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On the behaviour close to the unit circle of the power series
with Möbius function coefficients

by

Oleg Petrushov (Moscow)

1. Notations and introduction. We study the series

M(z) =
∞∑
n=1

µ(n)zn,

where µ is the Möbius function. We will use the following notations:

e2πiθ = e(θ); M(x, θ) =
∑
n≤x

µ(n)e(nθ); τ(χ, l) =

q∑
k=1

χ(k)e(lk/q)

for a character χ modulo q; χ̄ is the character conjugate to χ; τ(χ) = τ(χ, 1);
GRH stands for the generalized Riemann hypothesis.

Let g(x) ≥ 0. Then f(x) = Ω(g(x)) as x → a means that there is an
infinite sequence tk → a such that |f(tk)| > δg(tk) for some δ > 0. Let f(x)
be real, g(x) ≥ 0. Then f(x) = Ω±(g(x)) as x → a means that there are
infinite sequences tk → a, uk → a such that f(tk) > δg(tk), f(uk) < −δg(uk)
for some δ > 0.

From the Szegő theorem [S] it easily follows that the unit circle is the
natural boundary of M(z). In 1967 I. Katai [Ka] proved that

M(r) = Ω±((1− r)−1/2), r → 1− .

In 2000 this result was reproved by Delange [D]. While Katai used com-
plicated integral inequalities, Delange [D] applied E. Landau’s theorem on
Dirichlet series with non-negative coefficients. In 2010 S. Gerhold [G] proved
the following estimate: if z tends to 1 in an arbitrary sector of the form
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|arg(1− z)| ≤ 1
2π − δ, δ > 0, then

M(z) = O

(
1

t
exp

(
−

0.0203 log 1
t(

log log 1
t

)2/3(
log log log 1

t

)1/3)), t = − log z.

In 1991 Baker and Harman [BH] proved that if GRH is true, then

M(x, θ)� x3/4+ε, x→ +∞,
for any real number θ. From their result it easily follows that under GRH,

M(e(θ)r)� (1− r)−3/4−ε, r → 1− .

In this paper we obtain unconditional Ω-results.

Theorem 1.1. For each β ∈ Q there exists a > 0 such that

M(e(β)r) = Ω((1− r)−a), r → 1−,(1.1)

M(x, β) = Ω(xa), x→ +∞.(1.2)

This theorem is proved in Sections 2–5.

In Section 6 we study the behaviour of these functions for β ∈ Q with
denominators q ≤ 100 and obtain the following results that are stronger
than those for arbitrary β.

Theorem 1.2. If q ≤ 100 and β = l/q, then

M(e(β)r) = Ω((1− r)−1/2), r → 1−,(1.3)

M(x, β) = Ω(x1/2), x→ +∞.(1.4)

2. Preliminary results. Let α(n) be a function of a natural variable.
We define

A(z) =
∞∑
n=1

α(n)zn and F (s) =
∞∑
n=1

α(n)n−s.

For a Dirichlet character χ we define

F (s, χ) =

∞∑
n=1

α(n)χ(n)n−s.

Lemma 2.1. Let α(n) be an arbitrary sequence of complex numbers, and
l ∈ Z. Suppose that the Dirichlet series F (s) =

∑∞
n=1 α(n)e(ln/q)n−s is

convergent for σ = <s > σ0 > 0. Then

Γ (s)

∞∑
n=1

α(n)e(ln/q)n−s =

∞�

0

ts−1A(e(l/q)e−t) dt.

Proof. This follows from the results of [H].
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Lemma 2.2. Let α(n) be an arbitrary sequence of complex numbers, and
q > 1. Suppose that the Dirichlet series

∑∞
n=1 α(n)n−s is absolutely conver-

gent for <s > σ0. Then for any l ∈ Z and s with <s > σ0,∑
(n,q)=1

α(n)e(ln/q)

ns
=

1

φ(q)

∑
χ (mod q)

τ(χ̄, l)F (s, χ).

Proof. We have

(2.1)
∑

(n,q)=1

α(n)e(ln/q)

ns
=
∞∑
n=1

α(n)
u(n)

ns
,

where u(n) = e(ln/q) if (n, q) = 1, and u(n) = 0 if (n, q) 6= 1. Since
u(n) = 1

φ(q)

∑
χ (mod q) τ(χ̄, l)χ(n), we obtain the conclusion.

For convenience, define

F [β](s) =

∞∑
n=1

α(n)e(βn)n−s for β ∈ R.

The following lemma relates F [l/q](s) to F (s, χ).

