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1. Introduction. In [2], a detailed survey of the generalized Fermat
equations which occur through descent from spherical cases was performed.
One situation encountered is that of the equation

(1.1) a3 + b3n = c2,

arising from consideration of the spherical case x3 + y3 = z2. In this paper,
we apply the machinery of Galois representations and modular forms to
(1.1) to prove the following.

Theorem 1.1. If n is prime with n ≡ 1 (mod 8), then equation (1.1)
has no solutions in coprime non-zero integers a, b and c, apart from those
given by (a, b, c) = (2, 1,±3).

It should be noted that the presence of a “trivial” solution here (that
corresponding to the solution to Catalan’s equation) is a basic obstruction
to solving (1.1) that we must work rather hard to overcome.

Theorem 1.1 is an immediate consequence of the following two results,
where we specialize to the cases of c odd and even, respectively.

Proposition 1.2. If n is prime with n ≡ 1, 3 (mod 8) and n ≥ 17, then
the equation a3 + b3n = c2 has no solutions in coprime non-zero integers a, b
and c with c odd, apart from those given by (a, b, c) = (2, 1,±3).

Proposition 1.3. If n is prime with n ≡ 1 (mod 4) and n ≥ 17, then
the equation a3 + b3n = c2 has no solutions in coprime non-zero integers a, b
and c with c even.
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After collecting some preliminary technical tools in Section 2, we will
provide a proof of these two propositions (and thereby of our main theo-
rem) in Section 3. The techniques involve a rather intricate combination
of ingredients, including the use of Q-curves and delicate multi-Frey and
“image of inertia” arguments.

2. Preliminaries. In this section, we begin by collecting some of the
technical tools that we will use throughout this paper. We first consider the
equation x3 +y3 = z2. Note that, from [6, pp. 467–470], the coprime integer
solutions to this equation satisfy one of

x = s(s+ 2t)(s2 − 2ts+ 4t2),

y = −4t(s− t)(s2 + ts+ t2),

z = ±(s2 − 2ts− 2t2)(s4 + 2ts3 + 6t2s2 − 4t3s+ 4t4),

(2.1)


x = s4 − 4ts3 − 6t2s2 − 4t3s+ t4,

y = 2(s4 + 2ts3 + 2t3s+ t4),

z = 3(s− t)(s+ t)(s4 + 2s3t+ 6s2t2 + 2st3 + t4),

(2.2)

or

(2.3)


x = −3s4 + 6t2s2 + t4,

y = 3s4 + 6t2s2 − t4,
z = 6st(3s4 + t4).

Here, s and t are coprime integers with
s ≡ 1 (mod 2) and s 6≡ t (mod 3) in case (2.1),

s 6≡ t (mod 2) and s 6≡ t (mod 3) in case (2.2),

s 6≡ t (mod 2) and t 6≡ 0 (mod 3) in case (2.3),

and the given parametrizations are up to exchange of x and y. To study
our Diophantine equation (1.1), we are therefore reduced to solving the
equations x(s, t) = bn and y(s, t) = bn.

Our main tool to attack these equations is what is now known as the
multi-Frey method. This proceeds by associating multiple Frey–Hellegouarch
curves to a putative solution of one of these Diophantine equations, and sub-
sequently applying techniques arising from the modularity of related Galois
representations to extract information from each curve to (hopefully) deduce
a contradiction. To carry out such an argument, one must start by comput-
ing the possible conductors for these Frey–Hellegouarch curves, a procedure
which may be carried out by using Tate’s algorithm (cf. [18]). However, it
is convenient to note that the conductor exponent is locally constant, in the
v-adic topology, on the coefficients defining the Frey–Hellegouarch curves.
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This allows us to compute the conductor of a congruence class of elliptic
curves by applying Tate’s algorithm to concrete representative elliptic curves
in MAGMA or SAGE (see also [5, Theorem 32]). To proceed, one requires an
explicit bound on the v-adic balls on which the family of Frey–Hellegouarch
curves have constant conductor exponent.

Lemma 2.1. Suppose E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where ai and a′i lie in a discrete valuation ring O with valuation v and
uniformizer π. Let ∆E , ∆E′ , NE and NE′ denote the discriminants and con-
ductors of E and E′, and suppose that

max{v(∆E), v(∆E′)} ≤ 12k

for some positive integer k. Suppose further that v(ai − a′i) ≥ ik for each
i ∈ {1, 2, 3, 4, 6}.

(1) If the reduction type of E′ is not I∗m for m > 2, then the reduction
types of E and E′ are the same. In this case, v(NE) = v(NE′).

(2) If the reduction type of E′ is I∗m for m > 2, then the reduction type
of E is I∗m′ for some m′ > 2.

(3) In particular, E has good reduction if and only if E′ has good reduc-
tion.

Proof. This result is a consequence of carrying out Tate’s algorithm (cf.
[18]) on both curves simultaneously.

In the remainder of this paper, n will always be an odd prime, and a
newform will be assumed to be cuspidal of weight two with respect to Γ1(N)
for some positive integer N (called, as usual, the level). For a prime ν in the
field of coefficients of such a newform g, we denote the (standard) associated
ν-adic Galois representation of GQ := Gal(Q/Q) and (the semisimplification
of) its reduction modulo ν by ρg,ν and ρg,ν , respectively.

