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1. Introduction. By the modularity theorem [2] [6], an elliptic curve F
over Q admits a modular parametrization ®g : Xo(/N) — E for some inte-
ger N. If N is the smallest such integer, then it is equal to the conductor
of E and the pullback of the Néron differential of E' under @ is a rational
multiple of 27i fg(7), where fg(7) € S2(Ip(NV)) is a newform with rational
Fourier coefficients. The fact that the L-function of fg(7) coincides with the
Hasse~Weil zeta function of E (which follows from Eichler-Shimura theory)
is central to the proof of Fermat’s last theorem, and is related to the Birch
and Swinnerton—Dyer conjecture. In addition to this, modular parametriza-
tion is used for constructing rational points on elliptic curves, and appears
in the Gross—Zagier formula.

In this paper, we study some general properties of @g, and as a conse-
quence we explain and generalize the results of Kaneko and Sakai [§].

Kaneko and Sakai (inspired by the paper of Guerzhoy [7]) observed that
certain elliptic curves whose associated newforms (by the modularity theo-
rem) are given by the eta-quotients from the list of Martin and Ono [9] can
be characterized by a particular differential equation involving holomorphic
modular forms.

To give an example of this phenomena, let foo(7) = n(7)*n(57)* be
a unique newform of weight 2 on I((20), where n(7) is the Dedekind eta
function () = ¢"/# [,o0(1 — ¢"), ¢ = €™, and put A5 4(7) = fao(7/2)>.
Then an Eisenstein series Q5(7) on My(Ip(5)) associated either to cusp ioco
or to cusp 0 is a solution of the differential equation
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where 05 4(Q5(7)) = 7= Q5(7) — 55 Q5(7) A5 4(7)/As5,4(7) is a Ramanujan—
Serre differential operator. (Throughout the paper, we use the symbol ’ to
denote d/dr.) This differential equation defines a parametrization of the

elliptic curve E : 3% = 23 — Efg z? — 31560903: — 13?820 by the modular functions
_Qs(7) _ 054(Qs5)(7)

e A574(7')’ y A5’4(T)3/2 9

and foo(7) is the newform associated to E. One finds that As 4(7) € S4(L1(5)),
so curiously the modular forms As 4, Q)5 and 0(Q)s) appearing in this para-
metrization are modular for Ij(5), although the conductor of E is 20.

Using Eichler—Shimura theory, we generalize to the arbitrary elliptic
curve E of conductor 4N, E : y?> = x3 4 ax?® + bx + ¢, where a,b,c € Q,
which admits a modular parametrization @ : X — FE satisfying

d
P <2§> = mifyn(7/2)dT

Here X is the modular curve H/(léQQ) (4]\7)(1/2 0), and fan(7) €
Sa2(IH(4N)) is a newform with rational Fourier coefﬁ(nents associated to E.
It follows from the modularity theorem that in any Q-isomorphism class of
elliptic curves there is an elliptic curve E admitting such a parametrization

(note that for u € Q* the change of variables z = u2X and y = v®Y implies
dX da
T =uy)-

To such a @ we associate a solution Q(7) = x(®(7)) fan(7/2)? of a dif-
ferential equation

(1.2) OnNa(Q)? = Q%+ aQ*Ana +bQAY 4 + cAY 4,
where Ay 4(7) = fan(7/2)%, and

OINa(Q(7)) = Q(r ) -

211

Ana(r)
Q(T)Tvi( )

We show in Corollarynthat fan (7/2)? is modular for IH(N). In general
the solution Q(7) will not be holomorphic and will be modular only for
(1/2 O)_IF (4]\[)(1/2 0) but if the preimage of the point at infinity of E
under @ is contained in cusps of X and is invariant under the action of ( N1 )
and (1) (acting on X by Mébius transformations), then Q(7) will be both
holomorphic and modular for IjH(N) (for more details see Proposition [5{and
Theorem . Moreover, in Theorem |§| we show that there are only finitely
many (up to isomorphism) elliptic curves F admitting ¢ with these two
properties.

