An effective bound of p for algebraic points on Shimura curves of $\Gamma_0(p)$ -type

by

Keisuke Arai (Tokyo)

1. Introduction. Let B be an indefinite quaternion division algebra over \mathbb{Q} with discriminant d. Fix a maximal order \mathcal{O} of B. A QM-abelian surface by \mathcal{O} over a field F is a pair (A, i) where A is an abelian variety over F of dimension 2, and $i: \mathcal{O} \hookrightarrow \operatorname{End}_F(A)$ is an injective ring homomorphism (sending 1 to id) (cf. [6, p. 591]). Here $\operatorname{End}_F(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O} -action. We will sometimes omit "by \mathcal{O} " and simply write "a QM-abelian surface" if there is no risk of confusion. Let M^B be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of QM-abelian surfaces by \mathcal{O} (cf. [9, p. 93]). Then M^B is a proper smooth curve over \mathbb{Q} , called a *Shimura curve*. Throughout this article, let p be a prime number not dividing d. Let $M_0^B(p)$ be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of triples (A, i, V), where (A, i) is a QM-abelian surface by \mathcal{O} and V is a left \mathcal{O} -submodule of A[p] of \mathbb{F}_p -dimension 2. Here A[p] is the kernel of multiplication by p in A. Then $M_0^B(p)$ is a proper smooth curve over \mathbb{Q} , which we call a Shimura curve of $\Gamma_0(p)$ -type. We have a natural map

$$\pi^B(p): M_0^B(p) \to M^B$$

over \mathbb{Q} defined by $(A, i, V) \mapsto (A, i)$.

In previous articles, we showed that for number fields in a certain large class, there are at most elliptic points on $M_0^B(p)$ if p is large enough. In this article, we prove that in fact there are no elliptic points, and obtain an effective bound for such p. The main result is:

THEOREM 1.1. Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field. Assume

²⁰¹⁰ Mathematics Subject Classification: Primary 11G18, 14G05; Secondary 11G10, 11G15.

 $Key\ words\ and\ phrases:$ effective bound, rational points, Shimura curves, QM-abelian surfaces.

that there is a prime number q which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \ncong M_2(\mathbb{Q}(\sqrt{-q}))$. Then there is an effectively computable constant $C_0(k)$ depending on k and independent of B such that $M_0^B(p)(k) = \emptyset$ if $p > \max\{4q, C_0(k)\}, p \neq 13$.

We can identify $M_0^B(p)(\mathbb{C})$ with a quotient of the upper half-plane, and we use the notion of elliptic points in this context, assuming that k is a subfield of \mathbb{C} . The Shimura curve $M_0^B(p)$ is an analogue of the modular curve $X_0(p)$. Points on $X_0(p)$ rational over \mathbb{Q} and quadratic fields are studied in [11], [12] (see [1] for related topics). We can also define a proper smooth curve $M_0^B(p)$ over \mathbb{Q} for $B = M_2(\mathbb{Q})$ that is isomorphic to $X_0(p)$. But Theorem 1.1 does not apply in this setting because $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$ for any prime q.

In §2–4, we review a part of [3]. In §5–6, we classify the characters associated to QM-abelian surfaces, and show that there are no k-rational points on $M_0^B(p)$ if $p \ (> 4q, \neq 13)$ does not belong to an exceptional finite set $\mathcal{N}_1^{\text{new}}(k)$. In §7, we give an upper bound of $\mathcal{N}_1^{\text{new}}(k)$ by the method of [7]. In §8, we give an example of the estimate of p.

REMARK 1.2. $M^B(\mathbb{R}) = \emptyset$ (see [13, Theorem 0]), and so $M_0^B(p)(\mathbb{R}) = \emptyset$.

Notation. For a field F, let char F denote the characteristic, \overline{F} an algebraic closure, F^{sep} (resp. F^{ab}) the separable closure (resp. the maximal abelian extension) inside \overline{F} , and let $G_F := \text{Gal}(F^{\text{sep}}/F)$ and $G_F^{\text{ab}} := \text{Gal}(F^{\text{ab}}/F)$. For a prime number p and a field F with char $F \neq p$, let $\theta_p : G_F \to \mathbb{F}_p^{\times}$ denote the mod p cyclotomic character.