Lemma 2.3. Let α(n) be a multiplicative function with α(n) = O(nσ0),
where σ0 > 0, and α(n) = 0 if there is a prime p with p2 |n. If <s > σ0 + 1
then for all integers q > 1 and l with (l, q) = 1,

F [l/q](s) =
1

φ(q)

∑
χ (mod q)

∑
d|q

α(d)

ds
τ(χ̄, ld)F (s, χ),(2.2)

∞�

0

ts−1A(e(l/q)e−t) dt= Γ (s)

(
1

φ(q)

∑
χ (mod q)

∑
d|q

α(d)

ds
τ(χ̄, ld)F (s, χ)

)
.(2.3)

Proof. Let D be the set of square-free numbers. Note that every n ∈ D
has a unique representation

(2.4) n = dm, d | q, (m, q) = 1.

Set Bd = {n : n = dm, (m, q) = 1} for each d | q. These sets do not intersect.
From (2.4) it follows that D ⊆

⋃
d|q Bd, hence

(2.5) D =
⋃
d|q

(Bd ∩D).

Let

Sd =
∑
n∈Bd

α(n)e(ln/q)

ns
.
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Taking into account (2.5) we obtain

(2.6)
∞∑
n=1

α(n)e(ln/q)

ns
=
∑
d|q

Sd.

If d | q, then, by Lemma 2.2,

Sd =
∑

(n,q)=1

α(nd)

(nd)s
e(ldn/q) =

α(d)

ds

∑
(n,q)=1

α(n)

ns
e(ldn/q)

=
α(d)

ds
1

φ(q)

∑
χ (mod q)

τ(χ̄, ld)F (s, χ).

Hence taking into account (2.6),
∞∑
n=1

α(n)e(ln/q)

ns
=

1

φ(q)

∑
χ (mod q)

∑
d|q

α(d)

ds
τ(χ̄, ld)F (s, χ).

Thus we have derived (2.2). Using Lemma 2.1 we obtain (2.3).

The following theorem relates the behaviour of A(e(l/q)r) as r → 1− to
the behaviour of F [l/q](s).

Theorem 2.4. Let α(n) be an arbitrary sequence of complex numbers,
and q ∈ N, q > 1, (l, q) = 1. Suppose that F [l/q](s) is meromorphic in
{<s > 0} and has a pole at σ0 + it0 with σ0 > 0. Then

(2.7) A(e(l/q)r) = Ω((1− r)−σ0), r → 1−.
Proof. By Lemma 2.1,

Γ (s)F [l/q](s) =

∞�

0

ts−1A(e(l/q)e−t) dt.

Assume that for any c > 0 there exists a T such that |A(e(l/q)e−t)| < ct−σ0

when 0 < t < T . Then for s = σ0 + it0 + x, x→ 0+,

Γ (s)F [l/q](s) =

1�

0

ts−1A(e(l/q)e−t) dt+O(1).

Hence

|Γ (s)F [l/q](s)| ≤ c
1�

0

t−σ0tσ0+x−1 dt+O(1) = c

1�

0

tx−1 dt+O(1) ≤ 2cx−1.

This inequality contradicts the fact that σ0 + it0 is a pole of F [l/q](s).

3. Estimates of 1/ζ(s), 1/L(s, χ) on lines <s = −0.5−N . In Sections
3–5 we will use following notations. We denote by q a fixed positive integer.
Let B be a positive function and A be an arbitrary function. If |A| ≤ CB,
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where C > 0, and the constant C depends only on q, we will write A� B or
A = O(B). Let A and B be some positive functions. If C1|B| ≤ A ≤ C2|B|
where C1, C2 > 0, we will write A � B. As usual t = =s, σ = <s.

In this section we deduce some inequalities involving L(s, χ), where χ
are characters modulo k ≤ q.

We begin by reformulating the functional equations for ζ- and L-func-
tions. First,

(3.1) ζ(1− s) = h(s)ζ(s),

where

(3.2) h(s) = π1/2−s Γ
(
s
2

)
Γ
(

1−s
2

) .
If χ is an even primitive character modulo k, then

(3.3) L(1− s, χ) = hχ̄(s)L(s, χ̄),

where

(3.4) hχ(s) =

(
π

k

)1/2−s √k
τ(χ)

Γ
(
s
2

)
Γ
(

1−s
2

) .
If χ is an odd primitive character modulo k, then

L(1− s, χ) = hχ̄(s)L(s, χ̄),

where

(3.5) hχ(s) =

(
π

k

)1/2−s
i

√
k

τ(χ)

