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1. Introduction. The question of how many rational points a curve
over a finite field can have is not only interesting from a purely number-
theoretical perspective, but also has become an important question for ap-
plications in computer science, coding theory, cryptography and other areas
of discrete mathematics. Curves with many rational points have been suc-
cessfully applied in the construction of codes, sequences, hash functions,
secret sharing and multiparty computation schemes and other combinato-
rial objects. One of the landmark results in this direction is the work of
Tsfasman–Vlădut–Zink [9], where sequences of curves of increasing genus
with good asymptotic behavior and a construction of codes from curves
with many points due to Goppa are combined to construct codes better
than the Gilbert–Varshamov bound. This was a big surprise, as the Gilbert–
Varshamov bound had resisted any attempt of improvement for many years.

Although several such sequences of curves with the same good asymp-
totic behavior exist, some turn out to be more suitable for applications than
others. Recent work has shown that various additional properties enjoyed by
the curves in some of these sequences turn out to be very beneficial for appli-
cations. These additional properties satisfied by the curves in the sequence
reflect themselves in further features or better parameters of the objects con-
structed from them. For instance, Stichtenoth [8] showed how sequences of
curves with many points, together with the additional property that each of
them is a Galois covering of the first one, can be used to construct self-dual
and transitive codes attaining the Tsfasman–Vlădut–Zink bound. Also, in [4]
Cascudo, Cramer and Xing showed how, in the construction of arithmetic
secret sharing schemes from sequences of curves with many rational points,
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a better control on the d-torsion in the class group of the curves involved
leads to better bounds for the constructed schemes (see also [1]).

With these and similar applications in mind, we construct in this paper,
over any non-prime finite field F`, sequences of curves with increasing genus
and many rational points, such that each curve in the sequence is a Galois
covering of the first one. Instead of the geometric language of curves over
finite fields, we will use the equivalent language of algebraic function fields
with finite constant fields. So, more precisely, over any non-prime finite field
F` we will construct sequences of function fields N = (N1 ⊂ N2 ⊂ · · · ) such
that for each i > 0 the extension Ni/N1 is a Galois extension and moreover
N has a large limit. For a more precise statement, see Theorem 1.1 below.

Let G = (G1 ⊂ G2 ⊂ · · · ) be a sequence of function fields with full
constant field F`. Such a sequence is called a tower over F`. Let f(x, y) be in
F`[x, y]. We say that the tower G satisfies the equation f(x, y) = 0 recursively
if for all i ≥ 1 there exists xi ∈ Gi such that

• x1 is transcendental over F`,
• Gi = Gi−1(xi) and f(xi−1, xi) = 0 for i > 1.

Such a tower is simply called a recursive tower. The main ingredients for this
paper are the recursive towers that were introduced by the authors in [2].

For a function field F over F` we denote by N(F ) the number of rational
places and by g(F ) its genus. Let q be a power of a prime p, 1 ≤ k < n be
integers such that gcd(k, n − k) = 1, and let ` = qn. In [2] we introduced
and studied the towers F = (F1 ⊂ F2 ⊂ · · · ) over F` satisfying the recursive
equation

(1)
y

xqk
+

yq

xqk+1 + · · ·+ yq
n−k−1

xqn−1 +
yq

n−k

x
+
yq

n−k+1

xq
+ · · ·+ yq

n−1

xqk−1 = 1.

We showed that the limit

λ(F) := lim
i→∞

N(Fi)

g(Fi)

of this tower satisfies

(2) λ(F) ≥ 2

(
1

qk − 1
+

1

qn−k − 1

)−1
.

Consider a tower G = (G1 ⊂ G2 ⊂ · · · ) over F`. Assume that for all i ≥ 1
the extensions Gi+1/Gi are separable (hence so are the extensions Gi/G1).
Let G̃i be the Galois closure of the extension Gi/G1 and assume that F` is
algebraically closed in all G̃i. The tower G̃ = (G̃1 ⊂ G̃2 ⊂ · · · ) is called the
Galois closure of G.

In this paper we investigate the Galois closure of the tower F and of
some of its subtowers introduced in [2]. We investigate the splitting and
ramification behavior of places in these towers, study the Galois groups
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of the extensions and show that each of these Galois towers has a limit
satisfying inequality (2). Along the way, we also show that there exists a
finite extension E/F1 such that each step in the composite tower EF =
(EF1 ⊂ EF2 ⊂ · · · ) is Galois with an elementary abelian p-group as Galois
group. We collect the main results of this paper in the following theorem:

Theorem 1.1. Let q be a prime power. For any integer n > 1 and
1 ≤ k < n with gcd(k, n− k) = 1 there exists a tower N = (N1 ⊂ N2 ⊂ · · · )
over F`, where ` = qn, such that

(i) N1 = F`(z1) is a rational function field.
(ii) For each i ≥ 2, the extension Ni/N1 is a Galois extension having

as Galois group an extension of a subgroup of GLn−1(Fq) by a
p-group. The extension Ni/N2 is a p-extension.

