Solving $a \pm b=2 c$ in elements of finite sets

by
Vsevolod F. Lev and Rom Pinchasi (Haifa)

We show that if A and B are finite sets of real numbers, then the number of triples $(a, b, c) \in A \times B \times(A \cup B)$ with $a+b=2 c$ is at most $(0.15+$ $o(1))(|A|+|B|)^{2}$ as $|A|+|B| \rightarrow \infty$. As a corollary, if A is antisymmetric (that is, $A \cap(-A)=\emptyset$), then there are at most $(0.3+o(1))|A|^{2}$ triples (a, b, c) with $a, b, c \in A$ and $a-b=2 c$. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a, b, c) with $a, b, c \in A$ and $a-b=2 c$ is at most $(0.5+o(1))|A|^{2}$. These estimates are sharp.

1. Introduction and summary of results. For a finite real set A of a given size, the number of three-term arithmetic progressions in A is maximized when A itself is an arithmetic progression. This follows by observing that for any integer $1 \leq k \leq|A|$, the number of three-term progressions in A with the middle term being the k th largest element of A is at most $\min \{k-1,|A|-k\}$. A simple computation leads to the conclusion that the number of triples $(a, b, c) \in A \times A \times A$ with $a+b=2 c$ is at most $0.5|A|^{2}+0.5$.

Suppose now that we count only those progressions with the least element below, and the greatest element above the median of A; what is the largest possible number of such "scattered" progressions? This problem was raised in [NPPZ] in connection with a combinatorial geometry question by Erdős. Below we give it a complete solution; indeed, we solve a more general problem, replacing the sets of all elements below/above the median with arbitrary finite sets.

Theorem 1. If A and B are finite sets of real numbers, then the number of triples (a, b, c) with $a \in A, b \in B, c \in A \cup B$, and $a+b=2 c$ is at most $0.15(|A|+|B|)^{2}+0.5(|A|+|B|)$.

[^0]For a subset A of an abelian group, write $-A:=\{-a: a \in A\}$. We say that A is antisymmetric if $A \cap(-A)=\emptyset$. Thus, for instance, any set of positive real numbers is antisymmetric.

For an antisymmetric set A, the number of triples (a, b, c) with $a \in A$, $b \in-A, c \in A \cup(-A)$, and $a+b=2 c$, is twice the number of triples (a, b, c) with $a, b, c \in A$ and $a-b=2 c$. Hence, Theorem 1 yields

Corollary 1. If A is a finite antisymmetric set of real numbers, then the number of triples (a, b, c) with $a, b, c \in A$ and $a-b=2 c$ is at most $0.3|A|^{2}+0.5|A|$.

The following example shows that the coefficient 0.3 of Corollary 1, and therefore also the coefficient 0.15 of Theorem 11, is best possible.

Example. Fix an integer $m \geq 1$, and let A consist of all positive integers up to m, and all even integers between m and $4 m$ (taking all odd integers will do as well). Assuming for definiteness that m is even, we can thus write

$$
A=[1, m] \cup\{m+2, m+4, \ldots, 4 m\}
$$

Notice that A contains $m / 2$ odd elements and $2 m$ even elements, of which exactly m are divisible by 4 ; in particular, $|A|=5 m / 2$. For every triple $(a, b, c) \in A \times A \times A$ with $a-b=2 c$, we have $a \equiv b(\bmod 2)$ and $a>b$. There are $\binom{m / 2}{2}$ such triples with a and b both odd, and $2\binom{m}{2}$ triples with a and b both even and satisfying $a \equiv b(\bmod 4)$. Furthermore, it is not difficult to see that there are $\frac{3}{4} m^{2}$ triples with a and both even and satisfying $a \not \equiv b(\bmod 4)$. Thus, the total number of triples under consideration is

$$
\binom{m / 2}{2}+2\binom{m}{2}+\frac{3}{4} m^{2}=\frac{15}{8} m^{2}-\frac{5}{4} m=\frac{3}{10}|A|^{2}-\frac{1}{2}|A|
$$

the first summand matching the main term of Corollary 1.
Our second principal result addresses the same equation as Corollary 1 , but in the general situation where the antisymmetry assumption got dropped.

THEOREM 2. If A is a finite set of real numbers, then the number of triples (a, b, c) with $a, b, c \in A$ and $a-b=2 c$ is at most $0.5|A|^{2}+0.5|A|$.

The main term of Theorem 2 is best possible, as is easily seen by considering the set $A=[-m, m]$, where $m \geq 1$ is an integer. For this set, the number of triples $(a, b, c) \in A \times A \times A$ with $a-b=2 c$ is equal to the number of pairs $(a, b) \in A \times A$ with a and b of the same parity, which is $(m+1)^{2}+m^{2}=0.5|A|^{2}+0.5$.

It is a challenging problem to generalize our results and investigate the equations $a \pm b=\lambda c$ for a fixed real parameter $\lambda>0$. It follows from [L98, Theorem 1] that the number of solutions of this equation in elements
of a finite set of a given size is maximized when $\lambda=1$, and the set is an arithmetic progression, centered around 0 . It would be interesting to determine the largest possible number of solutions for every fixed value of $\lambda \neq 1$, or at least to estimate the maximum over all positive $\lambda \neq 1$.

We remark that using a standard technique, our results extend readily to finite subsets of torsion-free abelian groups. In contrast, extending Theorems 1 and 2 to groups with a non-zero torsion subgroup, and in particular to cyclic groups, seems to be a highly non-trivial problem requiring an approach completely different from that used in the present paper.

In the next section we prepare the ground for the proofs of Theorems 1 and 2. The theorems are then proved in Sections 3 and 4 , respectively.
2. The proofs: preparations. For finite sets A, B, and C of real numbers, let

$$
T(A, B, C):=|\{(a, b, c) \in A \times B \times C: a+b=2 c\}|
$$

We start with a simple lemma allowing us to confine ourselves to the integer case.