Let $|\cdot|$ denote the usual complex absolute value on \mathbb{C} . For a number field k, let $n_k := [k : \mathbb{Q}]$; fix an inclusion $k \hookrightarrow \mathbb{C}$ and take the algebraic closure \overline{k} inside \mathbb{C} ; let \mathcal{O}_k denote the ring of integers; let $N(\mathfrak{q}) := \sharp(\mathcal{O}_k/\mathfrak{q})$ for a prime \mathfrak{q} of k; let d_k denote the absolute value of the discriminant; Cl_k the ideal class group; h_k the class number; r_k the rank of the unit group \mathcal{O}_k^{\times} ; R_k the regulator; k_v the completion of k at v, where v is a place (or a prime) of k; and $\operatorname{Ram}(k)$ the set of prime numbers which are ramified in k.

2. Galois representations associated to QM-abelian surfaces. We briefly review [3, §2] in order to consider the Galois representations associated to a QM-abelian surface. Let F be a field with char $F \neq p$. Let (A, i) be a QM-abelian surface by \mathcal{O} over F. The action of G_F on $A[p](F^{\text{sep}}) \cong \mathbb{F}_p^4$ determines a representation $\overline{\rho} : G_F \to \text{GL}_4(\mathbb{F}_p)$. By a suitable choice of basis, $\overline{\rho}$ factors as

$$\overline{\rho}: \mathbf{G}_F \to \left\{ \begin{pmatrix} sI_2 & tI_2 \\ uI_2 & vI_2 \end{pmatrix} \middle| \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \mathbf{GL}_2(\mathbb{F}_p) \right\} \subseteq \mathbf{GL}_4(\mathbb{F}_p).$$

Let

(2.1)
$$\overline{\rho}_{A,p} : \mathbf{G}_F \to \mathbf{GL}_2(\mathbb{F}_p)$$

denote the Galois representation induced from $\overline{\rho}$ by " $\begin{pmatrix} s & t \\ u & v \end{pmatrix}$ ", so that

$$\overline{\rho}_{A,p}(\sigma) = \begin{pmatrix} s(\sigma) & t(\sigma) \\ u(\sigma) & v(\sigma) \end{pmatrix} \text{ for any } \sigma \in \mathcal{G}_F \text{ if } \overline{\rho}(\sigma) = \begin{pmatrix} s(\sigma)I_2 & t(\sigma)I_2 \\ u(\sigma)I_2 & v(\sigma)I_2 \end{pmatrix}.$$

Suppose $A[p](F^{\text{sep}})$ has a left \mathcal{O} -submodule V which has dimension 2 over \mathbb{F}_p and is stable under the action of G_F . Then we may assume that

$$\overline{\rho}_{A,p}(\mathbf{G}_F) \subseteq \left\{ \begin{pmatrix} s & t \\ 0 & v \end{pmatrix} \right\} \subseteq \mathrm{GL}_2(\mathbb{F}_p).$$

Let

(2.2)
$$\lambda: \mathbf{G}_F \to \mathbb{F}_p^{\times}$$

denote the character induced from $\overline{\rho}_{A,p}$ by "s", so that $\overline{\rho}_{A,p}(\sigma) = \begin{pmatrix} \lambda(\sigma) & * \\ 0 & * \end{pmatrix}$ for any $\sigma \in \mathcal{G}_F$. Note that \mathcal{G}_F acts on V by λ (i.e. $\overline{\rho}(\sigma)(v) = \lambda(\sigma)v$ for any $\sigma \in \mathcal{G}_F$, $v \in V$).

3. Automorphism groups. We give a brief summary of [3, §3] concerning the automorphism groups of a QM-abelian surface. Let (A, i) be a QM-abelian surface by \mathcal{O} over a field F. Let End(A) (resp. Aut(A)) denote the ring of endomorphisms (resp. the group of automorphisms) of A defined over \overline{F} . Define

$$\operatorname{End}_{\mathcal{O}}(A) := \{ f \in \operatorname{End}(A) \mid f \circ i(g) = i(g) \circ f \text{ for any } g \in \mathcal{O} \},\\ \operatorname{Aut}_{\mathcal{O}}(A) := \operatorname{Aut}(A) \cap \operatorname{End}_{\mathcal{O}}(A).$$

If char F = 0, then $\operatorname{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$.