(iii) The place [z1 = −1] of N1 splits completely in N , i.e., it splits
completely in each extension Ni/N1.

(iv) The only places of N1 which are ramified in N are P0 := [z1 = 0]
and P∞ := [z1 = ∞], and they are weakly ramified (i.e., their
second ramification groups are trivial).

(v) For each i > 1, the extension Ni/N2 is 2-bounded; more precisely,
for any place P of N2, the ramification index e(P ) and different
exponent d(P ) of P in the extension Ni/N2 satisfy

d(P ) = 2(e(P )− 1).

(vi) Let ei(P0) and ei(P∞) denote the ramification indices in the exten-
sion Ni/N1 of the places P0 and P∞ respectively and assume that
i > 1. Then

ei(P0) = (qk − 1)q(i−1)(n−k)−kpε1(i),

ei(P∞) = (qn−k − 1)q(i−1)(n−k)pε2(i),

with ε1(i), ε2(i) ≥ 0.
(vii) The limit of the tower satisfies

λ(N ) ≥ 2

(
1

qk − 1
+

1

qn−k − 1

)−1
.

2. Preliminaries. In this section we establish some preliminaries and
recall some notations and results from [2].

Throughout the rest of the paper, q will be a power of a prime p and
` = qn for some n ≥ 2. Let E/F be a Galois extension of function fields
over F`. Let P be a place of F , and Q a place of E lying over P . We say
that Q|P is weakly ramified if G2(Q|P ) = {e}, where G2(Q|P ) denotes the
second ramification group of Q|P . The Galois extension E/F is said to be
weakly ramified if, for all places P of F and all places Q lying above P , Q|P
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is weakly ramified. A weakly ramified p-extension E/F is 2-bounded. For
such an extension, for every place P of F and every place Q above P we
have d(Q|P ) = 2(e(Q|P )− 1).

For convenience we define for any positive integer i the trace polynomial

Tri(x) = x+ xq + xq
2

+ · · ·+ xq
i−1
.

The trace polynomials Tri(x) are examples of q-additive polynomials. The
following lemma will be useful later on:

Lemma 2.1. Let i and j be positive integers.

(i) We have
Tri(Trj(x)) = Trj(Tri(x)).

More generally, any two q-additive polynomials with coefficients in
Fq commute.

(ii) Setting r = gcd(i, j), for any field L ⊃ Fq we have

L(Tri(x),Trj(x)) = L(Trr(x)) ⊆ L(x).

In particular, if gcd(i, j) = 1, then L(Tri(x),Trj(x)) = L(x).

Proof. The first part follows by a direct computation. For the second
part we assume without loss of generality that i > j (the case i = j is
trivial). Then

Tri(x) = Tri−j(x) + (Trj(x))q
i−j
,

so
L(Tri(x),Trj(x)) = L(Trj(x),Tri−j(x)).

The claim then follows from the properties of the Euclidean Algorithm.

The second claim of the lemma is equivalent to saying that Trr(x) can be
expressed in terms of Tri(x) and Trj(x). This can be shown more explicitly:
Let a and b be positive integers such that ai−bj = r (note that such a and b
always exist). Then Trai(x)− Trbj(x)q

r
= Trr(x), which implies that

(3)

a−1∑
α=0

Tri(x)q
αi −

( b−1∑
β=0

Trj(x)q
βj
)qr

= Trr(x).

Now let 0 < k < n with gcd(n, k) = 1 be given. Let a, b be non-negative
integers such that

(4) ak − b(n− k) = 1.

Suppose x and y satisfy equation (1) and let

R :=
y

xqk
and S :=

yq
n−k

x
.

The quantities R and S occur in (1):
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y

xqk︸︷︷︸
R

+
yq

xqk+1 + · · ·+ yq
n−k−1

xqn−1︸ ︷︷ ︸
Rqn−k−1

+
yq

n−k

x︸ ︷︷ ︸
S

+
yq

n−k+1

xq
+ · · ·+ yq

n−1

xqk−1︸ ︷︷ ︸
Sqk−1

= 1.

Therefore we obtain

(5) Trn−k(R) + Trk(S) = 1.

Proposition 2.2. The function field F`(R,S) is a rational function
field. More precisely, letting

u :=
a−1∑
α=0

Rq
αk

+
( b−1∑
β=0

Sq
β(n−k)

)q
,

we have R = Trk(u)− b, S = −Trn−k(u) + a, and hence F`(R,S) = F`(u).

Proof. We compute

Trk(u) =
a−1∑
α=0

Trk(R)q
αk

+
( b−1∑
β=0

Trk(S)q
β(n−k)

)q
=

a−1∑
α=0

Trk(R)q
αk

+
( b−1∑
β=0

(1− Trn−k(R))q
β(n−k)

)q
by (5)

= Trak(R)− Trb(n−k)(R)q + b

= R+ b by (4).

