Polynomial relations amongst algebraic units of low measure

by
John Garza (Des Moines, IA)

1. Introduction. Amongst the absolute values in a place v of an algebraic number field \mathbb{K}, two play a role in this article. If v is archimedean, let $\|\cdot\|_{v}$ denote the unique absolute value in v that restricts to the usual archimedean absolute value on \mathbb{Q}. If v is non-archimedean and $v \mid p$, let $\|\cdot\|_{v}$ denote the unique absolute value in v that restricts to the usual p-adic absolute value on \mathbb{Q}. For each place v of \mathbb{K}, let \mathbb{K}_{v} and \mathbb{Q}_{v} be the completions of \mathbb{K} and \mathbb{Q} with respect to v and define the local degree of v as $d_{v}=\left[\mathbb{K}_{v}: \mathbb{Q}_{v}\right]$. For all places v let $|\cdot|_{v}=\|\cdot\|_{v}^{d_{v} / d}$.

The absolute values $|\cdot|_{v}$ satisfy the product rule: if $\alpha \in \mathbb{K}^{\times}$, then $\prod_{v}|\alpha|_{v}=1$. The absolute (logarithmic) Weil height of α is defined as $h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v}$ where the sum is over all places v of \mathbb{K}. Because of the way in which the absolute values $|\cdot|_{v}$ are normalized, $h(\alpha)$ does not depend on the field \mathbb{K} in which α is contained.

By Kronecker's theorem $h(\alpha)=0$ if and only if $\alpha=0$ or $\alpha \in \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$. In 1933 , Lehmer [L] asked wether or not there exists a constant $\varrho>1$ such that

$$
\begin{equation*}
\operatorname{deg}(\alpha) h(\alpha) \geq \log \varrho \tag{1.1}
\end{equation*}
$$

in all other cases. Lehmer's question remains unresolved to this day. For algebraic numbers α the Mahler measure $M(\alpha)$ of α is defined by $\log M(\alpha)=$ $\operatorname{deg}(\alpha) h(\alpha)$. If $m_{\alpha, \mathbb{Z}}=a_{0} \prod_{i=1}^{d}\left(x-\alpha_{i}\right) \in \mathbb{Z}[x]$ is the minimal polynomial of α in $\mathbb{Z}[x]$, it is known that

$$
\begin{equation*}
M(\alpha)=\left|a_{0}\right| \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\} \tag{1.2}
\end{equation*}
$$

The smallest non-zero Mahler measure known is that of the roots of $x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$, and it is thought by many that

[^0]if the answer to Lehmer's question is yes then the minimum possible ϱ is the \log of the Mahler measure of this polynomial.

If $\alpha \in \overline{\mathbb{Q}}^{\times}$is not an algebraic integer, then the $\left|a_{0}\right|$ of equation (1.2) is at least 2. It follows that $M(\alpha) \geq 2$ so that Lehmer's question restricts to algebraic integers. For an algebraic number field \mathbb{K}, we let $\mathcal{O}_{\mathbb{K}}$ be the set of algebraic integers in \mathbb{K}. Also, if $\alpha \in \overline{\mathbb{Q}}^{\times}$is an algebraic integer that is not a unit then

$$
\begin{equation*}
\operatorname{Norm}_{\mathbb{Q}(\alpha) / \mathbb{Q}}(\alpha) \geq 2 \tag{1.3}
\end{equation*}
$$

It follows from (1.2) that (1.3) implies $M(\alpha) \geq 2$ and that Lehmer's problem restricts to consideration of algebraic units. We will let $\mathcal{O}_{\mathbb{K}}^{\times}$denote the multiplicative group of algebraic units in \mathbb{K}.

It was shown in [G2] that, within a fixed algebraic number field, a large set of units of low measure must satisfy a multiplicative relation with small exponents. This article obtains the results of [G2] as a special case of polynomial relations that must exist amongst a set of algebraic units of low measure. Related results include those obtained by Beukers and Zagier [BZ], Cohen and Zannier [CZ], Garza, Ishak and Pinner [GIP], Samuels [Sa], and Schinzel Sch].

