved in this paper give another approach to this
problem, studying the case where numerators and denominators are confined
to dependent sets of integers in the sense that they are related, not only by
the relation of Diophantine approximation of a given real number, but also
by some congruential constraints.

Consider first a subsequence (qdk)k≥1 of the dth powers of the natural
numbers (d ≥ 1 is an integer). For any q ∈ N denote furthermore by rd(q)
the cardinality of the set of dth powers in a reduced system of residues
modulo q and set for simplicity

(1) sd(q) := rd(q)/q.

Theorem 1.2. Let (qk)k≥1 be a strictly increasing sequence of positive
integers and let (αk)k≥1 be a sequence of positive real numbers. Fix an integer
a ≥ 1 and assume furthermore that:

(a)
∑∞

k=1 αk =∞,
(b)

∑n
k=1 αksd(q

d
k) > c

∑n
k=1 αk for infinitely many positive integers n

and a real number c > 0,
(c) gcd(qk, a) = 1 for all k ≥ 1.
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Then for almost all x ∈ R there exist infinitely many relatively prime integers
pk and qk such that∣∣∣∣x− pk

qdk

∣∣∣∣ < αk

qdk
and pk ≡ abdk (mod qk)

for some bk ∈ Z relatively prime to qk.

Theorem 1.2 answers a question which appeared in a problem of simulta-
neous Diophantine approximation of dependent quantities: given an integer
polynomial P (X) and a real number x, what is the Hausdorff dimension of
the set of real numbers t such that t and P (t) + x are simultaneously τ -well
approximable, where τ > 0? The author proved [1] that such a simultaneous
approximation implied an approximation of x by a rational number p/qd,
where d is the degree of P (X) and where the integer p satisfies the congru-
ential constraint mentioned in the conclusion of Theorem 1.2, with a the
leading coefficient of P (X). The emptiness of the set under consideration is
obtained for almost all x as a consequence of the convergence part of the
Borel–Cantelli Lemma when τ > d+1 and Theorem 1.2 enables one to prove
the optimality of this lower bound.

Theorem 1.2 can in fact be generalized in the following way:

Theorem 1.3 (Extension of the theorem of Duffin and Schaeffer). Let
(qk)k≥1 be a strictly increasing sequence of positive integers and let (αk)k≥1
be a sequence of positive real numbers. Let (ak)k≥1 be a sequence such that
ak ∈ (Z/qkZ)× for all k ≥ 1. For k ≥ 1, denote by Gk a subgroup of
(Z/qkZ)× and by akGk the coset of ak in the quotient of (Z/qkZ)× by Gk.
Assume furthermore that:

(a)
∑∞

k=1 αk =∞,
(b)

∑n
k=1 αk|Gk|/qk > c

∑n
k=1 αk for infinitely many positive integers n

and a real number c > 0,
(c) ϕ(qk)/(q

1/2−ε
k |Gk|)→ 0 as k tends to infinity, for some ε > 0.

Then for almost all x ∈ R there exist infinitely many relatively prime integers
pk and qk such that

(2)
∣∣∣∣x− pk

qk

∣∣∣∣ < αk
qk

and pk ∈ akGk.

Remark 1.4. In Theorem 1.3, if c is a real number such that

(3) |Gk|/qk > c > 0

for all k ≥ 1, then (b) holds. However, if, instead of (3), one can prove the
weaker assertion

(4)
n∑
k=1

|Gk|/qk > cn
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for some c > 0 and all integers n ≥ 1, then, assuming that the sequence
(αk)k≥1 is non-increasing, condition (b) still holds true. This may be seen
by making an Abel transformation on the left-hand side of (b).

It is likely that formula (4) can be proved for many sequences (qk)k≥1
that do not satisfy (3).

In fact, Theorem 1.2 happens to be a special case of Theorem 1.3 when
Gk (k ≥ 1) is taken as the group of dth powers in a reduced system of residues
modulo qk. Nevertheless, the proof of Theorem 1.2 turns out to be somehow
more instructive as it makes it easier to highlight some technical difficulties
without introducing additional cumbersome notation. The paper is therefore
organized as follows: first some lemmas of an arithmetical nature are recalled
(Section 2). They will be needed to prove Theorem 1.2 in Section 3, where the
modifications to make in the proof to prove Theorem 1.3 will also be indicated.

