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Solving a± b = 2c in elements of finite sets
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Vsevolod F. Lev and Rom Pinchasi (Haifa)

We show that if A and B are finite sets of real numbers, then the number
of triples (a, b, c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15 +
o(1))(|A| + |B|)2 as |A| + |B| → ∞. As a corollary, if A is antisymmetric
(that is, A∩(−A) = ∅), then there are at most (0.3+o(1))|A|2 triples (a, b, c)
with a, b, c ∈ A and a−b = 2c. In the general case where A is not necessarily
antisymmetric, we show that the number of triples (a, b, c) with a, b, c ∈ A
and a− b = 2c is at most (0.5 + o(1))|A|2. These estimates are sharp.

1. Introduction and summary of results. For a finite real set A of
a given size, the number of three-term arithmetic progressions in A is max-
imized when A itself is an arithmetic progression. This follows by observing
that for any integer 1 ≤ k ≤ |A|, the number of three-term progressions
in A with the middle term being the kth largest element of A is at most
min{k − 1, |A| − k}. A simple computation leads to the conclusion that
the number of triples (a, b, c) ∈ A × A × A with a + b = 2c is at most
0.5|A|2 + 0.5.

Suppose now that we count only those progressions with the least ele-
ment below, and the greatest element above the median of A; what is the
largest possible number of such “scattered” progressions? This problem was
raised in [NPPZ] in connection with a combinatorial geometry question by
Erdős. Below we give it a complete solution; indeed, we solve a more general
problem, replacing the sets of all elements below/above the median with
arbitrary finite sets.

Theorem 1. If A and B are finite sets of real numbers, then the number
of triples (a, b, c) with a ∈ A, b ∈ B, c ∈ A ∪ B, and a + b = 2c is at most
0.15(|A|+ |B|)2 + 0.5(|A|+ |B|).
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For a subset A of an abelian group, write −A := {−a : a ∈ A}. We say
that A is antisymmetric if A ∩ (−A) = ∅. Thus, for instance, any set of
positive real numbers is antisymmetric.

For an antisymmetric set A, the number of triples (a, b, c) with a ∈ A,
b ∈ −A, c ∈ A∪ (−A), and a+ b = 2c, is twice the number of triples (a, b, c)
with a, b, c ∈ A and a− b = 2c. Hence, Theorem 1 yields

Corollary 1. If A is a finite antisymmetric set of real numbers, then
the number of triples (a, b, c) with a, b, c ∈ A and a − b = 2c is at most
0.3|A|2 + 0.5|A|.

The following example shows that the coefficient 0.3 of Corollary 1, and
therefore also the coefficient 0.15 of Theorem 1, is best possible.

Example. Fix an integer m ≥ 1, and let A consist of all positive integers
up to m, and all even integers between m and 4m (taking all odd integers
will do as well). Assuming for definiteness that m is even, we can thus write

A = [1,m] ∪ {m+ 2,m+ 4, . . . , 4m}.
Notice that A contains m/2 odd elements and 2m even elements, of which
exactly m are divisible by 4; in particular, |A| = 5m/2. For every triple
(a, b, c) ∈ A × A × A with a − b = 2c, we have a ≡ b (mod 2) and a > b.

There are
(
m/2
2

)
such triples with a and b both odd, and 2

(
m
2

)
triples with a

and b both even and satisfying a ≡ b (mod 4). Furthermore, it is not difficult
to see that there are 3

4m
2 triples with a and b both even and satisfying

a 6≡ b (mod 4). Thus, the total number of triples under consideration is(
m/2

2

)
+ 2

(
m

2

)
+

3

4
m2 =

15

8
m2 − 5

4
m =

3

10
|A|2 − 1

2
|A|,

the first summand matching the main term of Corollary 1.

Our second principal result addresses the same equation as Corollary 1,
but in the general situation where the antisymmetry assumption got
dropped.

Theorem 2. If A is a finite set of real numbers, then the number of
triples (a, b, c) with a, b, c ∈ A and a− b = 2c is at most 0.5|A|2 + 0.5|A|.