Let (A, i, V) be a triple, where (A, i) is a QM-abelian surface by \mathcal{O} over Fand V is a left \mathcal{O} -submodule of $A[p](\overline{F})$ of \mathbb{F}_p -dimension 2. Define a subgroup $\operatorname{Aut}_{\mathcal{O}}(A, V)$ of $\operatorname{Aut}_{\mathcal{O}}(A)$ by

$$\operatorname{Aut}_{\mathcal{O}}(A, V) := \{ f \in \operatorname{Aut}_{\mathcal{O}}(A) \mid f(V) = V \}.$$

Assume char F = 0. Then $\operatorname{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$. Note that $\operatorname{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z}/2\mathbb{Z}$ (resp. $\operatorname{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z}/2\mathbb{Z}$) if and only if $\operatorname{Aut}_{\mathcal{O}}(A) = \{\pm 1\}$ (resp. $\operatorname{Aut}_{\mathcal{O}}(A, V) = \{\pm 1\}$).

4. Fields of definition. From now on, let k be a number field. We recall from [3, §4] some facts about the field of definition of a point of $M_0^B(p)(k)$. Fix a point

$$x \in M_0^B(p)(k).$$

Let $x' \in M^B(k)$ be the image of x by the map $\pi^B(p) : M_0^B(p) \to M^B$. Then x' is represented by a QM-abelian surface (say (A_x, i_x)) over \overline{k} , and x is represented by a triple (A_x, i_x, V_x) where V_x is a left \mathcal{O} -submodule of $A[p](\overline{k})$ of \mathbb{F}_p -dimension 2. For a finite extension M of k, we say that we can take (A_x, i_x, V_x) to be defined over M if there is a QM-abelian surface (A, i) over M and a \mathcal{G}_M -stable left \mathcal{O} -submodule V of $A[p](\overline{k})$ with $\dim_{\mathbb{F}_p} V = 2$ such that there is an isomorphism between $(A, i) \otimes_M \overline{k}$ and (A_x, i_x) under which V corresponds to V_x . Let

$$\operatorname{Aut}(x) := \operatorname{Aut}_{\mathcal{O}}(A_x, V_x) \quad \text{and} \quad \operatorname{Aut}(x') := \operatorname{Aut}_{\mathcal{O}}(A_x).$$

Then Aut(x) is a subgroup of Aut(x'). Note that x is an elliptic point of order 2 (resp. 3) if and only if Aut(x) $\cong \mathbb{Z}/4\mathbb{Z}$ (resp. Aut(x) $\cong \mathbb{Z}/6\mathbb{Z}$). Since x is a k-rational point, $\sigma x = x$ for any $\sigma \in G_k$. Then for any $\sigma \in G_k$, there is an isomorphism

$$\phi_{\sigma}: {}^{\sigma}(A_x, i_x, V_x) \to (A_x, i_x, V_x),$$

which we fix once for all. For $\sigma, \tau \in G_k$, let

$$c_x(\sigma,\tau) := \phi_\sigma \circ {}^\sigma \phi_\tau \circ \phi_{\sigma\tau}^{-1} \in \operatorname{Aut}(x).$$

Then c_x is a 2-cocycle, and it defines the cohomology class $[c_x]$ in $H^2(\mathbf{G}_k, \operatorname{Aut}(x))$. Here, the action of \mathbf{G}_k on $\operatorname{Aut}(x)$ is defined in a natural manner (cf. [3, §4]). For a place v of k, let $[c_x]_v \in H^2(\mathbf{G}_{k_v}, \operatorname{Aut}(x))$ denote the restriction of $[c_x]$ to \mathbf{G}_{k_v} .

PROPOSITION 4.1 ([3, Proposition 4.2]).

- (1) Suppose $B \otimes_{\mathbb{Q}} k \cong M_2(k)$. Further, assume $\operatorname{Aut}(x) \neq \{\pm 1\}$ or $\operatorname{Aut}(x') \ncong \mathbb{Z}/4\mathbb{Z}$. Then we can take (A_x, i_x, V_x) to be defined over k.
- (2) Assume $\operatorname{Aut}(x) = \{\pm 1\}$. Then there is a quadratic extension K of k such that we can take (A_x, i_x, V_x) to be defined over K.

