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1. Introduction. In [Cl12], the first author introduced Euclidean qua-
dratic forms and ADC forms and proved some results about them. This
paper continues that study by looking more closely at the case of integral
quadratic forms.

1.1. Background and prior work. For a ring R, we write R• for
R \ {0}. Let R be a domain with fraction field K. A norm function on R
is a map | · | : R• → Z+ such that |x| = 1 ⇔ x ∈ R× and |xy| = |x| |y| for
all x, y ∈ R•. We set |0| = 0. A domain R endowed with a norm function is
called a normed ring. We shall assume that the characteristic of R is not 2.

We consider quadratic forms q = q(x1, . . . , xn) over R and always assume
them to be nondegenerate: disc q 6= 0. If (R, | · |) is a normed ring, such
a form q is Euclidean if, for all x ∈ Kn \ Rn, there exists y ∈ Rn such
that 0 < |q(x − y)| < 1. For the most part we will consider anisotropic
forms—i.e., forms such that q(x) = 0 ⇒ x = 0—and for such forms the
Euclidean condition simplifies to: for all x ∈ Kn, there exists y ∈ Rn such
that |q(x− y)| < 1.

Let q be an anisotropic quadratic form over the normed domain (R, | · |).
For each x ∈ Kn, we define the local Euclideanity

E(q, x) = inf
y∈Rn

|q(x− y)|,
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which depends only on the class of x in Kn/Rn. We also define the Eu-
clideanity

E(q) = sup
x∈Kn/Rn

E(q, x).

Let

C(q) = {x ∈ Kn/Rn | E(q, x) = E(q)}.
Elements of C(q) are called critical points. We say that the Euclideanity is
attained if C(q) 6= ∅. Thus, E(q) is Euclidean if and only if either E(q) < 1,
or E(q) = 1 and the Euclideanity is not attained. The attainment of the
Euclideanity is in general a difficult problem. For positive forms over Z,
that the Euclideanity is attained follows from the elementary geometry of
Voronoi cells, as we will recall in §4. Already for indefinite binary integral
quadratic forms it is conjectured but not yet proven that the Euclideanity
is always attained.

Example 1.1. For any a ∈ R•, E(aq) = |a|E(q). This reduces us to the
calculation of Euclideanities of primitive forms in the sense of §2.1.

Example 1.2. Let R = Z be endowed with the standard (Euclidean)
norm | · |. Then for any quadratic forms q1, q2 over Z we have

(1) E(q1 ⊕ q2) ≤ E(q1) + E(q2).

In fact (1) holds over any normed domain (R, | · |) satisfying |x+y| ≤ |x|+|y|
for all x, y ∈ R. When R = Z and q1 and q2 are positive forms, we have

(2) E(q1)⊕ E(q2) = E(q1) + E(q2).

This, together with Example 1.1 and the fact that E(x2) = 1/4 over Z,
implies that for a1, . . . , an ∈ Z+,

E(a1x
2
1 + · · ·+ anx

2
n) =

a1 + · · ·+ an
4

.

A quadratic form over a (not necessarily normed) domain R is an ADC
form if for all d ∈ R, whenever there exists x ∈ Kn such that q(x) = d, then
there exists y ∈ Rn such that q(y) = d.

These notions of Euclidean form and ADC form are the subject of [Cl12].
The jumping-off point was the following result relating the two classes, a gen-
eralization of classical work of Aubry, Davenport and Cassels.

Theorem 1.3 ([Cl12, Thm. 8]). A Euclidean form is an ADC form.

Much of [Cl12] concerns Euclidean and ADC forms over complete dis-
crete valuation rings and Hasse domains. We recall the two main results and
two conjectures from [Cl12] that we will address in the present work.

A Hasse domain R is either an S-integer ring in a number field or the
coordinate ring of a regular, geometrically integral affine algebraic curve
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over a finite field. Such an R has a natural multiplicative norm: x ∈ R•

7→ #R/(x). LetΣR denote the set of height one primes ofR; for each p ∈ ΣR,
the completed local ring Rp is a complete discrete valuation ring (CDVR).
Each Rp carries a canonical norm, again given by x ∈ Rp 7→ #Rp/(x). Let
K be the field of fractions of R (a global field). Let ΣK be the set of places
of K, and put S = ΣK \ΣR.

Theorem 1.4 ([Cl12, Prop. 11, Thm. 19]). Let (R, | · |) be a normed
domain, and let q/R be a quadratic form.

(a) If q is Euclidean, then the corresponding quadratic lattice is maxi-
mal.

(b) If R is a CDVR, then q is Euclidean if and only if the corresponding
quadratic lattice is maximal.

Let R be a Hasse domain, and let q/R be a quadratic form. The genus
g(q) of R is the set of all equivalence classes of quadratic forms q′ such
that q ∼=Kv q′ for all v ∈ S and q ∼=Rp q′ for all p ∈ ΣR. A quadratic
form q is regular if for all d ∈ R, whenever there exists q′ ∈ g(q) such
that q′ represents d, then q represents d. The set g(q) is always finite
[O’M, Thm. 103:4]; its cardinality is the class number of q. Thus a class
number one form is necessarily regular. The converse is true in certain cases
but not in general, as we will see below.

For a ∈ R•, we have g(aq) = ag(q). So q is regular if and only if aq is.

Theorem 1.5 ([Cl12, Thm. 25]). For a quadratic form q over a Hasse
domain R, the following are equivalent:

(i) q is an ADC form.
(ii) q is regular and locally ADC: for all p ∈ ΣR, q/Rp

is ADC.

Conjecture 1 ([Cl12, Conj. 27]). For a Hasse domain R, there are
finitely many isomorphism classes of anisotropic Euclidean quadratic forms
over R.

Conjecture 2 ([Cl12, Conj. 28]). Every Euclidean quadratic form over
a Hasse domain has class number one.

1.2. ADC forms over Z. In the first part of the paper we study ADC
forms over Z. By Theorem 1.5, this necessitates (i) an understanding of
ADC forms over Zp for all prime numbers p, and (ii) a classification of
regular forms over Z.

We study ADC forms over Zp in §2. When p is odd, we give a com-
plete classification; in fact, we work in the context of a complete discrete
valuation ring with residue field of finite odd order. This local analysis is
also applicable to the study and classification of ADC forms over Hasse do-
mains of positive characteristic, though we do not consider this case here.
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On the other hand, the study of quadratic forms in the dyadic case—i.e.,
over the ring of integers of a finite extension of Q2—is notoriously intricate.
Here we confine ourselves to classifying ADC forms over Z2 in at most three
variables.

In §3 these results are applied to the study of ADC forms over Z. In
order to get finite classification theorems we need finiteness theorems for
regular forms. It is an old and widely believed conjecture that there are
infinitely many primes p ≡ 1 (mod 4) such that the ring of integers of
Q(
√
p) is a PID. It follows from Theorem 3.3 that, for each such prime, the

form q(x, y) = x2 +xy+ 1−p
4 y2 is ADC, so there ought to be infinitely many

primitive indefinite binary integral ADC forms.
Because of the existence of sign-universal positive integral quaternary

forms, for each n ≥ 5 there are infinitely many sign-universal positive in-
tegral n-ary forms, hence infinitely many ADC forms. On the other hand,
for each 1 ≤ n ≤ 4 there are only finitely many primitive, positive inte-
gral ADC n-ary forms. The main result of the first part of the paper is a
complete enumeration of such forms, with the proviso that the complete-
ness of our list of primitive positive binary ADC forms is conditional on
the Generalized Riemann Hypothesis (GRH). In summary: the number of
d-dimensional primitive positive integral ADC forms is

1 1

2 764

3 103

4 6436

The unique primitive positive ADC unary form is x2. Tables of primi-
tive positive ADC binaries and ternaries are given at the end of this pa-
per. The list of sign-universal positive quaternary forms is available at
[QUQF].

To prove this enumeration result we make use of work of Voight [Vo07],
Jagy–Kaplansky–Schiemann [JKS97] and Bhargava–Hanke [BH]. To com-
plete the classification of positive integral ADC forms we need to deal with
imprimitive forms, i.e., forms obtained by scaling a primitive form by a pos-
itive integer d. It is easy to see (Proposition 2.3) that this scaling integer
d must be squarefree. Even more easily one sees that the unary form dx2

is ADC when d is squarefree. It turns out that starting in dimension 3
an ADC form over any Hasse domain must be primitive (Theorem 3.5).
The imprimitivity issue is most interesting for binary forms: here, for each
primitive ADC binary form q there are infinitely many squarefree d such
that dq is ADC and infinitely many squarefree d such that dq is not ADC.
The class of such d is given by explicit congruence conditions in Theo-
rem 3.4.
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1.3. Euclidean forms over Z. Next we consider the problem of classi-
fying positive Euclidean integral quadratic forms. More precisely we recon-
sider it: it was solved by G. Nebe.

Theorem 1.6 ([Ne03]). There are 70 positive Euclidean integral forms.

Notice that Theorem 1.6 verifies Conjecture 1 for positive forms over Z.
A direct computation then verifies Conjecture 2 for positive forms over Z.

Nebe approaches the problem from the perspective of lattices in Eu-
clidean space, using root lattices to find all lattices in Euclidean space with
covering radius less than

√
2. Our setup so far has been in the language

of quadratic forms theory (with the concession that we have only consid-
ered free quadratic lattices), but for our present work on Euclidean integral
forms we would like to make use of both frameworks, so we give in §4 a
dictionary between the two. In particular, “Euclideanity” corresponds to
“covering radius”, and “Euclidean form” corresponds to “covering radius
less than

√
2”.

Remark 1.7. In [Ne03], Nebe lists 69 Euclidean integral quadratic
forms. The present authors started searching for Euclidean forms in an ad
hoc manner before becoming aware of Nebe’s work. When we learned of her
paper we compared our list of examples to hers: the form

q = x21 + x1x4 + x22 + x2x5 + x23 + x3x5 + x24 + x4x5 + 2x25,

with Euclideanity E(q) = 13/14, was missing from her list. Professor Nebe
informed us that this form was not included due to an oversight in her
casewise analysis.

Such minor slips of computation and tabulation are unfortunately com-
mon in results which enumerate all quadratic forms having a certain prop-
erty. One could ask what changes in the way such computationally intensive
work is performed, presented and vetted would be sufficient to eliminate—
or, more realistically, signficantly reduce—tabular inaccuracies of this kind.
The contemporary mathematical community is only slowly coming to ad-
dress this question, which is of course beyond the scope of the present work.
We bring it up to emphasize the desirability of independent corroboration:
multiple research groups performing the same or overlapping computations,
ideally by distinct approaches and methods.

One of our main results does corroborate Nebe’s work: rather than veri-
fiying Conjecture 1 by enumerating all Euclidean forms and then using this
enumeration to verify a case of Conjecture 2, we do the reverse: we give an
a priori proof that a positive integral Euclidean form has class number one
(Theorem 6.1). We then use the known classification of class number one
positive integral forms in order to compute all positive integral Euclidean
forms; in this way we recover Nebe’s list.
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The classification of class number one positive integral forms is a quite
different result from Nebe’s; in fact it is a much longer calculation. The
finiteness of the set of all positive, primitive integral forms of class number
one was proven by G. L. Watson. He spent much of the rest of his career at-
tempting to give an enumeration and published several papers on it but died
before completing his work [Wa63a]–[Wa88]. A complete enumeration of all
class number one maximal lattices was recently given by J. P. Hanke [Ha11]
(this is sufficient for our purposes in view of Theorem 1.4(a)) and then
(with no maximality condition) by D. Lorch and M. Kirschmer [LK13]. The
case of binary forms has a different flavor; in recent work, the first au-
thor and his collaborators gave a list of 2779 SL2(Z)-equivalence classes of
primitive, positive binary forms of class number one. This list is complete
conditional on GRH : we encountered this phenomenon for ADC binaries
above. In this case, however, we can avoid the dependence on GRH by
giving a separate treatment of binary Euclidean forms, including indefinite
ones.

We are optimistic that our method of proof of Conjecture 2 can be
extended to other cases, e.g. to totally positive forms over the ring of integers
of a totally real number field. If so, it should be possible to resolve further
cases of Conjecture 1: it is a result of Pfeuffer [Pf79] that there are only
finitely many class number one totally positive forms as we range over all
rings of integers of totally real number fields. In fact, M. Kirschmer has just
given an enumeration of the maximal such forms [Ki14]. Thus the complete
classification of positive Euclidean forms over rings of integers of totally real
number fields may be within reach.

2. ADC forms over compact discrete valuation rings. Let K be
a field which is complete with respect to a nontrivial discrete valuation v
and with finite residue field k ∼= Fq = Fpa . Let π be a uniformizing element
for v. We assume, as usual, that charK 6= 2. We say that K is dyadic if
char k = 2 and nondyadic otherwise. Let R be the valuation ring of K. Thus
R is a compact discrete valuation ring: either the ring of integers of a p-adic
number field or a formal power series ring Fq[[t]].

In this section we will give:

• A full classification of ADC forms over any nondyadic compact DVR.
• A classification of ADC forms in dimensions 2 and 3 over Z2.

2.1. Primitivity and semiprimitivity. Let R be a domain with frac-
tion field K. Let q =

∑
1≤i≤j≤n aijxixj ∈ R[x] be a quadratic form over R.

Let D(q) = {q(a) | a ∈ Rn}, and let n(q) = 〈D(q)〉, the ideal of R generated
by D(q). Thus R is ADC if and only if D(q/K) ∩R = D(q).
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Lemma 2.1. Let q =
∑

1≤i≤j≤n aijxixj ∈ R[x] be a quadratic form. Let
a ∈ R•.

(a) We have D(aq) = aD(q) and n(aq) = (a)n(q).
(b) If aq is ADC, then q is ADC.
(c) We have n(q) = 〈aij〉.
(d) If R→ S is a ring homomorphism, then n(q/S) = (n(q))S.

Proof. (a) This is clear from the definitions.

(b) If aq is ADC, then

aD(q) = D(aq) = D(aq/K) ∩R = aD(q/K) ∩R,
so

D(q) = D(q/K) ∩ 1

a
R ⊃ D(q/K) ∩R.

Clearly D(q) ⊂ D(q/K) ∩R, so D(q) = D(q/K) ∩R.