Lemma 1. For any finite sets A and B of real numbers, there exist finite sets A^{\prime} and B^{\prime} of integer numbers with $\left|A^{\prime}\right|=|A|,\left|B^{\prime}\right|=|B|$ such that $T\left(A^{\prime}, B^{\prime}, A^{\prime} \cup B^{\prime}\right)=T(A, B, A \cup B)$ and $T\left(A^{\prime},-A^{\prime}, A^{\prime}\right)=T(A,-A, A)$.

Proof. By the (weak version of the) standard simultaneous approximation theorem, there exist arbitrarily large integers $q \geq 1$, along with an integer-valued function φ_{q} acting on the union $A \cup(-A) \cup B$, such that

$$
\left|c-\frac{\varphi_{q}(c)}{q}\right|<\frac{1}{4 q}, \quad c \in A \cup(-A) \cup B
$$

Let $A^{\prime}:=\varphi_{q}(A)$ and $B^{\prime}:=\varphi_{q}(B)$. It is readily verified that if q is large enough, then $\left|A^{\prime}\right|=|A|$ and $\left|B^{\prime}\right|=|B|$, and moreover an equality of the form $a \pm b=2 c$ with $a, b, c \in A \cup(-A) \cup B$ holds true if and only if $\varphi_{q}(a) \pm \varphi_{q}(b)=2 \varphi_{q}(c)$. The assertion follows.

Clearly, for finite sets of integers A, B, and C with $|C| \geq|A|+|B|$, the number of triples $(a, b, c) \in A \times B \times C$ satisfying $a+b=c$ can be as large as $|A||B|$. Our argument relies on the following lemma which improves this trivial bound in the case where $|C|<|A|+|B|$.

Lemma 2. If A, B and C are finite sets of real numbers with $\max \{|A|,|B|\} \leq|C| \leq|A|+|B|$, then the number of triples $(a, b, c) \in$ $A \times B \times C$ satisfying $a+b=c$ does not exceed

$$
|A||B|-\frac{1}{4}(|A|+|B|-|C|)^{2}+\frac{1}{4}
$$

Proof. We use induction on $|A|+|B|-|C|$. The case where $|A|+|B|-$ $|C| \leq 1$ is immediate, and so we assume that $|A|+|B|-|C| \geq 2$. In view
of $\max \{|A|,|B|\} \leq|C| \leq|A|+|B|$, this assumption implies that A and B are non-empty. We let $a_{\min }:=\min A$ and $b_{\max }:=\max B$, and observe that no $c \in C$ can have both a representation $c=a_{\min }+b$ with some $b \in B$, and a representation $c=a+b_{\max }$ with some $a \in A$ (unless $c=a_{\min }+b_{\max }$ and the two representations are identical): for, $a_{\min }+b=a+b_{\max }$ yields $b-a=b_{\max }-a_{\min }$, whence $a=a_{\min }$ and $b=b_{\max }$. This shows that removing $a_{\text {min }}$ from A, and simultaneously $b_{\text {max }}$ from B, we loose at most $|C|$ triples $(a, b, c) \in A \times B \times C$ with $a+b=c$. Using now the induction hypothesis to estimate the number of such triples with $a \neq a_{\text {min }}$ and $b \neq b_{\text {max }}$, we conclude that the total number of triples under consideration is at most

$$
\begin{aligned}
|C|+(|A|-1)(|B|-1)-\frac{1}{4}(|A| & +|B|-2-|C|)^{2}+\frac{1}{4} \\
& =|A||B|-\frac{1}{4}(|A|+|B|-|C|)^{2}+\frac{1}{4}
\end{aligned}
$$

We note that Lemma 2 is sharp (up to the last summand on the righthand side that has to do with parity considerations), as can be seen by taking $A=\{1, \ldots, n\}, B=\{1, \ldots, m\}$, and $C=\{k+1, \ldots, n+m+1-k\}$, where $1 \leq k \leq \frac{1}{2} \min (n, m)$.

We also remark that Lemma 2 can be deduced from the following proposition, which is a particular case of L98, Theorem 1]; see [G32, HL28, HLP88] for earlier, slightly weaker versions.

For a finite set A of real numbers, write $\operatorname{mid}(A):=\frac{1}{2}(\min (A)+\max (A))$.
Proposition 1. Let A, B, and C be finite sets of integers. If A^{\prime}, B^{\prime}, and C^{\prime} are blocks of consecutive integers such that $\operatorname{mid}\left(C^{\prime}\right)$ is at most 0.5 off from $\operatorname{mid}\left(A^{\prime}\right)+\operatorname{mid}\left(B^{\prime}\right)$, and $\left|A^{\prime}\right|=|A|,\left|B^{\prime}\right|=|B|,\left|C^{\prime}\right|=|C|$, then the number of triples $(a, b, c) \in A \times B \times C$ with $a+b=c$ does not exceed the number of triples $\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in A^{\prime} \times B^{\prime} \times C^{\prime}$ with $a^{\prime}+b^{\prime}=c^{\prime}$.

Loosely speaking, Proposition 1 says that the number of solutions of $a+b=c+$ in the variables $a \in A, b \in B$, and $c \in C$ is maximized when A, B, and C are blocks of consecutive integers, located so that C captures the integers with the largest number of representations as a sum of an element from A and an element from B. We leave it to the reader to see how Lemma 2 can be derived from Proposition 1 .

We use Lemma 2 to estimate the quantity $T(A, B, C)$, which is the number of solutions of $a+b=c^{\prime}$ with $a \in A, b \in B$, and $c^{\prime} \in\{2 c: c \in C\}$. It is also convenient to recast the estimate of the lemma in terms of the function G which we define as follows: if (ξ, η, ζ) is a non-decreasing rearrangement of the triple (x, y, z) of real numbers, then we let

$$
G(x, y, z):= \begin{cases}\xi \eta & \text { if } \zeta \geq \xi+\eta \\ \xi \eta-\frac{1}{4}(\xi+\eta-\zeta)^{2} & \text { if } \zeta \leq \xi+\eta\end{cases}
$$

Thus, for instance, we have $G(9,6,7)=38$, whereas $G(7,14,6)=42$.

Corollary 2. If A, B and C are finite sets of integers, then

$$
T(A, B, C) \leq G(|A|,|B|,|C|)+\frac{1}{4}
$$

We close this section with two lemmas used in the proofs of Theorems 1 and 2, respectively.

