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1. Introduction. Let p be a prime, Zp be the finite field in p elements,
Z∗p = Zp − {0}, and k be a positive integer. The smallest s such that the
congruence

(1.1) xk1 + · · ·+ xks ≡ a (mod p)

is solvable for all integers a is called Waring’s number (mod p), and denoted
γ(k, p). If d = (k, p − 1) then clearly γ(d, p) = γ(k, p) and so we assume
henceforth that k | (p− 1).

An alternate way of defining Waring’s number is in terms of sum sets.
For any subsets A,B of Zp and positive integer s we let

A+B = {a+ b : a ∈ A, b ∈ B}, sA = A+ · · ·+A (s times),

AB = {ab : a ∈ A, b ∈ B}, nAB = n(AB).

If A is the multiplicative subgroup of kth powers in Zp and A0 = A ∪ {0}
then γ(k, p) is the minimal s such that sA0 = Zp. Put t = |A| = (p− 1)/k.

From the classical estimate of Hua and Vandiver [10] and Weil [22] for
counting the number Ns(a) of solutions of (1.1) over Zp,

(1.2) |Ns(a)− ps−1| ≤ (k − 1)sp(s−1)/2 for a 6= 0,

one immediately obtains

(1.3) γ(k, p) ≤ s if |A| ≥ p1/2+1/(2s),

where A is the group of kth powers. In particular, γ(k, p) ≤ 2 if |A| ≥ p3/4

and γ(k, p) ≤ 3 for |A| ≥ p2/3. It is reasonable to conjecture that γ(k, p) ≤ 2
if |A| � p1/2+ε and that γ(k, p) ≤ 3 if |A| � p1/3+ε, but no further progress
has been made in this direction. However, for s ≥ 4, improvements on the
lower bound on |A| in (1.3) are available. The goal of this paper is to obtain
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the best available estimates of this type. Our results are summarized in
Table 1 below. For a given positive integer s, we let ts denote the smallest
known value such that for any k, p with |A| ≥ ts we have γ(k, p) ≤ s.

Table 1. Record breaking values for Waring numbers

s ts Exponent Proof

2 p3/4 .75000 (1.3)

3 p2/3 .66667 (1.3)

4 p22/39+ε .56411 Section 6.1

5 p15/29+ε .51725 Section 6.2

6 p11/23+ε .47827 Theorem 6.1

7 p27/59+ε .45763 Theorem 6.1

8 p117/265+ε .44151 Theorem 6.1

16 p27/71+ε .38029 Theorem 6.1

24 p5/14+ε .35715 Section 8

32 p5/16+ε .31250 Section 8

48 p5/17+ε .29412 Section 8

64 p5/18+ε .27778 Section 8

96 p5/19+ε .26316 Section 8

128 p1/4 .25000 Section 8

392 p5/21+ε .23810 Section 8

2888 p10/53+ε .18868 Section 8

The values given in the table are Big-O estimates, where the constant
depends on ε whenever ε is present. For s > 8 we have chosen a sampling
of special values to serve as benchmarks. Multiples of 8 are used because
of the convenience of applying the Glibichuk–Konyagin 8AB theorem; see
Lemma 8.1. For 6 ≤ s ≤ 12 the best admissible value we have found for ts is

p
9s+45
29s+33

+ε (see Theorem 6.1), sharpening the result of Schoen and Shkredov

[16, Theorem 2.6], who obtained ts = min{p
2s+2
5s−3 , p

s+5
3s+3 }. For s > 12 some

further improvements are available by appealing to estimates of T3(A) (see
(3.7)), but we have not carried out these computations here.

The estimate in (1.3) yields no information for groups of size
√
p and so

one of the targets in recent years has been the determination of γ(k, p) for
subgroups A of size |A| > p1/2. Glibichuk [5] obtained γ(k, p) ≤ 8 for such
groups. This was improved by Schoen and Shkredov [16, Theorem 4.1] to
γ(k, p) ≤ 6 for |A| > p41/83+ε. Further improvements were made by Shkredov
and Vyugin [21, Corollary 5.6], γ(k, p) ≤ 6 for |A| > p33/67+ε, and Schoen
and Shkredov [17, Corollary 49], γ(k, p) ≤ 6 for |A| > p99/203+ε = p.48768...+ε,
both under the assumption that −1 ∈ A. Hart [8] obtained γ(k, p) ≤ 6 for
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any A with |A| > p11/23+ε = p.47826...+ε. Here we extend his method to values
of s ≥ 6. In order to obtain γ(k, p) ≤ 5, the best we have been able to do is
to take |A| > p15/29+ε. The next milestone will be to obtain γ(k, p) ≤ 5 for
|A| � p1/2.