For a newform g on Γ1(N), let aq(g) denote its qth Fourier coefficient,
or equivalently its eigenvalue for the Hecke operator Tq.

In the modular method, one attaches to each non-trivial putative solution
of our Diophantine equation a Frey–Hellegouarch curve which gives rise to
an associated Galois representation ρ. Assuming that ρ is irreducible, by
the recent proof of Serre’s conjecture [17, 8, 9, 10], the modular machinery
allows us to show that ρ ∼= ρg,ν for a finite collection of newforms g. We
then need to rule out each modular form g.

The following well-known theorem allows us to establish irreducibility
when ρ = ρE,n is the modulo n Galois representation of GQ induced from
the natural action of GQ on the n-torsion points of an elliptic curve E/Q.
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Theorem 2.2 (Mazur). Let E/Q be an elliptic curve. Assume that E
has bad multiplicative reduction at an odd prime. If n ≥ 11, n 6= 13, is
prime, then ρE,n is irreducible.

Proof. See [12, Corollary 4.4].

A continuous irreducible Galois representation ρ : GQ → GL2(Fn) is
modular if

ρ ∼= ρg,ν

for a newform g on some Γ1(N) and prime ν above n. If this is the case,
then g is a newform on Γ0(N) with some nebentypus ε−1, and we have

tr(ρ(Frobq)) ≡ aq(g) (mod ν),

det(ρ(Frobq)) ≡ ε−1(q)q (mod ν),

for all primes q - N, ν.

Lemma 2.3. Let E and E′ be elliptic curves over Q. Assume that ρE,n
∼=

ρg,ν for some newform g, some odd prime n (in Z) and some prime ν lying
over n. Let q ≥ 5 be a prime not dividing the level of g, and assume q 6= n.
Define

AE′(q, g) =

{
Norm(aq(E

′)− aq(g)) if ∆E′ 6≡ 0 (mod q),

Norm((q + 1)2 − aq(g)2) if ∆E′ ≡ 0 (mod q),

where aq(E
′) is the trace of Frobq acting on the Tate module Tn(E′). If

E ≡ E′ (mod q) (that is c4(E) ≡ c4(E
′) (mod q) and c6(E) ≡ c6(E

′)
(mod q)), then n |AE′(q, g). (The quantities c4, c6 and ∆ are those associ-
ated to minimal models of E and E′.)

Proof. This follows easily by comparing traces of Frobenius.

For the Diophantine equation of interest, namely a3 + b3n = c2, we will
also have need of (at a basic level, at least) the theory of Q-curves. We refer
the reader to [16] and [5] for standard definitions and results, which we only
briefly summarize here.

Recall, a Q-curve defined (resp. defined completely) over a quadratic field
K/Q is an elliptic curve E/K that is isogenous over K (resp. over K) to its
Galois conjugate. As a result, End(ResK/Q(E)) = M will be an order in a
quadratic field. In fact ResK/Q(E) will be a GL2-Abelian variety. Therefore,
for a prime π of M lying over n, we can attach a two-dimensional Galois
representation ρE,β,π with β a splitting map for cE ∈ H2(GQ,Q∗). A defining
property of ρE,β,π is that ρE,β,π|GK is projectively isomorphic to the Tate
module Tn(E).

For later use, we denote by ρE,β,π (the semisimplification of) a reduc-
tion modulo π of the continuous π-adic Galois representation ρE,β,π. The
arguments of [16, §7] show that ρE,β,π has central character ε−1 where
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ε is the Dirichlet character associated with a non-trivial Galois character
GK/Q → {±1}. The following lemma is the analogue of Lemma 2.3 for
Q-curves defined completely over K.

Lemma 2.4. Let E and E′ be Q-curves defined completely over the qua-
dratic field K. Assume that ρE,β,π

∼=ρg,ν for some newform g, some primes π
and ν lying over an odd prime n (in Z) and some splitting map β. Let q ≥ 5
be a prime not dividing the level of g, which is unramified in K and assume
q 6= n. Define

BE′(q, g) =


Norm(aq(g)− aq(E′)) if q splits in K and q - ∆E′ ,

Norm(aq(g)2 − aq2(E′) + 2q) if q is inert in K and q - ∆E′ ,

Norm(ε−1(q)(q + 1)2 − aq(g)2) if q |∆E′ ,

where aqi(E
′) is the trace of Frobiq acting on the Tate module Tn(E′). If

E ≡ E′ (mod q), then n |BE′(q, g).

Proof. This is very similar to [1, Lemma 24], although, since our Q-curve
is completely defined over K, we obtain a slightly stronger result in the case
when q splits in K and ∆E′ is coprime to q. We will therefore assume that
∆E′ is coprime to q and refer to [1] for the case of bad reduction.

For any Abelian variety A over K, let Vn(A) be the Qn[GK ] module given
by tensoring the n-adic Tate module of A with Qn. Since E is completely
defined over K, we find that

Vn(ResK/Q(E)) ∼= End(ResK/Q(E))⊗ Vn(E)

as End(ResK/Q(E))⊗Qn[GK ] modules (see [5, Proposition 12]). Note that
since E is completely defined over K, the action of GK only acts on the Tate
module part. Therefore, for σ ∈ GK , we have ρE,β,π(σ) ∼= ρE,n(σ).