(c) (Cf. [Wa, p. 4].) Put J = 〈aij〉. Then n(q) ⊂ J . Conversely, let ei be
the ith standard basis vector of Rn; then q(ei) = aii for all 1 ≤ i ≤ n, and
q(ei + ej) = aii + ajj + aij for all 1 ≤ i ≤ j ≤ n. It follows that J ⊂ n(q).

(d) This is an immediate consequence of (c).

Two quadratic forms q, q′ over R are unit equivalent if there is u ∈ R×
such that q′ ∼= uq. As noted in [Cl12], replacing a quadratic form by a unit
equivalent form does not disturb whether it is ADC or Euclidean or change
its Euclideanity E(q).

Remark 2.2. In view of these properties, when studying ADC and Eu-
clidean forms it is natural to classify forms up to unit equivalence rather
than up to isomorphism, and we will take this convention here. For forms
over Z this amounts to the following: we do not (as usual!) give separate
consideration to negative forms, and for indefinite forms we identify f with
−f whether they are integrally equivalent or not (a somewhat subtle di-
chotomy). One must take a little care in the interaction of this convention
with Gauss composition of binary forms: cf. Corollary 5.6.

We further observe that n(q) = n(q′) if q and q′ are unit equivalent.

We say q is primitive if n(q) = R, and semiprimitive if there is no
a ∈ R• \R× with n(q) ⊂ a2R.

Proposition 2.3. Let R be a domain; let q/R be a nonzero quadratic
form.

(a) The form q is primitive if and only if it is locally primitive: for all
m ∈ MaxSpecR, q/Rm

is primitive.
(b) If R is a Noetherian domain and q is ADC, then q is semiprimitive.
(c) If R is a Dedekind domain and q is ADC, then n(q) is squarefree.
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Proof. (a) An ideal I in a ring R is proper if and only if I ⊂ m for some
maximal ideal m of R if and only if IRm ⊂ mRm ( Rm for some maximal
ideal m of R. The result follows from this and Lemma 2.1(b)&(c).

(b) Suppose that q is ADC but not semiprimitive. Then n(q) ⊂ a2R for
a ∈ R• \R×. By Lemma 2.1(a), there is a quadratic form q′/R with q = a2q′.

Since q′(ax) = a2q′(x) = q(x) and D((a2q)/K) = D(q/K), and since q is
ADC, so is q′. Moreover, q/K ∼= q′/K . Thus if q is ADC, then

a2n(q′) = n(q) = n(q/K) ∩R = n(q′/K) ∩R = n(q′).

This identity implies

(0) ( n(q′) ⊂
⋂
n≥1

(a2)n,

contradicting the Krull Intersection Theorem [Ma, Thm. 8.10].
(c) Combine (b) with [Cl12, Thm. 16]: ADC implies locally ADC.

2.2. Primitive square classes and ADC forms. Let R be a UFD
with fraction field K. Let ι : R•/R×2 → K×/K×2 be the canonical map on
square classes. Let ΣR be the set of height one prime ideals of R, and let
ZΣ be the free abelian group on Σ. Uniqueness of factorization gives a short
exact sequence

1→ R× → K×
V→ ZΣ → 0.

Since ZΣ is free abelian, the sequence splits:

(3) K× ∼= ZΣ ×R×.
Passing to square classes, we get a split exact sequence

1→ R×/R×2 → K×/K×2
V→
⊕
p∈ΣR

Z/2Z→ 1.

Since R×2 ⊂ kerV , (3) also induces an exact sequence of monoids

1→ R×/R×2 → R•/R×2
VR−−→

⊕
p∈Σ

N→ 0.

Let us say that a square class s ∈ R•/R×2 is primitive if every component
of VR(s) lies in {0, 1}. Now we observe:

• For every square class s ∈ R, there is a unique primitive square class
s0 and x ∈ R such that s = x2s0.
• For every square class S ∈ K, there is a unique primitive square class
s0 of R such that ι(s0) = S. In other words, ι restricts to a bijection
from the primitive square classes of R to the square classes of K.

Proposition 2.4. Let R be a UFD, and let q/R be a quadratic form.
Then q is ADC if and only if for every square class of K which is K-repre-
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sented by q, the corresponding primitive square class of R is R-represented
by q.

Proof. Suppose q is ADC and K-represents a square class S of K. Let
s ∈ R be an element of the corresponding primitive square class of R; since
sS−1 ∈ K×2, q K-represents s; since q is ADC and s ∈ R, q R-represents s.

Suppose that q R-represents every primitive square class in R whose
corresponding square class in K is K-represented by q, and let s ∈ R• be
K-represented by q. We may write s = x2s0 with s0 representing a primitive
square class and u ∈ R×. By assumption, there is v ∈ Rn such that q(v) = s0,
and thus q(xv) = x2s0 = s.

2.3. Preliminary generalities. Let R be a compact DVR with frac-
tion field K, residue field Fq and uniformizing element π. We define δ to be
0 if R is nondyadic; if R is dyadic, then K is a finite-dimensional Q2-vector
space, and we define δ = dimQ2 K.

Proposition 2.5. Let R be a compact DVR with fraction field K.

(a) We have #K×/K×2 = 2δ+2.
(b) Suppose R is nondyadic, and fix any r ∈ R× \R×2. Then 1, r, π, πr

is a set of coset representatives for K×2 in K×.
(c) A set of coset representatives for Q×2 /Q

×2
2 is 1, 3, 5, 7, 2, 6, 10, 14.

Proof. (a) [L, Thm. VI.2.22]. (b) [L, Thm. VI.2.2]. (c) [L, Cor. VI.2.24].

Proposition 2.6. Let R be a compact DVR with fraction field K, and
let q/R be an n-ary quadratic form.

(a) If n = 2 and q is anisotropic, then q K-represents exactly 2δ+1

square classes of K (i.e., precisely half of them).
(b) If n = 3 and q is anisotropic, then q K-represents exactly 2δ+2 − 1

square classes of K: all except the class of −disc(q).
(c) If n ≥ 4, then q is K-universal.

Proof. (a) Suppose first that q ∼= 〈1, a〉 is a principal form. Since q is an-
isotropic, −a is not a square in K, and q is the norm form of the quadratic
field extension L = K(

√
−a). By local class field theory [Mi, Thm. I.1.1],

K×/NL× ∼= Gal(L/K) ∼= Z/2Z,
so q represents precisely half of the square classes. In general, q is a scalar
multiple of a principal form and then it follows from the above that q(K×) ⊂
K×/K×2 is a coset of an index 2 subgroup.

(b) [L, Cor. VI.2.15].
(c) Every quadratic form in at least five variables over K is isotropic

[L, Thm. VI.2.12], hence [L, Cor. I.3.5] every form in at least four variables
is universal.
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Corollary 2.7. Let q/R be an n-ary ADC form over a compact DVR.
If n ≥ 3, then q is primitive.

Proof. If n ≥ 4, then q/R is ADC if and only if it is universal, and
universal forms are primitive. Suppose n = 3. If q is isotropic, then it is
K-universal; since it is ADC, it is universal, hence primitive. Otherwise q is
anisotropic so K-represents 2δ+2−1 square classes in K. However, if q is not
primitive then it does not represent any of the unit square classes, hence it
represents at most 2δ+1 square classes.

2.4. ADC forms over nondyadic compact DVRs. Let R be a com-
pact DVR with residue field Fq, q odd. Then the canonical map R×/R×2

→ F×q /F×2q is an isomorphism, hence R×/R×2 has order 2. For x ∈ R×,

define
(
x
q

)
to be 1 if x ∈ R×2—or equivalently, if the reduction of x modulo

(π) is a square in the finite field Fq—and −1 otherwise.

Lemma 2.8 ([C, §8.3]). Every quadratic form q over a nondyadic DVR
may be diagonalized. It follows that q may be written in the form

(4) q =
⊕
i∈N

πiJi(q)

with each Ji(q) diagonal and unimodular: disc(Ji(q)) ∈ R×.

The forms Ji(q) are called the Jordan components of q, and the decom-
position (4) is called the Jordan splitting. We will write di(q) for dimJi(q).

Theorem 2.9. Let q/R be nondegenerate of dimension n ≥ 1.

(a) If v(disc(q)) ≤ 1, then q is Euclidean, hence ADC.
(b) Suppose either

(i) d0(q) ≥ 3, or

(ii) d0(q) = 2 and
(− disc(J0(q))

q

)
= 1.

Then q is universal, hence ADC.
(c) If d0(q) = d1(q) = 0, then q is not ADC.
(d) If n ≥ 3 and d0(q) = 0, then q is not ADC.
(e) If n ≥ 4 and d0(q) = 1, then q is not ADC.
(f) Suppose n ≥ 4 and J0(q) is 2-dimensional anisotropic. Then:

(i) If d1(q) = 0, then q is not ADC.
(ii) If d1(q) = 1, then q is ADC if and only if it is universal if and

only if J0(q)⊕ J1(q) is isotropic.
(iii) If d1(q) ≥ 2, then q is universal, hence ADC.

Proof. (a) If v(disc(q)) ≤ 1, then the quadratic lattice of q is maximal.
By [Cl12, Thm. 19], q is Euclidean, and thus by [Cl12, Thm. 8], q is ADC.
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(b) The hypotheses imply that J0(q) is isotropic, hence K-universal. By
part (a), J0(q) is ADC and thus universal. It follows that q is universal.

(c) Since d0(q) = d1(q) = 0, q = π2q′ for some form q′. The form q
K-represents some element with valuation 0 or 1, but does not R-represent
any such element.

(d) This is a special case of Corollary 2.7.

(e) Since n ≥ 4, q = ux21 + πq′(x2, . . . , xn) is K-universal, but R-
represents exactly one of the two unit square classes in K.

(f) Since dim q ≥ 4, q is K-universal, thus it is ADC if and only if it is
R-universal.

(i) Since q = u1x
2
1+u2x

2
2+π2q′(x3, . . . , xn) and u1x

2
1+u2x

2
2 is anisotropic,

q does not R-represent π.

(ii) Since d1(q) = 1, v(disc(J0(q)⊕J1(q))) = 1, so by (a), J0(q)⊕J1(q) is
ADC. Thus if it is isotropic, it is universal, and hence so is q. Conversely, if
J0(q)⊕J1(q) is anisotropic, then it fails to K-represent some element x ∈ R
of valuation 0 or 1, hence J0(q)⊕ J1(q)⊕ π2q′ does not R-represent x.

(iii) Since q has q′ = u1x
2
1+u2x

2
2+πu3x

2
3+πu4x

2
4 as a subform, it suffices

to show q′ is universal. But indeed u1x
2
1 + u2x

2
2 R-represents 1 and r, and

thus π(u3x
2
3 + u4x

2
4) R-represents π and πr. It follows that q is universal.

Theorem 2.10. Let q(x, y) = ax2 + by2 be a nondegenerate binary form
over R. We may assume v(a) ≤ v(b).

(a) If v(ab) ≤ 1, then q is ADC.
(b) If v(b) ≥ 2, then q is not ADC.
(c) If v(a) = v(b) = 1, then:

(i) πx2 + πy2 ∼= πrx2 + πry2 is ADC if and only if q ≡ 3 (mod 4).
(ii) πx2 + πry2 is ADC if and only if q ≡ 1 (mod 4).

Proof. (a) A quadratic form q over a nondyadic CDVR with v(disc(q)) ∈
{0, 1} is maximal, hence ADC.

(b) If v(b) ≥ 2, then q represents at most one primitive square class so
is not ADC.

(c) If v(a) = v(b) = 1, then q = πq′, with q′ = u1x
2 + u2y

2, u1, u2 ∈ R×.
If q′ is isotropic, then q is K-universal, but it does not R-represent any
unit square class so it is not ADC. If q′ is anisotropic then among primitive
square classes it represents preciesly the unit square classes 1 and r, so q
represents precisely π and πr, hence it is ADC. A binary form q is isotropic
if and only if

(− disc q
q

)
= 1, and the result follows.

For future use we record the following special case of Theorem 2.10.

Corollary 2.11. A primitive binary form q/R is ADC if and only if
v(disc q) ≤ 1.
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Theorem 2.12. Let q(x, y, z) = ax2 + by2 + cz2 be a nondegenerate
ternary form over R. We may assume v(a) ≤ v(b) ≤ v(c).

(a) If v(abc) ≤ 1, then q is ADC.
(b) If v(a) ≥ 1, then q is not ADC.
(c) If v(c) ≥ 2, then:

(i) If q ≡ 1 (mod 4), then q is ADC if and only if v(a) = v(b) = 0
and ab−1 ∈ R×2.

(ii) If q ≡ 3 (mod 4), then q is ADC if and only if v(a) = v(b) = 0
and ab−1 ∈ R× \R×2.

(d) Suppose v(a) = 0, v(b) = 1, and v(c) = 1. Then:

(i) If q ≡ 1 (mod 4), then q is ADC if and only if ab−1 ∈ K×\K×2.
(ii) If q ≡ 3 (mod 4), then q is ADC if and only if ab−1 ∈ K×2.

Proof. The key point in what follows is that, by Proposition 2.6, an
anisotropic ternary form over K represents precisely three out of the four
square classes.

(a) As above, v(abc) ≤ 1 implies q is maximal, hence ADC.

(b) If v(a) ≥ 1, then q does not represent either of the two unit square
classes, but as it K-represents at least one of these, q is not ADC.

(c) If v(c) ≥ 2, then q represents the same primitive square classes as
its subform ax2 + by2. If ax2 + by2 is isotropic, it is universal, and then q
is universal, hence ADC. If ax2 + by2 is anisotropic, it K-represents two
of the primitive square classes and q K-represents at least three of the
primitive square classes, so q is not ADC. This leads immediately to the
given conditions.

(d) Since the ADC condition depends only on unit equivalence, we may
assume that a = 1. The form q = x2+πby2+πcz2 does not represent r, so it
is not universal. Therefore if q is isotropic, it is not ADC. On the other hand,
it represents the three primitive square classes 1, π, πr, so if it is anisotropic,
it is ADC. As for any form over a field of characteristic different from 2, q is
isotropic if and only if x2+πby2 K-represents −πc. This happens if and only
if b ≡ −c (mod K×2). If q ≡ 1 (mod 4), this holds if and only if bc−1 ∈ K×;
if q ≡ 3 (mod 4), this holds if and only if bc−1 ∈ K× \K×2.