We also obtain similar results generalizing the other examples from [§]
that correspond to the elliptic curves over Q with j-invariant 0 and 1728
(see the next section).
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2. Main results. Throughout the paper, let N be a positive integer and
k€ {4,6,8,12}. Let E/Q be an elliptic curve given by the short Weierstrass
equation y? = fi(z), where

fa(x) = 23 + as2® + agzx + ag,
fo(z) = 23 + bg,
fs(z) = 2% 4+ ez,

fr2(z) = 2° + dg,

and ag, aq, ag, bg, c4, dg € Q. Moreover, we assume j(F4) # 0,1728. Let
fnn(T) € So(Io(K*N/4))

be a newform with rational Fourier coefficients, and let I} := (Qék (1])
- To(K2N/4) (%% 9). Define

Ang(T) = (272 € Si(I).
For f(1) € M"*"([}), we define the (Ramanujan—Serre) differential operator
by
1 Al (T)
— f(r) -
Ang(T)

Finally, assume that there is a meromorphic modular form Qy(7) €
M (I'y,) such that the corresponding differential equation holds:

N 4(Qa(1))? = Qua(7)? + a2Qua(7)* A a(7)
+ a4Qu(T) AN a(7)? + ag Ay a(T)?,
(2.1) Ins(Qs(7))* = Qs(1)* + bsAn6(7)?,
Ins(Qs(1))? = Qs(1)* + c4Qs(T) Ans(T),
ON12(Q12(1))? = Qua(7)* + ds Ay 12(7).
Each of these identities defines a modular parametrization @, : X, — Ej

by
o Qr(r)  Onk(Qk)(T)
i) = (AN,k(T)‘l/k’ Ap i (7)5/k >’

where X, is the compactified modular curve H/ .

Onk(f(T)) =

Fpir) - € Mg™ (I)-

8mi 271

PROPOSITION 1. Let % be the Néron differential on Ey. Then

(2.2) @;(Zi) = Ty p(2r/R)dr

In particular, the conductor of Ey, is k2N/4 and fy(7) is the cusp form
associated to Ei by the modularity theorem.
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REMARK 2. Note that when k = 6,8 or 12, fy(7) is a modular form
with complex multiplication by the ring of integers of Q(v/—3), Q(v/—1) and
Q(v/—3), respectively.

Conversely, given a modular parametrization @ : X — Fj satisfying
, we construct a differential equation (2.1)) and its solution Qx(7) as
follows.

Let x and y be two functions on Ej satisfying the Weierstrass equation
y? = fi(z). The functions z(7) := z o $(7) and y(7) := y o P (1) satisfy
y(7)? = fr(z(7)). Moreover (2.2 implies that

k 2
23 () = falr/Py(r)? = Ans() ula ().

Define Qg (1) := a:(T)AN7k(T)4/k.
PROPOSITION 3. The following formula holds:
ON 1 (Qr(7))? = An (1) *7* fi(a(7)).
In particular, Qk(7) is a solution of .

Now we investigate conditions under which Q(7) is holomorphic. The
following lemma easily follows from the formula above.

LEMMA 4. Assume that 19 € X}, is a pole of z(7). Then
0 if 70 1S a cusp,

ordry (@i(7)) = { —2 ifm el

As a consequence, we have the following characterization of the holomor-
phicity of Qx(7) in terms of the modular parametrization @;. Denote by C
the set of cusps of X}, and by O the point at infinity of Fj.

PROPOSITION 5. Q(7) is holomorphic if and only if (P,;l((’)) cC.

In Section we show that the degree of @, (as a function of the con-
ductor) grows faster than the total ramification index at cusps, hence the
following theorem holds.

THEOREM 6. There are finitely many elliptic curves E/Q (up to a
Q-isomorphism) that admit a modular parametrization © : Xy, — E with
the property that ®~1(0) C C.

In particular, there are finitely many elliptic curves Ey (up to a Q-iso-
morphism) for which Qi () (which satisfies (2.1))) is holomorphic.

Define A := (49) and T := ({1). It is easy to see that IH(N) is
generated by I, and A and T’ (Lemma [9] below), hence Q(7) is modular for
I'h(N) if and only if it is invariant under the action of the slash operators
|A and |T. The following theorem describes the modularity in terms of the
parametrization @y.
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THEOREM 7. If &,'(O) is invariant under A and T, then Qi(7) is
modular for I'H(N).