The main term of Theorem 2 is best possible, as is easily seen by con-
sidering the set A = [−m,m], where m ≥ 1 is an integer. For this set, the
number of triples (a, b, c) ∈ A × A × A with a − b = 2c is equal to the
number of pairs (a, b) ∈ A × A with a and b of the same parity, which is
(m+ 1)2 +m2 = 0.5|A|2 + 0.5.

It is a challenging problem to generalize our results and investigate the
equations a ± b = λc for a fixed real parameter λ > 0. It follows from
[L98, Theorem 1] that the number of solutions of this equation in elements



Solving a± b = 2c in elements of finite sets 129

of a finite set of a given size is maximized when λ = 1, and the set is
an arithmetic progression, centered around 0. It would be interesting to
determine the largest possible number of solutions for every fixed value of
λ 6= 1, or at least to estimate the maximum over all positive λ 6= 1.

We remark that using a standard technique, our results extend read-
ily to finite subsets of torsion-free abelian groups. In contrast, extending
Theorems 1 and 2 to groups with a non-zero torsion subgroup, and in par-
ticular to cyclic groups, seems to be a highly non-trivial problem requiring
an approach completely different from that used in the present paper.

In the next section we prepare the ground for the proofs of Theorems 1
and 2. The theorems are then proved in Sections 3 and 4, respectively.

2. The proofs: preparations. For finite sets A, B, and C of real
numbers, let

T (A,B,C) := |{(a, b, c) ∈ A×B × C : a+ b = 2c}|.
We start with a simple lemma allowing us to confine ourselves to the

integer case.

Lemma 1. For any finite sets A and B of real numbers, there exist finite
sets A′ and B′ of integer numbers with |A′| = |A|, |B′| = |B| such that
T (A′, B′, A′ ∪B′) = T (A,B,A ∪B) and T (A′,−A′, A′) = T (A,−A,A).

Proof. By the (weak version of the) standard simultaneous approxima-
tion theorem, there exist arbitrarily large integers q ≥ 1, along with an
integer-valued function ϕq acting on the union A ∪ (−A) ∪B, such that∣∣∣∣c− ϕq(c)

q

∣∣∣∣ < 1

4q
, c ∈ A ∪ (−A) ∪B.

Let A′ := ϕq(A) and B′ := ϕq(B). It is readily verified that if q is large
enough, then |A′| = |A| and |B′| = |B|, and moreover an equality of the
form a ± b = 2c with a, b, c ∈ A ∪ (−A) ∪ B holds true if and only if
ϕq(a)± ϕq(b) = 2ϕq(c). The assertion follows.

Clearly, for finite sets of integers A,B, and C with |C| ≥ |A|+ |B|, the
number of triples (a, b, c) ∈ A× B × C satisfying a + b = c can be as large
as |A| |B|. Our argument relies on the following lemma which improves this
trivial bound in the case where |C| < |A|+ |B|.

Lemma 2. If A, B and C are finite sets of real numbers with
max{|A|, |B|} ≤ |C| ≤ |A| + |B|, then the number of triples (a, b, c) ∈
A×B × C satisfying a+ b = c does not exceed

|A| |B| − 1
4(|A|+ |B| − |C|)2 + 1

4 .

Proof. We use induction on |A|+ |B| − |C|. The case where |A|+ |B| −
|C| ≤ 1 is immediate, and so we assume that |A| + |B| − |C| ≥ 2. In view
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of max{|A|, |B|} ≤ |C| ≤ |A| + |B|, this assumption implies that A and B
are non-empty. We let amin := minA and bmax := maxB, and observe that
no c ∈ C can have both a representation c = amin + b with some b ∈ B,
and a representation c = a+ bmax with some a ∈ A (unless c = amin + bmax

and the two representations are identical): for, amin + b = a + bmax yields
b−a = bmax−amin, whence a = amin and b = bmax. This shows that removing
amin from A, and simultaneously bmax from B, we loose at most |C| triples
(a, b, c) ∈ A×B ×C with a+ b = c. Using now the induction hypothesis to
estimate the number of such triples with a 6= amin and b 6= bmax, we conclude
that the total number of triples under consideration is at most

|C|+ (|A| − 1)(|B| − 1)− 1
4(|A|+ |B| − 2− |C|)2 + 1

4

= |A| |B| − 1
4(|A|+ |B| − |C|)2 + 1

4 .