2.5. Binary and ternary ADC forms over Z2

Lemma 2.13. Let q(x, y)/Z2
be a nondegenerate binary quadratic form.

(a) The form q is either diagonalizable over Z2 or Z2-equivalent to one
of 2a(x2 + xy + y2) or 2axy for some a ∈ N.

(b) We have v(disc q) ∈ {−2} ∪ N.

Proof. (a) [C, Lemma 8.4.1]. (b) This follows immediately.
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When dealing with binary forms, there is an alternative normalization
of the discriminant: we define the Discriminant (note the capitalization!)

∆(ax2 + bxy + cy2) = b2 − 4ac = −4 disc(ax2 + bxy + c2).

Thus over Z2 we have v(∆(q)) = v(disc q) + 2 ∈ {0, 2, 3, . . .}.

Theorem 2.14. Let q(x, y) be a nondegenerate binary form over Z2.

(a) If v(∆(q)) = 0, then q is ADC.
(b) Suppose v(∆(q)) = 2. Then:

(i) If q is primitive, then q is ADC if and only if ∆(q) ≡ 12, 20, 28
(mod 32).

(ii) If q = 2q′, then q is ADC if and only if ∆(q) ≡ 20 (mod 32).

(c) If v(∆(q))) = 3, then q is ADC.
(d) If v(∆(q))) = 4, then q is ADC if and only if q = 2q′ with ∆(q′) ≡ 20

(mod 32).
(e) If v(∆(q)) ≥ 5, then q is not ADC.

Proof. (a) If v(disc(q)) = −2, then by Lemma 2.13(b), q is maximal,
hence ADC.

(b) (i) Suppose v(disc(q)) = 0 and q is primitive. By Lemma 2.13(a),
q ∼=Z2 ax

2 + by2 with a, b ∈ Z×2 . Because being an ADC form is invariant
under unit equivalence, we may assume without loss of generality that a = 1,
and then we are left with consideration of the forms x2 + y2, x2 + 3y2,
x2 + 5y2, x2 + 7y2. The forms x2 + y2 and x2 + 5y2 have discriminant 1
(mod 4) and are thus maximal, hence Euclidean. The form x2 + 3y2 is a
nonmaximal lattice in a Q2-quadratic space with associated maximal lattice
x2 + xy + y2. By Proposition 2.6, a binary form represents precisely four
out of the eight square classes in Q2. Examining x2 + 3y2 we see that it Z2-
represents primitive elements of the four unit square classes 1, 3, 5, 7 (mod 8)
and is thus ADC. The form x2 + 7y2 is a nonmaximal lattice in the Q2-
quadratic space with associated maximal lattice xy, so in order to be ADC,
x2+7y2 must be universal. But x2+7y2 ∼=Z2 x

2−y2 does not Z2-represent 2.

(ii) If v(disc q) = 0 and q is not primitive, then by Lemma 2.13(a), either
disc q ≡ 7 (mod 8) and q ∼= 2xy, or disc q ≡ 3 (mod 8) and q ∼= 2(x2+xy+y2).
In the former case q is isotropic but not hyperbolic so it is not ADC. In the
latter case it follows from our previous analysis that the primitive square
classes represented by x2+xy+y2 are 1, 3, 5, 7, so the primitive square classes
represented by 2(x2 + xy + y2) are 2 · 1, 2 · 3, 2 · 5, 2 · 7. Since an anisotropic
binary form Q2-represents precisely four primitive square classes, it follows
that 2(x2 + xy + y2) is ADC.

(d) Suppose v(disc q) = 2. If q is not diagonalizable then q = 22q′ so q
is not ADC. Thus we may suppose q = ax2 + by2 with either (v(a), v(b)) =
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(0, 2) or (v(a), v(b)) = (1, 1). In the former case q represents only one
primitive square class so it is not ADC. In the latter case q = 2q′ with
q′ = u1x

2 + u2y
2, u1, u2 ∈ Z×2 . Then q is ADC if and only if q′ is ADC,

anisotropic, and represents the four unit square classes. By our previous
analysis, this holds if and only if disc q′ ≡ 3 (mod 8).

(e) Suppose v(disc q) ≥ 3. Again, if q is not diagonalizable then q = 22q′,
so q is not ADC. If q is diagonalizable and not of the form 22q′, then either
q = u1x

2 + 2au2y
2 with u1, u2 ∈ Z×2 and a ≥ 3, or q = 2u1x

2 + 2au2y
2 with

u1, u2 ∈ Z×2 and a ≥ 2. Either way q represents only one primitive square
class so it is not ADC.

For future use we record the following special case of Theorem 2.14.

Corollary 2.15. A primitive binary form q/Z2
is ADC if and only if

∆(q) ≡ 1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31

(mod 32).

Lemma 2.16 ([C, Lemma 8.4.1]). Let q(x, y, z) be a nondegenerate terna-
ry form over Z2. Then q is Z2-equivalent to a diagonal form, to 2a(xy) +
2buz2 or to 2a(x2 + xy + y2) + 2buz2 for a, b ∈ N, u ∈ Z×2 .

Theorem 2.17. Let q = ax2 + by2 + cz2 be a nondegenerate diagonal
ternary form over Z2; we may assume v(a) ≤ v(b) ≤ v(c).

(a) If (v(a), v(b), v(c)) ∈ {(0, 0, 0), (0, 0, 1)}, then q is ADC.
(b) If (v(a), v(b), v(c)) ∈ {(0, 1, 1), (0, 1, 2)}, then q is ADC if and only

if it is anisotropic.
(c) Otherwise q is not ADC.

Proof. Step 0. Recall that a nondegenerate ternary form q Q2-repre-
sents all eight square classes of Q2 if it is isotropic, and represents all but
−disc q if it is anisotropic. In particular, q Q2-represents at least three out
of the four unit square classes, so if q is ADC, it must represent at least
three of the primitive unit square classes.

Step 1. Suppose (v(a), v(b), v(c)) ∈ {(0, 0, 0), (0, 0, 1)} or that q is aniso-
tropic and (v(a), v(b), v(c)) ∈ {(0, 1, 1), (0, 1, 2)}. We will (unfortunately)
show that q is ADC by brute force. Since the ADC condition depends only
on the unit equivalence class of q and v(a) = 0, we may assume without loss
of generality that a = 1. Then:

• If (v(a), v(b), v(c)) = (0, 0, 0), then q is unit equivalent to one of:

〈1, 1, 1〉, 〈1, 1, 3〉, 〈1, 1, 5〉, 〈1, 1, 7〉, 〈1, 3, 3〉,
〈1, 3, 5〉, 〈1, 3, 7〉, 〈1, 5, 5〉, 〈1, 5, 7〉, 〈1, 7, 7〉.
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We consider a representative example: let q = x2 + 5y2 + 5z2. Then q is
anisotropic and thus does not Q2-represent the square class −disc q ≡ 7
(mod Q×2). So, it represents the other seven primitive Z2-square classes:

1 ∼= 12 + 5 · 02 + 5 · 02,
2 ∼= 50 ∼= 52 + 5 · 22 + 5 · 12,
3 ∼= 11 ∼= 12 + 5 · 12 + 5 · 12,
5 ∼= 02 + 5 · 12 + 5 · 02,
6 ∼= 12 + 5 · 12 + 5 · 02,

10 ∼= 02 + 5 · 12 + 5 · 12,
14 ∼= 22 + 5 · 12 + 5 · 12.

• If (v(a), v(b), v(c)) = (0, 0, 1), then q is unit equivalent to one of:

〈1, 1, 2〉, 〈1, 1, 6〉, 〈1, 1, 10〉, 〈1, 1, 14〉, 〈1, 3, 2〉, 〈1, 3, 6〉,
〈1, 3, 10〉, 〈1, 3, 14〉, 〈1, 5, 2〉, 〈1, 5, 6〉, 〈1, 5, 10〉, 〈1, 5, 14〉,
〈1, 7, 2〉, 〈1, 7, 6〉, 〈1, 7, 10〉, 〈1, 7, 14〉.

We consider a representative example: let q = x2 + 7y2 + 14z2. Then q is
isotropic and represents all eight primitive Z2-square classes:

1 ∼= 12 + 7 · 02 + 14 · 02,
2 ∼= 18 ∼= 22 + 7 · 02 + 14 · 12,
3 ∼= 11 ∼= 22 + 7 · 12 + 14 · 02,
5 ∼= 21 ∼= 02 + 7 · 12 + 14 · 12,
6 ∼= 22 ∼= 12 + 7 · 12 + 14 · 12,
7 ∼= 02 + 7 · 12 + 14 · 02,

10 ∼= 42 ∼= 02 + 7 · 22 + 14 · 12,
14 ∼= 02 + 7 · 02 + 14 · 12.

• An anisotropic form with (v(a), v(b), v(c)) = (0, 1, 1) is unit equivalent
to one of:

〈1, 2, 2〉, 〈1, 2, 6〉, 〈1, 6, 14〉, 〈1, 10, 10〉, 〈1, 10, 14〉.

• An anisotropic form with (v(a), v(b), v(c)) = (0, 1, 1) is unit equivalent
to one of:

〈1, 2, 4〉, 〈1, 2, 12〉, 〈1, 6, 12〉, 〈1, 6, 20〉, 〈1, 10, 12〉, 〈1, 14, 12〉, 〈1, 14, 20〉.

In all cases, the method of proof is the same as above: find x, y, z ∈ Z such
that q(x, y, z) represents seven of the eight primitive square classes.

It remains to show that none of the other forms is ADC.
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Step 2. Suppose (v(a), v(b), v(c)) = (0, 1, 1) and q is isotropic. We may
assume a = 1 and write b = 2u2, c = 2u3 with u2, u3 ∈ Z×2 . If q is
isotropic and ADC, it represents each d ∈ {1, 3, 5, 7}. Considering the equa-
tion x2 + 2u2y

2 + 2u3z
2 = d modulo 8 yields

u2y
2 + u3z

2 ≡ d− 1

2
(mod 4).

But no matter what choices of u2 and u3 we make, the quadratic form
u2y

2 + u3z
2 modulo 4 takes only two out the three values {1, 2, 3}, a con-

tradiction.

Step 3. Suppose (v(a), v(b), v(c)) = (0, 1, 2) and q is isotropic. We may
assume a = 1 and write b = 2u2, c = 4u3 with u2, u3 ∈ Z×2 . If q is isotropic
and ADC, it represents each d ∈ {2, 6, 10, 14}. Suppose x2+2u2y

2+4u3z
2 =

2d; then v(x) > 0, so we may write x = 2X and simplify to get 2X2+u2y
2+

2u3z
2 = d. Since v(d) = 0 we must have v(y) = 0 and thus y2 ≡ 1 (mod 8),

so we get 2X2 + 2u3z
2 ≡ d− u2 (mod 8) or

X2 + u3z
2 ≡ d− u2

2
(mod 4).

For any choice of u2, u3, there is a choice of d such that this congruence has
no solution, a contradiction.

Step 4. Suppose v(a) > 0. Then q = 2q′ is not primitive, so it represents
no primitive unit square class. Thus q is not ADC.

Step 5. Suppose v(a) = 0 and v(b) ≥ 2, so up to unit equivalence,
q = x2 + 4by2 + 4cz2. Going modulo 4 shows that q does not Z2-represent 3
or 7, so is not ADC.

Step 6. Suppose v(a) = v(b) = 0, v(c) ≥ 2, so up to unit equivalence,
q = x2 + uy2 + 4cz2 for u ∈ Z×2 . The mod 4 reduction of q represents only
two of the three classes {1, 2, 3} mod 4, and thus fails to Z2-represent both
of {1, 5}, both of {2, 6} or both of {3, 7}, so it is not ADC.

Step 7. Suppose v(c) ≥ 3. No diagonal binary form ax2 + by2 Z/8Z-
represents more than four of the six classes {1, 2, 3, 5, 6, 7}. From this it
follows that q(x, y, z) = ax2 + by2 + cz2 = d has no Z2-solution for at least
two primitive square classes d, so q is not ADC.

Theorem 2.18. Let q(x, y, z) be a nondiagonalizable ternary form
over Z2.

(a) Suppose q is unit equivalent to 2axy + 2bz2 for a, b ∈ N. Then q is
ADC if and only if a = 0 or (a, b) = (1, 0).

(b) Suppose q is unit equivalent to 2a(x2 + xy + y2) + 2bz2 for a, b ∈ N.
Then q is ADC if and only if (a, b) ∈ {(0, 0), (1, 0), (0, 1)}.
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Proof. (a) If a = 0, then q contains the universal form xy as a subform,
so it is universal, hence ADC. If (a, b) = (1, 0), then it is easy to verify that
q = 2xy + z2 represents all eight primitive square classes. Alternately, by
[C, p. 118], q = 2xy + z2 ∼ x2 + y2 + 7z2, so q is ADC by Theorem 2.17.

If a ≥ 1 and b ≥ 1, then q is not primitive, hence not ADC. If a ≥ 2 and
b = 0, then q does not represent any of 2, 6, 10, 14, so it is not ADC.

(b) If (a, b) = (0, 0), then v(disc q) = −2, so q is maximal, hence ADC.
If (a, b) = (0, 1), then v(disc q) = −1, so q is maximal, hence ADC. If
(a, b) = (1, 0), then q = 2(x2+xy+y2)+z2 ∼Q2 2x2+6y2+z2 is anisotropic,
so it does not Q2-represent the square class 5 ≡ − disc q (mod Q×22 ). One
verifies directly that it represents the other seven primitive Z2-square classes.

If a and b are both at least one, then q is not primitive and thus not
ADC. If either a ≥ 2 or b ≥ 2, then q does not represent any of the four
primitive square classes 2, 6, 10, 14, so it is not ADC.

3. ADC forms over Z

3.1. Unary forms

Theorem 3.1. Let R be a UFD or a Hasse domain, a ∈ R•, and
q(x) = ax2. Then R is ADC if and only if a is squarefree.