LEMMA 4.2 ([3, Lemma 4.3]). Let K be a quadratic extension of k. Assume $Aut(x) = \{\pm 1\}$. Then the following conditions are equivalent:

- (1) We can take (A_x, i_x, V_x) to be defined over K.
- (2) For any place v of k satisfying $[c_x]_v \neq 0$, the tensor product $K \otimes_k k_v$ is a field.

5. Classification of characters. We keep the notation from Section 4. Throughout this section, we assume $\operatorname{Aut}(x) = \{\pm 1\}$. Let K be a quadratic extension of k which satisfies the equivalent conditions in Lemma 4.2. Then x is represented by a triple (A, i, V), where (A, i) is a QM-abelian surface over K and V is a left \mathcal{O} -submodule of $A[p](\overline{k})$ of \mathbb{F}_p -dimension 2 which is stable under the action of G_K . Let $\lambda : G_K \to \mathbb{F}_p^{\times}$ be the character associated

to V in (2.2). Let
$$\lambda^{ab} : \mathbf{G}_{K}^{ab} \to \mathbb{F}_{p}^{\times}$$
 be the natural map induced from λ . Let
(5.1) $\varphi := \lambda^{ab} \circ \operatorname{tr}_{K/k} : \mathbf{G}_{k} \to \mathbf{G}_{K}^{ab} \to \mathbb{F}_{p}^{\times},$

where $\operatorname{tr}_{K/k} : \operatorname{G}_k \to \operatorname{G}_K^{\operatorname{ab}}$ is the transfer map. Then φ^{12} is unramified at every prime of k not dividing p (see [3, Corollary 5.2]), and so φ^{12} corresponds to a character of the ideal group $\mathfrak{I}_k(p)$ consisting of fractional ideals of k prime to p. By abuse of notation, let φ^{12} also denote the corresponding character of $\mathfrak{I}_k(p)$.

Let us now introduce several sets in a manner similar to [3, §5]. Let $\mathcal{M}^{\text{new}}(k)$ be the set of prime numbers which split completely in k. Note that a prime number in the set \mathcal{M} of [3] does not divide $6h_k$. Let $\mathcal{N}^{\text{new}}(k)$ be the set of primes of k which divide some prime number in $\mathcal{M}^{\text{new}}(k)$. Fix a finite subset $\emptyset \neq \mathcal{S}^{\text{new}}(k) \subseteq \mathcal{N}^{\text{new}}(k)$ which generates Cl_k . For each prime $\mathfrak{q} \in \mathcal{S}^{\text{new}}(k)$, fix an element $\alpha_{\mathfrak{q}} \in \mathcal{O}_k \setminus \{0\}$ satisfying

(5.2)
$$\mathfrak{q}^{h_k} = \alpha_\mathfrak{q} \mathcal{O}_k.$$

For an integer $n \geq 1$, let

$$\mathcal{FR}(n) := \{ \beta \in \mathbb{C} \mid \beta^2 + a\beta + n = 0 \text{ for some } a \in \mathbb{Z} \text{ with } |a| \le 2\sqrt{n} \}.$$

For any element $\beta \in \mathcal{FR}(n)$, we have $|\beta| = \sqrt{n}$. From now to the end of this section, assume that k is Galois over \mathbb{Q} . Define

$$\mathcal{E}(k) := \Big\{ \varepsilon_0 = \sum_{\sigma \in \operatorname{Gal}(k/\mathbb{Q})} a_\sigma \sigma \in \mathbb{Z}[\operatorname{Gal}(k/\mathbb{Q})] \ \Big| \ a_\sigma \in \{0, 8, 12, 16, 24\} \Big\},$$