In order to review the result of [G2, we restate the key definitions presented there. A set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subseteq \overline{\mathbb{Q}}^{\times}$is said to be multiplicatively independent if the only solution to the equation $\alpha_{1}^{m_{1}} \cdots \alpha_{r}^{m_{r}}=1$ with $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ is $m_{1}=\cdots=m_{r}=0$. It follows that if $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent then $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \cap \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)=\emptyset$. We will say that $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \overline{\mathbb{Q}}^{\times}$is multiplicatively independent up to exponent n if the inclusion $\alpha_{1}^{m_{1}} \cdots \alpha_{r}^{m_{r}} \in \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$for $0 \leq\left|m_{i}\right| \leq n$ implies that $m_{1}=\cdots=m_{n}=0$. The paper G1 established that for algebraic units $\alpha_{1}, \ldots, \alpha_{r}, d=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right): \mathbb{Q}\right], s \in \mathbb{N}$ minimal such that $s>2^{d / r}$, and $\alpha_{1}, \ldots, \alpha_{r}$ multiplicatively independent up to exponent $s-1$,

$$
\begin{equation*}
\sum_{i=1}^{r} h\left(\alpha_{i}\right) \geq \frac{\log 2}{2(s-1)} \tag{1.4}
\end{equation*}
$$

This article will recapture the above inequality as the limiting case of a more general concept.
2. Main result. For $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ we define the length $\mathcal{L}(f)$ of f as the sum of the absolute values of the coefficients of f. For a monomial $g=x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}} \in \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ we define the degree of g as $\max \left\{\beta_{1}, \ldots, \beta_{r}\right\}$. For $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ we define the degree $\partial(f)$ of f as the maximum of the degrees of the monomials of f. For

$$
\mathcal{A}=\left\{\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right\} \subset\left(\mathcal{O}_{\mathbb{K}}\right)^{r}
$$

we define

$$
\mathcal{I}(\mathcal{A})=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right] \mid f\left(\alpha_{1}, \ldots, \alpha_{r}\right)=0\right\} .
$$

That is, $\mathcal{I}(\mathcal{A})$ is the ideal of polynomials in $\mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ that vanish at the point $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. For $r, s, m \in \mathbb{Z}^{+}$we define

$$
\mathcal{P}(r, m, s)=\left\{f \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] \mid \mathcal{L}(f) \leq m \text { and } \partial(f) \leq s\right\} .
$$

The set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is polynomially independent over $\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ of length m and exponent s if

$$
\mathcal{P}(r, m, s) \cap \mathcal{I}(\mathcal{A})=\{0\} .
$$

We now state the main result of this article.
Theorem 2.1. Let \mathbb{K} be an algebraic number field of degree d over \mathbb{Q} and let $\alpha_{1}, \ldots, \alpha_{r} \in \mathcal{O}_{\mathbb{K}}$ be polynomially independent of exponent s and length 2m. If

$$
\begin{equation*}
m r \log (s+1)-\log (m!)>d \log (4 m) \tag{2.1}
\end{equation*}
$$

then

$$
s \sum_{i=1}^{r} h\left(\alpha_{i}\right)>\log 2 .
$$

3. Preliminary lemmas. In this section we present three lemmas that will be used in the proof of Theorem 2.1. Lemmas 1 and 2 were proven in [G1 and their proofs are not included here.