Proof. We suppose R is a UFD. Then q is semiprimitive if and only if
(a) is not contained in any proper ideal of the form (b2) if and only if a is
squarefree. By Proposition 2.3(a) these conditions are necessary for q to be
ADC. Conversely, if a is squarefree then aR×2 is the primitive square class
corresponding to aK×2, so q is ADC by Proposition 2.4. Next we suppose
R is a Hasse domain. By Proposition 2.3(c), if q is ADC then (a) = n(q) is
squarefree. For all p ∈ ΣR, Rp is a UFD, so by what we have just shown,
q/Rp

is ADC. Thus q is locally ADC; certainly q is regular, so q is ADC.

For the rest of this section all quadratic forms are nondegenerate over Z.
The ADC property depends only on the unit equivalence class of a quadratic
form. So we need only consider positive forms and indefinite forms.

3.2. Binary forms. Let ∆ be a quadratic Discriminant, i.e., an integer
which is 0 or 1 modulo 4. If ∆ > 0, then we denote by C(∆) the set of
SL2(Z)-equivalence classes of primitive binary forms of Discriminant ∆. If
∆ < 0, then we denote by C(∆) the set of SL2(Z)-equivalence classes of
primitive, positive binary forms of Discriminant ∆. Elementary reduction
theory shows that in either case C(∆) is a finite set. Moreover, in his Dis-
quisitiones Arithmeticae, Gauss endowed C(∆) with a natural composition
law, under which it becomes a finite abelian group, the class group of Dis-
criminant ∆. Slightly abusing notation, we write “q ∈ C(∆)” to mean: q is
a primitive (and positive, if ∆ < 0) binary form of discriminant ∆.
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For q = Ax2 + Bxy + Cy2 ∈ C(∆), the form q = Ax2 − Bxy + Cy2

represents the inverse of q in C(∆). A form q such that [q] = [q] is called
ambiguous.

A quadratic discriminant ∆ is idoneal if C(∆) ∼= (Z/2Z)a for some
a ∈ N—i.e., if every q ∈ C(∆) is ambiguous. A form q ∈ C(∆) is idoneal
if ∆ is idoneal. A quadratic discriminant ∆ is bi-idoneal if C(∆) ∼=
Z/4Z× (Z/2Z)a for some a ∈ N. A form q ∈ C(∆) is idoneal if ∆ is idoneal.
A form q ∈ C(∆) is bi-idoneal if ∆ is bi-idoneal and q is not ambiguous.

Though in general a regular form over a Hasse domain may have class
number greater than one (we will meet such forms later in this section),
an anisotropic binary form q over the ring of integers of a number field
which is regular—or even almost regular, i.e., represents all but finitely many
elements of R which are represented by the genus g(q)—has class number
one [CI08, Thm. A.3]. (The result is stated when R has characteristic 0
but the argument works so long as the characteristic of R is not 2.) We
want a version of this result over Z which reexpresses the class number
one condition in terms of the structure of the class group C(∆). While this
variant is certainly known to some experts, we have not been able to find it
in the literature, so for completeness we indicate a proof.

Theorem 3.2. Let q be a primitive, nondegenerate binary quadratic
form of nonsquare discriminant ∆. If ∆ < 0, we suppose that q is posi-
tive. The following are equivalent:

(i) q is regular.
(ii) q is idoneal or bi-idoneal.

Proof. Step 1. Suppose q is regular. It is an easy consequence of the
local theory recalled in §2 that the set of prime numbers p - 2∆ which
are represented by q is a union of congruence classes modulo some positive
integer N (in fact, the classical theory shows that one may take N = 4∆).
Moreover, q represents infinitely many prime numbers [We82] or [Br54], so
q represents a full congruence class of primes.

Step 2. We claim that an integral binary form which represents a full
congruence class of primes must be idoneal or bi-idoneal. This is proved
in [ClHPT, Thm. 1] for positive forms. In fact the proof also works in the
indefinite case, since the four bulleted “tenets of genus theory” hold also in
the indefinite case. (Although references are given to [Cx89], which states
these results for positive forms only, the proofs do not use this hypothesis. In
fact these results were established in Gauss’s Disquisitiones Arithmeticae;
an accessible account can be found in [F].)

Step 3. Suppose q is idoneal or bi-idoneal. Then the aforementioned
genus theory shows that the only forms which are everywhere locally equiv-
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alent to q are q and q. Since q is GL2(Z)-equivalent to q, q has class number 1
and is thus regular.

Theorem 3.3. Let q(x, y)/Z be a primitive binary quadratic form. Then
q is ADC if and only if all of the following hold:

(i) q is idoneal or bi-idoneal.
(ii) For all odd primes p, vp(∆(q)) ≤ 1.

(iii) ∆(q) ≡ 1,3,5,7,8,9,11,12,13,15,17,19,20,21,23,24,25,27,28,29,31
(mod 32).

Proof. The result is an immediate consequence of Theorems 1.5 and 3.2,
Proposition 2.3(a) and Corollaries 2.11 and 2.15.

Theorem 3.4. Let q(x, y)/Z be a nondegenerate binary quadratic form.
Suppose d ∈ Z+ is such that q(x, y) = dq′(x, y) with q′(x, y) a primitive
form. Then q is ADC if and only if all of the following hold:

(i) q′(x, y) is ADC.
(ii) d is squarefree.

(iii) For each odd prime p dividing d,
(
∆(q′)/p

)
= −1.

(iv) If 2 | d, then either ∆(q′) ≡ 20 (mod 32) or ∆(q′) ≡ 5 (mod 8).

Proof. Step 1. Conditions (i) and (ii) are necessary for q to be ADC
by Lemma 2.1(b) and Proposition 2.3(b). Conversely, if they hold then, by
Theorem 1.5, q′ is regular, hence q = aq′ is regular, so by Theorem 1.5 again
q is ADC if and only if q/Zp

is ADC for all primes p. Under condition (ii),
q/Zp

is unit equivalent to either q′ or πq′ for a uniformizing element π. In
the former case q/Zp

is ADC since q′ is. Thus it is enough to check that if
q = πq′ for a primitive ADC form q′/Zp

, then q is locally ADC if and only if

condition (iii) holds when p is odd, and if and only if condition (iv) holds
when p = 2.

Step 2. Suppose p is odd. By Theorem 2.10, q/Zp
is ADC if and only if

(disc q′ ∈ Z×2p and p ≡ 3 (mod 4)) or (disc q′ ∈ Z×p \Z×2p and p ≡ 1 (mod 4)).

If p ≡ 3 (mod 4) then
(−1
p

)
= −1, so

(∆(q′)
p

)
=
(−4 disc q

p

)
= −1. If p ≡ 1

(mod 4) then
(−1
p

)
= 1, so again

(∆(q′)
p

)
=
(−4 disc q′

p

)
= −1.

Step 3. Suppose p = 2.

Case 1: v2(∆(q′)) = 0, so v2(∆(q)) = 2. Then by Theorem 2.14(b)(ii),
q = 2q′ is ADC if and only if ∆(q) ≡ 20 (mod 32) if and only if ∆(q′) ≡ 5
(mod 8).

Case 2: v2(∆(q′)) = 2, so v2(∆(q)) = 4. By Theorem 2.14(d), q is ADC
if and only if ∆(q′) ≡ 20 (mod 32).
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Case 3: v2(∆(q′)) ≥ 3, so v2(∆(q)) ≥ 5. By Theorem 2.14(e), q/Z2
is not

ADC.

3.3. Ternary forms

Theorem 3.5. For n ≥ 3, an n-ary ADC form over a Hasse domain R
is primitive.

Proof. Let q/R be an n-ary ADC form with n ≥ 3. By Corollary 2.7,
q is locally primitive, so by Proposition 2.3(a), q is primitive.

Theorem 3.6. There are 103 positive ADC ternary forms q/Z.

Proof. Let q be a positive ternary ADC form. By Theorem 1.5, q is reg-
ular, whereas by Theorem 3.5, q is primitive. We now use the main result of
[JKS97], which gives a list of 913 forms among which all primitive, positive,
regular integral ternary forms must lie. For each of these forms, we check
whether it is locally ADC using Theorems 2.12, 2.17 and 2.18; Theorem 2.12
implies that if a prime p does not divide 2 disc q, then q is necessarily ADC,
so that for each form there are only finitely many primes to check. (For each
such odd prime we do have to diagonalize q over Zp, and for p = 2 we need
to either diagonalize q or put it in the normal form of Theorem 2.18, so
there is some nontrivial—though routine—computation to do.) We are left
with a list of 103 forms.

The [JKS97] enumeration includes regularity proofs of all but 22 of the
913 forms. The remaining 22 forms are strongly suspected to be regular but
the regularity was not proved in [JKS97]. (Some, but not yet all, of these
22 forms have since been shown to be regular.) But we got lucky: none of
these 22 forms is locally ADC.

Remark 3.7. In contrast to the binary case (but similarly to the qua-
ternary case and beyond), positive integral ADC ternary forms need not
have class number one: eight of them have class number two.

3.4. Quaternary forms

Theorem 3.8. There are 6436 positive ADC quaternary forms q/Z.

Proof. A form q over a Hasse domain R in at least four variables is ADC
if and only if it is sign-universal. Fortunately for us, the classification of
sign-universal positive quaternary forms q/Z has recently been completed by
Bhargava and Hanke [BH].

3.5. Beyond quaternary forms. It seems hopeless to classify positive
sign-universal forms in five or more variables. Certainly there are infinitely
many such primitive forms, e.g. x21 + · · · + x2n−1 + Dx2n. More generally,
any form with a sign-universal subform is obviously sign-universal, and this
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makes the problem difficult. However, using the following result we may
verify whether a given form is ADC.

Theorem 3.9 (Bhargava–Hanke [BH]). A positive quadratic form q/Z is
sign-universal if and only if it Z-represents every positive integer less than
or equal to 290.

4. From quadratic forms to lattices

4.1. Voronoi cells. Let (X, d) be a metric space, and let Λ ⊂ X. For
P 6= P ′ ∈ X, put

H(P, P ′) = {x ∈ X | d(x, P ) ≤ d(x, P ′)}.
We define the Voronoi cell

V (Λ,P ) =
⋂

P ′∈Λ\{P}

H(P, P ′),

i.e., the locus of points which are as close to P as to any other point of Λ.

Let q(x) = q(x1, . . . , xn) be a positive quadratic form on Rn. We associate
with it the inner product 〈x, y〉 = q(x+ y)− q(x)− q(y). Note that we are
not dividing by 2 as is often done, hence 〈x, x〉 = 2q(x). This convention has
the effect that if q(x) ∈ Z[x], then 〈Zn,Zn〉 ⊂ Zn. Now

d(x, y) =
√
〈x− y, x− y〉 =

√
2q(x− y)

is a metric on Rn. Since all positive bilinear forms are GLn(R)-equivalent,
d differs from the standard Euclidean metric by a linear change of variables.
For P, P ′ ∈ Rn,

H(P, P ′) = {x ∈ Rn | 〈x− P, x− P 〉 ≤ 〈x− P ′, x− P ′〉}
= {x ∈ Rn | 2〈x, P ′ − P 〉 ≤ 〈P ′, P ′〉 − 〈P, P 〉}.

In particular each H(P, P ′) is a convex subset, hence for any Λ ⊂ Rn, the
Voronoi cells V (Λ,P ) are convex. Now take Λ ⊂ Rn to be a full lattice, i.e.,
the Z-span of an R-linearly independent set v1, . . . , vn. Let

R = {α1v1 + · · ·+ αnvn | αi ∈ [0, 1]}
be the associated fundamental parallelepiped, and let d be its diameter.
Then every x ∈ Rn has distance at most d from some point of Λ, and it
follows that V (Λ) = V (Λ, 0) is contained in the closed ball of radius d. Thus
the intersection

⋂
P ′∈Λ• H(0, P ′) can be replaced by a finite intersection: all

but finitely many of the hyperplanes will be too far away for the intersection
condition to be nonvacuous. A set of Voronoi vectors for Λ is a finite subset
S ⊂ Λ• such that

V (Λ) =
⋂
P ′∈S

H(0, P ′).
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This description makes it clear that the Voronoi cell V (Λ) is a convex poly-
tope; since −Λ• = Λ•, V (Λ) is symmetric about the origin. Moreover, if
q ∈ Q[x] and Λ ⊂ Qn then all the defining hyperplanes are rational and
thus V (Λ) is a rational polytope: the convex hull of a finite subset of Qn.

For each P ∈ Λ•, the Voronoi cell V (Λ,P ) equals P + V (Λ), and thus
the Voronoi cells give a periodic polytopal tiling of Rd. We define the holes
of Λ (with respect to q) to be the vertices of V (Λ,P ), and the deep holes to
be the holes x for which d(0, x) is maximized. This maximal value is called
the covering radius and denoted by R. The covering radius is thus the least
radius r such that the ball B(0, r) contains the Voronoi cell V (Λ), hence
R ≤ d.

4.2. The Euclideanity and the covering radius. From our discus-
sion of Voronoi cells we infer the following result.

Proposition 4.1. Let q be a positive integral quadratic form. Let

E(q) = sup
y∈Qn

inf
x∈Zn

|q(x− y)|

be its Euclideanity. Let Λ = Zn and endow Rn with the inner product

〈x, y〉 = q(x+ y)− q(x)− q(y).

Let V (Λ) be the Voronoi cell and R the covering radius of (〈 , 〉, Λ).

(a) As y ranges over all elements of Rn, the quantity infx∈Zn q(x − y)
attains a maximum value at a rational vector y ∈ Qn.

(b) We have E(q) = R2/2.
(c) The form q is Euclidean if and only if E(q) < 1 if and only if

R <
√

2.

Proof. As y ranges over elements of Rn,

inf
x∈Zn

|q(x− y)| = inf
x∈Zn

1

2
〈x− y, x− y〉

attains its maximum at a deep hole of Λ, which by the above discussion
exists and lies in Qn. This gives part (a). Parts (b) and (c) follow.

5. Euclidean binary integral quadratic forms

5.1. The covering radius of a planar lattice

Theorem 5.1. Let q(x, y) = ax2 + bxy+ cy2 be a positive real quadratic
form which is Minkowski-reduced: 0 ≤ b ≤ a ≤ c. Let 〈x, y〉 = q(x + y) −
q(x)−q(y) be the associated positive bilinear form and d(x, y) =

√
2q(x− y)

be the associated metric.
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(a) The covering radius of Z2 with respect to d is

R =

√
2ac(a− b+ c)

4ac− b2
.