Γ
(
s+1

2

)
Γ
(

2−s
2

) .
From the formula Γ (s+ 1) = sΓ (s) it is easy to deduce the identities

h(s+ 2) = −(2π)−2s(s+ 1)h(s),(3.6)

hχ(s+ 2) = −
(

2
π

k

)−2

s(s+ 1)hχ(s).(3.7)

From the estimate |Γ (σ+ it)| � |t|σ−0.5eπ|t|/2 as |t| → ∞ [MV, p. 523] it
is easy to obtain the asymptotic formulas

|h(0.5 + it)|−1 � 1,(3.8)

|hχ(0.5 + it)|−1 � 1,(3.9)

|h(1.5 + it)|−1 � 1,(3.10)

|hχ(1.5 + it)|−1 � 1.(3.11)

Lemma 3.1. The following asymptotic formulas are true for M ∈ N:

(3.12)
1

ζ(0.5−M + it)
� (2π)M

Γ (M + 0.5)
,
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and if χ is a primitive character modulo k, then

(3.13)
1

L(0.5−M + it, χ)
� (2π/k)M

Γ (M + 0.5)
.

Proof. From (3.6), (3.7) we get

h(2N + s) = s · · · (s+ 2N − 1)(−2π)−2Nh(s),

hχ(2N + s) = s · · · (s+ 2N − 1)(−2π/k)−2Nhχ(s).

Using these relation and estimates (3.8)–(3.11) we obtain, for N ∈ N,

1

ζ(0.5−M + it)
≤ C1

(2π)2NΓ (0.5)

Γ (0.5 + 2N)
≤ C2

(2π)2N

Γ (0.5 + 2N)
,(3.14)

1

L(0.5−M + it, χ)
≤ C1

(2π)2NΓ (1.5)

Γ (1.5 + 2N)
≤ C2

(2π)2N

Γ (1.5 + 2N)
.(3.15)

From (3.14) and (3.15) we obtain the estimate (3.12) of the theorem. Simi-
larly, we deduce (3.13).

4. Simultaneous estimation of 1/ζ(s), 1/L(s, χ) for χ primitive
on horizontal lines. We remind the reader that the integer q is fixed. We
will consider the functions L(s, χ), where χ are primitive characters modulo
q1 | q. Let us evaluate the functions d

ds ln ζ(s) and d
ds lnL(s, χ).

Lemma 4.1 ([K, p. 40]). Let ρn = βn+iγn be the zeros of the ζ-function,
and −1 ≤ σ ≤ 2, |t| ≥ 2. Then

ζ ′(s)

ζ(s)
=

∑
|t−γn|≤1

1

s− ρn
+O(ln |t|),

where the summation is over those zeros ρn such that |t−=ρn| ≤ 1.

Lemma 4.2 ([K, p. 111]). Let ρn = βn + iγn be the zeros of the function
L(s, χ), where χ is a primitive character, and −1 ≤ σ ≤ 2, |t| ≥ 2. Then

L′(s, χ)

L(s, χ)
=

∑
|t−γn|≤1

1

s− ρn
+O(ln |t|),

where the summation is over those zeros ρn such that |t−=ρn| ≤ 1.

The following lemma gives estimates of ζ ′(s)/ζ(s), L′(s, χ)/L(s, χ), uni-
form with respect to σ ∈ [−0.5, 1.5], on a sequence of horizontal segments.

Lemma 4.3. For each N ∈ Z with |N | > 3 we can find a real number tN
with N < tN < N + 1 such that

ζ ′(s)

ζ(s)
= O(ln2 |N |), L′(s, χ)

L(s, χ)
= O(ln2 |N |),

where s = σ + itN .
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Proof. Let us consider the function

ζ(s)
∏
χ

L(s, χ),

where the product is taken over all primitive characters modulo q1 | q. Denote
by P the multiset of zeros ρ = β + iγ of the above function counted with
multiplicity, and by G the multiset of imaginary parts of elements of P.

Note that the number of zeros ρ1 = β1+iγ1 of ζ(s), where γ1 ∈ [N,N+1],
does not exceed c0 log |N | (see [K, p. 40]), and the number of zeros ρ(χ) =
β(χ) + iγ(χ) of the functions L(s, χ), where γ(χ) ∈ [N,N + 1], does not
exceed cχ log |N | (see [K, p. 111]). Hence

(4.1) #{ρ ∈ P : |γ| ∈ [N,N + 1]} ≤ c ln |N |,

where # denotes the cardinaty of a multiset.