Now, let q be a prime of good reduction. Fix an embedding of Q into Qq,
and assume that q splits in K. We therefore have K ⊂ Qq. Let Frobq be a
Frobenius element in GQq , which we can view as an element in GK . We thus
have

tr(ρE,β,π(Frobq)) = tr(ρE,n(Frobq)) = aq(E).

Since aq(E) = aq(E
′) when E ≡ E′ (mod q), from the fact that ρE,β,π

∼= ρg,ν ,
we may conclude that n |N(aq(g)− aq(E′)).

Similarly, if we assume that q does not split in K, then by choosing Frobq
a Frobenius element in GQq , we have Frob2

q ∈ GK , and so

tr(ρE,n(Frob2
q)) = tr(ρE,β,π(Frob2

q)) = tr(ρE,β,π(Frobq)
2).

Letting ρE,β,π(Frobq) = A, it follows that A2 = tr(A)A−det(A)I, and hence
tr(A2) = tr(A)2 − 2 det(A). Note that det(A) = ε(q)q and that ε(q) = −1
since q does not split in K. Therefore tr(ρE,β,π(Frobq))

2 = aq2(E) − 2q.
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Again, aq2(E) = aq2(E′) when E ≡ E′ (mod q), and since ρE,β,π
∼= ρg,ν , we

conclude that n |N(aq(g)2 − aq2(E) + 2q).

We note that the above two lemmata will be applied with the curves E
and E′ as Frey–Hellegouarch curves Es,t attached to a particular solution
(s, t, b) ∈ Z3. As a result, we usually write As,t(q, g) (resp. Bs,t(q, g)) for
AEs,t(q, g) (resp. BEs,t(q, g)), when there is no chance of confusion. Also,
note that if all possible choices for (u, v) (mod q) lead to either Au,v(q, g) or
Bu,v(q, g) being non-zero, we necessarily obtain an upper bound on n.

3. The equation a3+b3n = c2. Let us assume that a3+b3n = c2 for co-
prime integers a, b and c and prime n > 7. When 3 - c, using parametrization
(2.1), we find that either

bn = −4t(s− t)(s2 + ts+ t2),

or

bn = s(s+ 2t)(s2 − 2ts+ 4t2),

depending on the parity of b, for coprime integers s and t, with s odd and
s 6≡ t (mod 3). We can thus find integers A,B and C for which one of

t = 2n−2An, s− t = Bn and s2 + ts+ t2 = Cn,

t = An, s− t = 2n−2Bn and s2 + ts+ t2 = Cn,

or

s = An, s+ 2t = Bn and s2 − 2ts+ 4t2 = Cn

holds. In the first two cases, the identity 4(s2+ts+t2)−3t2 = (t+2s)2 leads
via [3, Theorems 1.2 and 1.5] to ternary equations of signature (n, n, 2) with
no non-trivial solutions. In the third case, the fact that 4(s2 − 2ts+ 4t2)−
3s2 = (s− 4t)2 leads, again via [3, Theorem 1.2], to a like conclusion.

For the remainder of this section we may thus suppose that 3 | c, so
we are led to consider parameterizations (2.2) and (2.3). Furthermore, since
v2(2(s4+2ts3+2t3s+t4)) = 1 when s 6≡ t (mod 2), it follows that bn 6= 2(s4+
2ts3 + 2t3s + t4). It remains, therefore, to treat the following Diophantine
equations:

bn = s4 − 4ts3 − 6t2s2 − 4t3s+ t4, s 6≡ t (mod 2), s 6≡ t (mod 3),(3.1)

bn = −3s4 + 6t2s2 + t4, t 6≡ 0 (mod 3), s 6≡ t (mod 2),(3.2)

bn = 3s4 + 6t2s2 − t4, t 6≡ 0 (mod 3), s 6≡ t (mod 2).(3.3)

The MAGMA [4] and SAGE [19] programs used to perform various com-
putations cited in the remainder of the paper are posted at

people.math.sfu.ca/˜ichen/gflt-3-3n-2.

http://people.math.sfu.ca/~ichen/gflt-3-3n-2
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The specific program used in each paragraph below is indicated inside a
box .

We will assume throughout that |b| > 1. Indeed, if b = ±1, we have
a3 ± 1 = c2, and so either abc = 0 or (a, |b|, |c|) = (2, 1, 3). Since 3 | c, it
follows that gcd(b, 6) = 1. Supposing |b| > 1, since b is odd, it is necessarily
divisible by an odd prime. Note that (3.1) corresponds to the case when c
is odd, while equations (3.2) and (3.3) coincide with c being even. We will
treat these two cases separately. From now on, we assume that n ≥ 11 and
n 6= 13.

As a last observation before we proceed, we note that in order to carry out
our desired application of the “modular method” for Q-curves, we need to
rule out the case that the corresponding curves have complex multiplication.
In the situation at hand, the fact that all Frey–Hellegouarch curves used in
this paper lack complex multiplication is immediate from considering their
corresponding j-invariants or conductors, using the fact that b is divisible
by a prime ≥ 5 (whence each curve necessarily has a prime of multiplicative
reduction).