Lemma 1. Let \mathbb{K} / \mathbb{Q} be a finite Galois extension and let $p \in \mathbb{N}$ be a prime with ramification index e in \mathbb{K}. Let $\mathcal{A}_{p}=\left\{v_{1}, \ldots, v_{t}\right\}$ be the set of places of \mathbb{K} extending the p-adic place of \mathbb{Q}. For $v_{i} \in \mathcal{A}_{p}$ let $\mathcal{M}_{v_{i}}=\left\{\left.\alpha \in \mathbb{K}| | \alpha\right|_{v_{i}}<1\right\}$. Let $s \in \mathbb{N}, s \leq t$ and let $\beta \in \mathbb{K}^{\times}$. If $\beta \in \mathcal{M}_{v_{1}}^{a_{1}} \cdots \mathcal{M}_{v_{s}}^{a_{s}}$ for $a_{1}, \ldots, a_{s} \in \mathbb{N} \cup\{0\}$, then

$$
\sum_{\mathcal{A}_{p}} \log |\beta|_{v_{i}} \leq(-\log p) \frac{1}{e t} \sum_{j=1}^{s} a_{j} .
$$

Lemma 2. Let $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}^{\times}$, let \mathbb{K} be the Galois closure of the field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let $d=[\mathbb{K}: \mathbb{Q}]$. For $1 \leq j \leq n$ and $1 \leq k \leq m$ let $b_{j, k} \in \mathbb{N} \cup\{0\}$ be such that $\sum b_{j, k} \geq 1$ and let $c_{k} \in \mathbb{Z}-\{0\}$. Define

$$
\begin{aligned}
\delta & =\sum_{k=1}^{m} c_{k} \prod_{j=1}^{n} \alpha_{j}^{b_{j, k}}, & M_{j}=\max \left\{b_{j, k} \mid 1 \leq k \leq m\right\} \\
\mathcal{L} & =\sum_{k}\left|c_{k}\right|, & w=\prod_{s \nmid \infty}|\delta|_{v}
\end{aligned}
$$

For each place $v \mid \infty$, let $a_{v} \in \mathbb{R}^{+}$be defined via

$$
\|\delta\|_{v}=a_{v} \prod_{j=1}^{n} \max \left\{1,\left\|\alpha_{j}^{M_{j}}\right\|_{v}\right\}
$$

and let

$$
A=\prod_{v \mid \infty}\left(a_{v}\right)^{d_{v} / d}
$$

If $\delta \neq 0$, then

$$
w A \leq 1, \quad A \leq \mathcal{L} \quad \text { and } \quad \sum_{j=1}^{n} M_{j} h\left(\alpha_{j}\right) \geq \log (1 / w A)
$$

Lemma 3. Let \mathbb{K} be an algebraic number field of degree d over \mathbb{Q} and let $\mathcal{O}_{\mathbb{K}}$ be the ring of integers of \mathbb{K}. For $m \in \mathbb{Z}^{+}$,

$$
\left|\mathcal{O}_{\mathbb{K}}: m \mathcal{O}_{\mathbb{K}}\right|=m^{d}
$$

Proof. For $m=1$ there is nothing to prove. Suppose $m \geq 2$. We know that $\left(\mathcal{O}_{\mathbb{K}},+\right)$ is a free abelian group of rank d. Let $\omega_{1}, \ldots, \omega_{d} \in \mathcal{O}_{\mathbb{K}}$ be such that $\left(\mathcal{O}_{\mathbb{K}},+\right)=\left\langle\omega_{1}, \ldots, \omega_{d}\right\rangle$. We have $m \mathcal{O}_{\mathbb{K}} \triangleleft \mathcal{O}_{\mathbb{K}}$. Let $\Psi: \mathcal{O}_{\mathbb{K}} \rightarrow$ $\mathcal{O}_{\mathbb{K}} / m \mathcal{O}_{\mathbb{K}}$ be the natural projection homomorphism. Then $\mathcal{O}_{\mathbb{K}} / m \mathcal{O}_{\mathbb{K}}=$ $\left\langle\Psi\left(\omega_{1}\right), \ldots, \Psi\left(\omega_{d}\right)\right\rangle$. We must show that there exists no non-trivial linear relation among $\Psi\left(\omega_{1}\right), \ldots, \Psi\left(\omega_{d}\right)$ with coefficients $0 \leq c_{i} \leq m-1$. To this end, assume there exist $\left\{c_{1}, \ldots, c_{d}\right\} \in\{0, \ldots, m-1\}$ not all zero such that $\sum_{i=1}^{d} c_{i} \Psi\left(\omega_{i}\right)=\overline{0}$. Then $\sum_{i=1}^{d} c_{i} \omega_{i} \in \operatorname{ker} \Psi$, so

$$
\sum_{i=1}^{d} c_{i} \omega_{i}=m \beta, \quad \beta \in \mathcal{O}_{\mathbb{K}}
$$