For real x, we let $x_{+}:=\max \{x, 0\}$ and we agree that x_{+}^{2} stands for $\left(x_{+}\right)^{2}$.

Lemma 3. For any real x, y, and z, we have

$$
G\left(\frac{x+y}{2}, \frac{x+y}{2}, z\right)=G(x, y, z)+\frac{1}{4}(x-y)^{2}-\frac{1}{4}(|x-y|-z)_{+}^{2} .
$$

Corollary 3. For any real x, y, and z, we have

$$
G\left(\frac{x+y}{2}, \frac{x+y}{2}, z\right) \geq G(x, y, z)
$$

Lemma 4. If x and z are real numbers with $z \leq 2 x$, then $G(x, x, z) \leq$ $x z-\frac{1}{4} z^{2}$.

To prove Lemma 3 one can assume $x \leq y$ (which does not restrict generality) and verify the assertion in the four possible cases $z \leq x, x \leq z \leq$ $(x+y) / 2,(x+y) / 2 \leq z \leq y$, and $z \geq y$. The proof of Lemma 4 goes by straightforward analysis of the two cases $x \leq z$ and $x \geq z$. We omit the details.
3. Proof of Theorem 1. We use induction on $|A|+|B|$.

By Lemma 1, we can assume that A and B are sets of integers. For $i, j \in\{0,1\}$ let $A_{i}:=\{a \in A: a \equiv i(\bmod 2)\}$ and $A_{i j}:=\{a \in A: a \equiv$ $i+2 j(\bmod 4)\}$, and define B_{i} and $B_{i j}$ in a similar way. Also, write $m:=$ $|A|, m_{i}:=\left|A_{i}\right|, m_{i j}:=\left|A_{i j}\right|, n:=|B|, n_{i}:=\left|B_{i}\right|$, and $n_{i j}:=\left|B_{i j}\right|$. Applying a suitable affine transformation to A and B, we can assume without loss of generality that $A \cup B$ contains both even and odd elements, and the total number of even elements in A and B is at least as large as the total number of odd elements:

$$
\begin{equation*}
0<m_{1}+n_{1} \leq m_{0}+n_{0}<m+n \tag{1}
\end{equation*}
$$

Keeping the notation introduced at the beginning of Section 2 , we want to estimate the quantity $T(A, B, A \cup B)$. Observing that $a+b=2 c$ implies that a and b are of the same parity, we write

$$
\begin{align*}
T(A, B, A \cup B)= & T\left(A_{0}, B_{0}, A_{0} \cup B_{0}\right)+T\left(A_{0}, B_{0}, A_{1} \cup B_{1}\right) \tag{2}\\
& +T\left(A_{1}, B_{1}, A \cup B\right)
\end{align*}
$$

and estimate separately each of the three summands on the right-hand side.
For the first summand, we notice that $a_{0}+b_{0}=2 c_{0}$ with $a_{0} \in A_{0}$, $b_{0} \in B_{0}$, and $c_{0} \in A_{0} \cup B_{0}$, imply that $a_{0} / 2$ and $b_{0} / 2$ are of the same parity.

Hence, either $a_{0} \in A_{00}$ and $b_{0} \in B_{00}$, or $a_{0} \in A_{01}$ and $b_{0} \in B_{01}$, leading to the upper bound $m_{00} n_{00}+m_{01} n_{01}$. On the other hand, we can use induction (cf. (1i)) to estimate the first summand by $0.15\left(m_{0}+n_{0}\right)^{2}+0.5\left(m_{0}+n_{0}\right)$. As a result,

$$
\begin{align*}
& T\left(A_{0}, B_{0}, A_{0} \cup B_{0}\right) \tag{3}\\
& \quad \leq \min \left\{0.15\left(m_{0}+n_{0}\right)^{2}, m_{00} n_{00}+m_{01} n_{01}\right\}+0.5\left(m_{0}+n_{0}\right) .
\end{align*}
$$

Similar parity considerations show that if $a_{0}+b_{0}=2 c_{1}$ with $a_{0} \in A_{0}$, $b_{0} \in B_{0}$, and $c_{1} \in A_{1} \cup B_{1}$, then either $a_{0} \in A_{00}$ and $b_{0} \in B_{01}$, or $a_{0} \in A_{01}$ and $b_{0} \in B_{00}$. Therefore, using Corollary 2 , we get

$$
\begin{gather*}
T\left(A_{0}, B_{0}, A_{1} \cup B_{1}\right)=T\left(A_{00}, B_{01}, A_{1} \cup B_{1}\right)+T\left(A_{01}, B_{00}, A_{1} \cup B_{1}\right) \tag{4}\\
\leq G\left(m_{00}, n_{01}, m_{1}+n_{1}\right)+G\left(m_{01}, n_{00}, m_{1}+n_{1}\right)+0.5 .
\end{gather*}
$$

For the last summand in (2) we use the trivial estimate

$$
\begin{equation*}
T\left(A_{1}, B_{1}, A \cup B\right) \leq m_{1} n_{1} \leq 0.25\left(m_{1}+n_{1}\right)^{2} \tag{5}
\end{equation*}
$$

Substituting (3)-(5) into (2), we get

$$
\begin{align*}
T(A, B, A \cup B) \leq & \min \left\{0.15\left(m_{0}+n_{0}\right)^{2}, m_{00} n_{00}+m_{01} n_{01}\right\} \tag{6}\\
& +G\left(m_{00}, n_{01}, m_{1}+n_{1}\right)+G\left(m_{01}, n_{00}, m_{1}+n_{1}\right) \\
& +\frac{1}{4}\left(m_{1}+n_{1}\right)^{2}+0.5\left(m_{0}+n_{0}\right)+0.5 .
\end{align*}
$$