3.1. c odd. Assume that c is odd. In this case, we use two Frey–
Hellegouarch curves that we denote by E1 and E2. These are constructed
by considering the factorization of bn = x(s, t) = s4−4s3t−6s2t2−4st3 + t4

from (2.2), so that they are defined over an extension of degree ≤ 2 and
have discriminant which is essentially an nth power.

For i ∈ {1, 2} we give a quick reference below for the equation defin-
ing Ei, the conductor NEi , the (not necessarily minimal) discriminant for
the model ∆Ei and the conductor Nρi for the associated Galois representa-
tion ρi.

i Ei NEi ∆Ei Nρi

1 (3.4) (3.5) (3.6) (3.7)

2 (3.8) (3.11) (3.12) (3.13)

From (2.2) we have

a = a(s, t) = 2(s4 + 2ts3 + 2t3s+ t4)

and

c = c(s, t) = 3(s− t)(s+ t)(s4 + 2s3t+ 6s2t2 + 2st3 + t4).

Consider first the Frey–Hellegouarch elliptic curve

(3.4) E1(s, t) : y2 = x3 − 3a(s, t)x− 2c(s, t).

We can calculate the conductor of E1.
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Lemma 3.1. The conductor of E1(s, t) is given by

(3.5) 26 · 3δ
∏

q|b, q 6=2,3

q,

where δ ∈ {2, 3}.

Proof. Note that

(3.6) ∆E1 = −1728 b(s, t)3n.

Therefore, all primes dividing b are primes of bad reduction. Since a and c
are coprime, the elliptic curve E1(s, t) has semistable reduction away from
2 and 3. To calculate the conductor at 2 and 3, we can of course appeal
to Tate’s algorithm directly. Alternatively, note that ∆E1 = −1728 b(s, t)3n

whereby, since gcd(b, 6) = 1, we have v2(∆E1) = 6 and v3(∆E1) = 3. Using
Tate’s algorithm (cf. [18], for instance applying Lemma 2.1 with k = 1), we
can find all possible values of the conductor at p ∈ {2, 3} by calculating the
conductor and the Kodaira symbol of specific elliptic curves E(s, t) for all
possible values of s and t modulo p6, say, using MAGMA or SAGE.

Since we are assuming that an odd prime divides b, using Theorem 2.2 it
follows that ρE1,n is irreducible when n ≥ 11 and n 6= 13. By modularity of
E1 and standard level lowering arguments using [15], we may thus conclude
that ρE1,n ' ρg1,n for some newform

(3.7) g1 ∈ S2(Γ0(576))new ∪ S2(Γ0(1728))new.

We also note that we can rewrite (3.1) as

bn = (s− t)4 − 12(st)2,

to which we can attach the Frey–Hellegouarch Q-curve

(3.8) E2(s, t) : y2 = x3+2(
√

3−1)(s− t)x2+(2−
√

3)((s− t)2−2
√

3 st)x.

Let ρ ∈ GQ be such that ρ is non-trivial on K = Q(
√

3). The 2-isogeny map
µρ : ρE2(s, t)→ E2(s, t) is given by µρ(x, y) = (µ1, µ2), where

(3.9)

µ1 =
−
√

3 + 2

2
x+ (−

√
3 + 1)(s− t) +

(s− t)2 + 2
√

3 st

2x
,

µ2 =
−3
√

3 + 5

4
y +

(√
3− 1

4
(s− t)2 +

−
√

3 + 3

4

)
y

x2
.

It can be verified that µρ ◦ ρµρ : E2 → E2 has degree 4, corresponding
to [−2]. Since E2 is a Q-curve completely defined over a quadratic field,
the results of [16, §7] can be applied to give an explicit splitting map β for
cE2 ∈ H2(GQ,Q∗); it factors through GK/Q, and is defined by β(1) = 1 and

β(ρ) =
√
−2.
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If σq is a Frobenius element at a prime q 6= 2, 3, then

(3.10) β(σq) =

{
1 q ≡ ±1 (mod 12),
√
−2 q ≡ ±5 (mod 12).

Consider the number field Mβ = Q(β(σ)) = Q(
√
−2). Let ρE2,β,π be the

Galois representation attached to E2 with respect to β and a choice of prime
π of Mβ above n.

The arguments of [16, §7] show that the character of ρE2,β,π is ε−1 where
ε is the Dirichlet character associated with the non-trivial Galois charac-
ter GK/Q → {±1}. More precisely, ε = ε3ε4 where εm is the non-trivial
character of (Z/mZ)×. Furthermore, ρE2,β,π may be described as the Ga-
lois representation obtained on the π-adic Tate module of ResK/QE2 whose

endomorphism algebra is Z[
√
−2].

Let q2 and q3 be the primes of K = Q(
√

3) lying above 2 and 3, respec-
tively.

Lemma 3.2. The conductor of E2 over K is given by

(3.11) q122
∏

q|b, q-2,3

q.