(b) If a, b, c ∈ Z, then the Euclideanity of E is

E(q) =
(ac)(a− b+ c)

4ac− b2
≥ c

4
.

Proof. (a) Case 1: b = 0. It is immediate that E(q) = (a+ c)/4 (a more
general case—stil immediate—was recorded as [Cl12, Ex. 2.2]). By way of
comparison with the following case, we record the geometry of the situation:

the vertices of the Voronoi cell for (Rn, d,Z2) are
(
1
2 ,

1
2

)
,
(
−1

2 ,
1
2

)
,
(
−1

2 ,−
1
2),(

1
2 ,−

1
2

)
. These are all deep holes, so the covering radius is

R =

√
2q

(
1

2
,
1

2

)
=

√
a+ c

2
.

(b) Case 2: b > 0. For x = (x1, x2), y = (y1, y2) ∈ R2, let

d0(x, y) =
√

(x1 − x2)2 + (y1 − y2)2, q0(x) = d20/2,

T =
2ac− ab√

(2a)(4ac− b2)
, U =

2ac− b2 + ab√
(2a)(4ac− b2)

,

v = (
√

2a, 0), w =

(
b√
2a
, T + U

)
.

Then the map Φ : (R2, d)→ (R2, d0) given by

(x, y) 7→
(√

2a x+
b√
2a
y, (T + U)y

)
is an isometry. Let

Λ = Φ(Z2) = Zv + Zw.
Thus the covering radius of (R2, d,Z2) is the same as the covering radius
of (R2, d0, Λ), so it suffices to compute the latter. Since the ordered ba-
sis (v, w) of Λ is Minkowski-reduced, q0(v) and q0(w) are the first and
second successive minima of Λ, and then it is a classical fact (elemen-
tary, but nontrivial; see [Aa, pp. 119–122] for a careful discussion) that
S = {v, w,w − v,−v,−w, v − w} is a set of Voronoi vectors in the sense of
§4.1, so that the Voronoi cell

V (Λ) =
⋂
P ′∈S

H(0, P ′)

is a hexagon, with vertices the holes

±
(√

a

2
, T

)
,±
(
b− a√

2a
, U

)
,±
(
−
√
a

2
, T

)
.
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Evaluating q0 at each of these holes we get

R =

√
2ac(a− b+ c)

4ac− b2
,

so all the holes are deep holes and R is the covering radius.

(b) By Proposition 4.1 we have

E(q) =
R2

2
=

(ac)(a− b+ c)

4ac− b2
=
ac2 − abc+ a2c

ac− b2

≥ (ac2 − b2c/4) + (a2c− abc)
4ac− b2

=
c

4
+
ac(a− b)
4ac− b2

≥ c

4
.

Corollary 5.2.

(a) The complete list of positive binary Euclidean integral forms is:

q1 = x2 + xy + xy2, E = 1/3;

q2 = x2 + y2, E = 1/2;

q3 = x2 + xy + 2y2, E = 4/7;

q4 = 2x2 + 2xy + 2y2, E = 2/3;

q5 = x2 + 2y2, E = 3/4;

q6 = 2x2 + xy + 2y2, E = 4/5;

q7 = x2 + xy + 3y2, E = 9/11;

q8 = 2x2 + 2xy + 3y2, E = 9/10.

(b) Every positive binary Eulidean quadratic form q/Z has class number
one.

Proof. (a) Let q be a positive integral binary quadratic form. Then q is
GL2(Z)-equivalent to a (unique) form ax2 + bxy + cy2 with 0 ≤ b ≤ a ≤ c
and b2−4ac > 0. By Proposition 4.1, E is Euclidean if and only if E(q) < 1.
By Theorem 5.1, E(q) ≥ c/4, so if q is Euclidean we must have 1 ≤ c ≤ 3.
This gives us a list of 16 triples (a, b, c) on which to check whether

(ac)(a− b+ c)

4ac− b2
< 1.

Doing so, we arrive at the list given in the statement of the result.

(b) Since scaling a quadratic form does not change its class number,
q4 will have class number 1 if and only if q1 does. Let q = Ax2 +Bxy+Cy2

be a primitive positive integral binary form of discriminant ∆. Then, as we
recalled in Theorem 3.2 above, q has class number one if and only if it is
idoneal or bi-idoneal. For q1, q2, q3, q5 and q7, the Discriminants are −3,
−4, −7, −8 and −11, and #C(∆) = 1. For q6 and q8 the Discriminants are
−15 and −20, and #C(∆) = 2. Thus every form is idoneal.



Euclidean quadratic forms and ADC forms II 289

Remark 5.3. Observe that the Euclidean forms above are all idoneal.
Moreover the class group C(∆(q)) is either trivial or has order 2, and the for-
mer holds if and only if q represents 1. These extra conditions are explained
by work of Lenstra which we discuss next.

5.2. Euclidean rings and Euclidean ideal classes. For a nonsquare

integer D which is 0 or 1 modulo 4, let RD = Z
[
D+
√
D

2

]
be the quadratic

order of discriminant D, and let K = Q(
√
D) be its fraction field. Denote

by x 7→ x the nontrivial field automorphism of K and by N : x 7→ xx the
norm map from K to Q. We put |x| = |N(x)|. Denote by PicRD the Picard
group of RD, i.e., invertible RD ideals modulo principal ideals. Denote by
Pic+RD the narrow Picard group of RD, i.e., invertible RD ideals modulo
principal ideals with totally positive generators.

A quadratic form is nonnegative if it is either positive or indefinite.

Theorem 5.4 ([Co93, Thms. 5.2.8, 5.2.9]).

(a) Suppose D < 0. Then the mappings

Φ : ax2 + bxy + cy2 7→ aZ +
−b+

√
D

2
Z,

Ψ : a 7→ |xω1 − yω2|
|a|

,

where a = Zω1 + Zω2 with
ω2ω1 − ω1ω2√

D
> 0,

induce mutually inverse bijections from the set of SL2(Z)-isomor-
phism classes of primitive, positive integral binary quadratic forms
of Discriminant D to PicRD = Pic+RD.

(b) Suppose D > 0. Then the mappings

Φ : ax2 + bxy + cy2 7→
(
aZ +

−b+
√
D

2

)
α,

where α is any element of K× such that sign(N(α)) = sign(α), and

Ψ : a 7→ N(xω1 − yω2)

N(a)
,

where α = Zω1 + Zω2 with
ω2ω1 − ω1ω2√

D
> 0,

induce mutually inverse bijections from the set of SL2(Z)-isomor-
phism classes of primitive, indefinite integral binary quadratic forms
of Discriminant D to Pic+RD.

Remark 5.5. The correspondence of Theorem 5.4 carries principal qua-
dratic forms (those integrally representing 1) to principal fractional ideals.
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Corollary 5.6. Let D be a quadratic discriminant. As a runs through
a full set of representatives for PicRD, every primitive, nonnegative integral
binary form of discriminant D is unit equivalent to at least one form Ψ(a).

Proof. The only nontrivial aspect of this is replacing the narrow Picard
group by the Picard group when D > 0. If PicRD = Pic+RD, there is
nothing to show; otherwise PicRD is the quotient of Pic+RD by an invo-
lution whose action on the quadratic forms side carries ax2 + bxy + cy2 to
−ax2 + bxy − cy2 [F, p. 127]. Since the latter form is unit equivalent to the
former one, the result follows.

We can reduce the classification of Euclidean binary quadratic forms over
Z to work of Lenstra on Euclidean ideals. First observe that because
Euclidean forms give maximal lattices, in the above results we may restrict
to fundamental discriminants D, so that the quadratic order RD of discrim-
inant D is simply the ring of integers in the quadratic field Q(

√
D). Thus

RD is a Dedekind domain with ideal norm given by |I| = |N(I)| = #RD/I.
Let (R, | · |) be an ideal normed Dedekind domain with fraction field K.

A nonzero fractional R-ideal a is Euclidean if for all v ∈ K, there is w ∈ a
such that |v − w| < |a|. The following result is now immediate.

Theorem 5.7. Let D be a fundamental quadratic discriminant, and let
RD be the quadratic ring of discriminant D, with ideal norm

|I| = |N(I)| = #RD/I.

(a) For an invertible ideal a of RD, the following are equivalent:

(i) The ideal a is Euclidean.
(ii) The integral binary quadratic form Ψ(a) = N(xω1 − yω2)/N(a)

is Euclidean.

(b) The conditions of part (a) depend only on the image of a in PicRD.

Using Remark 5.5 we see that Theorem 5.7 induces a bijective correspon-
dence between Euclidean quadratic rings and principal Euclidean binary
forms. This suggests attacking the classification problem on the other side
of the correspondence, i.e., by classifying Euclidean quadratic rings. Our
previous results specialize to give the well-known classification of Euclidean
imaginary quadratic rings.

Proposition 5.8.

(a) Let ∆ be a negative integer which is 0 or 1 modulo 4, and let q∆ be
the norm form of the quadratic order of discriminant ∆. Then:

(i) If ∆ ≡ 0 (mod 4), then E(q∆) = |∆|+4
16 .

(ii) If ∆ ≡ 1 (mod 4), then E(q∆) = (|∆|+1)2

16|∆| .
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(b) The principal positive binary Euclidean quadratic forms q/Z are q1,
q2, q3, q5 and q7 of Corollary 5.2.

Proof. (a) If ∆ ≡ 0 (mod 4), then the quadratic order of Discriminant
∆ is Z

[
∆
2

]
and its norm form is q∆(x, y) = x2 − ∆

4 y
2. If ∆ ≡ 1 (mod 4),

then the quadratic order of Discriminant ∆ is Z
[
1+
√
∆

2

]
and its norm form

is q∆(x, y) = x2 + xy +
(
1−∆
4

)
y2. These forms are positive and Minkowski-

reduced, so Theorem 5.1 applies to compute their Euclideanities.
(b) This follows immediately.

Of course Proposition 5.8(b) simply repeats a special case of Corol-
lary 5.2. But the link to Euclidean rings explains the phenomenon that
beyond simply being idoneal or bi-idoneal, for these forms C(∆(q)) is trivial.

The classification of Euclidean real quadratic rings is more difficult; it
was initiated by Wantzel in 1848 and completed by Barnes and Swinnerton-
Dyer in 1952 [BSD52]. We recommend [Le95] as a source for this and related
results.

Theorem 5.9. The real quadratic (norm-)Euclidean rings are precisely
those of discriminant D for

D ∈ {5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76}.
(a) The principal, anisotropic indefinite binary Euclidean forms q/Z are

q9 = x2 + xy − y2, E = 1/4;

q10 = x2 + xy − 3y2, E = 1/3;

q11 = x2 − 2y2, E = 1/2;

q12 = x2 − 3y2, E = 1/2;

q13 = x2 + xy − 4y2, E = 1/2;

q14 = x2 − 7y2, E = 9/14;

q15 = x2 + xy − 8y2, E = 29/44;

q16 = x2 + xy − 5y2, E = 5/7;

q17 = x2 + xy − 10y2, E = 23/32;

q18 = x2 + xy − 18y2, E = 1541/2136;

q19 = x2 + xy − 14y2, E = 14/19;

q20 = x2 − 6y2, E = 3/4;

q21 = x2 + xy − 9y2, E = 3/4;

q22 = x2 + xy − 7y2, E = 4/5;

q23 = x2 − 11y2, E = 19/22;

q24 = x2 − 19y2, E = 170/171.
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(b) The Euclidean forms which are obtained as imprimitive multiples of
the forms of part (a) are

q25 = 2(x2 + xy − y2), E = 1/2;

q26 = 3(x2 + xy − y2), E = 3/4;

q27 = 2(x2 + xy − 3y2), E = 2/3.

Proof. (a) See [Le95, Thm. 4.4] and [Lz].
(b) Whenever we have a primitive integral form with E(q) ≤ 1/n for

some n ∈ Z+, since for d ∈ Z+ we have E(dq) = dE(q), the forms dq with
1 ≤ d < n are Euclidean. If E(q) = 1/n, then nq is Euclidean if and only if
the supremum is not attained if and only if the critical set C(q) is empty. As
mentioned above, this is conjectured (but not yet known) never to occur for
integral binary quadratic forms. Thus for the first five forms in part (a) we
need to make use of Lezowski’s tables [Lz], which record a finite, nonempty
critical set C(q) in every case.

Lenstra further showed that the ring of integers RD of a quadratic field
admits at most one Euclidean ideal class, and if a nonprincipal Euclidean
ideal class exists then # PicRD = 2. Using these facts he classified all Eu-
clidean ideal classes in quadratic rings. To deal with imprimitive forms we
also need to know the Euclideanities, which were computed by P. Lezowski.

Theorem 5.10 (Lenstra [Ls79], Lezowski [Lz]). The quadratic ring RD
admits a nonprincipal Euclidean ideal class if and only if D ∈ {−20,−15, 40,
60, 85}.

The corresponding positive nonprincipal Euclidean binary forms q/Z are

q8 = 2x2 + 2xy + 3y2, E = 9/10;

q9 = 2x2 + xy + 2y2, E = 4/5.

The corresponding indefinite nonprincipal Euclidean binary forms q/Z are

q28 = 2x2 − 5y2, E = 3/4;

q29 = 3x2 − 5y2, E = 5/6;

q30 = 3x2 − 7xy − 3y2, E = 15/17.

In summary:

Theorem 5.11. There are 30 anisotropic Euclidean binary forms q/Z.

6. Positive Euclidean integral forms have class number one

6.1. The theorem. As promised in §1, we now present a proof that
all positive Euclidean integral quadratic forms have class number one. Of
course one proof is obtained simply by calculating the class numbers of the
69 + 1 Euclidean forms listed in [Ne03], and this is what we did first. In
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searching for an a priori proof, the second author contacted N. Elkies and
R. Borcherds. Borcherds indicated that this fell under the general method-
ology that Conway used in dealing with the Leech lattice, and suggested the
book by W. Ebeling [Eb]. Prof. Elkies suggested that we contact D. Allcock,
who was a student of Borcherds. Allcock was quite firm that the Lorentzian
method was the proper path. Finally, in §4.5 of the second edition of [Eb],
the second author found a detailed rendition of Conway’s argument and was
able to adapt it to the present circumstance. We are pleased to be able to
offer this simple version of a technique which has hitherto been associated
primarily with the Leech lattice and finite simple groups, and for which
other possible applications have been known to only a few specialists.