Since not all c_{i} are 0 , we see that $\beta \neq 0$. Let $b_{1}, \ldots, b_{d} \in \mathbb{Z}$ be such that $\sum_{i=1}^{d} b_{i} \omega_{i}=\beta$. Since $\beta \neq 0$, there exists $b_{j} \neq 0$. Now,

$$
\begin{aligned}
0 & =m \beta-m \beta=\sum_{i=1}^{d} c_{i} \omega_{i}-m\left(\sum_{i=1}^{d} b_{i} \omega_{i}\right)=\sum_{i=1}^{d} c_{i} \omega_{i}-\sum_{i=1}^{d}\left(m b_{i}\right) \omega_{i} \\
& =\sum_{i=1}^{d}\left(c_{i}-m b_{i}\right) \omega_{i}
\end{aligned}
$$

The last equation implies that $c_{i}-m b_{i}=0$ for $i=1, \ldots, d$. In particular, $c_{j}=m b_{j}$. Since $b_{j} \neq 0$, this contradicts the assumption that $0 \leq c_{j} \leq m-1$. We have thus shown that there is no non-trivial linear relation amongst $\Psi\left(\omega_{1}\right), \ldots, \Psi\left(\omega_{d}\right)$ with coefficients $0 \leq c_{i} \leq m-1$.
4. Proof of the main result. Given $m \in \mathbb{Z}^{+}$it follows from Lemma 3 that $\left|\mathcal{O}_{\mathbb{K}}: 4 m \mathcal{O}_{\mathbb{K}}\right|=(4 m)^{d}$. Let Λ be the set of monic monomials in
$\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ of degree less than or equal to s. By the Counting Principle, $|\Lambda|=(s+1)^{r}$. An application of the formula for counting combinations with replacement shows that

$$
|\mathcal{P}(r, m, s)| \geq \sum_{j=0}^{m}\binom{|\Lambda|+j-1}{j}
$$

We now recall the following identity from Pascal's triangle:

$$
\sum_{j=0}^{m}\binom{|\Lambda|+j-1}{j}=\binom{|\Lambda|+m}{m}
$$

and recognize the lower bound

$$
\binom{|\Lambda|+m}{m} \geq \frac{|\Lambda|^{m}}{m!}
$$

The inequality (2.1) implies

$$
|\mathcal{P}(r, m, s)|>\left|\mathcal{O}_{\mathbb{K}}: 4 m \mathcal{O}_{\mathbb{K}}\right|
$$

Let $\Psi: \mathcal{O}_{\mathbb{K}} \rightarrow \mathcal{O}_{\mathbb{K}} / 4 m \mathcal{O}_{\mathbb{K}}$ be the natural homomorphism. The last inequality implies the existence of distinct f and g in $\mathcal{P}(r, m, s)$ such that

$$
\Psi\left(f\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right)=\Psi\left(g\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right)
$$