2. Some auxiliary results. In this section are collected various results
which will be needed later.

2.1. Some lemmas in arithmetic. For any integer n ≥ 2, let τ(n) be
the number of divisors of n and let ω(n) be the number of distinct prime
factors dividing n. If

n =

r∏
i=1

παii

is the prime factor decomposition of the integer n, recall that

ω(n) = r and τ(n) =
r∏
i=1

(αi + 1).

The following lemma, which deals with some comparative growth prop-
erties of these two arithmetical functions, is well-known.

Lemma 2.1.

• For any ε > 0, τ(n) = o(nε).
• For any ε > 0 and any positive integer m, ω(n) = o(log n) and mω(n) =
o(nε).

Proof. See for instance [7, §22.11 and §22.13].

If n ≥ 2 and d ≥ 1 are integers, recall that rd(n) denotes the number
of distinct dth powers in the reduced system of residues modulo n, and let
ud(n) denote the number of dth roots of unity modulo n, that is,

rd(n) = Card{md (mod n) : m ∈ (Z/nZ)×},
ud(n) = Card{m ∈ Z/nZ : md ≡ 1 (mod n)}.

Set furthermore rd(1) = ud(1) = 1.
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Remark 2.2. Let u(f, n) be the number of solutions in x of the congru-
ence

f(x) :=

d∑
k=0

akx
k ≡ 0 (mod n)

for a given polynomial f ∈ Z[X] of degree d. It is well-known that, as a
consequence of the Chinese Remainder Theorem, u(f, n) is a multiplicative
function of n. It follows that ud(n) is multiplicative with respect to n for any
fixed d.

The following proposition gives explicit formulae for rd(n) and ud(n).

Proposition 2.3. The arithmetical functions rd(n) and ud(n) are mul-
tiplicative when d is fixed. Furthermore, if n = πk, where π ∈ P and k ≥ 1
is an integer, then

rd(n) =
ϕ(πk)

ud(πk)
, ud(n) =

{
gcd(2d, ϕ(n)) if 2 | d, π = 2 and k ≥ 3,
gcd(d, ϕ(n)) otherwise,

where ϕ is Euler’s totient function.

Proof. See for instance [17].

2.2. Dirichlet characters and the Pólya–Vinogradov inequality.
Let G be a finite abelian group, written multiplicatively and with identity
e. A character χ over G is a multiplicative homomorphism from G into the
multiplicative group of complex numbers. The image of χ is contained in the
group of |G|th roots of unity.

It is readily seen that the set of characters over G form a group, called
the dual group of G and written Ĝ. Its unit χ0 is the principal (or trivial)
character, which maps everything in G to unity.

The following is well-known (see [6, Chapter 7]):

Theorem 2.4.

(i) There are exactly |G| characters over G.
(ii) For any g 6= e, ∑

χ∈Ĝ

χ(g) = 0.

(iii) For any non-principal character χ,∑
g∈G

χ(g) = 0.

If n > 1 is an integer, consider the group G = (Z/nZ)×. A character χ
over G may be extended to all integers by setting χ(m) = χ(m (mod n)) if
gcd(n,m) = 1 and χ(m) = 0 if gcd(n,m) > 1. Such a function is called a
Dirichlet character to the modulus n and will still be denoted by χ.
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In what follows, an upper bound on the sum of such characters over large
intervals will be needed. A fundamental improvement on the trivial estimate
given by the triangle inequality is the Pólya–Vinogradov inequality (see [6,
Chapter 9]):

Theorem 2.5 (Pólya & Vinogradov, 1918). For any non-principal Di-
richlet character χ over (Z/nZ)× (n > 1) and any integer h,∣∣∣ h∑

k=1

χ(k)
∣∣∣ ≤ 2

√
n log n.

Remark 2.6. When χ is a so-called primitive character (which is the case
if n is prime), the multiplicative constant 2 in the above may be replaced
by 1. This refinement will not be needed.

3. The proof of the main results. The first part of this section is
devoted to the proof of Theorem 1.2: all the tools introduced in the previous
section will be used there. In the second subsection, all the modifications
needed to prove Theorem 1.3 are given.

3.1. The proof of Theorem 1.2. The proof of Theorem 1.2 is a gen-
eralization of the proof of the theorem of Duffin and Schaeffer [5]. All the
new notation to be used is summarized in Figure 1.