We note that Lemma 2 is sharp (up to the last summand on the right-
hand side that has to do with parity considerations), as can be seen by
taking A = {1, . . . , n}, B = {1, . . . ,m}, and C = {k+ 1, . . . , n+m+ 1−k},
where 1 ≤ k ≤ 1

2 min(n,m).
We also remark that Lemma 2 can be deduced from the following proposi-

tion, which is a particular case of [L98, Theorem 1]; see [G32, HL28, HLP88]
for earlier, slightly weaker versions.

For a finite set A of real numbers, write mid(A) := 1
2(min(A)+max(A)).

Proposition 1. Let A, B, and C be finite sets of integers. If A′, B′,
and C ′ are blocks of consecutive integers such that mid(C ′) is at most 0.5
off from mid(A′) + mid(B′), and |A′| = |A|, |B′| = |B|, |C ′| = |C|, then the
number of triples (a, b, c) ∈ A × B × C with a + b = c does not exceed the
number of triples (a′, b′, c′) ∈ A′ ×B′ × C ′ with a′ + b′ = c′.

Loosely speaking, Proposition 1 says that the number of solutions of
a+ b = c+ in the variables a ∈ A, b ∈ B, and c ∈ C is maximized when A,
B, and C are blocks of consecutive integers, located so that C captures the
integers with the largest number of representations as a sum of an element
from A and an element from B. We leave it to the reader to see how Lemma 2
can be derived from Proposition 1.

We use Lemma 2 to estimate the quantity T (A,B,C), which is the num-
ber of solutions of a+ b = c′ with a ∈ A, b ∈ B, and c′ ∈ {2c : c ∈ C}. It is
also convenient to recast the estimate of the lemma in terms of the function
G which we define as follows: if (ξ, η, ζ) is a non-decreasing rearrangement
of the triple (x, y, z) of real numbers, then we let

G(x, y, z) :=

{
ξη if ζ ≥ ξ + η,

ξη − 1
4(ξ + η − ζ)2 if ζ ≤ ξ + η.

Thus, for instance, we have G(9, 6, 7) = 38, whereas G(7, 14, 6) = 42.
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Corollary 2. If A, B and C are finite sets of integers, then

T (A,B,C) ≤ G(|A|, |B|, |C|) + 1
4 .

We close this section with two lemmas used in the proofs of Theorems 1
and 2, respectively.

For real x, we let x+ := max{x, 0} and we agree that x2+ stands for
(x+)2.

Lemma 3. For any real x, y, and z, we have

G

(
x+ y

2
,
x+ y

2
, z

)
= G(x, y, z) + 1

4(x− y)2 − 1
4(|x− y| − z)2+.

Corollary 3. For any real x, y, and z, we have

G

(
x+ y

2
,
x+ y

2
, z

)
≥ G(x, y, z).

Lemma 4. If x and z are real numbers with z ≤ 2x, then G(x, x, z) ≤
xz − 1

4z
2.

To prove Lemma 3 one can assume x ≤ y (which does not restrict gen-
erality) and verify the assertion in the four possible cases z ≤ x, x ≤ z ≤
(x + y)/2, (x + y)/2 ≤ z ≤ y, and z ≥ y. The proof of Lemma 4 goes by
straightforward analysis of the two cases x ≤ z and x ≥ z. We omit the
details.

3. Proof of Theorem 1. We use induction on |A|+ |B|.
By Lemma 1, we can assume that A and B are sets of integers. For

i, j ∈ {0, 1} let Ai := {a ∈ A : a ≡ i (mod 2)} and Aij := {a ∈ A : a ≡
i + 2j (mod 4)}, and define Bi and Bij in a similar way. Also, write m :=
|A|, mi := |Ai|, mij := |Aij |, n := |B|, ni := |Bi|, and nij := |Bij |. Ap-
plying a suitable affine transformation to A and B, we can assume without
loss of generality that A ∪B contains both even and odd elements, and the
total number of even elements in A and B is at least as large as the total
number of odd elements:

(1) 0 < m1 + n1 ≤ m0 + n0 < m+ n.