From (4.1) it follows that there is a strip α ≤ =s ≤ β, where N ≤
α < β ≤ N + 1, β − α = 1/(2c ln |N |), containing no element of P. Let
tN = (β + α)/2. Then for each γ ∈ G,

(4.2) |γ − tN | ≥
1

4c ln |N |
.

By Lemmas 4.1 and 4.2,∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ ∑
|t−γ1|≤1

1

|s− ρ1|
+O(ln |t|),

∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣ ≤ ∑
|t−γ(χ)|≤1

1

|s− ρ(χ)|
+O(ln |t|).

Since |a+ bi| ≥ |b| for all a, b ∈ R, we have |s− ρ| ≥ |t− γ|. Hence∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ ∑
|t−γ1|≤1

1

|t− γ1|
+O(ln |t|),(4.3)

∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣ ≤ ∑
|t−γ(χ)|≤1

1

|t− γ(χ)|
+O(ln |t|).(4.4)

Since the number of summands in (4.3) is O(ln |t|) (see [K, p. 40]), from
(4.2) it follows that when t = tN , we have

(4.5)

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� (ln |N |)2 + ln |N | � ln2 |N |.

Similarly from (4.4) we find that

(4.6)

∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣� (ln |N |)2 + ln |N | � ln2 |N |.



126 O. A. Petrushov

Now we state estimates of 1/ζ(s) and 1/L(s, χ), uniform with respect to
σ = <s, on a sequence of horizontal segments.

Lemma 4.4. For each integer N with |N | > 3 there exists a real num-
ber tN satisfying N < tN < N+1 such that if s = σ+itN and σ ∈ [−0.5, 1.5]
then

1

ζ(s)
= O(exp(c ln2 |N |)),(4.7)

1

L(s, χ)
= O(exp(c ln2 |N |)).(4.8)

Proof. Let tN be the numbers of Lemma 4.3. By the Newton–Leibniz
formula,

(4.9) ln ζ(σ + itN ) = ln ζ(1.5 + itN ) +

σ+itN�

1.5+itN

ζ ′(s)

ζ(s)
ds.

Since ln ζ(s) is represented by an absolutely convergent Dirichlet series for
<s > 1, we have ln ζ(1.5 + itN ) � 1. Using Lemma 4.3 and estimating the
integral in (4.9) from above we derive∣∣∣∣ σ+itN�

1.5+itN

ζ ′(s)

ζ(s)
ds

∣∣∣∣� 2 ln2N.

Hence

|ln ζ(σ + itN )| � ln2N,

thus ∣∣∣∣ln 1

ζ(σ + itN )

∣∣∣∣� ln2N.

This yields (4.7). Similarly we obtain (4.8).

Lemma 4.4 is useful in proving integral identities of the form

1.5+i∞�

1.5−i∞
x−sΓ (s)f(s) ds =

−0.5+i∞�

−0.5−i∞
x−sΓ (s)f(s) ds,

where f(s) is some function related to 1/ζ(s) and 1/L(s, χ).

5. The proof of the main theorem. Applying Lemma 2.3, we obtain

(5.1)

∞�

0

xs−1M(e(l/q)e−x)dx = Γ (s)F [l/q](s)

= Γ (s)
1

φ(q)

( ∑
χ (mod q)

(∑
d|q

µ(d)

ds
τ(χ̄, ld)

)
1

L(s, χ)

)
.



Power series with Möbius function coefficients 127

Note that the functions 1/ζ(s) and 1/L(s, χ), where χ is a primitive
character, have no zeros in the set {<s = 0} \ {0}.

If χ0 is the principal character modulo q, then

1

L(s, χ0)
=

1

ζ(s)

1

Cχ0(s)
,

where Cχ0(s) =
∏
p|q(1− 1/ps).

If χ is a non-principal character modulo q which is not primitive, and
χ1 is a primitive character modulo q1 that induces χ, then

(5.2)
1

L(s, χ)
=

1

L(s, χ1)

1

Cχ(s)
,

where Cχ(s) =
∏
p|q, p-q1(1− χ1(p)/ps).

Let C(s) =
∏
χCχ(s), where the product is taken over all non-primitive

characters modulo q. Define

f(s) = C(s)

∞�

0

xs−1M(e(nl/q)e−x) dx.