Recalling (1), we estimate the remainder terms as

$$
0.5\left(m_{0}+n_{0}\right)+0.5 \leq 0.5(m+n)
$$

To estimate the main term, for real $x_{0}, x_{1}, y_{0}, y_{1}$ we write

$$
\begin{equation*}
s:=x_{0}+x_{1}+y_{0}+y_{1} \tag{7}
\end{equation*}
$$

and let

$$
\begin{align*}
f\left(x_{0}, x_{1}, y_{0}, y_{1}\right):= & \min \left\{0.15 s^{2}, x_{0} y_{0}+x_{1} y_{1}\right\} \tag{8}\\
& +G\left(x_{0}, y_{1}, 1-s\right)+G\left(x_{1}, y_{0}, 1-s\right) \\
& +0.25(1-s)^{2} .
\end{align*}
$$

With remainder terms dropped, the right-hand side of (6) can be written as $(m+n)^{2} f\left(\xi_{0}, \xi_{1}, \eta_{0}, \eta_{1}\right)$, where

$$
\xi_{0}:=\frac{m_{00}}{m+n}, \quad \xi_{1}:=\frac{m_{01}}{m+n}, \quad \eta_{0}:=\frac{n_{00}}{m+n}, \quad \eta_{1}:=\frac{n_{01}}{m+n} .
$$

With (1) in mind, we see that to complete the argument it suffices to prove the following lemma.

Lemma 5. For the function f defined by (7)-(8), we have $\max \left\{f\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{0}, x_{1}, y_{0}, y_{1} \geq 0,1 / 2 \leq s \leq 1\right\} \leq 0.15$.

The inequality of Lemma 5 is surprisingly delicate, and the proof presented in the remaining part of this section is rather tedious. The reader trusting us about the proof may wish to skip on to Section 4 , where the proof of Theorem 22 (independent of Theorem 1) is given.

Proof of Lemma 5. Since $f\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=f\left(y_{0}, y_{1}, x_{0}, x_{1}\right)$, switching, if necessary, x_{0} with y_{0}, and x_{1} with y_{1}, we can assume that

$$
\begin{equation*}
x_{0}+x_{1} \geq y_{0}+y_{1} \tag{9}
\end{equation*}
$$

Similarly, $f\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=f\left(x_{1}, x_{0}, y_{1}, y_{0}\right)$ shows that x_{0} can be switched with x_{1}, and y_{0} with y_{1}, to ensure that

$$
\begin{equation*}
x_{0}+y_{0} \geq x_{1}+y_{1} \tag{10}
\end{equation*}
$$

(Observe that switching x_{0} with x_{1} and y_{0} with y_{1} does not affect (9).) Thus, from now on we assume that (9) and 10 hold true.

Our big plan is to investigate the effect on f made by replacing the variables x_{0} and y_{1} with their average $\left(x_{0}+y_{1}\right) / 2$, and, simultaneously, replacing the variables x_{1} and y_{0} with their average $\left(x_{1}+y_{0}\right) / 2$. We show that either

$$
\begin{equation*}
f\left(\frac{x_{0}+y_{1}}{2}, \frac{x_{1}+y_{0}}{2}, \frac{x_{1}+y_{0}}{2}, \frac{x_{0}+y_{1}}{2}\right) \geq f\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \tag{11}
\end{equation*}
$$

(meaning that f is non-decreasing under such "balancing"), or

$$
\begin{gather*}
x_{0} \geq y_{1}+(1-s) \tag{12}\\
y_{0} \geq x_{1}+(1-s) \tag{13}\\
3\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) \geq 2 \tag{14}
\end{gather*}
$$

In both cases, the problem reduces to maximizing a function in just two variables.

We thus assume that (11) fails, aiming to prove that $(12)-(14)$ hold true. Along with (8) and Corollary 3, our assumption implies

$$
\frac{1}{2}\left(x_{0}+y_{1}\right)\left(x_{1}+y_{0}\right)<x_{0} y_{0}+x_{1} y_{1}
$$

simplifying to

$$
\left(x_{0}-y_{1}\right)\left(x_{1}-y_{0}\right)<0 .
$$

Writing (10) as $x_{0}-y_{1} \geq x_{1}-y_{0}$, we conclude that

$$
\begin{equation*}
x_{0}>y_{1} \quad \text { and } \quad y_{0}>x_{1} \tag{15}
\end{equation*}
$$

(which the reader may wish to compare with $\sqrt[12]{ }$) and $(\sqrt[13]{)}$).
Let

$$
\mathcal{O}:=x_{0} y_{0}+x_{1} y_{1}+G\left(x_{0}, y_{1}, 1-s\right)+G\left(x_{1}, y_{0}, 1-s\right)
$$

and

$$
\begin{aligned}
\mathcal{N}:= & \frac{1}{2}\left(x_{0}+y_{1}\right)\left(x_{1}+y_{0}\right) \\
& +G\left(\frac{x_{0}+y_{1}}{2}, \frac{x_{0}+y_{1}}{2}, 1-s\right)+G\left(\frac{x_{1}+y_{0}}{2}, \frac{x_{1}+y_{0}}{2}, 1-s\right)
\end{aligned}
$$

(the script letters standing for "old" and "new"); thus, $\mathcal{N}<\mathcal{O}$ by the assumption that (11) fails, (8), and Corollary 3. From Lemma 3 and 15) we get

$$
\begin{aligned}
\mathcal{N}-\mathcal{O}=\frac{1}{2}\left(x_{0}-y_{1}\right)\left(x_{1}-y_{0}\right) & +\frac{1}{4}\left(x_{0}-y_{1}\right)^{2}-\frac{1}{4}\left(\left|x_{0}-y_{1}\right|-(1-s)\right)_{+}^{2} \\
& +\frac{1}{4}\left(x_{1}-y_{0}\right)^{2}-\frac{1}{4}\left(\left|x_{1}-y_{0}\right|-(1-s)\right)_{+}^{2} \\
=\frac{1}{4}\left(x_{0}+x_{1}-y_{0}-y_{1}\right)^{2} & -\frac{1}{4}\left(x_{0}-y_{1}-(1-s)\right)_{+}^{2} \\
& -\frac{1}{4}\left(y_{0}-x_{1}-(1-s)\right)_{+}^{2}
\end{aligned}
$$

Analyzing the right-hand side we see that if were false, then $\mathcal{N}<\mathcal{O}$ along with (9) would give

$$
x_{0}+x_{1}-y_{0}-y_{1}<x_{0}-y_{1}-(1-s)
$$

which is 13 in disguise. This contradiction shows that 13 is true. We now readily get (12) as a consequence of $(\sqrt{13})$ and (9), and (14) is just the sum of (13) and 12$)$.

