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1. Introduction. Amongst the absolute values in a place v of an al-
gebraic number field K, two play a role in this article. If v is archimedean,
let || - ||, denote the unique absolute value in v that restricts to the usual
archimedean absolute value on Q. If v is non-archimedean and v | p, let || - |,
denote the unique absolute value in v that restricts to the usual p-adic abso-
lute value on Q. For each place v of K| let K,, and Q,, be the completions of
K and Q with respect to v and define the local degree of v as d, = [K, : Q,].
For all places v let |- |, = || - HU”/d.

The absolute values | - |, satisfy the product rule: if o € K*, then
I, laly = 1. The absolute (logarithmic) Weil height of « is defined as
h(a) = >, log™ |a|, where the sum is over all places v of K. Because of
the way in which the absolute values | - |, are normalized, h(«) does not
depend on the field K in which « is contained.

By Kronecker’s theorem h(«) = 0 if and only if « =0 or o € Tor(Q™).
In 1933, Lehmer L] asked wether or not there exists a constant ¢ > 1 such
that

(1.1) deg(a)h(a) > log o

in all other cases. Lehmer’s question remains unresolved to this day. For
algebraic numbers a the Mahler measure M (a) of «v is defined by log M () =
deg(a)h(a). If maz = ag H?Zl(:n — ;) € Zlz] is the minimal polynomial
of a in Z[z], it is known that

d
(1.2) M(a) = |ag| [ [ max{1, |el}.

i=1
The smallest non-zero Mahler measure known is that of the roots of
204 2% — 27 — 25 — 25 — 2% — 23 + 2 4 1, and it is thought by many that
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if the answer to Lehmer’s question is yes then the minimum possible p is
the log of the Mahler measure of this polynomial.

If « € Q" is not an algebraic integer, then the |ag| of equation (1.2) is
at least 2. It follows that M(«) > 2 so that Lehmer’s question restricts to
algebraic integers. For an algebraic number field K, we let Og be the set of
algebraic integers in K. Also, if o € @X is an algebraic integer that is not a
unit then

(1.3) Normgq)/g(a) > 2.

It follows from (1.2) that (1.3) implies M (a) > 2 and that Lehmer’s prob-
lem restricts to consideration of algebraic units. We will let O denote the
multiplicative group of algebraic units in K.

It was shown in [G2] that, within a fixed algebraic number field, a large
set of units of low measure must satisfy a multiplicative relation with small
exponents. This article obtains the results of [G2] as a special case of poly-
nomial relations that must exist amongst a set of algebraic units of low
measure. Related results include those obtained by Beukers and Zagier [BZ],
Cohen and Zannier [CZ|], Garza, Ishak and Pinner [GIP], Samuels [Sal, and
Schinzel [Sch.

In order to review the result of [G2], we restate the key definitions
presented there. A set {ayq,...,a,.} C @X is said to be multiplicatively
independent if the only solution to the equation «f"'---a* = 1 with
mi,...,mp € Zis my = --- = m, = 0. It follows that if {aq,...,q,}
is multiplicatively independent then {aq,...,a,} N Tor(@x) = (. We will
say that {a1,...,a,} C @X is multiplicatively independent up to exponent

n if the inclusion af" ---a)'" € Tor(Q™) for 0 < |m;| < n implies that

mi = -+ = my = 0. The paper |[GI] established that for algebraic units
at,...,ap, d=[Q(a,...,a,): Q], s € N minimal such that s > 2% and
at, ..., q, multiplicatively independent up to exponent s — 1,
T
log 2
1.4 hiog) > ————.

This article will recapture the above inequality as the limiting case of a more
general concept.

2. Main result. For f € Q[zy,...,z,| we define the length L(f) of f
as the sum of the absolute values of the coefficients of f. For a monomial
g= xfl = Q[z1, ..., x| we define the degree of g as max{f1,...,05,}.
For f € Q[z1,...,z,] we define the degree J(f) of f as the maximum of the

degrees of the monomials of f. For
A={(ay,...,a;)} C (Og)"
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we define
ZA) ={f €Qlz1,...,z]| flas,...,ap) = 0}.

That is, Z(A) is the ideal of polynomials in Q[x1, ..., z,] that vanish at the
point (a1, ...,.). For r,s,m € ZT we define

Plrym,s) ={f € Z[x1,...,z,] | L(f) < m and I(f) < s}.

The set {a, ..., a,} is polynomially independent over Z[x1, . .., z,] of length
m and exponent s if

P(r,m,s)NZ(A) = {0}.
We now state the main result of this article.

THEOREM 2.1. Let K be an algebraic number field of degree d over Q and

let ay,...,a, € Ok be polynomially independent of exponent s and length
2m. If

(2.1) mrlog(s+ 1) — log(m!) > dlog(4m)

then

s Z h(a;) > log 2.

i=1

3. Preliminary lemmas. In this section we present three lemmas that
will be used in the proof of Theorem 2.1. Lemmas 1 and 2 were proven in
[G1] and their proofs are not included here.

