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Jumps of ternary cyclotomic coefficients
by

BARTLOMIEJ BZDEGA (Poznaii)

1. Introduction. The nth cyclotomic polynomml is

&, (x) = H (x—=¢") Z an(k)z®,  where ¢, = e2™/™,

1<m<n, (m,n)=1 kEZ

We say that @,, is binary if n is a product of two distinct odd primes, ternary
if n is a product of three distinct odd primes, etc.

The coefficients of cyclotomic polynomials are a popular object of study.
One of the intensively studied directions is estimating the maximal absolute
value of the coefficients of @,, [1L3H6L[8]. There are also papers on the sum of
the absolute values of the coefficients [3}[8] and on the number 6,, of nonzero
coefficients |7, 9.

Ternary cyclotomic polynomials have an interesting property discovered
by Gallot and Moree [10]: the absolute difference between a,q (k) and
apgr(k — 1) never exceeds 1. In this paper, for a given ternary cyclotomic
polynomial @,,,, we characterize all k such that |apgr (k) — aper(k —1)| = 1.
Also we determine the number of k’s for which this equality holds.

We say that the coefficient apqr (k) is jumping up if apgr(k) = apgr(k —1)
+ 1. Analogously we define jumping down coefficients. Cyclotomic polyno-
mials are known to be palindromic, i.e. a, (k) = a,(¢(n) — k), where p(n) is
the Euler function and the degree of @,,. Therefore the number of jumping
up coefficients and the number of jumping down ones are equal; we denote
this number by Jpq..

One of our main results is the following theorem.

THEOREM 1.1. For a ternary cyclotomic polynomial ®,, we have

JIn > nl/3.
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Half the total number of jumping (up or down) coefficients is a lower
bound for the number of odd coefficients of @, and thus it is a lower bound
for the number 6, of nonzero coefficients of ®,4.. So we have

COROLLARY 1.2. Let @, be a ternary cyclotomic polynomial. Then
0, > nl/3.

We do not know if for every € > 0 there exist infinite classes of ternary
cyclotomic polynomials &, with J,, < n'/3+¢. However, under some strong
assumptions, we can prove that they do exist.

THEOREM 1.3. Let 0 < & < 1/2. If q is a Germain prime, ¢+ 1 has a
prime divisor p > ¢*~¢ and r = 2q+1, then J,, < 100G~ where n = pqr.

If the celebrated Schinzel Hypothesis H is true then there exist infinitely
many triples of primes (p, ¢, ) satisfying the conditions of Theorem For
example, we can put (p,q,r) = (m,6m — 1,12m — 1) and take m > 6.

The paper is organized as follows. In Section 2 we recall some results
from our earlier work [6]. In Section 3 we give a criterion on k determining
the value of V (k) = apgr (k) — apgr(k—1) € {—1,0,1}. In Section 4 we derive
a formula for Jp, and prove Theorem In Section 5 we prove Theorem
and discuss the case of inclusion-exclusion polynomials.

We remark that Liu [12] independently obtained a similar criterion on k
determining V' (k) by a different method.

2. Preliminaries. Throughout the paper we fix distinct odd primes
p, q, r. Let us emphasize that every fact we prove for (p,q,r) also has an
appropriate symmetric version.

By a~!(b) we denote the inverse of a modulo b for (a,b) = 1. We treat
this number as an integer from the set {1,...,b— 1}.

For every integer k we define F, € Z and ay € {0,1,...,p — 1}, by €
{0,1,...,¢—1}, ¢ € {0,1,...,r — 1} by the equation

k + Fypgr = agqr + brrp + cipq,

which clearly has a unique solution (Fj, ag, by, cx) depending on k. In 6] we
proved the following properties of the numbers Fj.

PROPOSITION 2.1 (|6, remark before Lemma 2.1]). For —(qr+rp+pq) <
k < pgr we have Fy, € {0,1,2}.

PROPOSITION 2.2 (|6, Lemma 2.2]). We have
—1 ifap <7 Xp) and ¢ < p~i(r),
Fpo—Frg=191 ifay>r"Yp) and cx > p~L(r),

0 otherwise.
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PROPOSITION 2.3 (|6, Lemma 2.3|). We have
—1 if ap € AY,
Fp—Fy q—Fyp+Fpqr=11 if ag E.Ag,

0 otherwise,
where

AV ={0,1,....,p =1} [¢ " (p) +r " (p) — p,min{g~ ' (p), " (p)}),

AL ={0,1,...,p—1}n [max{g" ' (p),7 " (0)}, ¢ (p) +r(p)).