Similarly Trn−k(u) = −S + a. It follows that F`(R,S) = F`(u).

From the above it is clear how to express u explicitly in terms of x and y.
Note that

(6)

yq
n−1 =

Sq
k

R
= −Trn−k(u)q

k − a
Trk(u)− b

, xq
n−1 =

S

Rqn−k
= − Trn−k(u)− a

Trk(u)qn−k − b
.

It was shown in [2, Lemma 2.9] that F`(xq
n−1, yq

n−1) = F`(u). Therefore,
one can present u not only as a rational expression in x and y, but also in
xq

n−1 and yq
n−1, say

u = φ(xq
n−1, yq

n−1).

Now let F = (Fi)i>0 be a tower over F`, where F1 = F`(x1) is a rational
function field, and for all i > 1 there exist xi ∈ Fi such that Fi = Fi−1(xi)
with

(7)
xi

xq
k

i−1

+
xqi

xq
k+1

i−1

+ · · ·+
xq

n−k−1

i

xq
n−1

i−1
+
xq

n−k

i

xi−1
+ · · ·+

xq
n−1

i

xq
k−1

i−1

= 1.

Thus F satisfies the recursion given by (1).
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Defining ui := φ(xq
n−1
i , xq

n−1
i+1 ) and zi := −xq

n−1
i , we see from (6) that

(8) zi = −xq
n−1
i =

Trn−k(ui)− a
Trk(ui)q

n−k − b
=

Trn−k(ui−1)
qk − a

Trk(ui−1)− b
.

Consider the subtowers E = (Ei)i>0 and H = (Hi)i>0 of F where Ei =
F`(u1, . . . , ui) = F`(z1, . . . , zi+1) and Hi = F`(z1, . . . , zi). Note that for i > 0
we have Ei = Hi+1. See Figure 1 for a graphical overview of the fields
occurring in F , E and H. From (8) we see that the tower E satisfies a
recursive equation. In [2, equation (38)] we gave a recursive equation satisfied
by the tower H.

F

H, EF4 = E3(x1)

H4 = E3 = F`(u1, u2, u3)

K(u2, u3)

K(u3)

F3 = E2(x1)

H3 = E2 = F`(u1, u2)

F`(u2)

F`(z3)

F2 = E1(x1)

H2 = E1 = F`(u1)

F`(z2)

F1 = F`(x1)

H1 = F`(z1)

Fig. 1. The towers F = (Fi)i>0, E = (Ei)i>0 and H = (Hi)i>0

Remark 2.3. It was shown in [2] that Ei(x1) = Fi+1. This means that
the tower F can be seen as the composite of the tower H and the field F1.

Remark 2.4. Let F be a tower satisfying a recursion f(x, y) = 0. Define

the dual polynomial f̂(x, y) := f(y, x). A tower F̂ satisfying the recursion

f̂(x, y) = 0 is called a dual tower of F .

Let Ê be a dual tower of the tower E defined above. Then E and Ê have
very similar behavior. Equation (8) implies that Ê satisfies the recursive
equation

(9)
Trk(ur)− b

Trn−k(ur)q
k − a

=
Trk(ur−1)

qn−k − b
Trn−k(ur−1)− a

.
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This equation is obtained from (8) by interchanging both k with n− k and
a with b.

Remark 2.5. If gcd(n−k, p) = 1, we can choose a ≡ 0 (mod p) in equa-
tion (4). The corresponding choice of b will satisfy b(n− k) ≡ −1 (mod p).
Equation (8) then gets the form

Trn−k(ui+1)

Trk(ui+1)q
n−k + α

=
Trn−k(ui)

qk

Trk(ui) + α
,

with α := (n− k)−1 ∈ Fp. In this form the subtower E ⊂ F appeared in [2].

Next we collect some facts about the tower H.

Proposition 2.6. The place [z1 = −1] of H1 splits completely in H.

Proof. This follows from [2, Cor. 3.2] and the fact that z1 = −xq
n−1

1 .

While investigating ramification, we replace the constant field F` by its
algebraic closure K := F`. Moreover, for completions, since the place at
which we complete is clear from the context, we do not specify it explicitly in
the notation. A place and the corresponding maximal ideal of the valuation
ring in the completion are by slight abuse of notation denoted by the same
symbol.

Proposition 2.7. Let i > 0, and Q be a place of Hi; let P = Q∩H1 be
its restriction to H1. If Q|P is ramified, then one of the following holds:

(1) There exists 1 ≤ m < i such that z1(Q) = · · · = zm(Q) = 0 and
zm+1(Q) = · · · = zi(Q) =∞. Completing various fields at Q and its

restrictions, there is an intermediate field L of the extension Ĥi/Ĥ1

such that L/Ĥ1 is cyclic of degree qk − 1 and Ĥi/L can be divided
into 2-bounded elementary abelian p-extensions.