Theorem 6.1. Every positive Euclidean form q/Z has class number one.

We will need a preliminary result characterizing the genus of an integral
quadratic form in terms of Lorentzian lattices. This result is alluded to in
the seminal work [CS] but not proved there, so for completeness we give a
proof in §6.2. The proof of Theorem 6.1 is given in §6.3.

6.2. Lorentzian characterization of the genus. Let q(x) be an in-
tegral quadratic form. We remind the reader of our convention that the
associated bilinear form is 〈x, y〉 = q(x+ y)− q(x)− q(y). This results in a
bilinear Z-lattice which is even in the sense that 〈x, x〉 ∈ 2Z for all x ∈ Zn.

Lemma 6.2 ([O’M, IX, 92:3, 93:14]). Let R be a complete DVR of char-
acteristic different from 2, and let f, g be nondegenerate quadratic forms
over R. If f ⊕H ∼= g ⊕H, then f ∼= g.

Theorem 6.3. Let f and g be nondegenerate integral quadratic forms.
The following are equivalent:

(i) f and g are in the same genus.
(ii) f ⊕H and g ⊕H are integrally equivalent.

Proof. (i)⇒(ii). Step 1. We claim f⊕H and g⊕H lie in the same spinor
genus. This follows quickly from the results of [C, §11.3], which the interested
reader will now wish to consult for notation. Especially, the Corollary to
Lemma 11.3.6 of [C] reads: “If we show Up ⊂ θ(Λp) for all [prime numbers] p,
then the genus of Λ consists of a single spinor genus.” Identifying integral
forms with their corresponding lattices, put Λ = f ⊕ H. By the remark
immediately preceding [C, Lemma 11.3.8] we have, for all prime numbers p,
θ(Λp) ⊃ θ(Hp). Further, by [C, Lemmas 11.3.7 and 11.3.8] , θ(Hp) ⊃ Up.
Therefore Up ⊂ θ(Λp) for all p.

Step 2. Since (f ⊕H)⊗Q is nondegenerate, indefinite and of dimension
at least 3, by Eichler’s Theorem [Ei52] its spinor genus consists of a single
class.
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(ii)⇒(i). Suppose f ⊕ H ∼=Z g ⊕ H. Then f ⊕ H ∼=R g ⊕ H, so by Witt
Cancellation f ∼=R g. Moreover, for any prime number p, f ⊕H ∼=Zp g ⊕H,
so f ∼=Zp g by Lemma 6.2. Thus g(f) = g(g).

Remark 6.4. The statement of Theorem 6.3 appears in [CS, p. 378]:
“[M]uch of the importance of the genus . . . arises from the fact that two
forms f and g are in the same genus if and only if f⊕

[
0
1

1
0

]
and g⊕

[
0
1

1
0

]
are

integrally equivalent. This follows from properties of the spinor genus.” (In
terms of our setup, the authors are speaking about the even bilinear lattices
associated to integral quadratic forms.) But so far as we know the literature
does not contain a proof. The above argument was supplied by A. Kumar
at our request [K].

6.3. The proof. Let q be a positive integral Euclidean form. Let Λ
be the even positive lattice corresponding to q, so Λ has covering radius
less than

√
2. Consider the Lorentzian lattice L = Λ ⊕ U corresponding

to the indefinite integral form q ⊕ H. We may represent elements of L as
triples (λ,m, n) with λ ∈ Λ, m,n ∈ Z. Denoting the induced bilinear form
(x, y) 7→ q(x + y) − q(x) − q(y) on Λ simply as x · y, the induced bilinear
form on L is

(λ1,m1, n1) · (λ2,m2, n2) = λ1 · λ2 +m1n2 +m2n1.

Let ` ∈ L be a primitive isotropic vector. The bilinear form on L induces a
well-defined bilinear form on the lattice

E(`) = `⊥/〈`〉.

We claim that E(`) ⊗ Q ∼= Λ ⊗ Q. Indeed, since ` is an isotropic vector
in the nondegenerate quadratic space L ⊗ Q, there is an isomorphism
Φ : L⊗Q→ H⊕ V ′ with Φ(`) = e2. By Witt Cancellation, V ′ ∼= Λ⊗Q, so
in particular V ′ is positive. We have `⊥ = Φ−1(e⊥2 ) = 〈e2〉 ⊕ V ′ and thus

`⊥/〈`〉 ∼= (e2 ⊕ V ′)/〈e2〉 ∼= V ′ ∼= Λ⊗Q.

In particular, E(`) is positive. Further, the Z-isomorphism class of E(`)
depends only on the (AutL)-orbit of `.

Suppose Λ′ is a positive even lattice in the same genus as Λ. By Theo-
rem 6.3 there is an isomorphism Φ : Λ′⊕U → Λ⊕U , and then Λ′ ∼= E(Φ(e2)).
Thus to prove Theorem 6.1 it suffices to show that for every primitive
isotropic vector ` ∈ L, there is Φ ∈ AutL such that Φ` = ±e2 = ±(0, 0, 1):
then ±Φ` = e2 = (0, 0, 1) and

Λ′ ∼= E(`) ∼= E(e2) ∼= Λ.

We will show this by performing a sequence of reflections in special root
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vectors of L. For λ ∈ Λ, we define

λ̃ =

(
λ, 1, 1− λ · λ

2

)
∈ L.

Then λ̃ is a root, i.e., λ̃ · λ̃ = 2. Recall that for an anisotropic vector v in
a quadratic space (V, q) over a field K of characteristic different from 2 we
can build an isometry of V , reflection through v :

sv : x 7→ x−
(

2x · v
v · v

)
v.

For an anisotropic vector v in a quadratic Z-lattice, sv need not be integrally
defined, but it is if v · v = 2. Thus each λ ∈ Λ yields a reflection sλ̃.

Let z = (ξ, a, b) be a primitive isotropic vector, so

−2ab = ξ2.

• Since z is primitive isotropic, if one of a, b is 0, then (since Λ is
anisotropic), ξ = 0 and the other of a, b is ±1.

• Suppose |b| < |a|. Then

z · 0̃ = (ξ, a, b) · (0, 1, 1) = a+ b,

s0̃(z) = z − (z · 0̃)0̃ = (ξ,−b,−a).

• Therefore we may assume |a| ≤ |b|. If a = 0, then as above b = ±1 so
±z = (0, 0, 1) and we are done. Hence we may assume a 6= 0. By replacing
z with −z if necessary we may assume a > 0. Since b = −ξ2/2a and 2a2 ≤
|2ab| = ξ2, we see that (ξ/a)2 ≥ 2. By the Euclidean condition, there is
λ ∈ Λ \ {0} with

(ξ/a− λ)2 < 2.

Put

(5)
a′ =

a

2
(ξ/a− λ)2,

b′ = b− (a− a′)(1− λ2/2) = −ξ2/2a− (a− a′)(1− λ2/2).

Then

z · λ̃ = (ξ, a, b) · (λ, 1, 1− λ2/2) = a− a′,

so a′ ∈ Z. Finally, put

z′ = sλ̃(z) = (ξ − (a− a′)λ, a′, b′) = (ξ′, a′, b′),

say. If a′ = 0, then sλ̃(z) = (0, 0,±1), and we are done. So we may assume
a′ 6= 0. Then (5) gives |a′| < |a| and a′ > 0; it follows that 0 < a − a′ < a.
Since −2ab = ξ2, we have b < 0; and since

−2a′b′ = (ξ − (a− a′)λ)2,
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it follows that b′ < 0. Since λ2 ≥ 2, we have 1− λ2/2 ≤ 0, and thus

(a− a′)(1− λ2/2) ≤ 0.

Since

b′ = b− (a− a′)(1− λ2/2),

we conclude |b′| ≤ |b|. Therefore we find that z = (ξ, a, b) lies in the same
(AutL)-orbit as z′ = (ξ′, a′, b′) with |a′|+ |b′| < |a|+ |b|. Continuing in this
way, we eventually generate an element zk = (ξk, ak, bk) in the (AutL)-orbit
of z with akbk = 0 and thus ±zk = (0, 0, 1).

6.4. The positive Euclidean integral forms reclassified. As men-
tioned above, in view of Theorem 6.1 we get a new proof of Theorem 1.6
by running through the Lorch–Kirschmer list of primitive, positive class
number one integral quadratic forms available at

www.math.rwth-aachen.de/∼Gabriele.Nebe/LATTICES/index.html#Watson

and computing their Euclideanities. This was done using the MAGMA com-
puter algebra package, which has a command for computing the covering ra-
dius of a lattice in Euclidean space, implementing an algorithm of G. Nebe.
These computations take positive time (as measured by MAGMA) start-
ing with five variables. For instance, the 67th Euclidean lattice is the E8

root lattice, for which MAGMA took 399 seconds to compute the cover-
ing radius. (Exact formulas for covering radii of root lattices are known,
but since we have to compute covering radii of many nonroot lattices as
well, it was simpler not to make use of them.) Covering radii computations
become prohibitively slow starting with nine variables: a direct MAGMA
computation of the covering radius of the nine- and ten-dimensional class
number one lattices did not terminate, so instead we took advantage of the
fact that these forms are given as q1 ⊕ q2 with dim qi ≤ 8 and used (2) to
reduce to smaller-dimensional cases. The computations took a bit under a
day.

A version of the Lorch–Kirschmer list with Euclideanities is available at

www.math.uga.edu/∼pete/Class.Number.One.With.Euclideanities.txt

From this list we extract the 67 primitive positive class number one Eu-
clidean integral forms. In precisely two cases we have E(q) < 1/2: namely
E(x2) = 1/4 and E(x2 + xy + y2) = 1/3. As discussed in the proof of
Theorem 5.9(b), this leads to three more Euclidean forms, 2x2, 3x2 and
2(x2 + xy + y2). The binary forms on this list are precisely those of Corol-
lary 5.2, removing the dependence on the Generalized Riemann Hypoth-
esis. Our list of 70 Euclidean forms coincides with the list of [Ne03] aug-
mented with the form of Remark 1.7. The forms are recorded in Table 3
below.
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6.5. Remark on the sharpness of Conjecture 2. As mentioned in
the introduction to [Ne03], it is also of interest to classify integral lattices Λ
in Euclidean n-space with covering radius R =

√
2.

This classification is not yet complete, but Nebe’s method yields several
lattices with covering radius

√
2 and class number greater than one. A more

dramatic example is the Leech lattice ΛL, which has covering radius
√

2
[CPS82], whereas a positive integral form of class number one has at most
10 variables [Wa63a]. In fact, Niemeier [Ni73] showed that there are precisely
24 even unimodular lattices of dimension 24. It follows from the Lorentzian
characterization of the genus and the fact that any two indefinite unimodular
lattices of the same signature and type (i.e., even or odd) are isomorphic
[S, §V.2.2] that the genus of ΛL consists of all 24 even unimodular lattices
of dimension 24; thus the class number of ΛL is 24.
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Table 1. Primitive positive ADC binaries: (A,B,C) = Ax2 + Bxy + Cy2

(1, 1, 1) (1, 0, 1) (1, 1, 2) (1, 0, 2) (1, 1, 3) (1, 0, 3)

(1, 1, 4) (2, 1, 2) (1, 1, 5) (1, 0, 5) (2, 2, 3) (1, 0, 6)

(2, 0, 3) (1, 1, 9) (3, 1, 3) (2, 1, 5) (1, 0, 10) (2, 0, 5)

(1, 1, 11) (1, 1, 13) (3, 3, 5) (1, 0, 13) (2, 2, 7) (2, 1, 7)

(3, 2, 5) (1, 1, 17) (3, 2, 6) (1, 0, 21) (2, 2, 11) (3, 0, 7)

(5, 4, 5) (1, 0, 22) (2, 0, 11) (1, 1, 23) (5, 3, 5) (1, 1, 29)

(5, 5, 7) (1, 0, 30) (2, 0, 15) (3, 0, 10) (5, 0, 6) (1, 1, 31)

(3, 3, 11) (1, 0, 33) (2, 2, 17) (3, 0, 11) (6, 6, 7) (5, 2, 7)

(1, 0, 37) (2, 2, 19) (3, 1, 13) (1, 1, 41) (1, 0, 42) (2, 0, 21)

(3, 0, 14) (6, 0, 7) (5, 4, 10) (1, 1, 47) (7, 3, 7) (1, 1, 49)

(3, 3, 17) (5, 5, 11) (7, 1, 7) (3, 1, 17) (5, 1, 11) (1, 0, 57)

(2, 2, 29) (3, 0, 19) (6, 6, 11) (1, 0, 58) (2, 0, 29) (1, 1, 59)

(5, 5, 13) (5, 1, 13) (3, 2, 22) (6, 2, 11) (5, 4, 14) (7, 4, 10)

(1, 1, 67) (3, 3, 23) (5, 2, 14) (7, 2, 10) (1, 0, 70) (2, 0, 35)

(5, 0, 14) (7, 0, 10) (5, 3, 15) (7, 4, 11) (3, 2, 26) (6, 2, 13)
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Table 1 (cont.). Primitive positive ADC binaries: (A,B,C) = Ax2 + Bxy + Cy2

(1, 0, 78) (2, 0, 39) (3, 0, 26) (6, 0, 13) (3, 1, 27) (7, 6, 13)

(1, 0, 85) (2, 2, 43) (5, 0, 17) (10, 10, 11) (7, 3, 13) (1, 0, 93)

(2, 2, 47) (3, 0, 31) (6, 6, 17) (7, 2, 14) (1, 1, 101) (11, 9, 11)

(1, 0, 102) (2, 0, 51) (3, 0, 34) (6, 0, 17) (1, 0, 105) (2, 2, 53)

(3, 0, 35) (5, 0, 21) (6, 6, 19) (7, 0, 15) (10, 10, 13) (11, 8, 11)

(1, 1, 107) (7, 7, 17) (1, 1, 109) (3, 3, 37) (5, 5, 23) (11, 7, 11)

(5, 2, 23) (10, 8, 13) (1, 1, 121) (3, 3, 41) (7, 7, 19) (11, 1, 11)

(1, 0, 130) (2, 0, 65) (5, 0, 26) (10, 0, 13) (1, 0, 133) (2, 2, 67)

