
ACTA ARITHMETICA

163.2 (2014)

The distribution of Fourier coefficients of cusp forms over
sparse sequences

by

Huixue Lao (Jinan) and Ayyadurai Sankaranarayanan (Mumbai)

1. Introduction and main results. According to the Langlands pro-
gram, the “most general” L-function should be a product of L-functions of
automorphic cuspidal representations of GLm/Q. Therefore these automor-
phic L-functions do deserve deep investigation. The Hecke L-function is an
important automorphic L-function.

Let Sk(Γ ) be the space of holomorphic cusp forms of even integral weight
k for the full modular group Γ = SL(2,Z). Suppose that f(z) is an eigen-
function of all the Hecke operators belonging to Sk(Γ ). Then the Hecke
eigenform f(z) has the following Fourier expansion at the cusp ∞:

f(z) =

∞∑
n=1

af (n)e2πinz,

where we normalize f(z) so that af (1) = 1. Instead of af (n), one often
considers the normalized Fourier coefficient

λf (n) =
af (n)

n(k−1)/2
.

It is well-known that λf (n) is real and has the multiplicative property

λf (m)λf (n) =
∑

d|(m,n)

λf (mn/d2),(1.1)

where m,n ≥ 1 are any integers. The Fourier coefficients of cusp forms are
interesting objects. In 1974, P. Deligne [2] proved the Ramanujan–Petersson
conjecture

|λf (n)| ≤ d(n),(1.2)

where d(n) is the divisor function.
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The Hecke L-function attached to f ∈ Sk(Γ ) is defined, for Re(s) > 1,
by

L(f, s) =
∞∑
n=1

λf (n)

ns
.

For the sum of the normalized Fourier coefficients over natural numbers,
Rankin [20] proved that

S(x) =
∑
n≤x

λf (n)� x1/3(log x)−δ,

where 0 < δ < 0.06.

In 2001, Ivić [6] studied the sum of the normalized Fourier coefficients
over squares, i.e.

S2(x) =
∑
n≤x

λf (n2).

By using (1.1), the Rankin–Selberg method, and the zero-free region of
Riemann zeta function, he gave a nontrivial estimate

S2(x)�f x exp
(
−A(log x)3/5(log log x)−1/5

)
,

where A is a suitable positive constant.

Later Fomenko [3] observed that

S2(x)�f x
1/2(log x)3.

Recently Sankaranarayanan [22] showed that

S2(x)� x3/4(log x)19/2 log log x

uniformly for any holomorphic cusp form of even integral weight k for the
full modular group satisfying k � x1/3(log x)22/3.

Subsequently by using the properties of symmetric power L-functions,
Lü [16] proved that for any ε > 0,

S3(x) =
∑
n≤x

λf (n3)�f,ε x
3/4+ε, S4(x) =

∑
n≤x

λf (n4)�f,ε x
7/9+ε.

On the other hand, Rankin [19] and Selberg [23] studied the average
behavior of λ2f (n) over natural numbers and showed that∑

n≤x
λ2f (n) = c1x+Of (x3/5),

where c1 is a positive constant depending on f . Recently we studied the
asymptotic formula for the sum∑

n≤x
λ2f (nj), j = 2, 3, 4.
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By using the properties of symmetric power L-functions and their Rankin–
Selberg L-functions (which have been established in [4], [7], [9], [10], [11],
[14], and [24]), in [12] we proved that for any ε > 0, we have

(1.3)
∑
n≤x

λ2f (nj) = cjx+Of,ε
(
x
1− 2

(j+1)2+2
+ε)

, j = 2, 3, 4,

where cj are suitable constants depending on f .

In this paper we first improve these results by applying the convolution
method arguments and a classical lemma of Landau.

Theorem 1.1. Let f(z) ∈ Sk(Γ ) be a Hecke eigenform of even integral
weight k for the full modular group, and let λf (n) denote its nth normalized
Fourier coefficient. Then∑

n≤x
λ2f (nj) = cjx+Of

(
x
1− 2

(j+1)2+1
)
, j = 2, 3, 4.

Furthermore by applying an identity among automorphic L-functions
and some techniques of analytic number theory, we can still improve Theo-
rem 1.1 for j = 2. More precisely, we prove:

Theorem 1.2. Let f(z) ∈ Sk(Γ ) be a Hecke eigenform of even integral
weight k for the full modular group. Then for any ε > 0,∑

n≤x
λ2f (n2) = c2x+Of,ε(x

53/69+ε).