 $\mathcal{M}_{1}^{\mathrm{new}}(k) := \{ (\mathfrak{q}, \varepsilon_{0}, \beta_{\mathfrak{q}}) \mid \mathfrak{q} \in \mathcal{S}^{\mathrm{new}}(k), \varepsilon_{0} \in \mathcal{E}(k), \beta_{\mathfrak{q}} \in \mathcal{FR}(\mathrm{N}(\mathfrak{q})) \}, \\ \mathcal{M}_{2}^{\mathrm{new}}(k) := \{ \mathrm{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}(\alpha_{\mathfrak{q}}^{\varepsilon_{0}} - \beta_{\mathfrak{q}}^{24h_{k}}) \in \mathbb{Z} \mid (\mathfrak{q}, \varepsilon_{0}, \beta_{\mathfrak{q}}) \in \mathcal{M}_{1}^{\mathrm{new}}(k) \} \setminus \{ 0 \}, \\ \mathcal{N}_{0}^{\mathrm{new}}(k) := \{ \mathrm{prime\ divisors\ of\ some\ of\ the\ integers\ in\ } \mathcal{M}_{2}^{\mathrm{new}}(k) \}, \\ \mathcal{T}^{\mathrm{new}}(k) := \{ \mathrm{prime\ numbers\ divisible\ by\ some\ prime\ in\ } \mathcal{S}^{\mathrm{new}}(k) \} \cup \{ 2, 3 \}, \end{cases}$

 $\mathcal{N}_1^{\text{new}}(k) := \mathcal{N}_0^{\text{new}}(k) \cup \mathcal{T}^{\text{new}}(k) \cup \text{Ram}(k).$

Note that all the sets $\mathcal{FR}(n)$, $\mathcal{E}(k)$, $\mathcal{M}_1^{\text{new}}(k)$, $\mathcal{M}_2^{\text{new}}(k)$, $\mathcal{N}_0^{\text{new}}(k)$, $\mathcal{T}^{\text{new}}(k)$ and $\mathcal{N}_1^{\text{new}}(k)$ are finite. We have the following classification of φ :

THEOREM 5.1 (cf. [3, Theorem 5.6]). If $p \notin \mathcal{N}_1^{\text{new}}(k)$, then the character $\varphi : G_k \to \mathbb{F}_p^{\times}$ is of one of the following types:

TYPE 2: $\varphi^{12} = \theta_p^{12}$ and $p \equiv 3 \mod 4$.

TYPE 3: There is an imaginary quadratic field L such that:

- (a) The Hilbert class field H_L of L is contained in k.
- (b) There is a prime \mathfrak{p}_L of L lying over p such that

$$\varphi^{12}(\mathfrak{a}) \equiv \delta^{24} \mod \mathfrak{p}_L$$

for any fractional ideal \mathfrak{a} of k prime to p. Here, δ is any element of L such that $\operatorname{Norm}_{k/L}(\mathfrak{a}) = \delta \mathcal{O}_L$.

Proof. It suffices to modify the proof of [3, Theorem 5.6] slightly. By replacing K if necessary, we may assume that every prime $\mathbf{q} \in S^{\text{new}}(k)$ is ramified in K/k (see Lemma 4.2). Suppose $p \notin \mathcal{T}^{\text{new}}(k) \cup \text{Ram}(k)$. Take any prime $\mathbf{q} \in S^{\text{new}}(k)$. Let q be the residual characteristic of \mathbf{q} , and let \mathbf{q}_K be the unique prime of K above \mathbf{q} . Then $p \neq q$. Without assuming $q \geq 5$, we know that the abelian surface $A \otimes_K K_{\mathbf{q}_K}$ over $K_{\mathbf{q}_K}$ has good reduction over a totally ramified finite extension $M(\mathbf{q})/K_{\mathbf{q}_K}$ (see [9, Proposition 3.2]). Choose a prime \mathbf{p} of k above p. Then $\lambda^{12}(\mathbf{q}_K) \equiv \beta_{\mathbf{q}}^{12} \mod \mathbf{p}_2$, where $\beta_{\mathbf{q}}$ is an element of $\mathcal{FR}(q)$ and \mathbf{p}_2 , which depends on \mathbf{p} , is a prime of $\mathbb{Q}(\beta_{\mathbf{q}} \mid \mathbf{q} \in S^{\text{new}}(k))$ above p. We find an element $\varepsilon \in \mathcal{E}(k)$ which satisfies the condition (ii) in [3, Lemma 5.4(2)] and $\varphi^{12}(\gamma \mathcal{O}_k) \equiv \gamma^{\varepsilon} \mod \mathbf{p}$ for any $\gamma \in k^{\times}$ prime to p. Suppose $p \notin \mathcal{N}_1^{\text{new}}(k)$. Then for any prime $\mathbf{q} \in S^{\text{new}}(k)$, we have $\alpha_{\mathbf{q}}^{\varepsilon} = \beta_{\mathbf{q}}^{24h_k}$. Choose a prime $\mathbf{q}_0 \in S^{\text{new}}(k)$. Applying [3, Lemma 5.5] to \mathbf{q}_0 , we see that ε is of type 2 or 3 in the sense of [3].