By Lemma 2.3 we have, for <s > 1,

f(s) = Γ (s)C(s)

∞∑
n=1

µ(n)e(l/q)

ns
(5.3)

= Γ (s)

(
1

φ(q)

∑
d|q

µ(d)

ds
τ(χ0, ld)

1

L(s, χ0)

+
1

φ(q)

∑
χ 6=χ0 (mod q)

∑
d|q

µ(d)

ds
τ(χ̄, ld)

1

L(s, χ)

)
C(s).

Hence

f(s) = Γ (s)

(
1

φ(q)

(∑
d|q

µ(d)

ds
τ(χ0, ld)

)
1

ζ(s)
Dχ0(s)(5.4)

+
1

φ(q)

∑
χ 6=χ0 (mod q)

(∑
d|q

µ(d)

ds
τ(χ̄, ld)

)
1

L(s, χ1)
Dχ(s)

)
,

where Dχ(s) = C(s) if χ is a primitive character, and Dχ(s) =
∏
ψ 6=χCψ(s)

where the product is taken over non-primitive characters if χ is a non-prim-
itive character. In (5.4), χ1 is a primitive character that induces χ.

Estimating Dχ(s) from above we obtain the following lemma:

Lemma 5.1. There are constants C,Q,E > 0, depending only on q, such
that for each character χ modulo q,

|Dχ(s)| ≤ CQ−σ for each s with σ ≤ 0,(5.5)

|Dχ(s)| ≤ E for each s with σ > 0.(5.6)
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Proof. Let σ ≤ 0. Note that if |a| = 1, then |1− ap−s| ≤ 2p−σ0 , where p0

is the largest prime divisor of q.

Hence, |Cχ(s)| ≤
∏
p|q 2p−σ0 = 2ω(q)(p

ω(q)
0 )−σ. Thus

|Dχ(s)| ≤
∏

χ (mod q)

2ω(q)(p
ω(q)
0 )−σ ≤ 2φ(q)ω(q)(p

ω(q)φ(q)
0 )−σ,

where ω(q) is the number of prime divisors of q, and φ is Euler’s totient
function.

Let now σ > 0. Note that if |a| = 1, then |1− ap−s| < 2, hence similarly
|Cχ(s)| ≤ 2ω(q). Thus

|Dχ(s)| ≤ 2ω(q)φ(q).

Lemma 5.2. Let A < σ ≤ −0.5. Then for |t| → ∞,∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ C|t|σ−0.5,

∣∣∣∣ 1

L(s, χ)

∣∣∣∣ ≤ C|t|σ−0.5,

where C depends only on q and A.

Proof. This follows from [MV, p. 330 Corollary 10.5, p. 334 Corollary
10.10, p. 27 Corollary 1.17, and p. 350 Lemma 10.15].

The following statement, proved by Szegő, will be applied to some power
series related to M(z). If for some rational number l/q,

M(e(l/q)r) = O((1− r)ε)
for each ε > 0, we will obtain some power series whose coefficients take a
finite number of values.

Theorem 5.3 ([S]). A power series

(5.7)

∞∑
n=1

fnz
n

whose coefficients take a finite number of values is either a rational function,
or cannot be continued beyond the unit circle. In the case of rationality of
(5.7), the coefficients form an eventually periodic sequence.

From (5.1) it follows that the function g(s) = F [l/q](s) with rational β
can be continued to a meromorphic function in C. From (5.3) it follows that
f(s) is a meromorphic function in C.

The following lemma is central to the proof of Theorem 1.1.

Lemma 5.4. For β ∈ Q the function g(s) = F [l/q](s) has a pole in the
strip {0 < <s < 1}.

Proof. Assume that g(s) is holomorphic in {0 < <s < 1}. From (5.4) it
follows that the poles of f are in the set {0,−1,−2, . . .}, and their orders do
not exceed 2. Let tn be the numbers of Lemma 4.4, |n| > 3. Since Dχ(s)� 1
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and Γ (s) � |t|Ce−π|t|/2 when t → ∞ and σ is bounded, it follows from
Lemma 5.2, (4.7), (4.8), (5.5) and (5.6) that there is an α > 0 such that
f(σ + itn)� e−α|tn|. Hence for any A < 1.5,

(5.8)

0.5+itn�

A+itn

x−sf(s) ds→ 0, |n| → ∞.

Let Π be the rectangle with vertices 1.5 + it−n, 1.5 + itn, −0.5 −N + itn,
−0.5−N+it−n. Let I = [1.5+it−n, 1.5+itn], II = [1.5+itn,−0.5−N+itn],
III = [−0.5−N + itn,−0.5−N + it−n], IV = [−0.5−N + it−n, 1.5 + it−n].