For comparison, we have 9/11 = 0.818 . . . (for j = 2 in (1.3)), 4/5 = 0.8
(for j = 2 by Theorem 1.1) and 53/69 = 0.768 . . . .

2. Some lemmas. According to Deligne [2], for any prime number p
there are αf (p) and βf (p) such that

λf (p) = αf (p) + βf (p) and |αf (p)| = αf (p)βf (p) = 1.(2.1)

The jth symmetric power L-function attached to f ∈ Sk(Γ ) is defined as

L(symjf, s) :=
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mp−s)−1(2.2)

for Re(s) > 1. In particular,

L(sym0 f, s) = ζ(s), L(sym1 f, s) = L(f, s).

In the half-plane Re(s) > 1, we can write L(symj f, s) as a Dirichlet series

L(symj f, s) =
∞∑
n=1

λsymj f (n)

ns
.
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The Rankin–Selberg L-function associated to symj f × symj f is defined
as

(2.3) L(symj f × symj f, s)

:=
∏
p

j∏
m=0

j∏
u=0

(1− αf (p)j−mβf (p)mαf (p)j−uβf (p)up−s)−1

for Re(s) > 1.

Lemma 2.1 (Lao and Sankaranarayanan [12, Lemma 2.1]). Let f(z) ∈
Sk(Γ ) be a Hecke eigenform of even integral weight k for the full modular
group. For j = 2, 3, 4, we introduce

Lj(s) :=
∞∑
n=1

λ2f (nj)

ns
for Re(s) > 1.(2.4)

Then

Lj(s) = L(symjf × symjf, s)Uj(s) for Re(s) > 1,(2.5)

where Uj(s) converges uniformly and absolutely in the half-plane Re(s) ≥
1/2 + ε for any ε > 0.

Lemma 2.2. For Re(s) > 1, we have

L(sym2f × sym2f, s) = ζ(s)L(sym2f, s)L(sym4f, s).

Proof. This follows from (2.2) with j = 0, 2, 4, and from (2.3) with
j = 3.

Based on the work of Cogdell and Michel [1], Lau and Wu [14] showed
that for j = 2, 3, 4, L(symj f, s) and L(symj f×symj f, s) have meromorphic
continuations to the whole complex plane, and satisfy a functional equation.

Lemma 2.3 (Cogdell and Michel [1, Section 3.2.1]). Let f(z) ∈ Sk(Γ )
be a Hecke eigencuspform of even integral weight k. For j = 2, 3, 4, the
archimedean local factor of L(symjf, s) is

L∞(symjf, s) =

{∏n
v=0 ΓC(s+ (v + 1/2)(k − 1)) if j = 2n+ 1,

ΓR(s+ δ2-n)
∏n
v=1 ΓC(s+ v(k − 1)) if j = 2n,

where ΓR = π−s/2Γ (s/2), ΓC = 2(2π)−sΓ (s), and δ2-n is 1 when 2 does not
divide n, and 0 otherwise.

For 2 ≤ j ≤ 4, the complete L-function

Λ(symjf, s) = L∞(symjf, s)L(symjf, s)

is an entire function on C, and satisfies the functional equation

Λ(symjf, s) = εsymjfΛ(symjf, 1− s),
where εsymjf = ±1.
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Lemma 2.4 (Lau and Wu [14, Proposition 2.1]). Let f(z) ∈ Sk(Γ ) be a
Hecke eigenform of even integral weight k. For j = 2, 3, 4, the archimedean
local factor of L(symjf × symjf, s) is

L∞(symjf × symjf, s) = ΓR(s)δ2|jΓC(s)[j/2]+δ2-j
j∏

v=1

ΓC(s+ v(k − 1))j−v+1,

where δ2|j = 1− δ2-j. The complete L-function

Λ(symj f × symj f, s) := L∞(symj f × symj f, s)L(symj f × symj f, s)

is entire except possibly for simple poles at s = 0, 1 and satisfies the func-
tional equation

Λ(symj f × symj f, s) = εsymj f×symj fΛ(symj f × symj f, 1− s)
with |εsymj f×symj f | = 1.