Bounds on Gauss sums immediately yield estimates for Waring’s number.

Let ep(·) = e
2πi·
p and put

Φk = max
λ, p-λ

∣∣∣ p∑
x=1

ep(λx
k)
∣∣∣.

It is elementary that |Ns(a)− ps−1| < Φsk, and so

γ(k, p) ≤
⌈

log p

log(p/Φk)

⌉
.

In particular,

(1.4) Φk ≤ (1− ε)p ⇒ γ(k, p)�ε log p,

and

(1.5) Φk ≤ p1−ε ⇒ γ(k, p) ≤ d1/εe.
Bounds of the former type, (1.4), are discussed in [11] and [2]. Bounds of the
latter type, (1.5), follow from the ε-δ exponential sum bound of Bourgain
and Konyagin [1]: For any δ > 0 there exists a constant ε = ε(δ) such
that if |A| � pδ then Φk � p1−ε. Consequently, there exists a constant
c(δ) such that if |A| > pδ then γ(k, p) � c(δ). Glibichuk and Konyagin [6]
showed, using a completely different method, that one can take c(δ) = 41/δ.
We employ the methods of Glibichuk and Konyagin in this paper to deal
with the cases where s > 8 in Table 1, and so the values we obtain reflect
this order of magnitude. For small s we use the machinery developed by
Schoen and Shkredov [16], [17] and Shkredov and Vyugin [21], which in
turn makes use of exponential sum estimates and additive energy estimates
of Heath-Brown and Konyagin [9], and Konyagin [12].

Montgomery, Vaughan and Wooley [13] have conjectured that

Φk �
√
kp log(kp).

This would imply that if |A| > pδ, then γ(k, p) ≤ c/δ for some constant c,
and consequently ts ≤ pc/s, which is best possible, up to the determination
of the constant c.

Remark 1.1. With the aid of a computer, one can determine explicit up-
per bounds for γ(k, p) for small k. Tables of such values have been provided
by Small [19], [20] and Moreno and Castro [14]. For instance, γ(2, p) ≤ 2 for
all p, γ(3, p) ≤ 2 for p > 7, γ(4, p) ≤ 2 for p > 29, γ(4, p) ≤ 3 for p > 5,
γ(5, p) ≤ 2 for p > 61, etc.
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One can also obtain an explicit determination of γ(k, p) when k is very
close to p in size. For instance γ(p− 1, p) = p− 1, γ

(p−1
2 , p

)
= p−1

2 , and for

p ≡ 1 (mod 4), γ
(p−1

4 , p
)

= a − 1 where a is the positive integer satisfying
a2 + b2 = p, a > b, b ∈ Z; see [2]. See also [2] and [3] for further discussion
of estimates when |A| is small.

2. Estimating the number of solutions of (1.1). In this section
we outline the standard method of estimating the number of solutions of a
Waring-type congruence such as (1.1). For any subset B of Zp and positive
integer `, let

(2.1) T`(B) = |{(x1, . . . , x`, y1, . . . , y`) :

xi, yi ∈ B, x1 + · · ·+ x` = y1 + · · ·+ y`}|,

and E(B) := T2(B), the additive energy of B. Set

(2.2) ΦB = max
p-λ

∣∣∣∑
x∈B

ep(λx)
∣∣∣,

where ep(·) denotes the additive character e
2πi
p
·

on Zp. We call a subset B
of Zp an A-invariant set if AB ⊆ B, that is, AB = B.

For any a ∈ Fp let Ns(B, a) denote the number of s-tuples (x1, . . . , xs)
with

(2.3) x1 + · · ·+ xs = a, xi ∈ B, 1 ≤ i ≤ s.

Theorem 2.1. Let A be a multiplicative subgroup of Zp, B be an A-
invariant subset of Zp and a be a nonzero element of Zp. Then for any
positive integers s, r with r ≤ s/2, we have

|Ns(B, a)− |B|s/p| < Φs−2rB Tr(B)ΦA/|A|.

Special cases of this theorem have appeared throughout the literature.
Letting B = A, we find that (2.3) is solvable, and consequently γ(k, p) ≤ s,
provided that

(2.4) |A|s+1 > pΦs+1−2r
A Tr(A).

Note that with N∗s (a) denoting the number of solutions of (1.1) with the xi
nonzero, we have N∗s (a) = ksNs(A, a) and so we obtain the estimate

|N∗s (a)− (p− 1)s/p| < Φs+1−2r
A ksTr(A)/|A|.