(2) One has z1(Q) =∞ and e(Q|P ) = q(n−k)(i−1). Let t0 6= 0 be chosen

such that Trn−k(t0)
qk−z1 Trk(t0) = 0 and choose a place P ′ of K(t0)

such that t0(P
′) =∞. Suppose that there exists a place Q′ of Hi(t0)

lying above both P ′ and Q.

(a) Completing various fields at Q′ and its restrictions, there is an

intermediate field G1 of the extension K̂(t0)/K̂(z1) such that

G1/K̂(z1) is cyclic of degree qn−k − 1 and K̂(t0)/G1 is a 2-
bounded elementary abelian p-extension.

(b) Letting Gj be G1Ĥj for 1 ≤ j ≤ i, the extensions Gj+1/Gj are
2-bounded elementary abelian p-extensions for 1 ≤ j < i.

Proof. The fact that the ramification locus of the tower H only consists
of the zero and the pole of z1 is a direct consequence of [2, Proposition 2.6].
The first part about the zero of z1 follows from [2, Propositions 3.5, 3.6 and



170 A. Bassa et al.

Figure 14]. The second part can be shown very similarly to these propo-
sitions. The only difference with [2, Propositions 3.5 and 3.6] is that the

element t0 satisfies the equation Trn−k(t0)
qk − z1 Trk(t0) = 0, while the

element u mentioned there satisfies Trn−k(u)q
k − z2 Trk(u) = a− bz2.

3. The Galois closure of the tower H. Let us denote byNi the Galois
closure of the extension Hi/H1. It follows easily that F` is algebraically
closed in all Ni, since there exists a rational place of H1 splitting completely
in the extension Hi/H1 (see [6, Proposition 14]). By definition, the tower
N = H̃ = (N1 ⊂ N2 ⊂ · · · ) is the Galois closure of H (over N1 = H1). It is
a Galois tower, that is, each extension Ni/N1 is a Galois extension. We will
now study the limit of N and show that it satisfies inequality (2).

The field Ni is obtained by taking the composite of several conjugates
σ(Hi) of Hi, with σ an element of the absolute Galois group of H1. Since
the ramification behavior in the extension σ(Hi)/H1 is similar to that of
Hi/H1, the analysis of the tower H in [2] as described in Proposition 2.7
will be very useful. We start by studying the Galois closure of the extension
H2/H1. We define the polynomials

f(T ) := −z−11 Trn−k(T ) + Trk(T )q
n−k

,(10)

g(T ) := Trn−k(T )q
k − z1 Trk(T ).(11)

Proposition 3.1. The Galois closure of H2/H1 is equal to the composite
of H2 and the splitting field of f(T ) over H1.

Proof. The Galois closure of H2/H1 is obtained by adjoining to H2 all

roots of the polynomial Trn−k(T )− z1 Trk(T )q
n−k − a+ bz1, or equivalently,

all roots of the polynomial f(T ) + az−11 − b. However, the differences of two
roots u, v of f(T ) + az−11 − b are exactly the roots of f(T ).

The polynomial g(T ) plays the same role for a dual tower of H as the
polynomial f(T ) does for H. We will show in Proposition 3.4 that the split-
ting fields of f(T ) and g(T ) are the same, which will be used later. To show
this we need the following result (see [7, Theorem 1.7.11]):

Proposition 3.2. Let F be a field containing Fq and h(T ) =
∑t

i=0 aiT
qi

∈ F [T ] be a q-additive polynomial with a0 6= 0 and at 6= 0. Define had(T ) :=∑t
i=0 a

qt−i

i T q
t−i

. Then the roots of h(T ) and had(T ) generate the same ex-
tension of F .

A direct consequence of this proposition is that the extension of Fq(z1)
generated by the roots of f(T ) is the same as the extension of Fq(z1) gen-
erated by the roots of

(z1f)ad(T ) = −(T q
n−1

+ · · ·+ T q
k
) + zq

k−1

1 T q
k−1

+ · · ·+ zq1T
q + z1T.
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To relate the roots of f(T ) with those of g(T ), we will use the following
lemma:

Lemma 3.3. Let t be a root of g(T ). Then Trk(t) is a root of (z1f)ad(T ).

Proof. Since g(t) = 0, we have Trn−k(t)
qk = z1 Trk(t). Applying Trk and

using Lemma 2.1, we obtain

Trn−k(Trk(t))
qk = Trk(z1 Trk(t)).

This proves that Trk(t) is a root of (z1f)ad(T ).

Proposition 3.4. The splitting fields of the polynomials f(T ) and g(T )
over H1 are the same.

Proof. Using Proposition 3.2 we are done once we show that the roots of
g(T ) and (z1f)ad(T ) generate the same extension. We denote by V , respec-
tively W , the Fq-vector space consisting of the qn−1 roots of g(T ), respec-
tively of (z1f)ad(T ). Lemma 3.3 gives rise to an Fq-linear map ψ from V
to W defined by ψ(t) = Trk(t). The proposition follows if we show that the
map ψ has trivial kernel. Suppose therefore that Trk(t) = 0. Since g(t) = 0
as well, one obtains Trn−k(t) = 0. Using (3) and (4), we see that t = 0.