To summarize, there are two major cases to consider: where (11) holds true, and where (12)-(14) hold true. Since in the second case we have $G\left(x_{0}, y_{1}, 1-s\right)=y_{1}(1-s)$ and $G\left(x_{1}, y_{0}, 1-s\right)=x_{1}(1-s)$, the proof of Lemma 5 will be complete once we establish the following claims.

CLAIM 1. We have $f\left(x_{0}, x_{1}, x_{1}, x_{0}\right) \leq 0.15$ for any $x_{0}, x_{1} \geq 0$ with $s:=$ $2\left(x_{0}+x_{1}\right) \in[1 / 2,1]$.

Claim 2. For real x_{0}, x_{1}, y_{0}, and y_{1}, write $s:=x_{0}+x_{1}+y_{0}+y_{1}$ and let
$g\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\min \left\{0.15 s^{2}, x_{0} y_{0}+x_{1} y_{1}\right\}+\left(x_{1}+y_{1}\right)(1-s)+0.25(1-s)^{2}$. Then $g\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \leq 0.15$ whenever $x_{0}, x_{1}, y_{0}, y_{1} \geq 0$ satisfy 14), and $s \leq 1$.

Proof of Claim 1. As

$$
\begin{aligned}
f\left(x_{0}, x_{1}, x_{1}, x_{0}\right)= & \min \left\{0.15 s^{2}, 2 x_{0} x_{1}\right\} \\
& +G\left(x_{0}, x_{0}, 1-s\right)+G\left(x_{1}, x_{1}, 1-s\right)+0.25(1-s)^{2}
\end{aligned}
$$

and since $x_{0}+x_{1}=\frac{1}{2} s$ implies $2 x_{0} x_{1} \leq \frac{1}{8} s^{2}<0.15 s^{2}$, we have to show that

$$
\begin{equation*}
2 x_{0} x_{1}+G\left(x_{0}, x_{0}, 1-s\right)+G\left(x_{1}, x_{1}, 1-s\right)+0.25(1-s)^{2} \leq 0.15 \tag{16}
\end{equation*}
$$

We distinguish three cases.

CASE I: $\max \left\{x_{0}, x_{1}\right\} \leq \frac{1}{2}(1-s)$. In this case, from the definition of G, we have $G\left(x_{0}, x_{0}, 1-s\right)=x_{0}^{2}$ and $G\left(x_{1}, x_{1}, 1-s\right)=x_{1}^{2}$. Therefore, (16) reduces to

$$
2 x_{0} x_{1}+x_{0}^{2}+x_{1}^{2}+0.25(1-s)^{2} \leq 0.15,
$$

or equivalently

$$
\begin{equation*}
0.25 s^{2}+0.25(1-s)^{2} \leq 0.15 \tag{17}
\end{equation*}
$$

To show this we notice that our present assumption $\max \left\{x_{0}, x_{1}\right\} \leq \frac{1}{2}(1-s)$ yields $s=2\left(x_{0}+x_{1}\right) \leq 2-2 s$, implying $s \leq 2 / 3$. However, the largest value attained by the left-hand side of 17 in the range $1 / 2 \leq s \leq 2 / 3$ is easily seen to be $5 / 36<0.15$.

CASE II: $\min \left\{x_{0}, x_{1}\right\} \geq \frac{1}{2}(1-s)$. In this case, by Lemma 4 , we have $G\left(x_{0}, x_{0}, 1-s\right) \leq x_{0}(1-s)-0.25(1-s)^{2}$ and $G\left(x_{1}, x_{1}, 1-s\right) \leq x_{1}(1-s)-$ $0.25(1-s)^{2}$. Consequently, the left-hand side of 16 is at most

$$
\begin{aligned}
2 x_{0} x_{1} & +x_{0}(1-s)+x_{1}(1-s)-0.25(1-s)^{2} \\
& \leq \frac{1}{2}\left(x_{0}+x_{1}\right)^{2}+\left(x_{0}+x_{1}\right)(1-s)-0.25(1-s)^{2} \\
& =\frac{1}{8} s^{2}+\frac{1}{2} s(1-s)-0.25(1-s)^{2}=-\frac{5}{8}\left(s-\frac{4}{5}\right)^{2}+0.15 \leq 0.15
\end{aligned}
$$

CASE III: $x_{0} \leq \frac{1}{2}(1-s) \leq x_{1}$ (the case $x_{1} \leq(1-s) / 2 \leq x_{0}$ being symmetric). In this case $G\left(x_{0}, x_{0}, 1-s\right)=x_{0}^{2}$, while from Lemma 4 we have $G\left(x_{1}, x_{1}, 1-s\right) \leq x_{1}(1-s)-0.25(1-s)^{2}$; thus, 16$)$ reduces to

$$
2 x_{0} x_{1}+x_{0}^{2}+x_{1}(1-s) \leq 0.15
$$

and substituting $x_{0}=\frac{1}{2} s-x_{1}$ and rearranging terms, to

$$
\begin{equation*}
\frac{1}{4}\left(2 s^{2}-2 s+1\right)-\left(x_{1}-\frac{1}{2}(1-s)\right)^{2} \leq 0.15 \tag{18}
\end{equation*}
$$

Observing that $2 s^{2}-2 s+1$ is increasing for $s \geq 1 / 2$ (and recalling that $s \geq 1 / 2$ by the assumptions of the claim), we conclude that if $s \leq 2 / 3$, then the left-hand side or 18 does not exceed

$$
\frac{1}{4}\left(2 \cdot \frac{4}{9}-2 \cdot \frac{2}{3}+1\right)=\frac{5}{36}<0.15
$$

If, on the other hand, $s \geq 2 / 3$, then we have

$$
x_{1}=\frac{1}{2} s-x_{0} \geq \frac{1}{2} s-\frac{1}{2}(1-s)=s-\frac{1}{2} \geq \frac{1}{2}(1-s)
$$

whence the left-hand side of 18 does not exceed

$$
\frac{1}{4}\left(2 s^{2}-2 s+1\right)-\left(\left(s-\frac{1}{2}\right)-\frac{1}{2}(1-s)\right)^{2}=-\frac{7}{4}\left(s-\frac{5}{7}\right)^{2}+\frac{1}{7}<0.15
$$