The estimate in (1.2) is (essentially) recovered on setting r = 1 and using
the elementary estimate ΦA ≤ k−1

k

√
p + 1

k , coming from |
∑p

x=1 ep(λx
k)| ≤

(k − 1)
√
p.



Waring’s number for large subgroups of Z∗
p 313

Proof of Theorem 2.1. For any a ∈ Z∗p we have

pNs(B, a) =

p∑
λ=1

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − a)).

Since B is A-invariant, we see that Ns(B, ax) = Ns(B, a) for any x ∈ A,
and so

p|A|Ns(B, a) =

p∑
λ=1

∑
x∈A

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − ax))

= |B|s|A|+
∑
λ 6=0

∑
x∈A

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − ax))

= |B|s|A|+
∑
λ 6=0

(∑
x∈A

ep(−λax)
)(∑

x∈B
ep(λx)

)s
.

Thus for any positive integer r ≤ s/2 and a ∈ Z∗p, we have∣∣∣∣Ns(B, a)− |B|
s

p

∣∣∣∣ < Φs−2rB ΦA
p|A|

∑
λ∈Fp

∣∣∣∑
x∈B

ep(λx)
∣∣∣2r(2.5)

=
Φs−2rB ΦA
|A|

Tr(B).

3. Energy estimates. The first estimate we give is valid for any subset
A of Zp:

E(A) = p−1
p−1∑
λ=0

∣∣∣∑
x∈A

ep(λx)
∣∣∣4 =

|A|4

p
+ p−1θΦ2

A

p−1∑
λ=1

∣∣∣∑
x∈A

ep(λx)
∣∣∣2

=
|A|4

p
+ p−1θ′Φ2

Ap|A| =
|A|4

p
+ θ′|A|Φ2

A

for some real numbers θ, θ′ with |θ| ≤ 1, |θ′| ≤ 1. In particular, for any
subset A,

(3.1) E(A) ≤ |A|
4

p
+ |A|Φ2

A.

For multiplicative subgroups A, we have the elementary bound ΦA ≤
√
p,

and consequently
∣∣E(A) − |A|4/p

∣∣ ≤ |A|p. Thus, for multiplicative groups

with |A| > p2/3, we have E(A) ∼ |A|4/p (in the appropriate sense).

For subgroups of smaller size, improvements are available. Heath-Brown
and Konyagin, using the method of Stepanov, established that for any mul-
tiplicative subgroup A of Zp with |A| < p2/3, we have E(A) � |A|5/2. The
constant was made explicit in the work of Cochrane and Pinner [4, Theo-
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rem 2.2]: For |A| < p2/3,

(3.2) E(A) ≤ 16
3 |A|

5/2.

For subgroups of size |A| � p6/11, Shkredov [18, Theorem 34] obtained the
improvement

(3.3) E(A)� |A|22/9 log2/3 |A|.

Schoen and Shkredov [17, Corollary 48] obtained a new kind of upper
bound on E(A), expressing it in terms of |A| and |2A|: For any multiplicative
subgroup A with |A| � p1/2, E(A) � |A|31/18|2A|4/9 log1/2 |A|. This was
improved by Shkredov [18, Theorems 30, 34] to

(3.4) E(A)� |A|4/3|2A|2/3 log |A|

for any multiplicative subgroup A with |A| � p9/17, improving on (3.3)
if |2A| � |A|5/3 log−1/2 |A|. Hart [8] made a further slight improvement,
replacing the log |A| in (3.4) with log1/2 |A|, for |A| � p9/17. Indeed, he
showed that for |A| � p2/3,

(3.5) E(A)� max{|A|4/3|2A|2/3 log1/2 |A|, |A| |2A|2p−1 log |A|}.

We note that in the inequalities of this paragraph the set 2A may be replaced
by A−A.

For higher order T`(A) we have the following estimate of Konyagin [12,
Lemma 5] for any multiplicative group A: For any positive integer ` ≥ 3
there exists a constant c` such that if |A| < p1/2 then

(3.6) T`(A) ≤ c`|A|2`−2+1/2`−1
.

This was improved by Shkredov [18, Theorem 34] in the case ` = 3 to

(3.7) T3(A)� |A|151/36 log2/3 |A| � |A|4.1945

for |A| < p1/2.

4. Bounds for ΦA and Φ2A. The following lemma, a generalization
of [12, Lemma 3], is a key tool for bounding exponential sums in terms of
energy estimates.

Lemma 4.1. Let A,B be subsets of F∗p such that B is A-invariant. Then
for any positive integers j, ` we have

ΦB ≤ p
1

2j`T`(A)
1

2j`Tj(B)
1

2j` |A|−1/j |B|1−1/`.