Lemma 2.5. For any ε > 0, σ ≥ 1/2, and |t| ≥ 2, we have

ζ(σ + it)�ε (1 + |t|)max{ 1
3
(1−σ),0}+ε,

L(sym2 f, σ + it)�f,ε (1 + |t|)max{ 11
8
(1−σ),0}+ε,

L(symj f, σ + it)�f,ε (1 + |t|)max{ j+1
2

(1−σ),0}+ε, j = 3, 4.

Proof. For any ε > 0, we have (see [18])

ζ(σ + it)�ε (1 + |t|)
1
3
(1−σ)+ε, 1/2 ≤ σ ≤ 1, |t| ≥ 2.

The estimate

L(sym2 f, σ + it)�f,ε (1 + |t|)
11
8
(1−σ)+ε, 1/2 ≤ σ ≤ 1, |t| ≥ 2,

is due to X. Q. Li [15]. From Lemma 2.3, we have

L(symj f, σ + it)�f,ε (1 + |t|)
j+1
2

(1−σ)+ε, 1/2 ≤ σ ≤ 1, |t| ≥ 2, j = 3, 4.

The claim for σ > 1 holds by the absolute convergence of the Dirichlet series
involved, which follows from (1.2).

Lemma 2.6. Let j = 2, 3, 4. Then for T ≥ T0 (where T0 is sufficiently
large),

2T�

T

|L(symj f, 1/2 + ε+ it)|2 dt�f,ε T
j+1
2

+ε,

where ε is any positive constant.

Proof. From (2.2), the L-function L
(
symj f, s

)
is of degree j + 1. Lem-

ma 2.4 shows that the L-function L
(
symj f, s

)
can be extended as an entire

function and also satisfy a nice functional equation of the Riemann zeta
type. Thus we can write the functional equation here as

L(symj f, s) = χ(s)L(symj f, 1− s),
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where

|χ(s)| � |t|
j+1
2

(1−2σ) as |t| → ∞

uniformly in any fixed strip a ≤ σ ≤ b. Now we follow the arguments of
Sankaranarayanan [21, Theorem 4.1(i)]. The only necessary changes are that
we need the free parameters Y and Y1 therein to be Y = Y1 = cT (j+1)/2,
where c is a suitable positive constant. This leads to the estimate of this
lemma.

Lemma 2.7 (Heath-Brown [5]). For T ≥ 1,

T�

1

|ζ(1/2 + it)|12 dt� T 2+ε.

Lemma 2.8. Let an ≥ 0 and set

f(s) =
∞∑
n=1

an
ns
.

Suppose f(s) is convergent in some half-plane and has an analytic continu-
ation, except for a pole at s = α of order k, to the entire complex plane and
it satisfies a functional equation

cs∆(s)f(s) = c1−s∆(1− s)f(1− s),

where c is a positive constant and ∆(s) =
∏N
i=1 Γ (αis+ βi) (αi > 0). Then∑

n≤x
an = xαPk−1(log x) +O(xα(1−

2
2A+1

) logk−1 x),

where A =
∑N

i=1 αi and Pk−1(y) is a polynomial in y of degree k − 1.

Proof. This is one of the many possible versions of a classical lemma of
Landau. See for e.g. Murty [17, Lemma 1].

3. Proof of Theorem 1.1. The product over primes in (2.3) gives a
Dirichlet series representation

L(symj f × symj f, s) =

∞∑
n=1

λsymj f×symj f (n)

ns
for Re(s) > 1,

where λsymj f×symj f (n) is nonnegative in view of [13, Lemma 3.1(a)]. By

Lemma 2.4, L(symj f × symj f, s) satisfies the conclusion of Lemma 2.8
with α = 1, k = 1, and 2A = (j + 1)2. Then we have∑

n≤x
λsymj f×symj f (n) = djx+O

(
x
1− 2

(j+1)2+1
)
,
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where dj is a suitable constant depending on f . By Lemma 2.1,

λ2f (nj) =
∑
n=ml

λsymj f×symj f (m)uj(l),

where ∑
l≤x
|uj(l)|l−v � 1 for v ≥ 1/2 + ε.

Hence∑
n≤x

λ2f (nj) =
∑
ml≤x

λsymj f×symj f (m)uj(l) =
∑
l≤x

uj(l)
∑
m≤x/l

λsymj f×symj f (m)

=
∑
l≤x

uj(l)
{
dj(x/l) +O

(
(x/l)

1− 2
(j+1)2+1

)}
=: cjx+O

(
x
1− 2

(j+1)2+1
)
.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2. Recall that

L2(s) =
∞∑
n=1

λ2f (n2)

ns
for Re(s) > 1.