Proof. Since we assume that s and t are coprime with gcd(s−t, 6) = 1, if
q | 2(
√

3−1)(s− t) and q | (2−
√

3)((s− t)2−2
√

3st), then the characteristic
of the residue field at q is either 2 or 3. Therefore E has semistable reduction
away from 2 and 3. Furthermore, since

(3.12) ∆E2 = (1664− 960
√

3)((s− t)2 + 2
√

3 st)((s− t)2 − 2
√

3 st)2

and 3 - s − t, it follows that q3 - ∆E2 , and hence E2 has good reduction
at q3. It remains to calculate the conductor of E2 at q2. Let E′ = E2(1, 0).
Using MAGMA or SAGE, we can check that the conductor of E′ is q122 with
Kodaira Symbol II. Note that vq2(∆E2) = vq2(∆E′) = 12 (recall that we
have assumed s− t to be odd). Furthermore, we have

a1 − a′1 = a3 − a′3 = a6 − a′6 = 0

and

vq2(a2 − a′2) ≥ 5, vq2(a4 − a′4) ≥ 4,

since s− t is odd and st is even. Using Tate’s algorithm (cf. [18], for instance
applying Lemma 2.1 with k = 1), therefore implies the desired result.

Corollary 3.3. The conductor of ρE2,β,π is given by

(3.13) N = 28 · 3 ·
∏

q|b, q 6=2,3

q.
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Proof. This follows from [13, Lemma on p. 178] and the fact discussed
in [13] that the `-adic representation of a restriction of scalars is the induced
representation of the `-adic representation of the given abelian variety.

Using the arguments of [7], if ρE2,β,π is reducible, it follows that b = ±1,
contrary to our assumptions. Therefore, by [8, 9, 10], ρE2,β,π is modular. By
standard level lowering arguments (cf. for instance [5]), we thus obtain that
ρE2,β,π

∼= ρg2,π for some newform g2 ∈ S2(Γ0(768), ε−1). By direct MAGMA
computation, we find that there are precisely ten Galois conjugacy classes of
newforms in S2(Γ0(768), ε−1) which we denote by F1, . . . , F10. Here, as well
as in the remainder of this paper, the numbering we use for our modular
forms is given by the order in our data files.

We now apply the multi-Frey method, i.e. for a fixed pair of forms (g1, g2),
we run through the parameters (s, t) modulo an auxiliary prime q 6= 2, 3, n;
for each (s, t), we extract the information imposed by the simultaneous con-
ditions ρE2,β,π

∼= ρg2,ν and ρE1,n
∼= ρg1,ν using Lemmas 2.3 and 2.4. We refer

the reader to Section 4 for an explicit treatment when g2 = F1.
In the case at hand, the results of the multi-Frey computation, denoted

multi-frey-1.txt , using (E1, E2) are that all pairs (g1, g2) are eliminated for

suitably large n, except when

• g2 ∈ {F1, F2, F4, F5} and g1 is form 6 of level 576,
• g2 ∈ {F3, F6} and g1 is form 18 or 27 of level 1728.

In each case where we were able to remove a pair (g1, g2) from consid-
eration, this was accomplished through use of q ∈ {5, 7, 11} with resulting
conclusion that n ∈ {2, 3, 5, 7, 11}. Each eliminated pair required only a
single auxiliary prime q.

The four forms F1, F2, F4 and F5 arise from the “near” solutions corre-
sponding to the values (s, t) = (±1,∓1) and (s, t) = (−1)δ (−1±

√
2, 1±

√
2),

where δ ∈ {0, 1}. For these values of s and t, we have s−t = ±2 and st = ±1,
with Frey–Hellegouarch curves

C : y2 = x3 ± 4(
√

3− 1)x2 + (2−
√

3)(4− 2
√

3)x,

C ′ : y2 = x3 ± 4(
√

3− 1)x2 + (2−
√

3)(4 + 2
√

3)x.

Each of the forms F1, F2, F4 and F5 has field of coefficients Q(
√
−2) and

satisfies all of the required congruence conditions imposed by ρE2,β,π
∼= ρg,ν .

Fortunately, we are able to employ an image of inertia argument to rule out
these cases.

Lemma 3.4. Let L = Q(θ) (respectively L′ = Q(θ′)), where θ (respectiv-
ely θ′) is a root in Q2 of

x16 − 20x14 + 88x12 − 64x10 − 109x8 − 160x6 − 248x4 − 20x2 + 1

(respectively x16 + 4x14 − 32x12 − 16x10 + 83x8 + 80x6 + 16x4 + 4x2 + 1).
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Fix an embedding of Q(
√

3) into L (respectively L′). Then the elliptic curve
C (respectively C ′) has good reduction over L (respectively L′) at the unique
prime p (respectively p′) lying above 2.

The Galois representation ρg,ν , when restricted to ILp (respectively IL′
p′

)

for g in the conjugacy class F1 or F4 (respectively F2 or F5), is unramified.

Proof. We first remark that the fields L and L′ were computed using the
three torsion points of C and C ′, respectively (see [11] for explicit results
on the semistable reduction of elliptic curves). The desired good reduction
of C at p and C ′ at p′ is easily verified with either SAGE or MAGMA, as
we do in goodred1.txt .