Notation Parameters Definition
ϕµ(n) n ≥ 2, µ > 0 Card{l ∈ J1, µnK : gcd(l, n) = 1}

Gn n ≥ 2 integer Any subgroup of (Z/nZ)×

G
(d)
n d ≥ 1 Group of dth powers in a reduced

system of residues modulo
a fixed integer n ≥ 2

aGn a ∈ (Z/nZ)×, n ≥ 2 Coset of a in the quotient of (Z/nZ)×

by Gn, i.e. aGn = {al : l ∈ Gn}

ΨX(aGn) X > 0 Card{l ∈ J1, XK : l ∈ aGn}

dn(Gn) n ≥ 2 Index of Gn in (Z/nZ)×, i.e.
dn(Gn) = ϕ(n)/Ψn(Gn)

Fig. 1. Some additional notation

The key step to the proof of the theorem of Duffin and Schaeffer (The-
orem 1.1) is the study of the regularity of the distribution of the numbers
less than a given positive integer and relatively prime to this integer. The
following is well-known and strengthens their result in [5, Lemma III].
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Lemma 3.1. Let µ be a positive real number and let n ≥ 2 be an integer.
Let ϕµ(n) denote the number of positive integers which are equal to or less
than µn and relatively prime to n. Then for any ε > 0,

ϕµ(n) = ϕ(n)(µ+O(1/n1−ε)).

Proof. See for instance [13, Theorem 3.1].

Duffin and Schaeffer provide an error term of the form O(n−1/2) in
Lemma 3.1, where the implied constant is absolute. In fact, even such an
estimate is too accurate in the sense that their method only requires the
error term to tend to zero uniformly in µ. This fact will be used to prove
Theorem 1.2. The following theorem deals with the regularity of the distri-
bution of the elements of a given subgroup of (Z/nZ)× (where n ≥ 2 is an
integer) and is the key step to the generalization of the result of Duffin and
Schaeffer.

Theorem 3.2. Let µ be a positive real number, n ≥ 2 be an integer and
a ∈ (Z/nZ)×. Let Gn be a subgroup of (Z/nZ)×. Denote by Ψn(Gn) the
cardinality of Gn (which is also the cardinality of aGn) and by dn(Gn) the
index of Gn in (Z/nZ)×, that is,

dn(Gn) =
|(Z/nZ)×|
|Gn|

=
ϕ(n)

Ψn(Gn)
·

Finally, for a real number µ > 0 and an integer n ≥ 1, let Ψµn(aGn) denote
the number of positive integers k less than or equal to µn such that k ∈ aGn.
Then for any ε > 0,

Ψµn(aGn) = Ψn(Gn)

(
µ+O

(
dn(Gn)

n1/2−ε

))
.

Proof. The proof uses the Dirichlet characters introduced in Subsec-
tion 2.2 and some ideas which probably date back to the work of Erdős
and Davenport [4] on character sums.

Let Hn be the quotient group of (Z/nZ)× by Gn. Any character χ over
Hn may be extended to Gn by composing with the canonical homomorphism
from Gn to Hn. Such a character will still be denoted by χ. Let ĜHn be the
set of all characters over Gn arising from a character over Hn; it is readily
seen that ĜHn is a subgroup of Ĝn of cardinality |Ĥn| (here the notation of
Subsection 2.2 is kept).

Let α ∈ (Z/nZ)× be the multiplicative inverse of a ∈ (Z/nZ)×. By
Theorem 2.4, |Ĥn| = dn(Gn) and the same theorem implies that

Ψµn(aGn) =
1

dn(Gn)

∑
k∈J1,µnK

∑
χ∈ĜHn

χ(αk).
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On inverting the order of summation, two contributions from the sum may
be distinguished:

• One comes from the principal character and equals Card(J1, µnK ∩
(Z/nZ)×). Now, from Lemma 3.1,

Card(J1, µnK ∩ (Z/nZ)×) = ϕµ(n) = ϕ(n)

(
µ+O

(
1

n1−ε

))
for any ε > 0.
• The other comes from the dn(Gn)−1 non-trivial characters and, by the

Pólya–Vinogradov inequality (Theorem 2.5), each of them is bounded
above in absolute value by 2

√
n log n.

Therefore, for any ε > 0,

Ψµn(aGn) =
ϕ(n)

dn(Gn)

(
µ+O

(
1

n1−ε

))
+
dn(Gn)− 1

dn(Gn)
Rn(µ),

where the remainder Rn(µ) satisfies |Rn(µ)| ≤ 2
√
n log n. Bearing in mind

that dn(Gn) = ϕ(n)/Ψn(Gn) and that ϕ(n) ≥ n/2ω(n), Lemma 2.1 leads to
the inequality ∣∣∣∣Rn(µ)ϕ(n)

∣∣∣∣ ≤ 2
√
n 2ω(n) log n

n
= O

(
1

n1/2−ε

)
for any ε > 0. This concludes the proof.