Keeping the notation introduced at the beginning of Section 2, we want
to estimate the quantity T (A,B,A ∪B). Observing that a+ b = 2c implies
that a and b are of the same parity, we write

T (A,B,A ∪B) = T (A0, B0, A0 ∪B0) + T (A0, B0, A1 ∪B1)(2)

+ T (A1, B1, A ∪B)

and estimate separately each of the three summands on the right-hand side.
For the first summand, we notice that a0 + b0 = 2c0 with a0 ∈ A0,

b0 ∈ B0, and c0 ∈ A0 ∪B0, imply that a0/2 and b0/2 are of the same parity.
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Hence, either a0 ∈ A00 and b0 ∈ B00, or a0 ∈ A01 and b0 ∈ B01, leading to
the upper bound m00n00+m01n01. On the other hand, we can use induction
(cf. (1)) to estimate the first summand by 0.15(m0 + n0)

2 + 0.5(m0 + n0).
As a result,

(3) T (A0, B0, A0 ∪B0)

≤ min{0.15(m0 + n0)
2,m00n00 +m01n01}+ 0.5(m0 + n0).

Similar parity considerations show that if a0 + b0 = 2c1 with a0 ∈ A0,
b0 ∈ B0, and c1 ∈ A1 ∪ B1, then either a0 ∈ A00 and b0 ∈ B01, or a0 ∈ A01

and b0 ∈ B00. Therefore, using Corollary 2, we get

(4) T (A0, B0, A1 ∪B1) = T (A00, B01, A1 ∪B1) + T (A01, B00, A1 ∪B1)

≤ G(m00, n01,m1 + n1) +G(m01, n00,m1 + n1) + 0.5.

For the last summand in (2) we use the trivial estimate

(5) T (A1, B1, A ∪B) ≤ m1n1 ≤ 0.25(m1 + n1)
2.

Substituting (3)–(5) into (2), we get

T (A,B,A ∪B) ≤ min{0.15(m0 + n0)
2,m00n00 +m01n01}(6)

+G(m00, n01,m1 + n1) +G(m01, n00,m1 + n1)

+ 1
4(m1 + n1)

2 + 0.5(m0 + n0) + 0.5.

Recalling (1), we estimate the remainder terms as

0.5(m0 + n0) + 0.5 ≤ 0.5(m+ n).

To estimate the main term, for real x0, x1, y0, y1 we write

(7) s := x0 + x1 + y0 + y1

and let

f(x0, x1, y0, y1) := min{0.15s2, x0y0 + x1y1}(8)

+G(x0, y1, 1− s) +G(x1, y0, 1− s)
+ 0.25(1− s)2.

With remainder terms dropped, the right-hand side of (6) can be written as
(m+ n)2f(ξ0, ξ1, η0, η1), where

ξ0 :=
m00

m+ n
, ξ1 :=

m01

m+ n
, η0 :=

n00
m+ n

, η1 :=
n01
m+ n

.

With (1) in mind, we see that to complete the argument it suffices to
prove the following lemma.

Lemma 5. For the function f defined by (7)–(8), we have

max{f(x0, x1, y0, y1) : x0, x1, y0, y1 ≥ 0, 1/2 ≤ s ≤ 1} ≤ 0.15.
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The inequality of Lemma 5 is surprisingly delicate, and the proof pre-
sented in the remaining part of this section is rather tedious. The reader
trusting us about the proof may wish to skip on to Section 4, where the
proof of Theorem 2 (independent of Theorem 1) is given.

Proof of Lemma 5. Since f(x0, x1, y0, y1) = f(y0, y1, x0, x1), switching,
if necessary, x0 with y0, and x1 with y1, we can assume that

(9) x0 + x1 ≥ y0 + y1.

Similarly, f(x0, x1, y0, y1) = f(x1, x0, y1, y0) shows that x0 can be switched
with x1, and y0 with y1, to ensure that

(10) x0 + y0 ≥ x1 + y1.

(Observe that switching x0 with x1 and y0 with y1 does not affect (9).) Thus,
from now on we assume that (9) and (10) hold true.