The second statement follows from the fact that C gives rise to F1, F4 and

C ′ to F2, F5. This claim may be justified by point counting; see ellcurve.txt
for details.

We now show that when s and t are of opposite parity, then E2(s, t)
does not have good reduction at Lp and L′p′ . Note that since s and t have

opposite parity, E2(s, t) and E2(2, 1) over Lp (respectively L′p′) satisfy all
the conditions required to apply Lemma 2.1. In particular,

vp(∆E2(s,t)) = vp(∆E2(2,1)) = vp(1664− 960
√

3) = 48 = 4 · 12

and

vp′(∆E2(s,t)) = vp′(∆E2(2,1)) = 48 = 4 · 12.

Since s− t is odd, we have

vp(a2−a′2) = vp′(a2−a′2) ≥ 20 ≥ 4·2, vp(a4−a′4) = vp′(a4−a′4) ≥ 16 ≥ 4·4,
as desired.

Furthermore, E2(2, 1) does not have good reduction over Lp (respec-
tively L′p′) as one can check with SAGE or MAGMA. We conclude, therefore,

that E2(s, t) has bad reduction over Lp (respectively L′p′). In fact we find that
E2(s, t) has Kodaira symbol I∗0 , whereby ρE2(s,t),β,π will be non-trivial when
restricted to ILp and IL′

p
. Since the Kodaira symbol is I∗0 , over a quadratic

extension of L (respectively L′), E2(s, t) acquires good reduction, which im-
plies that ρE2(s,t),β,π(ILp) is a group of order 2. Since π has characteristic
larger than 2, it follows that ρE2(s,t),β,π is non-trivial when restricted to ILp

(similarly, when restricted to IL′
p′

). This rules out the modular forms F1 and

F4 (respectively F2 and F5).

The forms F3 and F6 have complex multiplication by Q(
√
−2), so if

ρE2,β,π
∼= ρg,π for g ∈ {F3, F6}, then the projectivized image of ρE2,β,π will

be the normalizer of a split (respectively non-split) Cartan subgroup when
n ≡ 1, 3 (mod 8) (respectively n ≡ 5, 7 (mod 8)). For the split case, we
can use Ellenberg’s result [7, Proposition 3.4] to show that the projectivized
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image of ρE2,β,π is not in the split Cartan subgroup when |b| > 1. Therefore
we have proven Proposition 1.2.

Remark 3.5. We are unaware of a method to deal with the case of a non-
split Cartan image (the arguments of Mazur for the relevant non-split Cartan
modular curves fail, since all non-zero modular abelian variety quotients will
have odd rank; see [5]). The general non-split Cartan case will likely require
substantial new developments. As a result, extending Theorem 1.1 to include
other values of n modulo 8 remains problematic.

3.2. c even. Now assume that c is even. In this case, we are led to
consider three Frey–Hellegouarch curves that we denote by E1, E2 and E3.
These are constructed by considering the factorization of bn = y(s, t) =
3s4 + 6t2s2 − t4 from (2.3), so that they are defined over an extension of
degree ≤ 2 and have discriminant which is essentially an nth power.

For i ∈ {1, 2, 3} we give a quick reference below for the equation defining
Ei and the conductor Nρi for its associated Galois representation ρi.

i Ei Nρi

1 (3.14) (3.16)

2 (3.18) (3.20)

3 (3.22) (3.23)

From (2.3), we have

a(s, t) =

{
3s4 + 6t2s2 − t4 for case (3.2),

−3s4 + 6t2s2 + t4 for case (3.3),

and c(s, t) = 6st(3s4 + t4) in either case. Let

(3.14) E1(s, t) :

{
y2 = x3 − 3a(s, t)x− 2c(s, t) for case (3.2),

y2 = x3 − 12a(s, t)x− 16c(s, t) for case (3.3).

Lemma 3.6. The conductor of E1(s, t) is

(3.15) 25 · 3δ
∏

q|b, q 6=2,3

q,

where δ ∈ {2, 3}.
Proof. The computation is similar to that of Lemma 3.1.

As before, it follows that ρE1,n is irreducible and hence, by modular-
ity and standard level lowering, we conclude that ρE1,n ' ρg1,ν for some
newform

(3.16) g1 ∈ S2(Γ0(576))new ∪ S2(Γ0(1728))new.

We can also rewrite (3.2) and (3.3) (replacing b by −b if necessary) as

(3.17) bn = 3(s2 ± t2)2 − 4t4.
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To these equations we can attach the Frey–Hellegouarch Q-curve E2 =
E2(s, t) given by

(3.18) E2(s, t) : y2=x3+4(
√

3−1)tx2−(
√

3−1)2(
√

3 s2+(−2±
√

3)t2)x,

where 3 - t and s 6≡ t (mod 2). Note that E2(s, t) is isomorphic to one
of the Q-curves E2(S, T ) defined in (3.8), with s − t replaced by 2t and
st replaced by s2 ± t2. Therefore, as before, ρE2,β,π arises from the Galois
representation on the π-adic Tate module ResK/QE2, whose endomorphism

algebra is Z[
√
−2]. As previously, it is a routine matter to compute the

conductor of E2.