The proof is provided in the Appendix for the convenience of the reader.
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For the case of a multiplicative subgroup A of Z∗p, we deduce from Lemma
4.1 that

(4.1) ΦA ≤


p1/2, j = 1, ` = 1;

p1/4|A|−1/4E(A)1/4, j = 2, ` = 1;

p1/8E(A)1/4, j = 2, ` = 2;

p1/12|A|1/6E(A)1/12T3(A)1/12, j = 2, ` = 3.

The second and third bounds above were obtained by Heath-Brown and
Konyagin [9], and the fourth bound by Konyagin [12]. Inserting the en-
ergy estimates (3.2), (3.3), (3.4) and (3.7) yields estimates for ΦA, as given
in (4.3). Hart [8] obtained a new estimate for |A| � p1/2:

(4.2) ΦA � p1/8|A|−1/8|2A|1/4E1/8(A) log7/16 |A|.

Inserting the energy estimates (3.3) and (3.4) (with the improved log1/2 |A|)
yields yet two more estimates for ΦA.

The various estimates are summarized below.

(4.3)

ΦA �



p1/8|A|11/18 log1/6 |A| for |A| � p6/11, by (3.3), (4.1)c;

p1/8|A|1/24|2A|1/3 log1/2 |A| for |A| � p1/2, by (3.4), (4.2);

p1/8|A|13/72|2A|1/4 log25/48 |A| for |A| � p1/2, by (3.3), (4.2);

p1/4|A|13/36 log1/6 |A| for |A| � p6/11, by (3.3), (4.1)b;

p1/4|A|1/12|2A|1/6 log1/4 |A| for |A| � p9/17, by (3.4), (4.1)b;

|A|3/8p1/4 for |A| < p2/3, by (3.2), (4.1)b;
√
p for any A, by Gauss.

The labels (4.1)a,b,c,d refer to the four different inequalities in (4.1). The
first estimate is due to Shkredov [18, Corollary 3.7], and the sixth to Heath-
Brown and Konyagin [9]. For |A| < p.383, further improvements are available
using (4.1)d together with (3.7). Applications of Lemma 4.1 with higher j, l
yield nontrivial estimates for ΦA for |A| as small as p1/4+ε, as shown by
Konyagin [12]. We shall have no occasion to use these here. For |A| < p1/2

the first three inequalities in (4.3) should be used, while for |A| > p1/2 the
final four are preferable. For |A| < p1/2, inequality (4.3)b is the optimal
choice for |2A| < |A|5/3, and (4.3)c is the optimal choice for |A|5/3 < |2A| <
|A|31/18 (ignoring log factors). For |A| > p1/2, (4.3)e is the optimal choice
for |2A| < |A|5/3 (and |A| � p9/17).

Setting B = 2A in Lemma 4.1, we obtain analogous bounds for Φ2A,
namely,
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(4.4) Φ2A ≤


p1/2|2A|1/2|A|−1/2, j = 1, ` = 1;

p1/4|2A|3/4|A|−1E(A)1/4, j = 1, ` = 2;

p1/6|2A|5/6|A|−1T3(A)1/6, j = 1, ` = 3.

Inserting the energy estimates (3.3), (3.4), with the
√

log |A| improvement,
and (3.7), yields

(4.5)

Φ2A �


p1/2|2A|1/2|A|−1/2 for any A;

p1/4|2A|3/4|A|−3/8 for |A| < p2/3, by (3.2), (4.4)b;

p1/4|2A|3/4|A|−7/18 log1/6 |A| for |A| < p6/11, by (3.3), (4.4)b;

p1/4|2A|11/12|A|−2/3 log1/8 |A| for |A| < p9/17, by (3.4), (4.4)b.

The first and second bounds were obtained by Schoen and Shkredov [16,
Lemmas 2.1, 2.4].

5. Lower bounds for |2A|. From the Cauchy–Schwarz inequality,

|A|2 =
∑
x

1A ∗ 1A(x) ≤ |2A|1/2E(A)1/2,

and so

(5.1) |2A| ≥ |A|4/E(A).

Inserting the energy estimate in (3.2) one obtains |2A| � |A|3/2, a result
first obtained by Heath-Brown and Konyagin [9]. Their result was made
numeric by Cochrane and Pinner [3]: |2A| ≥ 1

4 |A|
3/2 for |A| < p2/3. For

|A| > p2/3 it is elementary (see [3]) that |2A| ≥ p
2 .

Inserting the energy estimate of Hart (3.5), one obtains [8, Theorem 10]

(5.2) |2A| �

{
|A|8/5 log−3/10 |A| if |A| � p5/9 log−1/18 |A|;
|A|p1/3 log−1/3 |A| if p5/9 log−1/18 |A| � |A| � p2/3.