Remark 3.5. As an immediate consequence of Propositions 3.1 and 3.4,
all roots of f(T ) and g(T ) are contained in Ni for i ≥ 2.

These facts will be used to determine the ramification behavior in the
tower N . Let P be a place of H1 ramified in Ni/H1. Since the sets of places
of H1 that ramify in Ni/H1 and Hi/H1 agree, P is either the pole or the

zero of z1 by Proposition 2.7. Let Q̃ be a place of Ni lying above such a
place P . We have the following proposition about the ramification of Q̃|P :

Proposition 3.6. Completing Ni at Q̃, there exists an intermediate field

L of N̂i/N̂1 such that the extension L/N̂1 is cyclic and the extension N̂i/L

is a 2-bounded p-extension. If P is the zero of z1, then [L : N̂1] = qk − 1. If

P is the pole of z1, then [L : N̂1] = qn−k − 1.

Proof. Denote by Q1, . . . , Qs be the restrictions of Q̃ to the various con-
jugates σ1(Hi), . . . , σs(Hi) of Hi. We will consider the two cases z1(P ) = 0
and z1(P ) =∞ separately.

Case z1(P ) = 0. From the first part of Proposition 2.7 we see that

after completion at Q̃, the extensions σ̂j(Hi)/Ĥ1 all can be divided into
a cyclic part of degree qk − 1 and steps of 2-bounded elementary abelian
p-extensions. Taking composites we see (using Abhyankar’s lemma and [6,

Proposition 12]) that there exists a field L ⊂ N̂i such that the extension

L/Ĥ1 is cyclic of degree qk − 1 and the extension N̂i/L can be divided into
2-bounded elementary abelian p-extensions.
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Case z1(P ) =∞. Let t0 be a non-zero root of g(T ). By Remark 3.5 the
element t0 is contained in N2 and hence in Ni. Let P ′ be a place of H1(t0)
lying above P such that t0(P

′) =∞, and R̃ a place of Ni lying above P ′. We
denote the restrictions of R̃ to the conjugates σ1(Hi), . . . , σs(Hi) of Hi by
R1, . . . , Rs and the restrictions to σ1(Hi(t0)), . . . , σs(Hi(t0)) by R′1, . . . , R

′
s.

The second part of Proposition 2.7 implies that after completion at R̃, the

extensions ̂σj(Hi(t0))/Ĥ1 all can be divided into a cyclic part of degree
qn−k − 1 and steps of 2-bounded elementary abelian p-extensions. Again,
using Abhyankar’s lemma and [6, Proposition 12], we obtain the desired
result for the place R̃. Since Ni/H1 is a Galois extension and Q̃ and R̃ lie
above the same place P of H1, the same holds for Q̃.

Proposition 3.7. Let ei(P0) and ei(P∞) denote the ramification indices
in the extension Ni/N1 of the places P0 and P∞ respectively. Then for i > 1
we have

ei(P0) = (qk − 1)q(i−1)(n−k)−kpε1(i),

ei(P∞) = (qn−k − 1)q(i−1)(n−k)pε2(i)

with ε1(i), ε2(i) ≥ 0.

Proof. We first consider the case of the place P0. We will give a lower
bound for the ramification by estimating the highest ramification index
among all places of Hi lying over P0. Since Ni/H1 is a Galois extension,
the ramification index e(Q̃|P0) does not depend on the choice of the place
Q̃ of Ni lying over P0. Without loss of generality we may therefore assume
that z2(Q̃) =∞.

Let Q be the restriction of Q̃ to Hi and extend the constant field to
K := F`. We will use the notation from [2], especially the notation occurring
in Figures 9 and 11 there. The fields KHi there were completed at Q, and an

intermediate field G1 of K̂H2/K̂(z2) was introduced such that the extension

G1/K̂(z2) is cyclic of degree qn−k − 1, while the extension K̂H2/G1 is a

2-bounded Galois p-extension. Finally the field Gi = G1K̂Hi was defined.

Now let us denote by Q2 the restriction of Q to K̂H2. We deduce from
[2, Figures 9 and 11] that

e(Q|P0) = e(Q|Q2)e(Q2|P0) = e(Q|Q2)q
n−k−1(qk − 1).

Further denote the restrictions of Q to Gi by Si. Also by [2, Figures 9 and 11]
we have e(Si|S1) = q(i−2)(n−k) and e(Q2|S1) = qk−1. Since

e(Q|Q2)q
k−1 = e(Q|Q2)e(Q2|S1) = e(Q|S1) = e(Q|Si)e(Si|S1)

= e(Q|Si)q(i−2)(n−k),

and the extensions K̂H2/G1 and Gi/G1 are 2-bounded Galois p-extensions,
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we see that e(Q|Q2) is the product of q(i−2)(n−k)−k+1 with a power of the
characteristic p. Combining the above, we see that e(Q|P0) is a power of p
times (qk − 1)q(i−1)(n−k)−k. This proves the first part of the proposition.