Our big plan is to investigate the effect on f made by replacing the
variables x0 and y1 with their average (x0 + y1)/2, and, simultaneously,
replacing the variables x1 and y0 with their average (x1 + y0)/2. We show
that either

(11) f

(
x0 + y1

2
,
x1 + y0

2
,
x1 + y0

2
,
x0 + y1

2

)
≥ f(x0, x1, y0, y1)

(meaning that f is non-decreasing under such “balancing”), or

x0 ≥ y1 + (1− s),(12)

y0 ≥ x1 + (1− s),(13)

3(x0 + y0) + (x1 + y1) ≥ 2.(14)

In both cases, the problem reduces to maximizing a function in just two
variables.

We thus assume that (11) fails, aiming to prove that (12)–(14) hold true.
Along with (8) and Corollary 3, our assumption implies

1
2(x0 + y1)(x1 + y0) < x0y0 + x1y1,

simplifying to

(x0 − y1)(x1 − y0) < 0.

Writing (10) as x0 − y1 ≥ x1 − y0, we conclude that

(15) x0 > y1 and y0 > x1

(which the reader may wish to compare with (12) and (13)).

Let

O := x0y0 + x1y1 +G(x0, y1, 1− s) +G(x1, y0, 1− s)
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and

N := 1
2(x0 + y1)(x1 + y0)

+G

(
x0 + y1

2
,
x0 + y1

2
, 1− s

)
+G

(
x1 + y0

2
,
x1 + y0

2
, 1− s

)
(the script letters standing for “old” and “new”); thus, N < O by the
assumption that (11) fails, (8), and Corollary 3. From Lemma 3 and (15)
we get

N −O = 1
2(x0 − y1)(x1 − y0) + 1

4(x0 − y1)2 − 1
4(|x0 − y1| − (1− s))2+

+ 1
4(x1 − y0)2 − 1

4(|x1 − y0| − (1− s))2+
= 1

4(x0 + x1 − y0 − y1)2 − 1
4(x0 − y1 − (1− s))2+

− 1
4(y0 − x1 − (1− s))2+.

Analyzing the right-hand side we see that if (13) were false, then N < O
along with (9) would give

x0 + x1 − y0 − y1 < x0 − y1 − (1− s),
which is (13) in disguise. This contradiction shows that (13) is true. We now
readily get (12) as a consequence of (13) and (9), and (14) is just the sum
of (13) and (12).

To summarize, there are two major cases to consider: where (11) holds
true, and where (12)–(14) hold true. Since in the second case we have
G(x0, y1, 1 − s) = y1(1 − s) and G(x1, y0, 1 − s) = x1(1 − s), the proof
of Lemma 5 will be complete once we establish the following claims.

Claim 1. We have f(x0, x1, x1, x0) ≤ 0.15 for any x0, x1 ≥ 0 with s :=
2(x0 + x1) ∈ [1/2, 1].

Claim 2. For real x0, x1, y0, and y1, write s := x0 + x1 + y0 + y1 and
let

g(x0, x1, y0, y1) = min{0.15s2, x0y0 +x1y1}+ (x1 + y1)(1− s) + 0.25(1− s)2.
Then g(x0, x1, y0, y1) ≤ 0.15 whenever x0, x1, y0, y1 ≥ 0 satisfy (14), and
s ≤ 1.

Proof of Claim 1. As

f(x0, x1, x1, x0) = min{0.15s2, 2x0x1}
+G(x0, x0, 1− s) +G(x1, x1, 1− s) + 0.25(1− s)2,

and since x0 +x1 = 1
2s implies 2x0x1 ≤ 1

8 s
2 < 0.15s2, we have to show that

(16) 2x0x1 +G(x0, x0, 1− s) +G(x1, x1, 1− s) + 0.25(1− s)2 ≤ 0.15.

We distinguish three cases.
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Case I: max{x0, x1} ≤ 1
2(1− s). In this case, from the definition of G,

we have G(x0, x0, 1 − s) = x20 and G(x1, x1, 1 − s) = x21. Therefore, (16)
reduces to

2x0x1 + x20 + x21 + 0.25(1− s)2 ≤ 0.15,

or equivalently

(17) 0.25s2 + 0.25(1− s)2 ≤ 0.15.

To show this we notice that our present assumption max{x0, x1} ≤ 1
2(1− s)

yields s = 2(x0 +x1) ≤ 2− 2s, implying s ≤ 2/3. However, the largest value
attained by the left-hand side of (17) in the range 1/2 ≤ s ≤ 2/3 is easily
seen to be 5/36 < 0.15.