From Lemmas 2.1 and 2.2, we observe that

L2(s) = L(sym2 f × sym2 f, s)U2(s) = ζ(s)L(sym2 f, s)L(sym4 f, s)U2(s)

can be meromorphically continued to the half-plane Re(s) > 1/2. In this
region, L2(s) has only a simple pole at s = 1.

Now, we begin to prove Theorem 1.2. By Perron’s formula (see [8, Propo-
sition 5.54]), we have∑

n≤x
λ2f (n2) =

1

2πi

b+iT�

b−iT
L2(s)

xs

s
ds+O(x1+ε/T ),

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we
have used (1.2).

Next we move the integration to the parallel segment with Re(s) =
1/2 + ε. By Cauchy’s residue theorem, we have

∑
n≤x

λ2f (n2) =
1

2πi

{ 1/2+ε+iT�

1/2+ε−iT

+

b+iT�

1/2+ε+iT

+

1/2+ε−iT�

b−iT

}
L2(s)

xs

s
ds(4.1)

+ Ress=1(L2(s)x
s/s) +O(x1+ε/T )

=: I1 + I2 + I3 + c2x+O(x1+ε/T ).
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For I1, by Lemma 2.1,

I1 � x1/2+ε

+ x1/2+ε
T�

1

|L(sym2 f × sym2 f, 1/2 + ε+ it)Uj(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

|L(sym2 f × sym2 f, 1/2 + ε+ it)|t−1 dt.

Therefore

I1 � x1/2+ε

+ x1/2+ε
∑

1≤j≤[ log T
log 2

]+1

T/2j−1�

T/2j

|L(sym2 f × sym2 f, 1/2 + ε+ it)|t−1 dt

� x1/2+ε

+ x1/2+ε log T max
T1≤T

{
1

T1

T1�

T1/2

|L(sym2 f × sym2 f, 1/2 + ε+ it)| dt
}
.

Using the decomposition in Lemma 2.2, by Hölder’s inequality, we have

I1 � x1/2+ε + x1/2+ε log T max
T1≤T

{
1

T1

( T1�

T1/2

|ζ(1/2 + ε+ it)|12 dt
)1/12

×
( T1�

T1/2

|L(sym2 f, 1/2 + ε+ it)|12/5 dt
)5/12

×
( T1�

T1/2

|L(sym4 f, 1/2 + ε+ it)|2 dt
)1/2}

.

Furthermore,

I1 � x1/2+ε + x1/2+ε log T max
T1≤T

{
1

T1

( T1�

T1/2

|ζ(1/2 + ε+ it)|12 dt
)1/12

×
(

max
T1/2≤t≤T1

|L(sym2 f, 1/2+ε+it)|2/5
T1�

T1/2

|L(sym2 f, 1/2+ε+it)|2 dt
)5/12

×
( T1�

T1/2

|L(sym4 f, 1/2 + ε+ it)|2 dt
)1/2}

.
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After applying Lemmas 2.5–2.7, we have

(4.2) I1 � x1/2+ε + x1/2+εT
1
6
+( 2

5
× 11

16
+ 3

2
)× 5

12
+ 5

4
−1+ε � x1/2+εT 37/32+ε.

For the integrals over the horizontal segments, we use Lemmas 2.2 and 2.5
to get

(4.3) I2 + I3 �
b�

1/2+ε

xσ|L(sym2 f × sym2 f, σ + iT )|T−1 dσ

� max
1/2+ε≤σ≤b

xσT ( 1
3
+ 11

8
+ 5

2
)(1−σ)+εT−1 + x1+ε/T

� max
1/2+ε≤σ≤b

(
x

T 101/24

)σ
T 101/24−1+ε +

x1+ε

T

�
(

x

T 101/24

)b
T 101/24−1+ε +

(
x

T 101/24

)1/2+ε

T 101/24−1+ε +
x1+ε

T

� x1+ε

T
+ x1/2+εT 53/48+ε.

From (4.1)–(4.3), we have

(4.4)
∑
n≤x

λ2f (n2) = c2x+O(x1+ε/T ) +O(x1/2+εT 37/32+ε).

On taking T = x16/69 in (4.4), we conclude that∑
n≤x

λ2f (n2) = c2x+O(x53/69+ε).
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