For the place P∞, we see from Proposition 3.6 that (qn−k − 1) | ei(P∞).
On the other hand, since any place of Hi lying above P∞ has ramification
index (qn−k)i−1, we have q(n−k)(i−1) | ei(P∞). Hence (qn−k − 1)q(n−k)(i−1)

divides ei(P∞).

Remark 3.8. Note that by Proposition 3.6 the extension Ni/H1 is
weakly ramified.

Proposition 3.9. We have

g(Ni)− 1

[Ni : N1]
≤ 1

2

(
1

qk − 1
+

1

qn−k − 1

)
.

Proof. Denote by P0 (respectively P∞) the zero (respectively pole) of
z1 in H1. We will use the Riemann–Hurwitz formula to estimate the genus
of Ni. Since only the pole and zero of z1 ramify in the extension Ni/H1, we
only need to estimate the different of these places in the extension. Let Q̃ be
a place of Ni lying above P0. After completing denote by S the restriction
of Q̃ to the intermediate field L from Proposition 3.6. We obtain

e(Q̃|P0) = e(Q̃|S)e(S|P0) = e(Q̃|S)(qk − 1),

d(Q̃|P0) = e(Q̃|S)d(S|P0) + d(Q̃|S) = e(Q̃|S)(qk − 2) + 2e(Q̃|S)− 2

= qke(Q̃|S)− 2.

Similarly for a place Q̃ above P∞ we find

e(Q̃|P∞) = e(Q̃|S)(qn−k − 1),

d(Q̃|P∞) = e(Q̃|S)(qn−k − 2) + 2e(Q̃|S)− 2 = qn−ke(Q̃|S)− 2.

We see that

d(Q̃|P0)

e(Q̃|P0)
≤ 1 +

1

qk − 1
,(12)

d(Q̃|P∞)

e(Q̃|P∞)
≤ 1 +

1

qn−k − 1
.(13)

From (12) and (13) together with the Riemann–Hurwitz genus formula and
the fundamental equality for the extension Ni/H1, the result follows.

We immediately obtain:

Corollary 3.10. The limit of the tower N satisfies

λ(N ) ≥ 2

(
1

qk − 1
+

1

qn−k − 1

)−1
.
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Proof. By Proposition 2.6, the place [z1 = −1] of H1 splits completely
in the tower H and hence also in N . This together with Proposition 3.9
implies the result.

At this point we have proved all statements of Theorem 1.1 except (ii).

Remark 3.11. Estimates for the limits of the Galois closures Ẽ and F̃ of
the towers E and F can easily be derived from the above. The lower bound
given in Corollary 3.10 holds for all of them. More precisely, the tower Ẽ
is a subtower of N , since the Galois closure is now taken over E1 = H2.
Therefore λ(Ẽ) ≥ λ(N ). Lifting the tower N by adjoining the element x1
gives a Galois tower over F1. By a direct computation, the limit of this
lift is easily seen to satisfy the same lower bound as that given for λ(N )
in Corollary 3.10. Since F̃ is a subtower of this lifted tower, its limit also
satisfies the same lower bound.

4. A recursive tower with Galois steps. In [5] and [3], recursive
towers over quadratic and cubic finite fields were introduced, where every
step is Galois. In this section we obtain an analogous result over any non-
prime finite field. More precisely, we construct a recursive subtower (H ′2 ⊂
H ′3 ⊂ · · · ) of the tower N such that for any i > 1 the extension H ′i+1/H

′
i

is a Galois extension with elementary abelian p-group as Galois group, and
such ramification in H ′i+1/H

′
i is 2-bounded.

Starting with the recursive tower H = (H1 ⊂ H2 ⊂ · · · ) as defined in
Section 2 we will introduce an extension field M/H1 such that the composite
tower H′ = (H1 ⊂ H ′2 ⊂ H ′3 ⊂ · · · ) with H ′i = M ·Hi has Galois steps and
its limit satisfies inequality (2).

Recall that for i > 0 we have

zi =
Trn−k(ui)− a

Trk(ui)q
n−k − b

=
Trn−k(ui−1)

qk − a
Trk(ui−1)− b

.

Hence ui is a root of the polynomial

(14) Trn−k(T )− zi Trk(T )q
n−k − a+ zib ∈ F`(zi)[T ].

The extension F`(ui)/F`(zi) is not Galois, but by Proposition 3.1, the
Galois closure of F`(ui)/F`(zi) can be obtained by adjoining to F`(ui) all
roots of the polynomial

fi(T ) := −z−1i Trn−k(T ) + Trk(T )q
n−k

(15)

= Trn(T )− (1 + z−1i ) Trn−k(T )

= Trn(T )− Trn(ui)− (a+ b)

Trn−k(ui)− a
Trn−k(T ).
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Similarly, to obtain the Galois closure of the extension F`(ui+1)/F`(zi+1),
we need to adjoin all roots of

fi+1(T ) = Trn(T )− (1 + z−1i+1) Trn−k(T )(16)

= Trn(T )− Trn(ui)− (a+ b)

Trn−k(ui)q
k − a

Trn−k(T ).