(7, 0, 19) (13, 12, 13) (7, 6, 21) (11, 8, 14) (1, 1, 139) (3, 3, 47)

(5, 5, 29) (13, 11, 13) (5, 4, 29) (10, 6, 15) (11, 2, 13) (7, 6, 22)

(11, 6, 14) (1, 1, 149) (5, 5, 31) (7, 7, 23) (13, 9, 13) (5, 2, 31)

(10, 8, 17) (1, 1, 157) (3, 3, 53) (11, 11, 17) (13, 7, 13) (5, 3, 33)

(11, 3, 15) (1, 0, 165) (2, 2, 83) (3, 0, 55) (5, 0, 33) (6, 6, 29)

(10, 10, 19) (11, 0, 15) (13, 4, 13) (11, 9, 17) (1, 0, 177) (2, 2, 89)

(3, 0, 59) (6, 6, 31) (1, 1, 179) (5, 5, 37) (11, 11, 19) (13, 13, 17)

(11, 5, 17) (1, 0, 190) (2, 0, 95) (5, 0, 38) (10, 0, 19) (13, 11, 17)

(11, 8, 19) (1, 1, 199) (3, 3, 67) (5, 5, 41) (15, 15, 17) (11, 4, 19)

(13, 8, 17) (1, 0, 210) (2, 0, 105) (3, 0, 70) (5, 0, 42) (6, 0, 35)

(7, 0, 30) (10, 0, 21) (14, 0, 15) (7, 4, 31) (14, 10, 17) (11, 10, 22)

(13, 4, 17) (7, 3, 33) (11, 3, 21) (11, 4, 22) (13, 6, 19) (7, 5, 35)

(11, 5, 23) (13, 1, 19) (11, 3, 23) (1, 0, 253) (2, 2, 127) (11, 0, 23)

(17, 12, 17) (7, 3, 37) (7, 2, 37) (14, 12, 21) (7, 2, 38) (14, 2, 19)

(1, 0, 273) (2, 2, 137) (3, 0, 91) (6, 6, 47) (7, 0, 39) (13, 0, 21)

(14, 14, 23) (17, 8, 17) (11, 4, 26) (13, 4, 22) (5, 3, 57) (15, 3, 19)

(7, 6, 42) (11, 2, 26) (13, 2, 22) (14, 6, 21) (1, 1, 289) (3, 3, 97)

(5, 5, 59) (7, 7, 43) (11, 11, 29) (15, 15, 23) (17, 1, 17) (19, 17, 19)

(5, 4, 61) (10, 6, 31) (11, 7, 29) (11, 6, 29) (17, 16, 22) (17, 7, 19)

(13, 8, 26) (17, 2, 19) (1, 0, 330) (2, 0, 165) (3, 0, 110) (5, 0, 66)

(6, 0, 55) (10, 0, 33) (11, 0, 30) (15, 0, 22) (1, 0, 345) (2, 2, 173)

(3, 0, 115) (5, 0, 69) (6, 6, 59) (10, 10, 37) (15, 0, 23) (19, 8, 19)

(13, 11, 29) (5, 3, 71) (1, 0, 357) (2, 2, 179) (3, 0, 119) (6, 6, 61)

(7, 0, 51) (14, 14, 29) (17, 0, 21) (19, 4, 19) (1, 1, 359) (5, 5, 73)

(7, 7, 53) (19, 3, 19) (11, 3, 33) (17, 11, 23) (13, 1, 29) (1, 0, 385)

(2, 2, 193) (5, 0, 77) (7, 0, 55) (10, 10, 41) (11, 0, 35) (14, 14, 31)

(22, 22, 23) (17, 3, 23) (7, 6, 57) (14, 8, 29) (17, 2, 23) (19, 6, 21)

(11, 9, 39) (13, 9, 33) (5, 1, 83) (15, 9, 29) (7, 6, 61) (14, 8, 31)

(5, 2, 86) (10, 2, 43) (15, 12, 31) (17, 16, 29) (13, 4, 34) (17, 4, 26)

(11, 6, 41) (22, 16, 23) (5, 3, 89) (13, 7, 35) (13, 12, 37) (19, 14, 26)
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Table 1 (cont.). Primitive positive ADC binaries: (A,B,C) = Ax2 + Bxy + Cy2

(1, 0, 462) (2, 0, 231) (3, 0, 154) (6, 0, 77) (7, 0, 66) (11, 0, 42)

(14, 0, 33) (21, 0, 22) (7, 4, 67) (13, 8, 37) (14, 10, 35) (21, 18, 26)

(13, 9, 39) (17, 5, 29) (13, 6, 39) (23, 20, 26) (1, 1, 499) (3, 3, 167)

(5, 5, 101) (7, 7, 73) (15, 15, 37) (19, 19, 31) (21, 21, 29) (23, 11, 23)

(11, 2, 46) (22, 2, 23) (7, 3, 73) (19, 13, 29) (7, 2, 73) (13, 12, 42)

(14, 12, 39) (21, 12, 26) (11, 1, 47) (19, 17, 31) (5, 1, 107) (15, 9, 37)

(11, 9, 51) (17, 9, 33) (17, 10, 34) (19, 12, 31) (5, 4, 113) (10, 6, 57)

(15, 6, 38) (19, 6, 30) (7, 4, 82) (14, 4, 41) (17, 10, 35) (21, 18, 31)

(7, 4, 86) (14, 4, 43) (5, 2, 122) (10, 2, 61) (15, 12, 43) (23, 18, 30)

(5, 3, 123) (15, 3, 41) (11, 4, 59) (17, 2, 38) (19, 2, 34) (22, 18, 33)

(19, 16, 38) (23, 6, 29) (17, 11, 41) (23, 1, 29) (7, 1, 97) (21, 15, 35)

(13, 1, 53) (17, 13, 43) (11, 10, 65) (13, 10, 55) (22, 12, 33) (26, 16, 29)

(19, 10, 38) (23, 8, 31) (13, 10, 59) (26, 16, 31) (1, 1, 751) (3, 3, 251)

(7, 7, 109) (11, 11, 71) (13, 13, 61) (21, 21, 41) (29, 19, 29) (31, 29, 31)

(11, 4, 71) (13, 8, 61) (22, 18, 39) (26, 18, 33) (19, 18, 46) (23, 18, 38)

(11, 8, 74) (17, 2, 47) (22, 8, 37) (31, 30, 33) (11, 6, 74) (13, 2, 62)

(22, 6, 37) (26, 2, 31) (17, 15, 51) (19, 5, 43) (1, 1, 829) (3, 3, 277)

(5, 5, 167) (13, 13, 67) (15, 15, 59) (17, 17, 53) (29, 7, 29) (31, 23, 31)

(13, 5, 65) (23, 7, 37) (17, 6, 51) (19, 8, 46) (23, 8, 38) (31, 28, 34)

(13, 2, 67) (19, 4, 46) (23, 4, 38) (26, 24, 39) (13, 9, 69) (23, 9, 39)

(11, 8, 83) (17, 4, 53) (22, 14, 43) (33, 30, 34) (11, 10, 85) (17, 10, 55)

(22, 12, 43) (31, 24, 34) (13, 1, 73) (17, 9, 57) (19, 9, 51) (29, 27, 39)

(7, 6, 138) (14, 6, 69) (21, 6, 46) (23, 6, 42) (13, 6, 78) (17, 14, 62)

(26, 6, 39) (31, 14, 34) (17, 5, 61) (29, 13, 37) (17, 6, 62) (23, 12, 47)

(29, 24, 41) (31, 6, 34) (13, 2, 82) (23, 8, 47) (26, 2, 41) (31, 24, 39)

(19, 3, 57) (23, 1, 47) (7, 2, 158) (14, 2, 79) (19, 8, 59) (35, 30, 38)

(11, 2, 101) (19, 14, 61) (22, 20, 55) (33, 24, 38) (11, 6, 102) (17, 6, 66)

(22, 6, 51) (33, 6, 34) (13, 6, 87) (26, 20, 47) (29, 6, 39) (31, 10, 37)

(13, 3, 87) (19, 11, 61) (23, 19, 53) (29, 3, 39) (11, 10, 110) (22, 10, 55)

(29, 4, 41) (33, 12, 37) (19, 3, 67) (31, 1, 41) (7, 3, 183) (17, 11, 77)

(21, 3, 61) (35, 25, 41) (13, 12, 102) (17, 12, 78) (26, 12, 51) (34, 12, 39)

(11, 7, 119) (17, 7, 77) (29, 27, 51) (33, 15, 41) (19, 6, 69) (23, 6, 57)

(37, 34, 43) (38, 32, 41) (13, 10, 106) (23, 4, 59) (26, 10, 53) (39, 36, 43)

(1, 0, 1365) (2, 2, 683) (3, 0, 455) (5, 0, 273) (6, 6, 229) (7, 0, 195)

(10, 10, 139) (13, 0, 105) (14, 14, 101) (15, 0, 91) (21, 0, 65) (26, 26, 59)

(30, 30, 53) (35, 0, 39) (37, 4, 37) (42, 42, 43) (19, 9, 73) (31, 19, 47)

(11, 3, 141) (31, 25, 55) (33, 3, 47) (37, 13, 43) (19, 1, 83) (23, 15, 71)

(11, 2, 146) (22, 2, 73) (31, 20, 55) (33, 24, 53) (11, 8, 151) (17, 4, 97)
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Table 1 (cont.). Primitive positive ADC binaries: (A,B,C) = Ax2 + Bxy + Cy2

(22, 14, 77) (34, 30, 55) (17, 16, 101) (23, 14, 74) (34, 18, 51) (37, 14, 46)

(23, 10, 74) (29, 22, 62) (31, 22, 58) (37, 10, 46) (19, 18, 94) (29, 16, 61)

(37, 32, 53) (38, 18, 47) (11, 7, 161) (23, 7, 77) (31, 23, 61) (33, 15, 55)

(13, 6, 138) (19, 2, 94) (23, 6, 78) (26, 6, 69) (29, 20, 65) (37, 36, 57)

(38, 2, 47) (39, 6, 46) (13, 11, 143) (29, 15, 65) (31, 1, 59) (37, 23, 53)

(7, 5, 265) (21, 9, 89) (31, 13, 61) (35, 5, 53) (19, 14, 101) (23, 8, 82)

(38, 24, 53) (41, 8, 46) (17, 12, 113) (23, 2, 82) (34, 22, 59) (41, 2, 46)

(7, 1, 277) (19, 15, 105) (21, 15, 95) (35, 15, 57) (19, 17, 109) (23, 3, 87)

(29, 3, 69) (37, 21, 57) (17, 4, 118) (29, 24, 74) (34, 4, 59) (37, 24, 58)

(19, 2, 106) (31, 16, 67) (38, 2, 53) (41, 36, 57) (17, 15, 129) (23, 3, 93)

(31, 3, 69) (43, 15, 51) (7, 4, 307) (14, 10, 155) (21, 18, 106) (29, 2, 74)

(31, 10, 70) (35, 10, 62) (37, 2, 58) (42, 18, 53) (13, 2, 167) (26, 24, 89)

(29, 22, 79) (43, 36, 58) (19, 5, 115) (23, 5, 95) (41, 31, 59) (43, 33, 57)

(11, 3, 201) (33, 3, 67) (41, 29, 59) (43, 25, 55) (13, 8, 173) (19, 6, 118)

(26, 18, 89) (38, 6, 59) (13, 4, 178) (17, 12, 138) (23, 12, 102) (26, 4, 89)

(34, 12, 69) (37, 26, 67) (39, 30, 65) (46, 12, 51) (29, 15, 87) (37, 7, 67)

(43, 25, 61) (47, 35, 59) (11, 6, 249) (19, 10, 145) (22, 16, 127) (29, 10, 95)

(33, 6, 83) (38, 28, 77) (55, 50, 61) (57, 48, 58) (37, 2, 74) (41, 32, 73)

(43, 24, 67) (47, 12, 59) (13, 3, 213) (37, 25, 79) (39, 3, 71) (47, 5, 59)

(17, 7, 173) (29, 1, 101) (43, 29, 73) (51, 27, 61) (13, 12, 237) (17, 14, 182)

(26, 14, 119) (34, 14, 91) (37, 20, 85) (39, 12, 79) (51, 48, 71) (53, 40, 65)

(11, 7, 301) (43, 7, 77) (47, 23, 73) (55, 15, 61) (11, 8, 326) (22, 8, 163)

(23, 16, 158) (33, 30, 115) (46, 16, 79) (47, 14, 77) (55, 30, 69) (59, 36, 66)

(23, 7, 161) (47, 29, 83) (53, 17, 71) (59, 39, 69) (17, 2, 218) (29, 12, 129)

(34, 2, 109) (43, 12, 87) (47, 28, 83) (51, 36, 79) (58, 46, 73) (59, 44, 71)

(29, 27, 149) (37, 13, 113) (41, 3, 101) (47, 41, 97) (17, 16, 257) (29, 8, 149)

(31, 4, 139) (34, 18, 129) (43, 18, 102) (51, 18, 86) (58, 50, 85) (62, 58, 83)

(17, 14, 287) (29, 20, 170) (34, 20, 145) (41, 14, 119) (51, 48, 106) (53, 48, 102)

(58, 20, 85) (73, 68, 82) (13, 4, 373) (23, 20, 215) (26, 22, 191) (39, 30, 130)

(43, 20, 115) (46, 26, 109) (65, 30, 78) (69, 66, 86) (19, 7, 259) (31, 9, 159)

(37, 7, 133) (41, 39, 129) (43, 39, 123) (53, 9, 93) (57, 45, 95) (59, 37, 89)

(19, 14, 266) (23, 6, 218) (37, 16, 137) (38, 14, 133) (46, 6, 109) (47, 40, 115)

(61, 54, 94) (74, 58, 79) (17, 15, 465) (31, 15, 255) (43, 9, 183) (47, 1, 167)

(51, 15, 155) (61, 9, 129) (71, 49, 119) (85, 15, 93) (11, 3, 771) (33, 3, 257)

(41, 19, 209) (55, 25, 157) (61, 1, 139) (67, 11, 127) (77, 63, 123) (79, 23, 109)

(23, 1, 443) (31, 17, 331) (41, 9, 249) (43, 3, 237) (69, 45, 155) (79, 3, 129)

(83, 9, 123) (93, 45, 115)
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Table 2. Positive ADC ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) Class number Euclideanity