Lemma 3.7. Suppose 3 - b and s 6≡ t (mod 2). Then the conductor of E2

over K is given by

(3.19) q122
∏

q|b, q-2,3

q.

Proof. The computation is similar to that of Lemma 3.2.

Corollary 3.8. Suppose 3 - b and s 6≡ t (mod 2). Then the conductor
of ρE2,β,π is given by

(3.20) 28 · 3 ·
∏

q|b, q 6=2,3

q.

Proof. As for Corollary 3.3.

When n > 7 and n 6= 13 is prime, modularity and standard level low-
ering arguments thus imply that ρE2,β,π ' ρg2,π for some newform g2 in

S2(Γ0(768), ε−1). Recall that there are ten conjugacy classes of newforms in
S2(Γ0(768), ε−1), which we have labelled as F1, . . . , F10.

The result of the multi-Frey computation using (E1, E2) is that all pairs
(g1, g2) are eliminated except when:

Case (3.2) multi-frey-3.txt :

• g2 ∈ {F1, F2, F4, F5} and g1 is form 1 of level 288 (corresponding to
(s, t) = (0,±1) and twists),
• g2 ∈ {F3, F6} and g1 is form 2 or 6 of level 864 (corresponding to

(s, t) = (1,±1)),

Case (3.3) multi-frey-2.txt :

• g2 ∈ {F1, F2, F4, F5} and g1 is form 1 of level 288 (corresponding to
(s, t) = (0,±1) and twists).

The primes q used were 5, 7 and 11, leading to the conclusion that n is in
{2, 3, 5, 7, 11}. All eliminated pairs required the use of only one auxiliary
prime q.
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Among the remaining forms, we note that form 1 of level 288 has complex
multiplication by Q(

√
−4), while forms F3 and F6 have complex multipli-

cation by Q(
√
−8). If n ≡ 1, 3 (mod 8) and g2 = F3 or F6, this therefore

forces ρE2,β,π to have image in a split Cartan subgroup, contradicting El-
lenberg’s result [7] if n > 7, n 6= 13, is prime. If n ≡ 1, 5 (mod 8) and g1 is
form 1 of level 288, necessarily ρE1,n has image in a split Cartan subgroup,
contradicting Momose’s result [14], provided n > 7, n 6= 13, is prime.

In fact, in case (3.2) we can do somewhat better through careful argu-
ment. First note that we can rewrite this equation as

(3.21) bn = (t2 + 3s2)2 − 12s4.

As in previous situations, there are other Frey–Hellegouarch Q-curves we
can attach to solutions of (3.21), including

(3.22) E3(s, t) : y2=x3+12(
√

3−1)sx2+3
√

3(
√

3−1)2(t2+(2
√

3±3)s2)x.

As we did for E2, we can check that E3 is in fact a Q-curve, leading to
a Galois representation ρE3,β,π. When n > 7, n 6= 13, is prime, arguing as
previously, modularity and level lowering imply that ρE3,β,π ' ρg3,ν for some
newform

(3.23) g3 ∈ S2(Γ0(2304), ε−1).

Using MAGMA, we find that there are ten conjugacy classes of newforms in
S2(Γ0(2304), ε−1), which we denote by G1, . . . , G10. We will now appeal to
the Frey–Hellegouarch curve E3 to eliminate the possibility of forms F3, F6

giving rise to solutions to (3.2), provided n ≡ 1 (mod 4) and n ≥ 17 (note
that we have already demonstrated this result if n ≡ 1 (mod 8)). This will
enable us to reach a like conclusion in each of cases (3.2) and (3.3). To do
this, assume we are in case (3.2) with g3 ∈ {F3, F6} and g1 either form 2 or

6 of level 864. In this case, using the multi-Frey method multi-frey-4.txt ,

we find that ρE3,β,π ' ρg3,ν with g3 ∈ {G5, G6, G7, G8}. We can check that
G5, G6, G7, G8 correspond to elliptic curves E3(1,±1). Now, applying an
image of inertia argument at 2, simultaneously to ρE3,β,π and ρE2,β,π, we
obtain the desired result. In particular, we have

Lemma 3.9. Let L2=Q2(θ2) (respectively L3 = Q2(θ3)) where θ2 (respec-
tively θ3) is a root of

x16 + 4x14 + 8x12 + 24x10 + 47x8 + 24x6 + 8x4 + 4x2 + 1

(respectively x16 + 4x14 + 4x12− 96x10− 165x8 + 240x6− 108x4 + 36x2 + 9).

Fix an embedding of Q(
√

3) into L2 (respectively L3).

(1) The Galois representation ρg2,ν for g2 in the conjugacy class of F3

or F6 is trivial when restricted to IL2.
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(2) The Galois representation ρg3,π for g3 in the conjugacy class of G5,
G6, G7, or G8 is trivial when restricted to IL3.

(3) Let E ∈ {E2(±1, 2), E2(0,±1), E2(2,±1)}. Then ρE,β,π restricted to
IL2 is non-trivial.

(4) Let E ∈ {E3(±1, 0), E3(0,±1), E3(2,±1)}. Then ρE,β,π restricted to
IL3 is non-trivial.