PROPOSITION 2.4 (|6, Lemma 2.4]). We have
Fr—Fyp—Fhg—For+ Fegrt Ferpt Frpg—Fhpgr=0.

PROPOSITION 2.5 (|6, Lemma 5.1|). For k=0,1,...,pqr — 1 we have

apgr (k) — apgr(k — 1)

= No(Fr, Fr—q—r> Fier—p, Fr—p—q) — No(Fi—p, Fr—q> F—ry Fr—p—q—r)

= No(Fy, Fie—q—ry Fr—r—p, Fre—p—q) — N2(Fh—ps Fr—gs Fr—rs F—p—q—r)

= 5(NM1(Fip, Fr—gs Firs Frp—q—r) = N1(Fi, Fr—grs Fir—ps Fi—p—q))

where Ni(s) denotes the number of t’s in the sequence (s).

3. A criterion on jumping coefficients. We define five sets:
={0,1,...,p—1}nN [O qil( )+r*1(p) —p),
={0,1,...,p—1}N[g" p)—p,min{q Yp),r™ lp)}),

Ay ={0,1,...,p =1} N [mln{q “Hp)}max{g ' (p),r ' (p)}),

Ag:{O,l,---,p—l}ﬁ[maX{ql “ha )+ (D),

.Ap:{O,l,...,p—l}ﬂ[ ),p).

Note that if ¢~ (p) + 77 1(p) = p then both Af and AJ} are empty, otherwise
precisely one of A5 and Al is empty. Further, A} and A% are not empty, and
Ab is empty if and only if ¢~ (p) = r~1(p).

Similarly we define A? and A7 for j =0,1,2,3,4.

By Proposition we have to consider 8-tuples

OCt(k) = (Fk7 kapv kaqv Fr—r, Fk‘qu’rﬁ karfpv Fk‘*]?*(]? kapqur)-

We write oct(k) ~ (t1,...,ts) if oct(k) = (t1 + u,...,ts + u) for some
integer u. Put also
V(k) = apgr(k) — apgr(k — 1)
and
6y = {1 if ¢~ (p) <7 (p),
0 otherwise.
Analogously we define 9,4, 6rp, Opr, dpg and 6.
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The following theorem gives a criterion for whether the kth coefficient of
Dpqr is jumping up or down or remains constant.

THEOREM 3.1. The value V (k) depends on which one of the sets Af x
“4;1'2 x A% contains (ag, b, ck), in the way described in Table . The notation
(41J2J3) in the first column means (ag, by, cx) € Aj x AL x A% .

In order to prove Theorem we need the following simple fact.

LEMMA 3.2. If (ag, bk, ck) € A?l X .,4;1-2 x A and (a, by, cxr) € A§1 X
./4;1-2 x A%, then

OCt(k/) ~ (Fku Fk—]h Fk—qa Fk—ra Fk—q—'r; Fk—r—pu Fk—p—q - 17 Fk—p—q—r - 1)
Similarly, if k € A} x A;‘{Q x A% and k' € Ab x Agé x A" then

J37
OCt(k,) ~ (Fk, Fk—pa Fk—qa Fi—r, Fk—q—r +1, Fk—r—p7 Fk:—p—q7 Fk—p—q—’r + 1)

Proof. Let us consider the first situation. By Proposition [2.2] and its
symmetric versions, it follows that

Fy—Fyp=Fp—Fy_p, Fp—Fyq=Fy—Fp g Fy—Fpp=Fy—Fp_,.
Then, by Proposition [2.3| and its symmetric versions,
Fp—Fy g r=Fy—Fy_g o, Fp—Fprp=Fy—Fy_ryp
Once more we use symmetric versions of Propositions and to obtain
Fk_kap_Fk’fq"i_kapfq = kar_karfp_kaqfr"i_kapqur =1,
Fk’_Fk’—p_Fk’—q+Fk’—p—q = Fk'—r_Fk’—r—p_Fk’—q—r+Fk’—p—q—r =0.
Thus the first claim is true. The proof of the second one is similar. =

Proof of Theorem . We determine oct(k) up to adding an integer,
so in each row of Table [I] we can choose F}, arbitrarily. First, consider the
cases (j1j2j3) from Table[I] which are not of the form (0...) or (...4). Using
Proposition and its symmetric versions, we obtain the values of Fj_,
Fy_q, F—r. Then, by Proposition and its symmetric versions we com-
pute Fy_g—r, Fy—r—p, F—p—q. Finally, we use Proposition @ to determine
Fropg—r-

We assume that dpq + dqp = 1 since if §,q = dgp = 0 then A5 = 0 and the
case is empty. The situation with 6,4, 0,4 and 6,p, dpr is analogous.