-−0.5−N−itn

6

1.5−itn

� 1.5+itn

?

−0.5−N+itn

I

II

III

IV

6

y

- xO

The contour Π

By the Cauchy theorem on residues,

(5.9)
�

Π

x−sf(s) ds = 2πi

N∑
k=0

rk,

where rk = ress=−k x
−sf(s). From (5.8) and (5.9) we obtain

(5.10)

1.5+i∞�

1.5−i∞
x−sf(s) ds =

−0.5−N+i∞�

−0.5−N−i∞
x−sf(s) ds+ 2πi

N∑
k=0

rk.

By the inversion formula of [FGD, p. 4],

1

2πi

1.5+i∞�

1.5−i∞
x−sf(s) ds =

∞∑
n=1

δ(n)e−nx,

where δ(n) are the coefficients of the Dirichlet series of the function

C(s)

∞∑
n=1

µ(n)e(ln/q)

ns
.
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Note that C(s) is a Dirichlet polynomial,

C(s) =
M∑
n=1

a(n)

ns
,

and a(1) = 1. Hence

(5.11) δ(n) =
∑

d|n, d≤M

a(d)µ(n/d)e(ln/qd).

Thus

(5.12) 2πi
∞∑
n=1

δ(n)e−nx =

0.5−N+i∞�

0.5−N−i∞
x−sf(s) ds+ 2πi

N−1∑
k=0

rk,

where rk = ress=−k x
−sf(s). From (5.11) it follows that δ(n) takes finitely

many values. Note that

(5.13) ress=−k x
−sf(s) = (ck + dk lnx)xk.

We have the following estimates:∣∣∣ 0.5−N+i∞�

0.5−N−i∞
x−sf(s) ds

∣∣∣ =
∣∣∣ ∞�
−∞

x−(0.5−N+it)f(0.5−N + it) dt
∣∣∣(5.14)

≤ xN−0.5
∞�

−∞
|f(0.5−N + it)| dt,

|d−s| ≤ d−σ ≤ q−σ, σ < 0,(5.15)

|τ(χ, ld)| ≤ φ(q).(5.16)

Let us evaluate f(0.5−N + it). From (3.12), (3.13), (5.5), (5.15), (5.16)
we obtain the following estimates for s = 0.5−N + it:

(5.17)

∣∣∣∣ 1

φ(q)

(∑
d|q

µ(d)

ds
τ(χ0, ld)

1

ζ(s)

)
Dχ0(s)

∣∣∣∣
� QN−0.5τ(q)qN−0.5φ(q)

(2π)N

Γ (N + 0.5)
� (Qq)N−0.5(2π)N

Γ (N + 0.5)
,

(5.18)

∣∣∣∣ 1

φ(q)

∑
χ 6=χ0 (mod q)

(∑
d|q

µ(d)

ds
τ(χ̄, ld)

1

L(s, χ1)

)
Dχ(s)

∣∣∣∣
� 1

φ(q)

∑
χ 6=χ0 (mod q)

QN−0.5τ(q)qN−0.5φ(q)
(2π)N

Γ (N + 0.5)
� (Qq)N−0.5(2π)N

Γ (N + 0.5)
.

From inequalities (5.17), (5.18) and equality (5.4) we obtain

(5.19) f(0.5−N + it)� |Γ (0.5−N + it)|(Qq)
N−0.5(2π)N

Γ (N + 0.5)
.
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From estimates (5.14) and (5.19) it follows that

(5.20)
∣∣∣ 0.5−N+i∞�

0.5−N−i∞
x−sf(s) ds

∣∣∣
� xN−0.5 (Qq)N−0.5(2π)N

Γ (N + 0.5)

∞�

−∞
|Γ (0.5−N + it)| dt.

From the recurrence relation for the Γ -function we obtain

Γ (0.5−N + it) =
Γ (0.5 + it)

(−0.5 + it)(−1.5 + it)(−2.5 + it) . . . (−0.5−N + 1 + it)
,

Hence

|Γ (0.5−N + it)| ≤ |Γ (0.5 + it)|∏N−1
n=0 (0.5 + n)

.

From the above and estimate (5.20) we have∣∣∣ 0.5−N+i∞�

0.5−N−i∞
x−sf(s) ds

∣∣∣
� xN−0.5 (Qq)N−0.5(2π)N

Γ (N + 0.5)
∏N−1
n=0 (0.5 +N)

∞�

−∞
|Γ (0.5 + it)| dt.