It follows that $(f-g)\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in 4 m \mathcal{O}_{\mathbb{K}}$. Since $f-g \in \mathcal{P}(r, 2 m, s) \backslash\{0\}$ and

$$
\mathcal{I}(\mathcal{A}) \cap \mathcal{P}(r, 2 m, s)=\{0\}
$$

we have $(f-g)\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq 0$. An application of Lemmas 1 and 2 with $\delta=(f-g)\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq 0$ results in $w \leq 1 / 4 m$ and $A \leq 2 m$. Therefore

$$
s \sum_{i=1}^{r} h\left(\alpha_{i}\right) \geq \log 2 .
$$

5. Application of the Gröbner basis of $\mathcal{I}(\mathcal{A})$. Fix the lexicographic monomial ordering $x_{1}<\cdots<x_{r}$ on the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$. The symbol $G_{\mathcal{A}}=\left\{g_{1}, \ldots, g_{n}\right\} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ will denote the unique reduced Gröbner basis for $\mathcal{I}(\mathcal{A})$. For $g_{i} \in G_{\mathcal{A}}$ the leading term of g_{i} will be denoted $\mathrm{LT}\left(g_{i}\right)$ and the monomial ideal generated by the leading terms will be de$\operatorname{noted} \operatorname{LT}(\mathcal{I}(\mathcal{A}))$. We recall that $\operatorname{LT}\left(g_{i}\right)$ is a monic monomial and as a result $\operatorname{LT}\left(g_{i}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$. Furthermore, \mathcal{M} will denote the set of monic monomials in $\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$. Define $\Lambda=\mathcal{M}-\mathcal{M} \cap \operatorname{LT}(\mathcal{I}(\mathcal{A}))$. Thus Λ is the set of monic monomials in $\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ that are not divisible by the leading term of any element of $G_{\mathcal{A}}$. Finally, $\langle\Lambda\rangle \subset \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ will denote the additive abelian group generated by Λ. It follows from the definitions provided that $\langle\Lambda\rangle \cap \mathcal{I}(\mathcal{A})=\{0\}$. Applying the formula for counting combinations with
replacement we have

$$
|\{f \in\langle\Lambda\rangle \mid \mathcal{L}(f)<k\}| \geq\binom{|\Lambda|+k}{k}
$$

Let $m=\min \left\{\partial\left(\operatorname{LT}\left(g_{i}\right)\right) \mid 1 \leq i \leq r\right\}-1$. It follows that $x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}} \in \Lambda$ for $0 \leq \beta_{i} \leq m$, so $|\Lambda| \geq m^{r}$. This implies that

$$
|\{f \in\langle\Lambda\rangle \mid \mathcal{L}(f)<k\}| \geq\binom{ m^{r}+k}{k}
$$

If there exists $k \in \mathbb{Z}^{+}$such that $\binom{m^{r}+k}{k}>(4 k)^{d}$ then an application of the proof of Theorem 2.1 gives $\sum_{i=1}^{r} h\left(\alpha_{i}\right) \geq(\log 2) / m$.
6. Conclusion. If $\mathcal{I}(\mathcal{A})$ excludes polynomials of bounded length and bounded degree, then this article has shown that either $\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right): \mathbb{Q}\right]$ or $h\left(\alpha_{1}\right)+\cdots+h\left(\alpha_{r}\right)$ must be large.

References

[BZ] F. Beukers and D. Zagier, Lower bounds of heights of points on hypersurfaces, Acta Arith. 79 (1997), 103-111.
[CZ] P. B. Cohen and U. Zannier, Multiplicative dependence and bounded height, an example, in: Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, 2000, 93-101.
[G1] J. Garza, On the height of algebraic numbers with real conjugates, Acta Arith. 128 (2007), 385-389.
[G2] J. Garza, Multiplicative independence and bounded height, Acta Arith. 151 (2012), 1-6.
[GIP] J. Garza, M. I. M. Ishak and C. Pinner, On the product of the heights of algebraic numbers summing to real numbers, Acta Arith. 142 (2010), 51-58.
[L] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
[Sa] C. L. Samuels, Lower bounds on the projective heights of algebraic points, Acta Arith. 125 (2006), 41-50.
[Sch] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399.

John Garza
Drake University
2507 University Ave
Des Moines, IA 50311, U.S.A.
E-mail: John.Garza@drake.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11R09; Secondary 11G50. Key words and phrases: Mahler measure, Weil height.