The lower bound of order |A|8/5 for |2A| was first obtained by Shkredov [18,
Corollary 31], but for the shorter interval |A| � p1/2. Using [18, Theorems
30, 34], the interval can be improved to |A| � p9/17, still short of what we
obtain in (5.2).

Stronger lower bounds on |A − A| are available in the works of Schoen
and Shkredov [16, Theorem 1.1] and Shkredov and Vyugin [21, Theorem
5.5], the latter being |A − A| � |A|5/3 log−1/2 |A| for |A| � p1/2. (Note:
Although [21, Theorem 5.5] was stated for sum or difference sets, the proof
only holds for difference sets A−A.)
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6. Hybrid counts. Let A be the group of kth powers in Z∗p and let
a ∈ Z∗p. In this section we estimate the number Nj,l(2A,A, a) of solutions to
the equation

(6.1) x1 + · · ·+ xj + y1 + · · ·+ yl = a,

with xi ∈ 2A, 1 ≤ i ≤ j, and yj ∈ A, 1 ≤ j ≤ l. If one can show that
Nj,l(2A,A, a) is positive for any a ∈ Z∗p, then it follows that γ(k, p) ≤ 2j+ l.
Now, since 2A is A-invariant, we have Nj,l(2A,A, ay) = Nj,l(2A,A, a) for
any y ∈ A, and so, following the proof of Theorem 2.1, we get

p|A|Nj,l(2A,A, a) = |2A|j |A|l+1

+

p−1∑
λ=1

( ∑
x∈2A

ep(λx)
)j(∑

y∈A
ep(λy)

)`∑
y∈A

ep(−λay).

One then has many options for bounding the error term (the second term
on the right-hand side) in terms of ΦA, Φ2A, Tj(A) and Tj(2A). The method
we employ in the following cases (assuming j ≥ 2) is to simply say

(6.2) |Error| ≤ Φj−22A Φ`+1
A

p−1∑
λ=1

∣∣∣ ∑
x∈2A

ep(λx)
∣∣∣2 < Φj−22A Φ`+1

A |2A|p,

and thus Nj,l(2A,A, a) is positive provided that

(6.3) |2A|j−1|A|`+1 > Φj−22A Φ`+1
A p.

6.1. The case s = 4. It is already known (see (1.3)) that γ(k, p) ≤ 4 for
|A| ≥ p5/8 and so we may assume that |A| < p5/8. By (6.3), N2,0(2A,A, a)
is positive provided that

|2A| |A| > p ΦA.

Using ΦA � |A|3/8p1/4, we see that it suffices to have

|2A| |A|5/8 � p5/4.

Then, using |2A| � |A|p1/3−ε for |A| � p5/9−ε, we see that it suffices to
have |A| � p22/39+ε.

6.2. The case s = 5. By (6.3), we see that N2,1(2A,A, a) is positive
provided that

|2A| |A|2 > Φ2
Ap.

Using ΦA < |A|3/8p1/4 (valid for |A| � p2/3), and the two lower bounds on
|2A| in (5.2), we see that it suffices to have |A| � p10/19+ε = p.52631...+ε.
We assume now that |A| � p.5264. In particular |A| � p9/17, and so using
the stronger bound ΦA � p1/4+ε|A|1/12|2A|1/6 we see that it suffices to have
|2A|2/3|A|11/6 � p3/2+ε. Then, using |2A| � |A|8/5−ε, we see that it suffices
to have |A| � p15/29+ε.
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6.3. The case s ≥ 6

Theorem 6.1. For s ≥ 6, if |A| � p
9s+45
29s+33

+ε then sA ⊇ Z∗p.

This inequality recovers the estimate of Hart [8, Theorem 13] for the
case s = 6, |A| � p11/23, but note the correction to the statement of his
theorem, where the exponent was given to be p33/71 due to an arithmetic
error.

Proof of Theorem 6.1. If |A| > p1/2 it is already known by the work of
Shkredov [18, Corollary 32] and Hart [8, Theorem 13 or 14] that 6A ⊇ Z∗p, so

we may assume that |A|�p1/2. If |2A|< |A|5/3, we estimateN2,s−4(2A,A, a),
noting that it will be positive (by (6.3)) provided that

|2A| |A|s−3 > pΦs−3A .

Using ΦA � p1/8+ε|A|1/24|2A|1/3, we see that it suffices to have

|A|
23
24

(s−3) � p(5+s)/8|2A|s/3−2.