LEMMA 1. Let K/Q be a finite Galois extension and let p € N be a prime
with ramification index e in K. Let A, = {v1,..., v} be the set of places of K
extending the p-adic place of Q. For v; € Ay let M,, = {a € K| |al,, < 1}.
Let s € N, s <tandlet B € K*. If B € Ml ---M(s for ay,...,as € NU{O},
then

1 S
> log|Blu, < (~logp)— > ;.
Ap j=1

LEMMA 2. Let aq,...,apn € @X, let K be the Galois closure of the field
Q... apn) and let d = [K: Q. For 1 < j<nand 1l <k < mlet
bjr € NU{0} be such that Y bjr > 1 and let ¢, € Z — {0}. Define

m n
J= ch H oz;)-j’k, M; = max{b; |1 <k <m},
k=1 j=1

L=>"lel, w= [T 16]o-
k

st 00



28 J. Garza

For each place v | oo, let a, € RT be defined via

n
181l = ay [ max{1, [la}"||,}
Vi
j=1

and let
A=
v]oo

If 6 #0, then

wA<1, A<L and Y M;h(eg) > log(1/wA).
j=1
LEMMA 3. Let K be an algebraic number field of degree d over Q and
let Ok be the ring of integers of K. Form € Z™,

’OK : mOK| = md.

Proof. For m = 1 there is nothing to prove. Suppose m > 2. We know
that (Og,+) is a free abelian group of rank d. Let wi,...,wg € Ok be
such that (Og,+) = (w1,...,wq). We have mOg < Og. Let ¥ : Og —
Og/mOxk be the natural projection homomorphism. Then Og/mOx =
(¥(w1),...,¥(wq)). We must show that there exists no non-trivial linear
relation among ¥ (w1),...,¥(wy) with coefficients 0 < ¢; < m — 1. To this
end, assume there exist {c1,...,¢cq} € {0,...,m — 1} not all zero such that
S% W (w;) =0. Then Y27, ciw; € ker ¥, so

d
Zciwi =mp, pBe€O0k.
i=1
Since not all ¢; are 0, we see that 5 # 0. Let by,...,bq € Z be such that
Zle bjw; = . Since  # 0, there exists b; # 0. Now,

d d d d
0=mB—mp = Z Ciw; — m(Z biwi> = Z Cciw; — Z(mbi)wi
i=1 i=1 i=1

=1

d
= Z(Cz — mb;)w;.
i=1
The last equation implies that ¢; — mb; = 0 for ¢ = 1,...,d. In particular,
c¢;j = mbj. Since b; # 0, this contradicts the assumption that 0 < ¢; <m—1.
We have thus shown that there is no non-trivial linear relation amongst
U(wr),...,¥(wg) with coefficients 0 < ¢; <m —1. m

4. Proof of the main result. Given m € Z" it follows from Lemma 3
that |Og : 4mOg| = (4m)%. Let A be the set of monic monomials in
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Z|zxy, ..., x| of degree less than or equal to s. By the Counting Principle,
|A| = (s+1)". An application of the formula for counting combinations with
replacement shows that

P(r,m, 5)| > i (!AI +j- 1>'

: J

7=0
We now recall the following identity from Pascal’s triangle:
i (|A|+j—1> B <|A|+m>
i=0 J i

and recognize the lower bound

[ A] +m A"
m = m!’

The inequality (2.1) implies
|P(r,m,s)| > |Ok : 4mOk]|.

Let ¥ : Og — Ok /4mOxk be the natural homomorphism. The last inequality
implies the existence of distinct f and g in P(r,m, s) such that

U(f(ar,..-,ar) =¥(g(aq,...,ap)).

It follows that (f — g)(au,...,a,) € 4mOk. Since f — g € P(r,2m,s) \ {0}
and

V

Z(A) N P(r,2m,s) = {0},

we have (f — g)(ai,...,05) # 0. An application of Lemmas 1 and 2 with
d=(f—9g)(a1,...,ar) # 0 results in w < 1/4m and A < 2m. Therefore

s Z h(a;) > log 2.

i=1

5. Application of the Grébner basis of Z(A). Fix the lexicographic
monomial ordering x; < - -+ < x, on the polynomial ring Q[x1,...,z,]. The
symbol G4 = {g1,...,9n} C Q[z1,...,2,] will denote the unique reduced
Grobner basis for Z(A). For g; € G4 the leading term of g; will be denoted
LT(g;) and the monomial ideal generated by the leading terms will be de-
noted LT(Z(A)). We recall that LT(g;) is a monic monomial and as a result

LT(g;) € Z[z1, ..., z,]. Furthermore, M will denote the set of monic mono-
mials in Z[z1, ..., z;]. Define A = M — M NLT(Z(A)). Thus A is the set of
monic monomials in Z[x1, ..., z,] that are not divisible by the leading term

of any element of G4. Finally, (A) C Z[xy,...,x,] will denote the additive
abelian group generated by A. It follows from the definitions provided that
(Ay NZ(A) = {0}. Applying the formula for counting combinations with
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replacement we have

{f € ()| £(F) < B} > (’A’]j’f).

Let m = min{0(LT(g;)) |1 < ¢ < r} — 1. It follows that :L'f1 cxle A
for 0 < B; < m, so |A] > m". This implies that
m’ + k)

{f6<A>|£(f)<k}|2( h

If there exists k € ZT such that (m;jk) > (4k)? then an application of the
proof of Theorem 2.1 gives > ., h(a;) > (log2)/m.

6. Conclusion. If Z(A) excludes polynomials of bounded length and
bounded degree, then this article has shown that either [Q(ayq,..., ) : Q]
or h(ai) + - - + h(a,) must be large.
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