Case II: min{x0, x1} ≥ 1
2(1 − s). In this case, by Lemma 4, we have

G(x0, x0, 1− s) ≤ x0(1− s)− 0.25(1− s)2 and G(x1, x1, 1− s) ≤ x1(1− s)−
0.25(1− s)2. Consequently, the left-hand side of (16) is at most

2x0x1 + x0(1− s) + x1(1− s)− 0.25(1− s)2

≤ 1
2(x0 + x1)

2 + (x0 + x1)(1− s)− 0.25(1− s)2

= 1
8s

2 + 1
2s(1− s)− 0.25(1− s)2 = −5

8

(
s− 4

5

)2
+ 0.15 ≤ 0.15.

Case III: x0 ≤ 1
2(1 − s) ≤ x1 (the case x1 ≤ (1− s)/2 ≤ x0 being

symmetric). In this case G(x0, x0, 1−s) = x20, while from Lemma 4 we have
G(x1, x1, 1− s) ≤ x1(1− s)− 0.25(1− s)2; thus, (16) reduces to

2x0x1 + x20 + x1(1− s) ≤ 0.15,

and substituting x0 = 1
2s− x1 and rearranging terms, to

(18) 1
4(2s2 − 2s+ 1)−

(
x1 − 1

2(1− s)
)2 ≤ 0.15.

Observing that 2s2 − 2s+ 1 is increasing for s ≥ 1/2 (and recalling that
s ≥ 1/2 by the assumptions of the claim), we conclude that if s ≤ 2/3, then
the left-hand side or (18) does not exceed

1
4

(
2 · 49 − 2 · 23 + 1

)
= 5

36 < 0.15.

If, on the other hand, s ≥ 2/3, then we have

x1 = 1
2s− x0 ≥

1
2s−

1
2(1− s) = s− 1

2 ≥
1
2(1− s),

whence the left-hand side of (18) does not exceed

1
4(2s2 − 2s+ 1)−

((
s− 1

2

)
− 1

2(1− s)
)2

= −7
4

(
s− 5

7

)2
+ 1

7 < 0.15.

Proof of Claim 2. Since replacing x0 and y0 with their average (x0+y0)/2
and, simultaneously, x1 and y1 with their average (x1 + y1)/2, can only
increase the value of g, and does not affect the validity of (14), we can
assume that y0 = x0 and y1 = x1. Thus, we want to show that in the region
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defined by

(19) x0, x1 ≥ 0, x0 + x1 ≤ 1/2, 3x0 + x1 ≥ 1,

we have

g(x0, x1, x0, x1) ≤ 0.15.

Observing that

g(x0, x1, x0, x1)

= min{0.6(x0 + x1)
2, x20 + x21}+ 0.25(1− 2x0 − 2x1)(1− 2x0 + 6x1)

= min{0.6(x0 + x1)
2, x20 + x21}+ x20 − 2x0x1 − 3x21 − x0 + x1 + 0.25,

the estimate to prove can be rewritten as

min{u(x0, x1), v(x0, x1)} ≤ −0.1,

where

u(x0, x1) = 2x20 − 2x0x1 − 2x21 − x0 + x1,

v(x0, x1) = 1.6x20 − 0.8x0x1 − 2.4x21 − x0 + x1.

Conditions (19) determine a triangle on the coordinate plane (x0, x1)
with vertices (1/3, 0), (1/2, 0), and (1/4, 1/4). If ϕ := (3 −

√
5)/2, then

the line x1 = ϕx0 splits this triangle into two parts: a smaller triangle T
which inherits the vertex (1/4, 1/4) of the original triangle, and a rectangle
R inheriting the vertices (1/3, 0) and (1/2, 0) of the original triangle. (We
consider both T and R as closed regions, so that they intersect in a segment.)
The reason to partition the large rectangle as indicated is that

min{u(x0, x1), v(x0, x1)} =

{
u(x0, x1) if (x0, x1) ∈ T,

v(x0, x1) if (x0, x1) ∈ R,

as one can easily verify; we therefore have to prove that u(x0, x1) ≤ −0.1
for all (x0, x1) ∈ T, and v(x0, x1) ≤ −0.1 for all (x0, x1) ∈ R.