Since |2A| < |A|5/3, the latter holds provided that |A| � p
9s+45
29s+33

+ε.

If |2A| ≥ |A|5/3 and s is even, say s = 2n, we estimate Nn,0(2A,A, a),
noting that it will be positive (by (6.3)) provided that

|2A|n−1|A| > pΦn−22A ΦA.

Using Φ2A � p1/4+ε|2A|3/4|A|−7/18, ΦA � p1/8+ε|A|13/72|2A|1/4, we see that
it suffices to have

|2A|(n+1)/4|A|
7
18
n+ 1

24 � p
n
4
+ 5

8
+ε.

Since |2A| > |A|5/3, the latter holds provided that |A| � p
18n+45
58n+33

+ε =

p
9s+45
29s+33

+ε.

If |2A| ≥ |A|5/3 and s is odd, say s = 2n+ 1, we estimate Nn,1(2A,A, a),
noting that it will be positive provided that

|2A|n−1|A|2 > pΦn−22A Φ2
A.

Using Φ2A � p1/4+ε|2A|3/4|A|−7/18, ΦA � p1/8+ε|A|13/72|2A|1/4, we see that
it suffices to have

|2A|n/4|A|
7
18
n+ 31

36 � p
n
4
+ 3

4
+ε.

Since |2A| > |A|5/3, the latter holds provided that |A| � p
9n+27
29n+31

+ε =

p
9s+45
29s+33

+ε.

7. Lower bounds for |nA| for n > 2. From the higher order energy
estimate of Konyagin, (3.6), one easily obtains the following lemma.



Waring’s number for large subgroups of Z∗
p 319

Lemma 7.1. For any positive integer ` and multiplicative subgroup A
of Z∗p with |A| < p2/3 if ` = 2, and |A| < √p if ` ≥ 3, we have |`A| �
|A|2−1/2`−1

.

Proof. By the Cauchy–Schwarz inequality,

|A|2` =
( ∑
a∈Zp

N`(A, a)
)2
≤ |`A|

∑
a∈Zp

N`(A, a)2 = |`A|T`(A),

and the result follows from (3.6).

In particular, for |A| < p1/2 we have

|3A| � |A|7/4, |4A| � |A|15/8.

These results can be superseded by using the following result of Shkredov
and Vyugin [21, Corollary 5.1, part 3].

Lemma 7.2 (Shkredov–Vyugin). Let A be a multiplicative subgroup
of Z∗p and B1, B2, B3 be A-invariant sets such that |B1| |B2| |B3| �
min{|A|5, p3|A|−1}. Let Bi(x) denote the characteristic function of the set Bi,
1 ≤ i ≤ 3. Then∑

x,y

B1(x)B2(y)B3(x+ y)� |A|−1/3(|B1| |B2| |B3|)2/3.

Letting B3 = B1 +B2, the lemma implies that for

(7.1) |B1| |B2| |B1 +B2| � min{|A|5, p3|A|−1}

we have

|B1| |B2| =
∑
x,y

B1(x)B2(y)B3(x+ y)� |A|−1/3(|B1| |B2| |B1 +B2|)2/3,

and consequently

(7.2) |B1 +B2| �
√
|B1| |B2| |A|.

Lemma 7.3. For any multiplicative subgroup A of Z∗p we have:

(a) If
√
|2A| |A| < p then |3A| �

√
|2A| |A|.

(b) If |A| � p1/2 then |3A| � |A|9/5−ε.

Proof. Suppose that
√
|2A| |A| < p. LetB1 = A,B2 = 2A. If |A| |2A| |3A|

� |A|5, then |3A| � |A|4/|2A| >
√
|2A| |A|, since |2A| < |A|2. If |A| |2A| |3A|

� p3/|A|, then |3A| � p3/(|A|2| |2A|) >
√
|2A| |A|, by the hypothesis that√

|2A| |A| < p. Otherwise, hypothesis (7.1) holds and we obtain the result
of the lemma from (7.2).
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To prove part (b), first note that if |A| � p1/2, then the hypothesis in
part (a) holds trivially, and so |3A| �

√
|2A| |A|. The result then follows

upon inserting the lower bound |2A| � |A|8/5−ε.

Lemma 7.4. For any multiplicative subgroup A of Z∗p with |A| � p1/2,
we have

|4A| � |A|2.

Proof. Let B1 = B2 = Q, where Q is a subset of 2A such that Q is a
union of cosets of A and |Q| ≈ |A|3/2. We know that such a Q exists since
|2A| � |A|3/2 for |A| < p2/3. If |Q|2|2Q| � |A|5 then

|4A| ≥ |2Q| � |A|
5

|Q|2
≈ |A|2.