(5) Let E = E2(s, t) with s 6≡ t (mod 2) and 4 - t. Then ρE,β,π restricted
to IL2 is non-trivial.

(6) Let E = E3(s, t) with s 6≡ t (mod 2) and t 6≡ 2 (mod 4). Then ρE,β,π
restricted to IL3 is non-trivial.

Proof. We first note that F3 and F6 arise from the Frey–Hellegouarch
curves E2(1,±1), and G5, G6, G7 and G8 arise from the Frey–Hellegouarch
curves E3(1,±1) (again, this is easily verified via point counting). Using

either SAGE or MAGMA, see e.g. goodred2.txt , we find that both the

curves E2(1,±1)/L2 and E3(1,±1)/L3 have good reduction. Similarly, each
of E2(±1, 2)/L2, E2(0,±1)/L2 and E2(2,±1)/L2 have bad additive reduc-
tion, with Kodaira symbols II∗, I∗0 and I∗0 , respectively, and E3(±1, 0)/L3,
E3(0,±1)/L3 and E3(2,±1)/L3 have bad additive reduction, with Kodaira
symbols II∗, I∗0 and I∗0 , respectively. Therefore, we have the first four claims
of the lemma.

To prove the last two claims, note that if s and t are of different parities
and 4 - t, then (s, t) will be congruent to one of (±1, 2), (0,±1) and (2,±1)
modulo 4. Similarly, if t 6≡ 2 (mod 4), then (s, t) will be congruent to one of
(±1, 0), (0,±1) and (2,±1) modulo 4. Let v be the valuation on Li. Notice
that v(∆Ei(s,t)) = 72 = 12 · 6 when s and t are of different parity (for i = 2
or 3). Finally, if E = Ei(s, t) and E′ = Ei(s

′, t′) with s ≡ s′ (mod 4) and
t ≡ t′ (mod 4), then v(a2 − a′2) ≥ 32 ≥ 2 · 6 and v(a4 − a′4) ≥ 24 ≥ 4 · 6.
Therefore, applying Lemma 2.1, we conclude that Ei(s, t) has reduction type
II∗ or I∗0 , assuming that s and t are of different parities and (i, t) is not in
{(3, 4k), (4, 4k + 2)}. More importantly, E = Ei(s, t) has bad reduction in
either case, which proves the final two claims.

We are now ready to eliminate the second case in (3.2) for n ≡ 5 (mod 8).
In particular, if 4 - t, then by considering E2 = E2(s, t) necessarily ρE2,β,π '
ρg2,ν with g2 ∈ {F3, F6}. However, ρg2,ν has trivial image when restricted
to IL2 , while ρE2,β,π does not. We may thus assume that t 6≡ 2 (mod 4).
Considering E3 = E3(s, t), we find that ρE3,β,π has non-trivial image when
restricted to IL3 . On the other hand, we know that in this case ρE3,β,π ' ρg3,ν
where g3 ∈ {G5, G6, G7, G8}, and we also know that ρg3,ν has trivial image
when restricted to IL3 . This proves the desired result; in particular, we have
proved Proposition 1.3.
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Combining the results for the different parities of c thus yields Theo-
rem 1.1.

4. Explicit example of the multi-Frey method. Here we will show,
by an example, how the multi-Frey method rules out particular pairs of
(g1, g2) in Section 3.1. In particular, let E1(s, t) and E2(s, t) be as defined
in Section 3.1. Assume that n ≥ 11 and n 6= 13. As demonstrated, we have
ρE1,n ' ρg1,n and ρE2,β,π ' ρg2,π, where

g1 ∈ S2(Γ0(576))new ∪ S2(Γ0(1728))new, g2 ∈ S2(Γ0(768), ε−1)new.

We will deal with the case where g2 = F1 and g1 ∈ S2(Γ0(576))new. Using

MAGMA, we can compute the q-expansion of g2 all-768.data :

g2 = q+ (
√
−2 + 1)q3 + 2

√
−2q5 + 2

√
−2q7 + (2

√
−2− 1)q9 + 2q11 +O(q12).

For all (s, t) ∈ F5×F5−{(0, 0)}, we have a(s, t)3− c(s, t)2 6= 0, whereby
E1 has good reduction at 5. Note this implies that E2 has good reduction
at the prime lying above 5. Checking all possible values for a5(E1(s, t)), we
find that a5(E1(s, t)) ∈ {−2, 1, 4}. This implies that either g1 is form 4, 6,

8, or 9 of level 576 all-again-edit.data , or n ∈ {2, 3, 5} (with the latter

contradicting our assumption that n ≥ 11).
If g1 is form 4, 8, or 9, then we have a5(g1) = −2. We can check that

if a5(E1(s, t)) = −2, then st(s − t) ≡ 0 (mod 5), or else n ∈ {2, 3} (again,
contradicting n ≥ 11). In this case, a52(E2(s, t)) ∈ {10,−8}. This means
that BE2(5, g2) ∈ {100, 64}, contradicting n ≥ 11.

Thus, we have eliminated all pairs (g1, g2) with g2 = F1 and g1 in
S2(Γ0(576))new using the multi-Frey method, except for g1 being form 6
of level 576.
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