3. Proofs

3.1. Proof of Propositions [1] and
Proof of Proposition [l We have

* dx o li Qk(T) AN,]C(T)(B/IC
P <2y) C2dr <AN,k(7')4/k) Nk (Qr)(T) i

_ 1 QU Ik 2/ = e fa 27/ K Qu(r)

~ 3 Ink(27/k)
3
X fN’k(QT/k?l f (2 /k)k/2 dr
ar J N, k(4T
871'1 d‘er( ) Qk(T)W
47e

—fN k(27/k)dT. =

Proof of Proposition[3. By definition,

/ A, T
Ok (Qr(7)) = %(;U(T)AM,C(T)Mk) _;Tix(T)AN,k(T)MkAZZZET;
- %x’(T)AN,k(T)W-

Hence the claim follows from (2.3)). =

3.2. Proof of Theorem [6l Let e, € Z be the ramification index of @
at x € Xy, and let deg(®y) be the degree of . It follows from the Hurwitz
formula that >, v (e; — 1) = 2g — 2, where g is the genus of X}, (equal to

the genus of I7(k?>N/4)). Therefore ¢, *(0) C C implies
(3.1) deg(Pr) < ) er <29 — 2+ #C.
zeC

In [I1], Watkins proved a lower bound for the degree of a modular para-
metrization @ of an elliptic curve over QQ of conductor M:

M/6 1/10300
~ log M /0.02 +Toglog M
On the other hand, an upper bound (see [4]) for the genus g of Xo(M) is

deg(®) >

g<M (loglogM+2/loglogM) for M > 2,

where v = 0.5772. .. is Euler’s constant.
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If we use a trivial bound #C < M, an easy calculation shows that (3.1
cannot hold for curves Ej, of conductor greater than 10°°. Thus, we have
proved Theorem [6]

REMARK 8. If we assume that the ramification index at cusps is bounded
by 24 (as suggested in the paper of Brunault [3]), and if we use Abramovich’s
[1] lower bound for the modular degree, deg(®) > 7M /1600, we conclude
that cannot hold for elliptic curves of conductor greater than 21°.

3.3. Proof of Theorem [7] In this section we investigate conditions on
the modular parametrization @5 under which Ay ;(7) and Q(7), initially
modular for Iy, are modular for I'H(N).

For S = (2%) € SLy(Z), and a (meromorphic) modular form f(7) of
weight I, we define the usual slash operator as f(7)|;S := f(S7)(cr +d)~,

at+

where ST = ﬁ. Define T := ({ 1) and A:= (}9).

LEMMA 9. The group I'y(kN/2) is generated by I}, and T, while IH(N)
is generated by IH(kN/2) and A.

Proof. To prove the first statement, let (‘Cl g) € Iy(kN/2). Then
ged(a, k/2) = 1, and there is r € Z such that ar = —b (mod k/2). Then
(28)T" € I, = TH(kN/2) N I°(k/2), and the claim follows.

The second statement is proved analogously. =

Thus, to prove that Ay 1 (7) and Q(7) are modular for (V) it suffices
to show their invariance under the slash operators |T" and |A.

LEMMA 10. The matrices A and T normalize I7},.

Proof. Let (¢%) € I, = Iy(kN/2) N I'°(k/2). Then kN/2|c and k/2|c,
and ad = 1 (mod k/2). In particular, since k/2 € {2,3,4,6}, it follows that
a=d (mod k/2).

Since
e ab A a+bN b
ed] \—-aN—-bN2+c+dN —bN+d)’

71 ab (o€ a+b—c—d
cd c c+d ’
the claim follows. m

For a prime p, define the Hecke operator T}, as a double coset operator
Fk(é g)Fk acting on the space of cusp forms on I'y. The slash operators |A
and |T" correspond to Iy Al and I,TT}, (see [0, Chapter 5]).

Define the Fricke involution |2 B on S2(I%) by the matrix B := (k:]\(/)/27%/2 ).

Note that |2 B is the conjugate of the usual Fricke involution on I'y(k?N/4).
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In particular, B normalizes I}, and |2 B commutes with all the Hecke oper-
ators T}, with p { k?N/4. Hence, fnx(27/k)|2B = A\.n fnx(27/k) for some
Aoy = 1.

LEMMA 11. The following are true:

(a) fni(@7/R)[2T = /% fyp (27 /k),
(b) fnk(27T/k)2A = e 4™k f (27 /).

In particular, |2A and [oB have order k/2 when acting on fn,(27/k).