To this end we observe that, as a simple computation shows, the only
critical point of u is (0.3, 0.1), and the only critical point of v is (0.35, 0.15).
Since the former point lies on the line 3x0 + x1 = 1, and the latter on the
line x0 + x1 = 1/2, these points do not belong to the interiors of T and R.
Hence, the maxima of u on T, and of v on R, are attained on the boundary
of these regions. To complete the proof we now observe that:

I. If 1/3 ≤ x0 ≤ 1/2 and x1 = 0, then

v(x0, x1) = 1.6x20 − x0 ≤ 1.6 · 14 −
1
2 = −0.1

(as 1.6x20 − x0 is an increasing function of x0 on the interval [1/3, 1/2]).
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II. If x0 + x1 = 1/2, then

u(x0, x1) = x20 + x21 − 0.25 ≥ 0,

v(x0, x1) = 0.6(x0 + x1)
2 − 0.25 = −0.1.

III. If 3x0 + x1 = 1, then

u(x0, x1) = −10x20 + 6x0 − 1 = −10(x0 − 0.3)2 − 0.1 ≤ −0.1;

if, in addition, (x0, x1) ∈ R, then

1 = 3x0 + x1 ≤ (3 + ϕ)x0,

whence x0 ≥ 1/(3 + ϕ) = (9 +
√

5)/38 and therefore

v(x0, x1) = −17.6x20 + 9.6x0 − 1.4

≤ −17.6 ·
(

9 +
√

5

38

)2

+ 9.6 · 9 +
√

5

38
− 1.4

= −0.1001 . . .

(as (9 +
√

5)/38 > 3/11, and −17.6x20 + 9.6x0 − 1.4 is a decreasing function
of x0 for x0 ≥ 3/11).

IV. If x1 = ϕx0 and (x0, x1) ∈ T ∩R, then

u(x0, x1) = v(x0, x1) = (2− 2ϕ− 2ϕ2)x20 + (ϕ− 1)x0

= 4(
√

5− 2)x20 −
√

5− 1

2
x0,

being a convex function of x0, attains its maximum for a value of x0 which
is on the boundary of the triangle T ∪ R. However, we have already seen
that u and v do not exceed the value of −0.1 on the part of the boundary
they are responsible for.

This finally completes the proof of Lemma 5, and thus the whole proof
of Theorem 1.

4. Proof of Theorem 2. As in the proof of Theorem 1, we use in-
duction on |A| and, with Lemma 1 in mind, assume that A is a set of
integers. Again, for i, j ∈ {0, 1} we let Ai := {a ∈ A : a ≡ i (mod 2)} and
Aij := {a ∈ A : a ≡ i + 2j (mod 4)}, and write m := |A|, mi := |Ai|, and
mij := |Aij |. Dividing through all elements of A by their greatest common
divisor, we can assume that

(20) 0 ≤ m0 < m.

We want to show that T (A,−A,A) ≤ 0.5m2 + 0.5m.

We distinguish two major cases, depending on which of m0 and m1 is
larger.
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Case I: m0 ≥ m1. Since a− b = 2c implies that a and b are of the same
parity, we have the decomposition

T (A,−A,A) = T (A1,−A1, A) + T (A0,−A0, A1) + T (A0,−A0, A0)

= T (A1,−A1, A) + T (A00,−A01, A1) + T (A01,−A00, A1)

+ T (A0,−A0, A0)

(for the second equality notice that a0 − b0 = 2c1 with a0, b0 ∈ A0 and
c1 ∈ A1 implies that either a0 ∈ A00, b0 ∈ A01, or a0 ∈ A01, b0 ∈ A00).
We estimate the first summand on the right-hand side trivially, use the
induction hypothesis (cf. (20)) for the last summand, and Corollary 2 for
the remaining two summands; this gives

(21) T (A,−A,A) ≤ m2
1 + 2G(m00,m01,m1) + 1

2 + 1
2m

2
0 + 1

2m0.

Our goal is to verify that the right-hand side does not exceed 0.5m2 + 0.5m.
In view of the symmetry between m00 and m01, we assume that

m00 ≤ m01

and, accordingly, we consider three further subcases.

