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1. Introduction. Let φ(n) be the Euler function. Put

E(x) =
∑
n≤x

φ(n)− 3

π2
x2.

Walfisz [3] proved that

E(x) = O(x(log x)2/3(log log x)4/3).

We shall denote by δ(x) all functions which are bounded above by

exp
(
−A(log x)3/5(log log x)−1/5

)
as x → ∞, where A > 0 is some constant. The mean value of E(n) was
considered in [2], where it was shown that

(1.1)
∑
n≤x

E(n) =
3x2

2π2
+O(x2δ(x)).

Here, we give an estimate for the mean value of E(n)2.

Theorem 1.1. The estimate∑
n≤x

E(n)2 =

(
1

6π2
+

2

π4

)
x3 +O(x3δ(x))

holds for x > 10 with a suitable value of A.

2. The proof of Theorem 1.1. We begin by stating a similar result
essentially due to Chowla [1].
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Lemma 2.1. We have the estimate

(2.1)

x�

0

E(u)2 du =
x3

6π2
+O(x3δ(x)) as x→∞.

Note here that the result in [1] is not quite as precise as in the esti-
mate (2.1), because Chowla started his proof with a weaker estimate of the
Mertens function:

M(x) :=
∑
n≤x

µ(n) = O

(
x

(log x)30

)
as x→∞. Since it is well known that the Mertens function satisfies

M(x) = O(xδ(x)) as x→∞,

the arguments in [1] can be adapted to deduce (2.1).

We will now see that Theorem 1.1 can easily be deduced from Lemma
2.1. Let us assume, without loss of generality, that x is an integer. Then we
have

x�

0

E(u)2 du =
x−1∑
k=0

1�

0

E(k + u)2 du.

Furthermore, for any integer k and u ∈ (0, 1) we have

E(k + u)2 =

(
E(k)− 3

π2
(2uk + u2)

)2

= E(k)2 +
9

π4
(2uk + u2)2 − 12

π2
ukE(k)− 6

π2
u2E(k).

Hence,

(2.2)

x�

0

E(u)2 du

=

x−1∑
k=0

E(k)2 +

x−1∑
k=0

1�

0

(
9

π4
(2uk + u2)2 − 12

π2
ukE(k)− 6

π2
u2E(k)

)
du

=

x−1∑
k=0

E(k)2 +
4

π4
x3 − 6

π2

x−1∑
k=0

kE(k) +O(x2).
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Finally,
x−1∑
k=0

kE(k) = x

x−1∑
k=0

E(k)−
x−1∑
k=0

(x− k)E(k)

= x

x−1∑
k=0

E(k)−
x−1∑
l=0

l∑
k=0

E(k)

=
1

π2
x3 +O(x3δ(x)).

Here, we used (1.1) to estimate both terms of the second line and deduce
the last line. Combining this with (2.2), we get

x−1∑
k=0

E(k)2 =

x�

0

E(u)2 du+
2

π4
x3 +O(x3δ(x)).

Thus, Theorem 1.1 follows from the estimate (2.1) of Lemma 2.1.
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and
School of Mathematics

University of the Witwatersrand
P.O. Box Wits 2050

Johannesburg, South Africa
E-mail: fluca@matmor.unam.mx

Received on 3.3.2008
and in revised form on 25.2.2014 (5654)

http://dx.doi.org/10.1007/BF01186560
http://dx.doi.org/10.1007/BF02384804



	1 Introduction
	2 The proof of Theorem 1.1
	References