Proof. A key observation is that the Fourier coefficients of fy () are
supported at integers that are 1 (mod k/2). This implies

Ine2T/R)2T = ¥/ f n (27 /k).

When k£ = 4 (and k£ = 12) this is a consequence of the general fact that
af(2) = 0 whenever f(7) = > as(n)q" is a newform of level divisible by 4
(see [10, p. 29]). In the other three cases, fy(7) is a modular form with
complex multiplication by the ring of integers of Q(v/—3) or Q(v/—1), hence
its Fourier coefficients ay, , (p) are zero when p is an inert prime (i.e. p = 2
(mod 3) or p = 3 (mod 4), respectively). Multiplicativity of the Fourier
coefficients then implies the observation.
On the other hand A = BT~'B~!, therefore

Inw(27/K)2A = (Fng(27/K) 2 B) 2T~ 287
= kN Ik (27/B) [T B~
= )\k,N)\,;}Ve_4”i/ka7k(27/k). L]
COROLLARY 12. We have:
(a) Ani(7) € Sk(Io(N)),
(b) AN78(T)1/2|4A = —AN78(T)1/2 and AN78(T)1/2‘4T = —ANyg(T)1/2,
(C) AN712(T)1/2‘6A = —A]\[712(T)1/2 and AN712(T)1/2|6T = _ANJQ(T)I/Q.
We now recall some basic facts about Jacobians of modular curves. For
more details see Chapter 6 of [6]. Denote by Jac(X}) the Jacobian of Xj.
We will view it either as So(I})"/Hy(Xk,Z) (where v € Hy(Xg,Z) acts on
f(7) € Sa(Ik) by f(r) = § f(7)dr), or as the Picard group Pic®(Xy) of Xy,
which is the quotient Div®(X})/Div!(X}) of the degree zero divisors of X,

modulo principal divisors. If x( is a base point in X}, then X; embeds into
its Picard group under the Abel-Jacobi map

X — PicO(Xk), x = (x) — (x0),

where (x) — (z9) denotes the equivalence class of divisors (z) — (xg) +
Div!(Xy).
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It is known that the parametrization @ : X — Ej can be factored as
(3.2) Xk — Jac(Xk) w—k> Ek ¢—k> Ek.

Here X}, — Jac(Xy) is the Abel-Jacobi map (for some base point z¢ in Xj),
¢y is a rational isogeny and Ej, (together with 1/;,) is the strong Weil curve
associated to the newform fy (27/k) via the Eichler-Shimura construction
as follows.

Let V}, be the C-span of f 1 (27/k) € S2(I), and define Ay := Hy(X)| V.

Restriction to Vi gives a homomorphism
¢k : Jac(Xk) — Vk/\//lk = E~k

Here V}/*/ Ay, is a one-dimensional complex torus isomorphic to the rational
elliptic curve Ej, with the Weierstrass equation
s .,2 .3 92(Ag) 93(Ag)
Ey:y" ==z 1 T T
Let S be either A or T. Since by Lemma S normalizes [}, we
can define the action of S on Jac(Xy) in two equivalent ways: for ¢ €
So(I)"/Hy (X, Z) and f(r) € Sa(Ik) let S(@)(f(7) = 6(f(r)]2S). or for
P = () — (x0) € Pic®(X}) let S(P) = (Sz) — (Sxo). Now Lemma [11] im-
plies that the action of S on Jac(X}) descends to an automorphism of E,
of order k/2.
Recall that x and y are functions on Fj, satisfying the Weierstrass equa-
tion y?2 = fx(x), and that 2(7) = zo®,(7) and y(7) = yo P (7) are modular
functions on Xj.

PROPOSITION 13. Let S be either A or T'. If 45,:1((’)) is invariant under
A and T, then:

0 as- {1
o vors= {1 128,

Proof. For P € Ej, we define S(P) := ¢y (S(P)) for any P € ¢ H(P).
This is well defined since the S-invariance of 915,;1 (O) implies the S-invariance
of Ker(¢x). We have ¢p(S(P)) = S(¢x(P)), hence S is an automorphism
of F..

Let xg be a base point of the Abel-Jacobi map in . Then zg is in
@;1(0), hence ¢y, o ¢ maps (Szg) — (z9) to O in Ej. In particular, for
x € X}, we have

(33)  Pr(Sx) = o 0 Y ((Sz) — (w0)) = P © Y ((Sz) — (Sx0)) = S(Pr ().
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Assume first that k = 4. Then j(Ey4) # 0,1728, and the automorphism
group of Ey is of order 2 generated by (x,y) — (z,—y). In particular
z(S(P)) = x(P) for every P € Ej.