Proof of Claim 2. Since replacing x_{0} and y_{0} with their average $\left(x_{0}+y_{0}\right) / 2$ and, simultaneously, x_{1} and y_{1} with their average $\left(x_{1}+y_{1}\right) / 2$, can only increase the value of g, and does not affect the validity of (14), we can assume that $y_{0}=x_{0}$ and $y_{1}=x_{1}$. Thus, we want to show that in the region
defined by

$$
\begin{equation*}
x_{0}, x_{1} \geq 0, \quad x_{0}+x_{1} \leq 1 / 2, \quad 3 x_{0}+x_{1} \geq 1 \tag{19}
\end{equation*}
$$

we have

$$
g\left(x_{0}, x_{1}, x_{0}, x_{1}\right) \leq 0.15
$$

Observing that

$$
\begin{aligned}
& g\left(x_{0}, x_{1}, x_{0}, x_{1}\right) \\
& =\min \left\{0.6\left(x_{0}+x_{1}\right)^{2}, x_{0}^{2}+x_{1}^{2}\right\}+0.25\left(1-2 x_{0}-2 x_{1}\right)\left(1-2 x_{0}+6 x_{1}\right) \\
& =\min \left\{0.6\left(x_{0}+x_{1}\right)^{2}, x_{0}^{2}+x_{1}^{2}\right\}+x_{0}^{2}-2 x_{0} x_{1}-3 x_{1}^{2}-x_{0}+x_{1}+0.25
\end{aligned}
$$

the estimate to prove can be rewritten as

$$
\min \left\{u\left(x_{0}, x_{1}\right), v\left(x_{0}, x_{1}\right)\right\} \leq-0.1
$$

where

$$
\begin{aligned}
& u\left(x_{0}, x_{1}\right)=2 x_{0}^{2}-2 x_{0} x_{1}-2 x_{1}^{2}-x_{0}+x_{1} \\
& v\left(x_{0}, x_{1}\right)=1.6 x_{0}^{2}-0.8 x_{0} x_{1}-2.4 x_{1}^{2}-x_{0}+x_{1}
\end{aligned}
$$

Conditions 19 determine a triangle on the coordinate plane $\left(x_{0}, x_{1}\right)$ with vertices $(1 / 3,0),(1 / 2,0)$, and $(1 / 4,1 / 4)$. If $\varphi:=(3-\sqrt{5}) / 2$, then the line $x_{1}=\varphi x_{0}$ splits this triangle into two parts: a smaller triangle \mathfrak{T} which inherits the vertex $(1 / 4,1 / 4)$ of the original triangle, and a rectangle \mathfrak{R} inheriting the vertices $(1 / 3,0)$ and $(1 / 2,0)$ of the original triangle. (We consider both \mathfrak{T} and \mathfrak{R} as closed regions, so that they intersect in a segment.) The reason to partition the large rectangle as indicated is that

$$
\min \left\{u\left(x_{0}, x_{1}\right), v\left(x_{0}, x_{1}\right)\right\}= \begin{cases}u\left(x_{0}, x_{1}\right) & \text { if }\left(x_{0}, x_{1}\right) \in \mathfrak{T} \\ v\left(x_{0}, x_{1}\right) & \text { if }\left(x_{0}, x_{1}\right) \in \mathfrak{R}\end{cases}
$$

as one can easily verify; we therefore have to prove that $u\left(x_{0}, x_{1}\right) \leq-0.1$ for all $\left(x_{0}, x_{1}\right) \in \mathfrak{T}$, and $v\left(x_{0}, x_{1}\right) \leq-0.1$ for all $\left(x_{0}, x_{1}\right) \in \mathfrak{R}$.

To this end we observe that, as a simple computation shows, the only critical point of u is $(0.3,0.1)$, and the only critical point of v is $(0.35,0.15)$. Since the former point lies on the line $3 x_{0}+x_{1}=1$, and the latter on the line $x_{0}+x_{1}=1 / 2$, these points do not belong to the interiors of \mathfrak{T} and \mathfrak{R}. Hence, the maxima of u on \mathfrak{T}, and of v on \mathfrak{R}, are attained on the boundary of these regions. To complete the proof we now observe that:
I. If $1 / 3 \leq x_{0} \leq 1 / 2$ and $x_{1}=0$, then

$$
v\left(x_{0}, x_{1}\right)=1.6 x_{0}^{2}-x_{0} \leq 1.6 \cdot \frac{1}{4}-\frac{1}{2}=-0.1
$$

(as $1.6 x_{0}^{2}-x_{0}$ is an increasing function of x_{0} on the interval $[1 / 3,1 / 2]$).
II. If $x_{0}+x_{1}=1 / 2$, then

$$
\begin{aligned}
& u\left(x_{0}, x_{1}\right)=x_{0}^{2}+x_{1}^{2}-0.25 \geq 0 \\
& v\left(x_{0}, x_{1}\right)=0.6\left(x_{0}+x_{1}\right)^{2}-0.25=-0.1
\end{aligned}
$$

III. If $3 x_{0}+x_{1}=1$, then

$$
u\left(x_{0}, x_{1}\right)=-10 x_{0}^{2}+6 x_{0}-1=-10\left(x_{0}-0.3\right)^{2}-0.1 \leq-0.1 ;
$$

if, in addition, $\left(x_{0}, x_{1}\right) \in \mathfrak{R}$, then

$$
1=3 x_{0}+x_{1} \leq(3+\varphi) x_{0}
$$

whence $x_{0} \geq 1 /(3+\varphi)=(9+\sqrt{5}) / 38$ and therefore

$$
\begin{aligned}
v\left(x_{0}, x_{1}\right) & =-17.6 x_{0}^{2}+9.6 x_{0}-1.4 \\
& \leq-17.6 \cdot\left(\frac{9+\sqrt{5}}{38}\right)^{2}+9.6 \cdot \frac{9+\sqrt{5}}{38}-1.4 \\
& =-0.1001 \ldots
\end{aligned}
$$