Since

xN−0.5 (Qq)N−0.5(2π)N

Γ (N + 0.5)
∏N−1
n=0 (0.5 + n)

→ 0

as N → ∞, for each x ∈ (0,∞), and the integral
	∞
−∞ |Γ (0.5 + it)| dt is

convergent, we have

(5.21)

0.5−N+i∞�

0.5−N−i∞
x−sf(s) ds→ 0

as N → ∞, for each x ∈ (0,∞). Applying (5.12), (5.13) and (5.21), we
obtain

(5.22)
∞∑
n=1

δ(n)e−nx =
∞∑
k=0

(ck + dk lnx)xk

when x ∈ (0,∞), where the series on the right-hand side is convergent for
all x ∈ (0,∞). From this convergence we obtain the following identity for
0 < x < 0.5:

(5.23)
∞∑
n=1

δ(n)e−nx = f(x) + g(x) lnx,
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where f(z) =
∑∞

k=0 ckz
k and g(z) =

∑∞
k=0 dkz

k are holomorphic functions
in the disk |z| < 1/2. Thus, the power series

∑∞
n=1 δ(n)wn can be continued

beyond the unit circle. Hence by Theorem 5.3, δ(n) is a periodic sequence
from some number M on. Denote by U the period of this sequence. By
Dirichlet’s theorem the sequence bh = qUh + 1 contains infinitely many
prime numbers. Suppose that p1 = qUh1 + 1 and p2 = qUh2 + 1 are primes
with h2 > h1 and p2 > p1 > M . Then p1p2 is of the form qUh + 1 and is
greater than M . By (5.11) we obtain

δ(p1) = −e(l/q), δ(p1p2) = e(l/q),

contradicting the periodicity of δ(n).

Now we can prove the main theorem 1.1.

Proof of Theorem 1.1. Assume that |M(e(l/q)e−t)| �ε t
−ε as t → 0+,

for any ε. Then the function
	∞
0 ts−1M(e(l/q)e−t)dt is holomorphic in the

half-plane {<s > 0}. Hence the Dirichlet series
∑∞

n=1 µ(n)e(l/q)n−s can be
continued to a holomorphic function in {<s > 0}. This contradicts Lem-
ma 5.4. Thus we obtain (1.1). Using the Abel transform, from (1.1) we
obtain (1.2).

6. Theorems on the behaviour of M(z) under some conditions.
The following lemma can be used to get effective bounds of the exponent a
in (1.1), (1.2).

Lemma 6.1. Let ψ be a character modulo q. Let l ∈ Z and ρ0 = β0 + iγ0

be a zero of L(s, ψ) such that∑
d|q

µ(d)τ(ψ̄, ld)d−ρ0 6= 0.

Suppose that L(ρ0, χ) 6= 0 for any character χ modulo q that is not equal
to ψ. Then

(6.1) M(e(l/q)r) = Ω((1− r)−β0).

Proof. Under the conditions of the lemma the function∑
χ 6=ψ (mod q)

(∑
d|q

τ(χ̄, ld)
µ(d)

ds

)
1

L(s, χ)

is analytic at ρ0, and the function(∑
d|q

τ(ψ̄, ld)
µ(d)

ds

)
1

L(s, ψ)
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has a pole at ρ0. Thus the function

∞∑
n=1

µ(n)e(ln/q)

ns
=

1

φ(q)

∑
χ (mod q)

(∑
d|q

τ(χ̄, ld)
µ(d)

ds

)
1

L(s, χ)

has a pole at ρ0. Applying Theorem 2.4 to α(n) = µ(n), σ0 + it0 = β0 + iγ0,
we obtain (6.1).

Let us consider the behaviour of M(z) where z tends to e(l/q) with
q ≤ 100 along the radius of the unit disk. Using computer we can check the
conditions of Lemma 6.1.

Define

ξ(s, χ) =

(
π

k

)−(s+δ)/2

Γ

(
s+ δ

2

)
L(s, χ),

where χ is a primitive character modulo q, δ = 0 if χ is even, and δ = 1 if
χ is odd. Note that in the half-plane {<s > 0} the equation ξ(s, χ) = 0 is
equivalent to L(s, χ) = 0.