Subcase I.a: max{m00,m01,m1} = m1. Using (21) and recalling that,
by the assumption of Case I, we have m1 ≤ m0 = m00 +m01, we get

T (A,−A,A) ≤ m2
1 + 2m00m01 − 1

2(m00 +m01 −m1)
2 + 1

2 + 1
2m

2
0 + 1

2m0

= 1
2m

2
1 + 2m00m01 +m0m1 + 1

2m0 + 1
2

≤ 1
2m

2
1 + 1

2m
2
00 + 1

2m
2
01 +m00m01 +m0m1 + 1

2m

= 1
2m

2 + 1
2m.

Subcase I.b: max{m00,m01,m1} = m01 ≤ m00 + m1. By (21), using
the estimate 1

2 m
2
0 ≤ m2

00 +m2
01, we obtain

T (A,−A,A) ≤ m2
1 + 2m00m1 − 1

2(m00 +m1 −m01)
2 + 1

2 + 1
2m

2
0 + 1

2m0

≤ 1
2m

2
1 +m00m1 + 1

2m
2
00 + 1

2m
2
01 +m00m01 +m1m01 + 1

2 + 1
2m0

= 1
2m

2 + 1
2 + 1

2m0 ≤ 1
2m

2 + 1
2m.

Subcase I.c: max{m00,m01,m1} = m01 ≥ m00 + m1. In this case we
have G(m00,m01,m1)≤m00m1, and (21) along with 1

2m1<m1≤m01 −m00

give

T (A,−A,A) ≤ m2
1 + 2m00m1 + 1

2 + 1
2m

2
0 + 1

2m0

= 1
2(m1 +m0)

2 + 1
2m

2
1 −m0m1 + 2m00m1 + 1

2 + 1
2m0

= 1
2m

2 +m1

(
1
2m1 +m00 −m01

)
+ 1

2 + 1
2m0

< 1
2m

2 + 1
2m.
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Case II: m1 ≥ m0. In this case we use the decomposition

T (A,−A,A) = T (A0,−A0, A) + T (A1,−A1, A0) + T (A1,−A1, A1)

= T (A0,−A0, A) + T (A10,−A10, A0) + T (A11,−A11, A0)

+ T (A1,−A1, A1).

Using the trivial bound m2
0 for the first summand, applying Corollary 2

to estimate the second and third summands, and observing that a1−b1 = 2c1
(a1, b1, c1 ∈ A1) implies that exactly one of a1 and a2 is in A10 and the other
is in A11, we get

T (A,−A,A) ≤ m2
0 +G(m10,m10,m0) +G(m11,m11,m0)(22)

+ 1
2 + 2m10m11.

Since the right-hand side is symmetric in m10 and m11, without loss of
generality we assume that m10 ≤ m11. Consequently, by the assumption of
Case II, we have m0 ≤ m1 ≤ 2m11, and to complete the proof we consider
two subcases, according to whether the stronger estimate m0 ≤ 2m10 holds.

Subcase II.a: m0 ≤ 2m10. In this case, by (22) and Lemma 4, and in
view of 2m10m11 ≤ 1

2(m10 +m11)
2 = 1

2m
2
1, we have

T (A,−A,A) ≤ m2
0 +

(
m10m0 − 1

4m
2
0

)
+
(
m11m0 − 1

4m
2
0

)
+ 1

2 + 1
2m

2
1

= 1
2m

2
0 +m0m1 + 1

2m
2
1 + 1

2

= 1
2m

2 + 1
2 .

Subcase II.b: 2m10 ≤ m0 ≤ 2m11. Acting as in the previous subcase,
but using the trivial estimate for the second summand in (22), we get

T (A,−A,A)

≤ m2
0 +m2

10 +
(
m11m0 − 1

4m
2
0

)
+ 1

2 + 2m10m11

≤ 3
4m

2
0 +m2

10 +m11m0 + 3
2m10m11 + 1

4m
2
10 + 1

4m
2
11 + 1

2

= 1
2(m0 +m10 +m11)

2 − 1
4(m10 +m11 −m0)(m0 +m11 − 3m10) + 1

2

≤ 1
2m

2 + 1
2 ,

the last inequality following from m10 +m11−m0 ≥ 0 and m0 +m11−3m10

≥ 0, by the present subcase assumptions.
This completes the proof of Theorem 2.
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