The next result makes the link between Theorem 3.2 and Theorem 1.2
giving the repartition of the dth powers in a reduced system of residues
modulo an integer. The notation of Theorem 3.2 is kept.

Corollary 3.3. Let n ≥ 2 and a ≥ 1 be two coprime integers. Denote by
G

(d)
n the group of dth power residues in a reduced system of residues modulo n.

Then for all ε > 0,

Ψµn(aG
(d)
n ) = Ψn(G

(d)
n )

(
µ+O

(
1

n1/2−ε

))
,

where Ψn(G
(d)
n ) = rd(n) = ϕ(n)/ud(n) as defined in Proposition 2.3.

Proof. Keeping the notation of Theorem 3.2, first notice that dn(G
(d)
n ) =

ud(n). Now, since the arithmetical function ud(n) is multiplicative (see Re-
mark 2.2), Proposition 2.3 and Lemma 2.1 imply that

dn(G
(d)
n ) = ud(n) ≤ (2d)ω(n) = O(nε)

for any ε > 0. The result then follows from Theorem 3.2.

To prove Theorem 1.2, the following notation is convenient.
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Notation. For any real number x ∈ [0, 1/2) and any integer k ≥ 1,
let Exk denote the collection of intervals of the form(

p

qdk
− x

qdk
,
p

qdk
+
x

qdk

)
where 0 < p < qdk is an integer relatively prime to qk and satisfying p ≡ abd

(mod qk) for an integer b prime to qk (with the notation of Corollary 3.3,
this amounts to claiming that p ∈ J0, qdkK and p ∈ aG(d)

qk ). Here and in what
follows, the integer a is fixed and assumed to be relatively prime to qk for
all k ≥ 1.

For simplicity, set furthermore Ek := Eαkk for all integers k ≥ 1.

As mentioned in [16, p. 27], it is enough to consider the case where the
sequence (αk)k≥1 in Theorem 1.2 takes its values in the interval [0, 1/2). This
assumption can be dropped, but this leads to some additional complications
which are not of interest.

With the notation of Corollary 3.3, Ek is the set in (0, 1) consisting of

(5) Ψqdk
(aG(d)

qk
) = Ψqdk

(G(d)
qk

) = Ψqk(G
(d)
qk

)qd−1k

open intervals each of length 2αk/q
d
k with centers at p/qdk, where p and qk are

integers satisfying the aforementioned constraints (Ψqdk(aG
(d)
qk ) is the number

of integers p ∈ J0, qdkK such that p ∈ aG(d)
qk . From the fact that the integer a

is coprime with qk, it should be obvious that Ψqdk(aG
(d)
qk ) = Ψqdk

(G
(d)
qk )).

If (s, t) is some interval in (0, 1), an estimate of the measure of the set
common to Ek and the interval (s, t) is needed. To that end, notice that,
for any integer n ≥ 1 and any real number µ > 0, Ψµnd(aG

(d)
qk ) counts the

number of positive integers p less than or equal to µnd such that p ∈ aG(d)
qk .

Let k ≥ 1 be an integer. The number of intervals in Ek whose centers
lie in (s, t) is exactly Ψtqdk(aG

(d)
qk )− Ψsqdk(aG

(d)
qk ). From this it follows that at

least Ψtqdk(aG
(d)
qk ) − Ψsqdk(aG

(d)
qk ) − 2 such intervals are entirely contained in

(s, t) and at most Ψtqdk(aG
(d)
qk ) − Ψsqdk(aG

(d)
qk ) + 2 of them touch (s, t). Thus

the measure of the set common to Ek and (s, t) is
2αk

qdk

(
Ψtqdk

(aG(d)
qk

)− Ψsqdk(aG
(d)
qk

) + θ
)
,(6)

where |θ| ≤ 2.
However, since for any µ > 0, bµqd−1k c is the greatest integer m satisfying

mqk ≤ µqdk, we get

Ψµqdk
(aG(d)

qk
) = bµqd−1k cΨqk(G

(d)
qk

) + Card{p ∈ Jbµqd−1k cqk, µqdkK : p ∈ aG(d)
qk
}.
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The second term on the right-hand side of this equation is Ψνqk(aG
(d)
qk ), where

ν :=
µqdk − bµq

d−1
k cqk

qk
∈ [0, 1).