Now we can use Lemma to compute oct(k) for the remaining cases
(j17273), of the form (0...) or (...4). After these computations the second
column of Table [1] is complete.

Next we compute V(k), for which we use Proposition If a row does
not contain any 4, the computation is straightforward. The remaining cases
are considered one by one. We write oct(k) ~ (...) if equality holds up to
adding an integer.
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Table 1. The values of oct(k) in dependence on (ak, by, ck)

(J172J3) oct(k) ~ V (k)
001 (0,1,1,1,2,2,1,2) 1
002 (0, 8pas Saps 1, 1+ Sapy 1+ 0pg, 1,2) 0
003 (0,0,0,1,1,1,1,2) —1
004 (0,0,0,1,1,1,0,1) 0
011 0,1,1,1,2,1,1,1)

012 (0,0pg, 0gp, 1, 1 + 0gp, Opg, 1,1) Ogp
013 (0,0,0,1,1,0,1,1)
014 (0,0,0,1,1,0,0,0)
022 (0,0pq + 0pr — 1, gp, Orp, dgp + Orp, Opg, Opr, 1)
023 (1,0pr, 1,1 4+ 6pry 1 + 0pr, 1, 1 4 6pr, 2) —0rp
024 (1,0pr, 1,1 4 pry 1 + 0pr, 1, 0pr, 1) 0
033 (1,0,1,1,1,1,1,2) -1
034 (1,0,1,1,1,1,0,1) 0
044 (1,0,1,1,1,0,0,0) 0
111 (0,1,1,1,1,1,1,0) 0
112 (0,0pq, dgps 1, 0gp, Ipg, 1,0) 0
113 (0,0,0,1,0,0,1,0) 0
114 (1,1,1,2,1,1,1,0) -1
122 (1,0pq + Opry L+ gp, 1 + Orp, OpgOpr — OqpOrp
Ogp + Orps L + Opg, 1 + 0pr, 1)

123 (1,0pr, 1,1 4+ 6rp, 6rp, 1, 1 + pr, 1) Opr — Orp
124 (1,0pr, 1,1 4 6rp, Orp, 1, 0pr, 0) —0rp
133 (1,0,1,1,0,1,1,1)
134 (1,0,1,1,0,1,0,0)
144 (2,1,2,2,1,1,1,0) —1
222 (1,8pq + Opr, dgr + dgp, Orp + rg, 0

Ogp + Orp, Orqg + Opg, Opr + dgr, 1)
223 (1, 0pr, Ogr, Orp + Orq, Orp, Orq, Opr + Ogr, 1) OprOgr — Orplrg
224 (1,8 6rs Srp + Sras Srps 6ras Spr + Sar — 1,0)
233 (1,0, 641, 61, 0, 675 5rs 1) 0
234 (2,1,1 4 Ggry 1+ Grgy 1,1 + Grgy O, 1) Srq
244 (2,1,1 4+ 640, 1 + Grg, 1, 0rg, Ogr, 0) 0
333 (1,0,0,0,0,0,0,1) 0
334 (2,1,1,1,1,1,0,1) 1
344 (2,1,1,1,1,0,0,0) 1
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Note that by Proposition and the inequality [V (k)| < 1, if oct(k)
contains an even number of Os or an even number of 2s then V(k) = 0.
Otherwise |V (k)| = 1.

(002) It does not matter which one of d,q, d¢p equals 1, so we assume that
dpq = 1. Then oct(k) = (0,1,0,1,1,2,1,2) and V (k) =

(244) This case is analogous to the previous one.

(112) Again, the value of d,, is not important and for §,;, = 1 we have
oct(k) ~ (0,1,0,1,0,1,1,0) and V (k) = 0.

(233) As before, the value of 6,4, has no influence on V' (k) and we can assume
dqr = 1. Then oct(k) ~ (1,0,1,0,0,0,1,1) and V (k) =

(012) For d,, = 1 we have oct(k) ~ (0,1,0,1,1,1,1,1) and V( )
dgp = 1 we have oct(k) = (0,0,1,1,2,0,1,1) and V (k) =
V (k) = 0gp.

(234) For 4 = 1 we have oct(k) ~ (2,
drq = 1 we have oct(k) = (2,1,1
= 0pq-

(024) If 4, = 0 then oct(k) ~ (1,0,1,1,1,1,0,1). If §,, = 1 then oct(k) ~
(1,1,1,2,2,1,1,1). In both cases V (k) = 0.