If |Q|2|2Q| � p3/|A| then

|4A| ≥ |2Q| � p3

|Q|2|A|
≈ p3

|A|4
� |A|2 for |A| � p1/2.

Otherwise, hypothesis (7.1) holds and, by (7.2), we obtain |4A| ≥ |2Q| �√
|Q|2|A| = |A|2.

In order to beat |nA| > |A|2 for some n, a different approach is taken.
For any subsets X,Y of Zp let

X −X
Y − Y

=

{
x1 − x2
y1 − y2

: x1, x2 ∈ X, y1, y2 ∈ Y, y1 6= y2

}
.

The first ingredient we need is the following lemma of Glibichuk and Konya-
gin [6, Lemma 3.2].

Lemma 7.5. Let X,Y ⊆ Zp be such that X−X
Y−Y 6= Zp. Then

|2XY − 2XY + Y 2 − Y 2| ≥ |X| |Y |.

If A is a multiplicative subgroup and X,Y are A-invariant sets then∣∣∣∣X −XY − Y

∣∣∣∣ < |X −X| |Y − Y |/|A|,
and so the hypothesis of Lemma 7.5 holds if |X−X| |Y −Y | ≤ p|A|. Taking
(X,Y ) to be (A,A), (2A,A), (2A, 2A) respectively, one obtains:

Lemma 7.6. For any multiplicative subgroup A of Z∗p we have:

(i) If |A−A|2 ≤ p|A|, then |3A− 3A| ≥ |A|2.
(ii) If |2A− 2A| |A−A| ≤ p|A|, then |5A− 5A| ≥ |2A| |A|.

(iii) If |2A− 2A|2 ≤ p|A|, then |12A− 12A| ≥ |2A|2.
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In order to pass from difference sets to sum sets, we use Ruzsa’s triangle
inequality (see e.g. Nathanson [15, Lemma 7.4]),

(7.3) |S + T | ≥ |S|1/2|T − T |1/2

for any S, T ⊆ Zp, and its corollary, for any positive integer n,

(7.4) |nS| ≥ |S|1/2n−1 |S − S|1−1/2n−1 ≥ |S − S|1−1/2n .
Lemma 7.7. For any multiplicative subgroup A of Z∗p, we have:

(i) |7A| ≥ min{|2A| |A|1/2, p1/2|A|1/4}.
(ii) |19A| ≥ min{|2A|3/2|A|1/4, p1/2|A|1/2−1/27}.
Proof. By (7.3),

(7.5) |7A| ≥ |2A|1/2|5A− 5A|1/2.
If |2A− 2A| |A−A| < p|A| then, by Lemma 7.6(ii),

(7.6) |7A| ≥ |2A|1/2|2A|1/2|A|1/2 = |2A| |A|1/2.
Otherwise, |5A−5A| ≥ |2A−2A| ≥ p|A|/|A−A|. By (7.4), |2A| ≥ |A−A|3/4.
Thus,

|7A| ≥ |2A|1/2p1/2|A|1/2/|A−A|1/2 ≥ p1/2|A|1/2/|A−A|1/8 ≥ p1/2|A|1/4.
For part (ii) we again start with the triangle inequality,

|19A| ≥ |7A|1/2|12A− 12A|1/2.
If |2A− 2A|2 < p|A|, then by Lemma 7.6(iii) and (7.6),

(7.7) |19A| ≥ |7A|1/2|2A| ≥ |2A|3/2|A|1/4.
Otherwise |2A − 2A| ≥ p1/2|A|1/2. In particular, |A|4 ≥ p1/2|A|1/2, that is,
|A| ≥ p1/7. Then, by (7.4),

|19A| ≥ |9 · 2A| ≥ |2A− 2A|1−1/29 ≥ p1/2−1/210 |A|1/2−1/210

≥ p1/2|A|1/2−8/210 .

Inserting the lower bound |2A| � |A|8/5−ε from (5.2), we obtain

Lemma 7.8. For any multiplicative subgroup A satisfying |A| �
p5/9 log−1/18 |A|, we have:

(i) |7A| � min{|A|21/10−ε, p1/2|A|1/4}.
(ii) |19A| � min{|A|53/20−ε, p1/2|A|1/2−1/27}.
Thus,

|7A| � |A|21/10−ε for |A| � p10/37 = p.27027...;

|19A| � |A|53/20−ε for |A| � p.23171....
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This process can be continued to generate further lower bounds on |nA|.
For example, using the lower bounds for |3A|, |4A|, and |8A| ≥ |3A|1/2|5A−
5A|1/2, |9A| ≥ |4A|1/2|5A− 5A|1/2, one obtains lower bounds for |8A|, |9A|
respectively. See also [2] for further lower bounds of this type.