Therefore, from Corollary 3.3,

Ψµqdk
(aG(d)

qk
) = bµqd−1k cΨqk(G

(d)
qk

) + Ψνqk(aG
(d)
qk

)

= Ψqk(G
(d)
qk

)

(
bµqd−1k c+ µqd−1k − bµqd−1k c+O

(
1

q
1/2−ε
k

))
= Ψqdk

(G(d)
qk

)

(
µ+O

(
1

q
d−1/2−ε
k

))
for any ε > 0.

Putting this into (6) and denoting by λ the one-dimensional Lebesgue
measure, the measure of the set common to Ek and (s, t) is seen to be

2αk

qdk
Ψqdk

(G(d)
qk

)(t− s+ δ) = λ(Ek)(t− s)(1 + δ),

where δ � (q
d−1/2−ε
k (t − s))−1 for any ε > 0 (here, when a and b are real

numbers, a � b is the Vinogradov notation meaning that there exists a
constant c > 0 such that a ≤ cb).

Thus the following lemma has almost been proven.

Lemma 3.4. Let A be a subset of the unit interval (0, 1) consisting of a
finite number of intervals. Then there exists a constant cA > 0 which depends
only on the set A such that for any integer k ≥ 1,

λ(A ∩ Ek) ≤ λ(A)λ(Ek)(1 + cAρ(qk)),

where
ρ(qk) = O

(
1

q
d−1/2−ε
k

)
for any ε > 0.

Proof. The lemma has been proven in the case where A is a single inter-
val. The general case follows easily. See Lemma IV in [5].

All the tools necessary for the proof of Theorem 1.2 are now available.
In fact, the proof has been reduced to that of the theorem of Duffin and
Schaeffer, which may be found in [5, pp. 248–250]. In the latter, the reference
to Lemma IV should be replaced by the reference to Lemma 3.4 above and
inequalities (13) there should be read as follows:

By assumption, there are arbitrarily large integers n and m such
that m∑

j=n

αj > 1 and
m∑
j=n

αjsd(q
d
k) >

1

2
c

m∑
j=n

αj ,

where
sd(q

d
k) = Ψqdk

(G
(d)
k )/qdk.
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For the latter, see the definitions of sd(q) in (1), of Ψqk(G
(d)
k ) in Corollary 3.3

and of Ψqdk(G
(d)
k ) in (5).

This concludes the proof of Theorem 1.2.

3.2. The proof of Theorem 1.3. In the course of the proof of Theo-
rem 1.2, the main step was the proof of Theorem 3.2 and the fact that the
subgroup G(d)

n of (Z/nZ)× was sufficiently large in the sense that, for some
ε > 0,

dn(G
(d)
n )/n1/2−ε → 0

as n tends to infinity, with the notation of Corollary 3.3. Otherwise, no use
whatsoever of any specific property of the group of dth powers in a reduced
system of residues modulo n was made. Consequently, apart from some minor
modifications due to the fact that, in Theorem 1.2, the denominators of the
rational approximants are prescribed to be dth powers, the same proof as
that provided for Theorem 1.2 demonstrates Theorem 1.3.

Remark 3.5. Condition (c) in Theorem 1.3 is derived from the fact that
the Pólya–Vinogradov inequality (Theorem 2.5) gives 2

√
n log n as an upper

bound for the absolute value of the sum of values of a non-principal Dirichlet
character to the modulus n and the fact that

2
√
n 2ω(n) log n

n
= o

(
1

n1/2−ε

)
for any ε > 0 (see the proof of Theorem 3.2). Therefore, any improvement of
the Pólya–Vinogradov inequality would lead to a condition weaker than (c).
However, stated in this form, the exponent 1/2− ε for some ε > 0 appearing
in condition (c) cannot be improved if a general result is required: indeed,
assuming the Riemann Hypothesis for L-functions (i.e. the Generalized Rie-
mann Hypothesis), E. Bach [2] has shown that a sharper upper bound for
the sum of values of a non-principal Dirichlet character to the modulus n
was 2

√
n log log n. Up to a constant, this is best possible since in 1932 Pa-

ley [14] proved that there exist infinitely many quadratic characters χ (i.e.
characters of the form χ(n) = ( nm) for some odd integer m, where ( nm) is the
Jacobi symbol) with the property that there exists a constant c > 0 such
that for some N ∈ N∗, ∣∣∣ N∑

n=1

χ(n)
∣∣∣ > c

√
n log logn.
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