We will show that for each root of fi(T ) we get (using ui) a root of the
polynomial fi+1(T ) and this will give a one-to-one correspondence between
roots of fi(T ) and fi+1(T ). This implies that by adjoining all roots of fi(T )
to a field containing ui, we get all roots of fi+1(T ). Hence, inductively, lifting
the tower H by adjoining all roots of f1(T ), we get a tower with Galois steps.
First we need a preparatory lemma:

Lemma 4.1. Assume that si is a root of fi(T ), i.e.,

Trn(si) = Trn−k(si)
Trn(ui)− (a+ b)

Trn−k(ui)− a
.

Then

(17)

(
Trk(si)

Trk(ui)− b

)qn−k
=

Trn−k(si)

Trn−k(ui)− a
and

(18) Trn−k(si)
qk = Trn−k(si)

Trn(ui)− (a+ b)

Trn−k(ui)− a
− Trk(si).

Proof. Since si is a root of fi(T ), we have

Trk(si)
qn−k = Trn−k(si)

(
Trn(ui)− (a+ b)

Trn−k(ui)− a
− 1

)
= Trn−k(si)

Trk(ui)
qn−k − b

Trn−k(ui)− a
.

This implies (17). Equation (18) follows, since

Trk(si) + Trn−k(si)
qk = Trn(si) = Trn−k(si)

Trn(ui)− (a+ b)

Trn−k(ui)− a
.

Lemma 4.2 (Shifting lemma). If si is a root of fi(T ), then

si+1 :=

(
Trk(si)

Trk(ui)− b

)q
− Trk(si)

Trk(ui)− b
∈ F`(ui, si)

is a root of fi+1(T ).

Proof. We compute

Trn(si+1) =

(
Trk(si)

Trk(ui)− b

)qn
− Trk(si)

Trk(ui)− b
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=

(
Trn−k(si)

Trn−k(ui)− a

)qk
− Trk(si)

Trk(ui)− b
by (17)

=

Trn−k(si)
Trn(ui)− (a+ b)

Trn−k(ui)− a
− Trk(si)

Trn−k(ui)q
k − a

− Trk(si)

Trk(ui)− b
by (18)

=
Trn(ui)− (a+ b)

Trn−k(ui)q
k − a

[
Trn−k(si)

Trn−k(ui)− a
− Trk(si)

Trk(ui)− b

]
=

Trn(ui)− (a+ b)

Trn−k(ui)q
k − a

[(
Trk(si)

Trk(ui)− b

)qn−k
− Trk(si)

Trk(ui)− b

]
by (17)

=
Trn(ui)− (a+ b)

Trn−k(ui)q
k − a

Trn−k(si+1).

Now from equation (16) we see that

fi+1(si+1) = Trn(si+1)−
Trn(ui)− (a+ b)

Trn−k(ui)q
k − a

Trn−k(si+1) = 0.

We have now established that each root of fi(T ) together with ui gener-
ates a root of fi+1(T ). Let Vi (respectively Vi+1) be the set of roots of fi(T )
(respectively fi+1(T )). Since fi(T ) and fi+1(T ) are separable and q-additive,
Vi and Vi+1 are (n− 1)-dimensional Fq-vector spaces. By Lemma 4.2,

ϕ : Vi → Vi+1, s 7→
(

Trk(s)

Trk(ui)− b

)q
− Trk(s)

Trk(ui)− b
,

is a map from Vi to Vi+1. Because ϕ is q-additive in s, it is in fact an
Fq-vector space homomorphism. Even more:

Lemma 4.3. The map ϕ : Vi → Vi+1 defined above is a bijection.

Proof. It is sufficient to show that ker(ϕ) = {0}. Let s ∈ Vi, i.e.,
fi(s) = 0. If

ϕ(s) =

(
Trk(s)

Trk(ui)− b

)q
− Trk(s)

Trk(ui)− b
= 0,

then Trk(s)/(Trk(ui)− b) ∈ Fq, implying that there exists α ∈ Fq such that

(19) Trk(s) = α(Trk(ui)− b).

By (17), we then have

Trn−k(s)

Trn−k(ui)− a
=

(
Trk(s)

Trk(ui)− b

)qn−k
= αq

n−k
= α,

so

(20) Trn−k(s) = α(Trn−k(ui)− a).
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Equations (19) and (20) imply that

Trn−k(Trk(s)) = αTrn−k(Trk(ui)− b) = αTrn−k(Trk(ui))− αb(n− k),

Trk(Trn−k(s)) = αTrk(Trn−k(ui)− a) = αTrk(Trn−k(ui))− αak.
Using the above and Lemma 2.1 we obtain

0 = Trn−k(Trk(s))− Trk(Trn−k(s))

= α
(
Trn−k(Trk(ui))− Trk(Trn−k(ui)) + ak − b(n− k)

)
= α(ak − b(n− k)) = α.