8. An application of the Glibichuk–Konyagin 8AB theorem. The
following lemma is due to Glibichuk [5], and Glibichuk and Konyagin [6].
See also Glibichuk and Rudnev [7] for a variation.

Lemma 8.1. Let A and B be subsets of Zp such that |A| |B| ≥ 2p.
Then 8AB = Zp. Moreover, if A is symmetric (A = −A) or antisymmetric
(A ∩ −A = ∅), then it suffices to have |A| |B| ≥ p.

Let A be the multiplicative group of nonzero kth powers, so that (nm)A
⊇ (nA)(mA) for any positive integers m,n. Thus, by Lemma 8.1, if |A| |2A|
≥ 2p then 16A = Zp, while if |2A| |2A| ≥ 2p then 32A = Zp. Using
|2A| � |A|8/5−ε we see that it suffices to have |A| � p5/13+ε, |A| � p5/16+ε,
respectively. The 16A bound is slightly weaker than what we obtained from
Theorem 6.1. Similarly, if |A| |3A| ≥ 2p, then 24A = Zp; if |2A| |3A| ≥ 2p,
then 48A = Zp. Using |3A| � |A|9/5−ε, |2A| � |A|8/5−ε, we obtain the
bounds for s = 24, 48 in Table 1.

Using |2A| � |A|8/5−ε, |3A| � |A|9/5−ε, |4A| � |A|2 (for |A| � p1/2) we
obtain in a similar manner the bounds for s = 64, 96, 128 in Table 1.

If |7A| |7A| ≥ 2p then 392A = Zp. Using the lower bound in Lemma 7.8
for |7A|, we see that it suffices to have |A| � p5/21+ε. Finally, if |19A| |19A|
≥ 2p, then 2888A = Zp. Using the lower bound in Lemma 7.8 for |19A|
we see that it suffices to have |A| � p10/53+ε. Clearly, one can continue
obtaining further examples of this type, but our interest in this paper is
small s.

9. Appendix: Proof of Lemma 4.1. The lemma is an easy conse-
quence of the following double Hölder inequality.

Lemma 9.1. For any nonnegative real numbers ai, bi, 1 ≤ i ≤ n, and
any positive real number `, we have

n∑
i=1

aibi ≤
( n∑
i=1

ai

)1− 1
`
( n∑
i=1

a2i

) 1
2`
( n∑
i=1

b2`i

) 1
2`
.

Proof. By Hölder’s inequality, we have

(9.1)

n∑
i=1

aibi ≤
( n∑
i=1

a
2`

2`−1

i

)1− 1
2`
( n∑
i=1

b2`i

) 1
2`
.
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By another application of Hölder, we note that

n∑
i=1

a
2`

2`−1

i =

n∑
i=1

a
2`−2
2`−1

i a
2

2`−1

i

≤
( n∑
i=1

a
2`−2
2`−1

2`−1
2`−2

i

) 2`−2
2`−1

( n∑
i=1

a
2

2`−1
(2`−1)

i

) 1
2`−1

=
( n∑
i=1

ai

) 2`−2
2`−1

( n∑
i=1

a2i

) 1
2`−1

.

Inserting the latter bound into (9.1) yields the lemma.

Proof of Lemma 4.1. Since B is A-invariant we have

|A|
(∑
x∈B

ep(λx)
)j

=
∑
y∈A

(∑
x∈B

ep(λyx)
)j

=
∑
x1∈B

. . .
∑
xj∈B

∑
y∈A

ep(λy(x1 + · · ·+ xj))

=

p−1∑
b=0

n(b)
∑
y∈A

ep(λyb),

where

n(b) = |{(x1, . . . , xj) : xi ∈ B, 1 ≤ i ≤ j, x1 + · · ·+ xj = b}|.

By Lemma 9.1 and the elementary identities

p−1∑
b=0

n(b) = |B|j ,
p−1∑
b=0

n(b)2 = Tj(B),

we obtain, for λ 6= 0,

|A|
∣∣∣∑
x∈B

ep(λx)
∣∣∣j ≤ ( p−1∑

b=0

n(b)
)1− 1

`
( p−1∑
b=0

n(b)2
) 1

2`
( p−1∑
b=0

∣∣∣∑
y∈A

ep(λyb)
∣∣∣2`) 1

2`

= |B|j(1−
1
`
)Tj(B)

1
2` (T`(A)p)

1
2` .

Dividing by |A| and taking the jth root of both sides yields the lemma.
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