(as $(9+\sqrt{5}) / 38>3 / 11$, and $-17.6 x_{0}^{2}+9.6 x_{0}-1.4$ is a decreasing function of x_{0} for $x_{0} \geq 3 / 11$).
IV. If $x_{1}=\varphi x_{0}$ and $\left(x_{0}, x_{1}\right) \in \mathfrak{T} \cap \mathfrak{R}$, then

$$
\begin{aligned}
u\left(x_{0}, x_{1}\right)=v\left(x_{0}, x_{1}\right) & =\left(2-2 \varphi-2 \varphi^{2}\right) x_{0}^{2}+(\varphi-1) x_{0} \\
& =4(\sqrt{5}-2) x_{0}^{2}-\frac{\sqrt{5}-1}{2} x_{0}
\end{aligned}
$$

being a convex function of x_{0}, attains its maximum for a value of x_{0} which is on the boundary of the triangle $\mathfrak{T} \cup \mathfrak{R}$. However, we have already seen that u and v do not exceed the value of -0.1 on the part of the boundary they are responsible for.

This finally completes the proof of Lemma 5, and thus the whole proof of Theorem 1 .
4. Proof of Theorem 2, As in the proof of Theorem 1, we use induction on $|A|$ and, with Lemma 11 in mind, assume that A is a set of integers. Again, for $i, j \in\{0,1\}$ we let $A_{i}:=\{a \in A: a \equiv i(\bmod 2)\}$ and $A_{i j}:=\{a \in A: a \equiv i+2 j(\bmod 4)\}$, and write $m:=|A|, m_{i}:=\left|A_{i}\right|$, and $m_{i j}:=\left|A_{i j}\right|$. Dividing through all elements of A by their greatest common divisor, we can assume that

$$
\begin{equation*}
0 \leq m_{0}<m \tag{20}
\end{equation*}
$$

We want to show that $T(A,-A, A) \leq 0.5 m^{2}+0.5 m$.
We distinguish two major cases, depending on which of m_{0} and m_{1} is larger.

CASE I: $m_{0} \geq m_{1}$. Since $a-b=2 c$ implies that a and b are of the same parity, we have the decomposition

$$
\begin{aligned}
T(A,-A, A)= & T\left(A_{1},-A_{1}, A\right)+T\left(A_{0},-A_{0}, A_{1}\right)+T\left(A_{0},-A_{0}, A_{0}\right) \\
= & T\left(A_{1},-A_{1}, A\right)+T\left(A_{00},-A_{01}, A_{1}\right)+T\left(A_{01},-A_{00}, A_{1}\right) \\
& +T\left(A_{0},-A_{0}, A_{0}\right)
\end{aligned}
$$

(for the second equality notice that $a_{0}-b_{0}=2 c_{1}$ with $a_{0}, b_{0} \in A_{0}$ and $c_{1} \in A_{1}$ implies that either $a_{0} \in A_{00}, b_{0} \in A_{01}$, or $\left.a_{0} \in A_{01}, b_{0} \in A_{00}\right)$. We estimate the first summand on the right-hand side trivially, use the induction hypothesis (cf. (20)) for the last summand, and Corollary 2 for the remaining two summands; this gives

$$
\begin{equation*}
T(A,-A, A) \leq m_{1}^{2}+2 G\left(m_{00}, m_{01}, m_{1}\right)+\frac{1}{2}+\frac{1}{2} m_{0}^{2}+\frac{1}{2} m_{0} \tag{21}
\end{equation*}
$$

Our goal is to verify that the right-hand side does not exceed $0.5 m^{2}+0.5 m$. In view of the symmetry between m_{00} and m_{01}, we assume that

$$
m_{00} \leq m_{01}
$$

and, accordingly, we consider three further subcases.
SUBCASE I.a: $\max \left\{m_{00}, m_{01}, m_{1}\right\}=m_{1}$. Using (21) and recalling that, by the assumption of Case I, we have $m_{1} \leq m_{0}=m_{00}+m_{01}$, we get

$$
\begin{aligned}
T(A,-A, A) & \leq m_{1}^{2}+2 m_{00} m_{01}-\frac{1}{2}\left(m_{00}+m_{01}-m_{1}\right)^{2}+\frac{1}{2}+\frac{1}{2} m_{0}^{2}+\frac{1}{2} m_{0} \\
& =\frac{1}{2} m_{1}^{2}+2 m_{00} m_{01}+m_{0} m_{1}+\frac{1}{2} m_{0}+\frac{1}{2} \\
& \leq \frac{1}{2} m_{1}^{2}+\frac{1}{2} m_{00}^{2}+\frac{1}{2} m_{01}^{2}+m_{00} m_{01}+m_{0} m_{1}+\frac{1}{2} m \\
& =\frac{1}{2} m^{2}+\frac{1}{2} m
\end{aligned}
$$

SUBCASE I.b: $\max \left\{m_{00}, m_{01}, m_{1}\right\}=m_{01} \leq m_{00}+m_{1}$. By (21), using the estimate $\frac{1}{2} m_{0}^{2} \leq m_{00}^{2}+m_{01}^{2}$, we obtain

$$
\begin{aligned}
T(A,-A, A) & \leq m_{1}^{2}+2 m_{00} m_{1}-\frac{1}{2}\left(m_{00}+m_{1}-m_{01}\right)^{2}+\frac{1}{2}+\frac{1}{2} m_{0}^{2}+\frac{1}{2} m_{0} \\
& \leq \frac{1}{2} m_{1}^{2}+m_{00} m_{1}+\frac{1}{2} m_{00}^{2}+\frac{1}{2} m_{01}^{2}+m_{00} m_{01}+m_{1} m_{01}+\frac{1}{2}+\frac{1}{2} m_{0} \\
& =\frac{1}{2} m^{2}+\frac{1}{2}+\frac{1}{2} m_{0} \leq \frac{1}{2} m^{2}+\frac{1}{2} m
\end{aligned}
$$