(123) If 6, = 1, then oct(k) = (1,0,1,2,1,1,1,1) and V (k) = —1.If 6, = 1,
then oct(k) = (1,1,1,1,0,1,2,1) and V (k) = 1. So we have V (k) =
Opr — Orp.

= 0. For
1. Thus

1,1) and V (k) = 0. For

2, )
1 ) and V (k) = 1. So V (k)

1,2,1,1,1
2,1,2,0,1

)

(023) For 6,, = 1 we have oct(k) = (1,0,1,1,1,1,1,2) and V (k) = —1.
For 6, = 1 we have oct(k) ~ (1,1,1,2,2,1,2,2) and V (k) = 0. Thus
V(k) = —0rp.

(124) If 6,p = 1, then oct(k) = (1,0,1,2,1,1,0,0) and V (k) = —1. When
dpr = 1, we have oct(k) ~ (1,1,1,1,0,1,1,0) and V (k) = 0. So V (k)
= —Orp-

(022) Note that in this case the situation é,, = 0, = 0 is impossible, because
then F,,_y_, = F,,—p + 3, contradicting Proposition . If 0pg = Opr
=1, then oct(k) ~ (0,1,0,0,0,1,1,1) and V (k) = 0. If one of dpq, Opr
equals 1, we assume that d,, = 1 (it does not matter). Then we have
oct(k) ~ (0,0,0,1,1,1,0,1) and V (k) =

(224) This case is analogous to the previous one.

(122) We have

(1,2,1,1,0,2,2,1) if 8py = 0pp = 1,
(1,0,2,2,2,1,1,1) if 6, = 6,p = 1,
(1,1,1,2,1,2,1,1) if 8py = 0pp = 1,
(1,1,2,1,1,1,2,1) if 6, = 6 = 1,

oct(k) ~

from which we obtain V' (k) = 0pq0pr — dgpOrp-
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(223) Similarly to the previous case, we have

(17 1,1,0,0,0,2, 1) if 5pr = 5qr =1,
1,0,0,2,1,1,0,1) if 6pp =g =1
OCt(k’)N (7777777)%7‘p rq )
(1,1,0,1,0,1,1,1) if Opr = Opg = 1,
(170717171707171) if 57‘p:5q’r‘:1-
We conclude that V (k) = 6prdgr — Orpdrg-

(222) In both sequences
(1, 6pg + Opr, Ogr + Ogp, Orp + Orq);
(Ogp + Orp; Org + Opgs Opr + 0gr; 1)

we have the same number of 2s, so oct(k) contains an even number of

2s and thus V (k) = 0.
Thus we verified all cases from Table[Il =

Let us add that there are 125 sets of type .A?l X .A?Q x A% . By symme-
try, using Theorem 3.1 we are able to obtain all of them except two. The
exceptions are A5 x Af x Al and A} x A] x A}. The next lemma justifies
their absence in Table [I] by proving that these products are empty.

LEMMA 3.3. The three inequalities
') +r i) >, )+ ) >e, pTH () () >
cannot hold at the same time. The same is true with > replaced by <.

Proof. Adding the equality

—1 —1 1
q (p) P (@ _ s
p q bq
to its analogues with (p, ¢) replaced by (g, r), respectively (r,p), we obtain
~1 -1 ~1 —1 ~1 ~1
+7r T + )+ r 1 1 1
q " (p) (p)Jr (@) +p (q)+p (r)+q (>:3+7+7+7.
p q r qr TP pq

Using this identity, the proof is easily completed.

4. A formula for J,,;.. To present the announced formula, we need the
notation

ap =min{g ' (p),r (), — ¢ ') p = (D)}, By = (ar) ' (p);
we define oy, o, By, By similarly. One can easily check that
Bp = max{min{g~"(p),p — ¢~ (p)}, min{r" (p),p — " (p)}} > ap,
#Azf = #Ag = Qp, #«4‘3 = Bp*apa #«48+#Ap :p*apfﬁp
and analogous inequalities hold for A;I- and Aj. Let also

5p = 5pq5pr + 5Tp5qpv
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and define 6, and 4, similarly. If the first inequality of Lemma[3.3]is the only
false or the only true one, then we put

R = ap(q—ag— By)(r — ar — Br).

If the only true/false inequality is the second or the third one, then we define
R analogously. In addition we put

S = Zépap(ﬁq —ag)(Br — ar),

cycl

T =" 80 (Bp — 0p) (g #AG + A,

perm

where

> fw.a.r) = fp,a,m) + F(r,p,q) + flg,7,p),

cycl

> fpiar) = fp.gr) + fr,p, @) + flg,7,p)
perm
+ f(r.¢,p) + f(p,1,q) + f(a,p, 7).
Now we are ready to present the main result of this section.