If k = 8, then S is an automorphism of order k/2 = 4 of E},, therefore
j(E) = 1728 and g3(Ag) = 0. Moreover ¢y, is an isomorphism (defined
over ), which implies that S is an isomorphism of order 4 of Eg as well. The
automorphism group is generated by (z,y) — (—=z,iy), hence z(S(P)) =
—x(P) for every P € Eg.

If k = 6 or 12, then j(Ey) = 0, g2(Ax) = 0 and ¢ is an isomorphism
(defined over Q). Therefore, S has order 3 on Ej if K = 6, and order 6 if
k = 12. The automorphism group is generated by (z,y) — (e*™/3z, —y),
and in particular y(S(P)) = y(P) if k = 6, and y(S(P)) = —y(P) if k = 12,
for every P € E}.

Now implies

z(7)]S = 2(57) = 2(Pr(57)) = 2(S(Pr(7))),
y(T)|S = y(57) = y(Pr(S7)) = y(S(Pk(7))),

and the claim follows from the previous paragraph. =
We need the following technical lemma. Recall Q,(7) := x(7) An k()"
LEMMA 14. If Ox 1 (Qu(7)) € ME (Iy(N)), then Qu(r) € MI (IH(N)).

Proof. As in the proof of Proposition [3| we have

Nk (Qr(T)) = i@-ff/(T)AN,k(T)‘l/k - i z'(7)

8w x(7) @(7)-

Let S be either A or T. Then (z(S7))" = 2/(7)|2S, and the invariance of
&' (1)/z(7) under S (hence under I'h(N)) follows from the fact that z(7) is
an eigenfunction for S, which follows from the proof of Proposition "

Since Qi (1) := (1) An x(7)**, Theorem [7| for k = 4 and 8 now follows
from Corollary [12|(a), (b) and Proposition[L3|a), while the k = 6 and 12 case
follows from Oy & (Qx) (1) = y(7) An x(7)%/F together with Corollary (a), (c),
Proposition [13(b) and Lemma

4. Example. Let

o
froa(™) =Y a(n)q" =q+2¢* — ¢ —3¢" + 4" + -

n=1

be a unique newform in So(IH(76)), and denote Ayg4(7) = fi94(7/2)? €
Sa(I(19)).
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Set I' = (162(1))_1F0(76)(1(/)2 (1)) For 7 € H we define

.
U(r):=mi S f(z/2)dz.
100

For v € I' and 7 € H, define w(y) := ¥(y7) — ¥(7). One easily checks
that %w('y) = 0, hence w(vy) does not depend on 7. Denote by A the image
of I' under w. By Eichler-Shimura theory, A is a lattice, and ¥(7) induces a
parametrization X := H/I" — C/A. The complex torus C/A is isomorphic to
E:qy?=2a2%— #x — # by the map given by the Weierstrass p-function
and its derivative, z — (p(z, A), 9'(z, A)/2), thus by composing these two
maps we obtain a modular parametrization @ : X — F.

One finds that A has generators

wy = 1.1104197465122 . . .,
wg = 0.5552098732561 ... 4 2.1752061725591 ... x 1.

Moreover, ga(A) = 256/3 and g3(A) = 4112/27, hence Proposition [3| implies
that

Q(7) = A1ga(7)p(¥(7), 4)
=1+ £(8¢q + 8¢ + 64¢® + 232¢" + 336¢° + 256¢° + 512¢" + - -+ )
satisfies the differential equation
(4.1) 819,4(62)2 = Q3 - %QA%M - %A?QA'
One finds that
GCD({p+1—a(p) : p prime, p=1 (mod 76)}) =1,

hence it follows from the special case of the Drinfeld-Manin theorem (see [5]
Theorem 2.20]) that ¥(7) maps cusps of X to the lattice A, or equivalently
that @ maps cusps of X to the point at infinity of E. The modular curve
X has six cusps, and one can check (for example by using Magma) that the
degree of @ is six, therefore the conditions of Proposition 5| and Theorem
are satisfied, and we conclude that Q(7) € My(15(19)).
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