In [MV, Theorem 10.7, p. 332], there is an identity that in the case
s = 1/2 + iγ, z = 1 can be written in the form

(6.2) ξ(s, χ) = I + τ Ī,

where

I =
∞∑
n=1

χ(n)

(
q

πn2

)1/4+iγ/2

Γ

(
1

4
+ i

γ

2
,
πn2

q

)
if χ is even,(6.3)

I =

∞∑
n=1

nχ(n)

(
q

πn2

)3/4+iγ/2

Γ

(
3

4
+ i

γ

2
,
πn2

q

)
if χ is odd.(6.4)

In (6.3), (6.4) the incomplete Γ -function

Γ (a, b) =

∞�

b

ta−1e−t dt

is used.

Omitting some technical estimates we state the following estimate of the
error term:

Lemma 6.2. For γ ∈ R the following decomposition is true:

ξ

(
1

2
+ iγ, χ

)
= IN + τ ĪN +RN ,
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where

IN =
N∑
n=1

χ(n)

(
q

πn2

)1/4+iγ/2

Γ

(
1

4
+ i

γ

2
,
πn2

q

)
if χ is even,

IN =
N∑
n=1

χ(n)n

(
q

πn2

)3/4+iγ/2

Γ

(
3

4
+ i

γ

2
,
πn2

q

)
if χ is odd,

and

|RN | ≤
(

q

πN

)2

e
−π
q
N2

.

This lemma gives us an expression of ξ by rapidly convergent series. For
q ≤ 100 we need no more than 28 steps to prove that ξ(ρ, χ) 6= 0 where ρ is
a zero of some L-function in the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof is conducted with the help of computer.
For each 1 < q ≤ 100 we find a character ψ modulo q and ρ = 1/2 + iγ such
that:

• ρ is a zero of L(s, ψ),

• for l satisfying (l, q) = 1,

(6.5)
∑
d|q

µ(d)τ(ψ̄, ld)d−ρ0 6= 0,

• L(ρ, χ) 6= 0 for other characters χ modulo q.

Denote by χk the principal character modulo k for k > 1, and by χ1 the
function that equals 1 identically.

If χ is a primitive character modulo q, then for <s > 0,

(6.6) L(ρ, χ) 6= 0 ⇔ ξ(ρ, χ) 6= 0.

If χ is not a primitive character modulo q, we consider a primitive charac-
ter χ′ modulo q1, with q1 | q, that induces χ. In this case χ = χ′χq. Note
that for <s > 0,

L(s, χ) 6= 0 ⇔ L(s, χ′) 6= 0 ⇔ ξ(s, χ′) 6= 0.

Hence, examination of L(ρ, χ) 6= 0 for non-primitive χ is reduced to exami-
nation of this condition for primitive χ′.

For <s > 0,

L(s, χk) 6= 0 ⇔ ζ(s) 6= 0,

and ζ(s) 6= 0 if |=s| < 14.

If q ≤ 100, 8 - q, 27 - q, then we apply Lemma 6.1 to the character χq
and to the zero ρ0 = 0.5 + i14.13472514173469 . . . of ζ(s).
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If q = 8k, where 2 - k, then we apply Lemma 6.1 to the character
χχq, where χ is a non-principal character modulo 4, and to the zero ρ0 =
0.5 + i6.02094890469759 . . . of L(s, χ).

If q = 16k, where 2 - k, then we apply Lemma 6.1 to the character
χχq, where χ is a primitive character modulo 8, and to the zero ρ0 = 0.5 +
i3.57615483678758 . . . of L(s, χ).

If q = 32k, where 2 - k, then we apply Lemma 6.1 to the character χχq,
where χ is a primitive character modulo 16 defined by χ(5) = i, χ(15) = −1,
and to the zero ρ0 = 0.5 + i3.34621940663383 . . . of L(s, χ).

If q = 64, then we apply Lemma 6.1 to the character χ modulo 32 defined
by χ(5) = eiπ/4, χ(31) =−1, and to the zero ρ0 = 0.5+i1.72096909693815 . . .
of L(s, χ).

If q = 27k, where 3 - k, then we apply Lemma 6.1 to the character χχq,
where χ is a character modulo 9 defined by χ(2) = eiπ/3, and to the zero
ρ0 = 0.5 + i4.57573576242485 . . . of L(s, χ).

If q = 81, then we apply Lemma 6.1 to the character χ modulo 27 de-
fined by χ(2) = eπi/9, and to the zero ρ0 = 0.5 + i2.86051675138494 . . . of
L(s, χ).

In all cases the assumptions of Lemma 6.1 are satisfied.

By Lemma 6.1 we obtain (1.3). Using the Abel transform, from (1.3) we
obtain (1.4). The theorem is proved.

The computations were conducted using a program written in GNU com-
piler collection.
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