THEOREM 4.1. We have

Tpgr =R+ S+T+ Y apog(r — 2ay).
cycl

Proof. In order to make the notation more readable, we put

Ty = 2 HALFAL A,

perm
oI (f(0,a,m)) = > (0, g, )AL #AL HAT
perm

and analogously

Oiia = D AL HAL A,

cycl
1
o3 W0 ) =D F (g r)#AD # AL # AT
cycl

By Theorem [3.1] we have

cycl cycl cycl cycl perm
Jpgr = 0go1 + 0011 T 0334 + 0514 + 013 (Gpr)

perm perm

cycl cycl
+0b1a (Ogp) + 035" (Orq) + 0135 (pg0pr) + 0o3g (Oprdgr)-
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It is easy to observe that

cycl cycl _ cycl cycl q r q r\ __
Opo1 T 0344 = 100 T T304 = E :Oép(#-Ao#Ao +#A#AL) = R,
cycl
cycl cycl _ cycl cycl
011 T 0334 = 0p11 T 0411 = E (p— op — Bp)rgur.
cycl

Now we consider sums containing ds. The equalities above remain true, since
if &y + drp # 1, then the set A2 is empty. We have

1 1
o5 (0pr) = 0755 (Gpr) + 0531 () = ) 0ptg (B — r),
cycl

o1z (Ogp) + 0531 (Org) = 051" (0r) + 053" (0gr) = T

Finally,
1 1 1 1
135 (OpgOpr) + 0335 (9pr0qr) = 0155 (Opgdpr) + 0535 (9rpdgp) = S-
By summing the values obtained, we get the conclusion. =
As a consequence of Theorem [.1] we now obtain Theorem [I.T}

Proof of Theorem [1.1. We will use the fact that ab > a + b — 1 for
any positive integers a and b. By Theorem and the obvious inequality
R,S,T > 0, we have

1
Tpqr > Z apog(r — 20,) = 3 Z ap(aq(r — 2ar) + (g — 204)ar)

cycl cycl
1
> §Z(aq+(7’—2ar)—1+(q—2aq)+ar—1)
cycl
1 1
=52 a—ag—1+r—a—1)>53> ((g-1/2+ (- 1)/2)
cycl cycl

=(p-1/2+@-1/2+r-1)/2>(p+q+71)/3> ¥par,

which completes the proof. =

5. Polynomials with small J,,,

Proof of Theorem [I.3. Let ¢ = tp — 1 where 3 <t < ¢, and let r =
2q + 1 = 2tp — 1. Then it is not hard to verify that

g'p)=p-1, rlg)=1, pl(r)=2t,
rip)=p—1, p g =t ¢ '(r)=2tp-3,
oy =1, og =1, ar = 2,
By =1, By =1, By =2p—2t —1,
AP =, A0 A=,
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and d,p = 0pg = 1. The remaining ds from Theorem [4.1] equal 0. Therefore
Zozpaq(r —2a,) = (2tp—5)+2(tp — 3) + 2(p — 2) < 6q

cycl
and
R=(p—ap—Bpag(r —a, — B) = (p—2)(2t —2) < 2¢.

Since 0, = 64 = 6, = 0, we have S = 0. It remains to evaluate T

T = (B — aq)(ar#Ag + ap#AY) + (Br — ar)(ap#Ag + aq#Ai)
=({t—-1)2(p—2) < 2.

By Theorem we have Jpg < 10q, while pgr > ¢>¢, so the proof is
complete. m

In the slightly more general class of so-called inclusion-exclusion poly-
nomials, the exponent 1/3 in Theorem is the best possible. We recall
that
(1 —2aP?")(1 —2P)(1 —29)(1 —2")

(1—22)(1 —2P)(1 —2P9)(1 — z)

If we replace the assumption that p, q, r are primes by their being pairwise
coprime, then the formula above defines the inclusion-exclusion polynomial
Q{p,q,r} (See IQI)

Let us denote by Jy, 1 the number of jumping up coefficients of the
polynomial Qy, ;1. As long as p,q,r > 2, all results of our paper also hold
for Qp.g.r)-

The numbers m, 6m — 1, 12m — 1 are pairwise coprime for every positive
integer m. Thus we can repeat the argument from the proof of Theorem [I.3]
to deduce that

Dpgr(T) =

Jimem—1,12m—1} < 10(6m — 1) < 15n1/3,

where n = m(6m —1)(12m —1) and m > 3. The construction gives infinitely
many ternary inclusion-exclusion polynomials Q) for which Jg, .1 <
15113, where n = pgr.
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