1 (1, 1, 1, 1, 1, 1) 1 1/2

2 (1, 1, 0, 1, 0, 1) 1 7/12

3 (1, 0, 0, 1, 0, 1) 1 3/4

4 (1, 1, 1, 1, 1, 2) 1 3/4

5 (1, 1, 0, 1, 0, 2) 1 5/6

6 (1, 0, 1, 1, 1, 2) 1 2/3

7 (1, 0, 1, 1, 0, 2) 1 23/28

8 (1, 0, 0, 1, 0, 2) 1 1

9 (1, 1, 0, 1, 0, 3) 1 13/12

10 (1, 0, 1, 1, 1, 3) 1 9/10

11 (1, 1, 1, 2, 2, 2) 1 4/5

12 (1, 0, 1, 1, 0, 3) 2 47/44

13 (1, 0, 0, 1, 0, 3) 1 5/4

14 (1, 1, 1, 2, 1, 2) 1 1

15 (1, 0, 0, 2, 2, 2) 1 11/12

16 (1, 1, 0, 2, 1, 2) 1 47/52

17 (1, 1, 1, 1, 1, 5) 1 3/2

18 (1, 0, 1, 1, 0, 4) 1 79/60

19 (1, 0, 0, 2, 1, 2) 2 21/20

20 (1, 0, 0, 2, 0, 2) 1 5/4

21 (1, 1, 1, 2, 2, 3) 2 71/68

22 (1, 0, 1, 2, 2, 3) 1 1

23 (2, 2, 2, 2, 1, 2) 1 7/8

24 (1, 0, 0, 1, 0, 5) 1 7/4

25 (1, 1, 0, 2, 1, 3) 1 23/20

26 (1, 0, 0, 2, 2, 3) 1 23/20

27 (1, 1, 0, 2, 0, 3) 2 37/28

28 (1, 0, 1, 2, 1, 3) 1 95/84

29 (1, 0, 1, 2, 0, 3) 1 29/22

30 (1, 0, 0, 1, 0, 6) 1 2

31 (1, 0, 0, 2, 0, 3) 1 3/2

32 (1, 1, 1, 2, 2, 4) 1 31/24

33 (2, 1, 1, 2,−1, 2) 1 19/20

34 (2, 2, 2, 2, 2, 3) 1 5/4

35 (1, 1, 0, 1, 0, 10) 1 17/6
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Table 2 (cont.). Positive ADC ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) Class number Euclideanity

36 (1, 1, 1, 3, 1, 3) 1 3/2

37 (1, 0, 0, 2, 0, 4) 1 7/4

38 (1, 1, 1, 2, 1, 5) 1 7/4

39 (1, 0, 0, 2, 2, 5) 1 59/36

40 (1, 0, 0, 3, 0, 3) 1 7/2

41 (1, 0, 1, 3, 3, 4) 1 4/3

42 (1, 0, 0, 2, 0, 5) 1 2

43 (1, 0, 1, 1, 1, 11) 1 121/42

44 (1, 0, 0, 2, 2, 6) 1 83/44

45 (2, 1, 0, 2, 0, 3) 1 31/20

46 (1, 1, 1, 3, 3, 5) 1 37/23

47 (1, 0, 0, 2, 0, 6) 1 9/4

48 (1, 1, 0, 2, 0, 7) 1 65/28

49 (1, 1, 1, 4, 3, 4) 1 8/5

50 (1, 0, 0, 3, 2, 5) 1 65/28

51 (2, 2, 0, 2, 0, 5) 1 23/6

52 (2, 2, 0, 3, 0, 3) 1 33/20

53 (1, 0, 0, 3, 3, 6) 2 55/28

54 (1, 0, 1, 2, 0, 9) 1 197/35

55 (2, 1, 1, 2, 1, 5) 1 2

56 (2, 0, 0, 3, 0, 3) 1 2

57 (1, 1, 0, 4, 0, 5) 2 139/60

58 (1, 1, 1, 5, 4, 5) 1 25/13

59 (1, 0, 0, 1, 0, 21) 1 23/4

60 (1, 1, 0, 1, 0, 30) 1 47/6

61 (2, 2, 0, 3, 2, 5) 1 171/92

62 (2, 0, 1, 3, 3, 5) 1 79/44

63 (2, 1, 1, 2,−1, 7) 1 11/5

64 (2, 2, 0, 3, 0, 5) 1 43/20

65 (2, 0, 0, 3, 2, 5) 1 59/28

66 (1, 0, 0, 3, 0, 10) 1 7/2

67 (1, 1, 0, 3, 0, 11) 2 157/44

68 (3, 0, 3, 3, 3, 5) 1 25/14

69 (1, 0, 0, 2, 2, 18) 1 683/140

70 (3, 1, 2, 3,−2, 5) 1 51/28

71 (2, 0, 0, 5, 5, 5) 1 13/6

72 (2, 0, 2, 3, 0, 7) 1 137/52
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Table 2 (cont.). Positive ADC ternaries:

(A,B,C,D,E, F ) = Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2

# (A,B,C,D,E, F ) Class number Euclideanity

73 (2, 1, 1, 5,−3, 5) 1 107/52

74 (2, 2, 0, 2, 0, 15) 1 53/12

75 (1, 0, 0, 5, 0, 10) 1 4

76 (2, 0, 2, 3, 3, 11) 1 121/39

77 (2, 0, 0, 5, 0, 6) 1 13/4

78 (3, 0, 0, 3, 0, 7) 1 13/4

79 (3, 3, 2, 5, 1, 6) 2 183/68

80 (5, 4, 3, 5,−3, 5) 1 17/8

81 (1, 0, 0, 10, 10, 10) 1 43/12

82 (3, 1, 0, 3, 0, 10) 1 53/14

83 (1, 0, 0, 3, 0, 30) 1 17/2

84 (5, 5, 0, 5, 0, 6) 1 19/6

85 (1, 0, 0, 6, 6, 21) 1 307/52

86 (3, 1, 0, 3, 0, 14) 1 67/14

87 (3, 0, 0, 7, 0, 7) 1 17/4

88 (2, 0, 0, 5, 0, 15) 1 11/2

89 (5, 0, 0, 6, 2, 6) 1 107/28

90 (2, 0, 0, 6, 0, 15) 1 23/4

91 (2, 2, 2, 11, 1, 11) 1 43/8

92 (3, 0, 0, 10, 10, 10) 1 49/12

93 (6, 2, 0, 6, 0, 7) 1 121/28

94 (1, 0, 1, 13, 13, 23) 1 529/78

95 (1, 0, 0, 10, 0, 30) 1 41/4

96 (1, 0, 0, 21, 0, 21) 1 43/4

97 (5, 0, 0, 6, 0, 15) 1 13/2

98 (2, 2, 0, 7, 0, 39) 1 605/52

99 (1, 1, 0, 9, 0, 70) 1 1387/70

100 (3, 3, 3, 17, 7, 17) 1 289/39

101 (3, 0, 0, 10, 0, 30) 1 43/4

102 (2, 2, 0, 18, 0, 35) 1 1873/140

103 (6, 0, 6, 13, 0, 21) 1 463/52

In the following table, we specify an integral quadratic form q(x1, . . . , xn)
by giving a vector in Z(n)(n+1)/2, the coefficients on and below the main
diagonal—in the order a11, a21, a22, a31, . . . , ann—of the Gram matrix
Mq of q, i.e., the symmetric matrix such that if x is the column vector
(x1, . . . , xn), then q(x1, . . . , xn) = xTMqx.
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Table 3. Positive Euclidean forms

Lower Gram coefficients
Euclid-

eanity

[1] 1/4

[2] 1/2

[3] 3/4

[1, 1/2, 1] 1/3

[1, 0, 1] 1/2

[1, 1/2, 2] 4/7

[2, 1, 2] 2/3

[1, 0, 2] 3/4

[2, 1/2, 2] 4/5

[1, 1/2, 3] 9/11

[2, 1, 3] 9/10

[1, 1/2, 1,−1/2, 0, 1] 1/2

[1, 1/2, 1, 0, 0, 1] 7/12

[1, 0, 1,−1/2, 1/2, 2] 2/3

[1, 1/2, 1, 1/2, 1/2, 2] 3/4

[1, 0, 1, 0, 0, 1] 3/4

[1,−1/1, 2, 1/2,−1, 2] 4/5

[1, 0, 1, 1/2, 0, 2] 23/28

[1, 1/2, 1, 0, 0, 2] 5/6

[2,−1/2, 2,−1,−1/2, 2] 7/8

[1, 0, 1,−1/2, 1/2, 3] 9/10

[1, 1/2, 2, 0, 1/2, 2] 47/52

[1, 0, 2, 0, 1, 2] 11/12

[2, 1/2, 2, 1/2,−1/2, 2] 19/20

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 1] 1/2

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1] 3/5

[1, 1/2, 1, 0, 0, 1, 0, 0, 1/2, 1] 2/3

[1, 0, 1, 0, 1/2, 1, 0,−1/2, 0, 1] 3/4

[1, 1/2, 1, 1/2, 0, 1, 1/2, 0, 0, 2] 3/4

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 2] 4/5

[1, 1/2, 1, 1/2, 0, 2, 1/2, 1/2, 1, 2] 4/5

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 2] 14/17

[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1] 5/6

[1, 1/2, 1, 1/2, 0, 1, 0, 1/2, 0, 2] 11/13

[1, 1/2, 1, 0, 0, 1, 0, 0, 1/2, 2] 19/21

[1, 0, 1, 1/2, 1/2, 2, 1/2, 0, 1, 2] 10/11

[1, 0, 1, 0, 0, 1, 0,−1/2,−1/2, 2] 11/12
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Table 3 (cont.). Positive Euclidean forms

Lower Gram coefficients
Euclid-

eanity

[1, 1/2, 1, 1/2, 0, 2, 0, 1/2, 1/2, 2] 13/14

[1, 1/2, 2, 0, 1, 2, 0, 1/2, 1, 2] 29/30

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 1/2, 1/2, 1,−1/2, 0,−1/2,−1/2, 1] 5/8

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 0, 1, 0, 1/2, 1/2, 0, 1] 3/4

[1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1/2, 1/2, 1/2, 1] 3/4

[1, 1/2, 1,−1/2, 0, 1, 0, 0, 0, 1,−1/2,−1/2, 1/2,−1/2, 2] 33/40

[1, 1/2, 1,−1/2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1/2, 1] 5/6

[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1, 0, 0, 1/2, 1/2, 1] 17/20

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1, 0, 0, 0, 1/2, 2] 6/7

[1, 1/2, 1, 1/2, 1/2, 1,−1/2, 0,−1/2, 1,−1/2,−1/2,−1/2, 1/2, 2] 7/8

[1, 0, 1, 0, 0, 1, 1/2, 0, 0, 1, 0, 1/2, 0, 0, 1] 11/12

[1, 0, 1, 0, 1/2, 1, 0, 0, 0, 1,−1/2,−1/2, 0, 1/2, 2] 13/14

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 0, 1, 0, 1/2, 1/2, 0, 2] 41/44

[1, 1/2, 1, 1/2, 0, 1, 0, 1/2, 0, 2, 0, 0, 1/2, 1, 2] 19/20

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0,−1/2, 0, 0, 1] 2/3

[1, 0, 1, 1/2,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1] 3/4

[1, 0, 1, 0, 0, 1, 1/2, 1/2, 1/2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/2, 1] 5/6

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1] 6/7

[1,−1/2, 1,−1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 0, 0, 1/2, 1,−1/2, 1/2, 0, 0,−1/2, 2] 13/15

[1, 0, 1, 0, 1/2, 1, 0, 1/2, 1/2, 1, 0, 1/2, 1/2, 1/2, 1, 0,−1/2, 0,−1/2,−1/2, 1] 7/8

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1, 1/2, 0, 1/2, 0, 0, 2] 10/11

[1, 1/2, 1, 0, 0, 1, 1/2, 0, 1/2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/2, 1] 14/15

[1,−1/2, 1, 1/2, 0, 1, 1/2,−1/2, 1/2, 1, 0, 0, 0, 0, 1,−1/2, 1/2,−1/2,−1/2,−1/2, 2] 19/20

[1, 0, 1, 0, 1/2, 1, 0, 1/2, 0, 1, 0,−1/2, 0,−1/2, 1, 1/2,−1/2,−1/2,−1/2, 1/2, 2] 22/23

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 0, 0, 1] 3/4

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 1/2, 1/2, 1,−1/2, 0,−1/2, 1/2, 1, . . .] 7/8

[. . . 1/2, 1/2, 1/2, 1/2,−1/2, 1, 1/2, 1/2, 1/2, 1/2,−1/2, 1/2, 1]

[1,−1/2, 1, 0,−1/2, 1, 0, 0,−1/2, 1, 0, 0, 0,−1/2, 1, 0, 0,−1/2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] 11/12

[1, 1/2, 1, 1/2, 0, 1, 1/2, 1/2, 0, 1,−1/2,−1/2,−1/2, . . .] 19/20

[. . . ,−1/2, 1,−1/2,−1/2, 0,−1/2, 1/2, 1, 1/2, 0, 0, 1/2, 0, 0, 2]

[1, 1/2, 1, 1/2, 1/2, 1, 0, 0, 0, 1, 0, 0, 0, 1/2, 1,−1/2,−1/2 . . .] 23/24

[. . . ,−1/2, 0, 0, 1,−1/2, 0,−1/2, 0, 0, 1/2, 1]

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, . . .] 1/2

[. . . 1, 1/2, 0, 1/2, 0, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1]

[1,−1/2, 1,−1/2, 1/2, 1,−1/2, 1/2, 1/2, 1, 1/2,−1/2, 0, 0, 1, 1/2,−1/2, 0, . . .] 4/6

[. . . ,−1/2, 1/2, 1, 1/2, 0,−1/2,−1/2, 0, 0, 1,−1/2, 1/2, 0, 0,−1/2,−1/2, 0, 2]

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, 1 . . .] 3/4

[. . . 1/2, 0, 1/2, 0, 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]

[1, 1/2, 1, 1/2, 1/2, 1, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1, 1/2, 1/2, 0, 0, 1/2, 1, 1/2, 0, 1/2, 0, . . .] 5/6

[. . . 0, 0, 1, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 1]
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