In the last step we used (4). Equations (19) and (20) now imply that
Trn−k(s) = 0 and Trk(s) = 0. Using (3) we conclude that s = 0.

By the shifting lemma (Lemma 4.2) and Lemma 4.3 all roots of fi(T )
together with ui generate all roots of fi+1(T ). Similarly all roots of fi+1(T )
together with ui+1 generate all roots of fi+2(T ), etc. So, lifting the tower
H by the splitting field of f1(T ) gives a tower with Galois steps (see also
Proposition 3.1). More formally, denote by M the splitting field of f1(T )
over H1 and define H ′i = M · Hi for i ≥ 2. Then we consider the tower
H′ = (H1 ⊂ H ′2 ⊂ H ′3 ⊂ · · · ). Note that by Remark 3.5, H′ is a subtower
of N and moreover N2 = H ′2. Note also that all roots of fi(T ) belong to H ′i.

Proposition 4.4.

(1) All steps in the tower H′ are Galois.
(2) The Galois group of the extension H ′2/H1 is an extension by an

elementary abelian p-group of a subgroup of GLn−1(Fq).
(3) For each i > 1, the extension H ′i+1/H

′
i is an elementary abelian

p-extension.

Proof. By Proposition 3.1 the field H ′2 = M · H2 is a Galois exten-
sion of H1. The extension M/H1, being the splitting field of the q-additive
polynomial f(T ) of degree qn−1, is Galois with Galois group a subgroup of
GLn−1(Fq). Since H2 = H1(u1) and u1 is a root of f(T ) + az−11 − b, and M
contains all roots of the additive polynomial f(T ), the Galois group of H ′2/M
is an elementary abelian p-group. This proves the second part of the propo-
sition. Similarly, since H ′i+1 = H ′i(ui) and ui is a root of fi(T ) + az−1i − b,
and H ′i contains all roots of fi(T ), the extension H ′i+1/H

′
i for each i > 1 is

Galois with an elementary abelian p-group as Galois group.

Remark 4.5. Note that (H ′2 ⊂ H ′3 ⊂ · · · ) is a recursive tower whose
steps are 2-bounded elementary abelian p-extensions (starting at a non-
rational function field). Let E := M(x1). The composite E · F = (E · F1 ⊂
E ·F2 ⊂ · · · ) is then also a tower whose steps are weakly ramified elementary
abelian p-extensions. Since both towers are subtowers of N , the bound from
Corollary 3.10 applies.
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Remark 4.6. The very same reasoning applies to a dual tower, after
replacing k and b by n− k and a, respectively. So a modified version of the
shifting lemma and of Proposition 4.4 apply in the dual direction.

The splitting fields over H1 of the polynomials f1(T ) = f(T ) and g(T )
from (10) and (11) are the same. Combining this with Lemma 4.2 and Re-
mark 4.6, we see that after adjoining the roots of f(T ) to F`(z1), all exten-
sions M(u−i, . . . , u1)/M(u−(i−1), . . . , u1) become Galois. Note that allowing
indices i ≤ 0 in (8) corresponds to a dual tower.

Since Hi ⊆ H ′i = M ·Hi ⊆ Ni for i > 1, it follows that the Galois closure
of H ′i/H1 is given by Ni (the Galois closure of the tower H′ is the tower N ).
This observation enables us to describe the Galois group of Ni/N1 and to
determine the ramification in the extensions H ′i+1/H

′
i. The Galois closure

of H ′i/H1 is obtained by taking the composite over H1 of σ(H ′i) where σ
runs over all embeddings over H1 of H ′i into a separable closure of H1. Since
H ′2/H1 is Galois, we have σ(H ′2) = H ′2 and hence this amounts to taking the
composite over H ′2 of the σ(H ′i). Since all extensions σ(H ′i)/H

′
2 are stepwise

Galois p-extensions, we see that the extension Ni/H
′
2 is a Galois p-extension.

So we have:

Proposition 4.7. The Galois group of Ni/N1 is an extension of a sub-
group of GLn−1(Fq) by a p-group.

We can now determine the ramification behavior in the extensions
H ′i+1/H

′
i, i > 1. We have Ni+1 ⊇ H ′i+1 ⊇ H ′i ⊇ H ′2. Since Ni+1/H

′
2 is

a p-extension, so is Ni+1/H
′
i. Moreover Ni+1/H

′
i is weakly ramified, hence

2-bounded by Remark 3.8. The 2-boundedness of H ′i+1/H
′
i now follows from

[6, Proposition 10]. Hence we obtain the following

Proposition 4.8. For all i > 1, the steps H ′i+1/H
′
i are 2-bounded Galois

p-extensions.

Collecting all results above, we finish the proof of Theorem 1.1.
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bound, IEEE Trans. Inform. Theory 52 (2006), 2218–2224.
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