SUBCASE I.c: $\max \left\{m_{00}, m_{01}, m_{1}\right\}=m_{01} \geq m_{00}+m_{1}$. In this case we have $G\left(m_{00}, m_{01}, m_{1}\right) \leq m_{00} m_{1}$, and (21) along with $\frac{1}{2} m_{1}<m_{1} \leq m_{01}-m_{00}$ give

$$
\begin{aligned}
T(A,-A, A) & \leq m_{1}^{2}+2 m_{00} m_{1}+\frac{1}{2}+\frac{1}{2} m_{0}^{2}+\frac{1}{2} m_{0} \\
& =\frac{1}{2}\left(m_{1}+m_{0}\right)^{2}+\frac{1}{2} m_{1}^{2}-m_{0} m_{1}+2 m_{00} m_{1}+\frac{1}{2}+\frac{1}{2} m_{0} \\
& =\frac{1}{2} m^{2}+m_{1}\left(\frac{1}{2} m_{1}+m_{00}-m_{01}\right)+\frac{1}{2}+\frac{1}{2} m_{0} \\
& <\frac{1}{2} m^{2}+\frac{1}{2} m
\end{aligned}
$$

CASE II: $m_{1} \geq m_{0}$. In this case we use the decomposition

$$
\begin{aligned}
T(A,-A, A)= & T\left(A_{0},-A_{0}, A\right)+T\left(A_{1},-A_{1}, A_{0}\right)+T\left(A_{1},-A_{1}, A_{1}\right) \\
= & T\left(A_{0},-A_{0}, A\right)+T\left(A_{10},-A_{10}, A_{0}\right)+T\left(A_{11},-A_{11}, A_{0}\right) \\
& +T\left(A_{1},-A_{1}, A_{1}\right)
\end{aligned}
$$

Using the trivial bound m_{0}^{2} for the first summand, applying Corollary 2 to estimate the second and third summands, and observing that $a_{1}-b_{1}=2 c_{1}$ $\left(a_{1}, b_{1}, c_{1} \in A_{1}\right)$ implies that exactly one of a_{1} and a_{2} is in A_{10} and the other is in A_{11}, we get

$$
\begin{align*}
T(A,-A, A) \leq & m_{0}^{2}+G\left(m_{10}, m_{10}, m_{0}\right)+G\left(m_{11}, m_{11}, m_{0}\right) \tag{22}\\
& +\frac{1}{2}+2 m_{10} m_{11}
\end{align*}
$$

Since the right-hand side is symmetric in m_{10} and m_{11}, without loss of generality we assume that $m_{10} \leq m_{11}$. Consequently, by the assumption of Case II, we have $m_{0} \leq m_{1} \leq 2 m_{11}$, and to complete the proof we consider two subcases, according to whether the stronger estimate $m_{0} \leq 2 m_{10}$ holds.

Subcase II.a: $m_{0} \leq 2 m_{10}$. In this case, by (22) and Lemma 4, and in view of $2 m_{10} m_{11} \leq \frac{1}{2}\left(m_{10}+m_{11}\right)^{2}=\frac{1}{2} m_{1}^{2}$, we have

$$
\begin{aligned}
T(A,-A, A) & \leq m_{0}^{2}+\left(m_{10} m_{0}-\frac{1}{4} m_{0}^{2}\right)+\left(m_{11} m_{0}-\frac{1}{4} m_{0}^{2}\right)+\frac{1}{2}+\frac{1}{2} m_{1}^{2} \\
& =\frac{1}{2} m_{0}^{2}+m_{0} m_{1}+\frac{1}{2} m_{1}^{2}+\frac{1}{2} \\
& =\frac{1}{2} m^{2}+\frac{1}{2}
\end{aligned}
$$

Subcase II.b: $2 m_{10} \leq m_{0} \leq 2 m_{11}$. Acting as in the previous subcase, but using the trivial estimate for the second summand in 22 , we get

$$
\begin{aligned}
T(A, & -A, A) \\
& \leq m_{0}^{2}+m_{10}^{2}+\left(m_{11} m_{0}-\frac{1}{4} m_{0}^{2}\right)+\frac{1}{2}+2 m_{10} m_{11} \\
& \leq \frac{3}{4} m_{0}^{2}+m_{10}^{2}+m_{11} m_{0}+\frac{3}{2} m_{10} m_{11}+\frac{1}{4} m_{10}^{2}+\frac{1}{4} m_{11}^{2}+\frac{1}{2} \\
& =\frac{1}{2}\left(m_{0}+m_{10}+m_{11}\right)^{2}-\frac{1}{4}\left(m_{10}+m_{11}-m_{0}\right)\left(m_{0}+m_{11}-3 m_{10}\right)+\frac{1}{2} \\
& \leq \frac{1}{2} m^{2}+\frac{1}{2}
\end{aligned}
$$

the last inequality following from $m_{10}+m_{11}-m_{0} \geq 0$ and $m_{0}+m_{11}-3 m_{10}$ ≥ 0, by the present subcase assumptions.

This completes the proof of Theorem 2.

References

[G32] R. M. Gabriel, The rearrangement of positive Fourier coefficients, Proc. London Math. Soc. 33 (1932), 32-51.
[HL28] G. H. Hardy and J. E. Littlewood, Notes on the theory of series (VIII): an inequality, J. London Math. Soc. 3 (1928), 105-110.
[HLP88] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988.
[L98] V. Lev, On the number of solutions of a linear equation over finite sets of integers, J. Combin. Theory Ser. A 83 (1998), 251-267.
[NPPZ] G. Nivasch, J. Pach, R. Pinchasi and S. Zerbib, The number of distinct distances from a vertex of a convex polygon, J. Comput. Geom. 4 (2013), 1-12.

Vsevolod F. Lev
Department of Mathematics
The University of Haifa at Oranim Tivon 36006, Israel
E-mail: seva@math.haifa.ac.il

Rom Pinchasi
Department of Mathematics Technion - Israel Institute of Technology

Haifa 32000, Israel
E-mail: room@math.technion.ac.il

Received on 17.11.2012
and in revised form on 15.12.2013

[^0]: 2010 Mathematics Subject Classification: 11P70, 11B30.
 Key words and phrases: arithmetic progression, three-term progression, sumsets.