First, assume that ε is of type 2. For any prime $\mathbf{q} \in S^{\text{new}}(k)$, we have $\beta_{\mathbf{q}}^{24h_k} = q^{12h_k}$. We prove $\beta_{\mathbf{q}}^{24} = q^{12}$ without assuming $q \nmid 6h_k$. Write $\beta = \beta_{\mathbf{q}}$ for simplicity. Let $\overline{\beta}$ be the complex conjugate of β . Since $\beta^{24h_k} = \overline{\beta}^{24h_k}$, we have $\overline{\beta} = \zeta\beta$ for some $\zeta \in \mathbb{C}$ with $\zeta^{24h_k} = 1$. Since

$$\mathbb{Q}(\beta) = \mathbb{Q}(\overline{\beta}) = \mathbb{Q}(\zeta\beta) = \mathbb{Q}(\beta,\zeta) \supseteq \mathbb{Q}(\zeta) \text{ and } [\mathbb{Q}(\beta):\mathbb{Q}] = 2$$

we have $\zeta^4 = 1$ or $\zeta^6 = 1$. Then $\zeta^{12} = 1$. This implies $\overline{\beta}^{12} = \zeta^{12}\beta^{12} = \beta^{12}$, and so $\beta^{12} \in \mathbb{Q}$. Since $|\beta| = \sqrt{q}$, we have $\beta^{12} = \pm q^6$. Therefore $\beta^{24} = q^{12}$.

Note that the case $\beta^{12} = -q^6$ really occurs (e.g. q = 2 and $\beta = 1 + \sqrt{-1}$). Then

 $\varphi^{12}(\operatorname{Frob}_{\mathfrak{q}}) = \varphi^{12}(\mathfrak{q}) = \lambda^{24}(\mathfrak{q}_K) \equiv \beta_{\mathfrak{q}}^{24} = q^{12} = \operatorname{N}(\mathfrak{q})^{12} \equiv \theta_p(\operatorname{Frob}_{\mathfrak{q}})^{12} \mod p$, where $\operatorname{Frob}_{\mathfrak{q}} \in \mathcal{G}_k$ is any (arithmetic) Frobenius element at \mathfrak{q} . Combining this with $\varphi^{12}(\gamma \mathcal{O}_k) \equiv \operatorname{Norm}_{k/\mathbb{Q}}(\gamma)^{12} \mod p$ for any $\gamma \in k^{\times}$ prime to p, we conclude that $\varphi^{12} = \theta_p^{12}$.

Next, assume that ε is of type 3 (for \mathfrak{q}_0). Then by the same argument as in the proof of [3, Theorem 5.6] we obtain the desired result.

As for λ , we have:

LEMMA 5.2 (cf. [4, Lemma 5.11]). Suppose that $p \ge 11$, $p \ne 13$ and $p \notin \mathcal{N}_1^{\text{new}}(k)$. Further, assume that the following conditions hold:

- (a) Every prime \mathfrak{p} of k above p is inert in K/k.
- (b) Every prime $q \in S^{\text{new}}(k)$ is ramified in K/k.

If φ is of type 2, then we have the following assertions:

- (i) The character $\lambda^{12}\theta_p^{-6}: \mathbf{G}_K \to \mathbb{F}_p^{\times}$ is unramified everywhere.
- (ii) The map $\operatorname{Cl}_K \to \mathbb{F}_p^{\times}$ induced from $\lambda^{12}\theta_p^{-6}$ is trivial on $C_{K/k} := \operatorname{Im}(\operatorname{Cl}_k \to \operatorname{Cl}_K)$, where $\operatorname{Cl}_k \to \operatorname{Cl}_K$ is the map defined by $[\mathfrak{a}] \mapsto [\mathfrak{a}\mathcal{O}_K]$.

Proof. (i) The proof is the same as that of [4, Lemma 5.11(i)].

(ii) We slightly modify the argument in the proof of [4, Lemma 5.11(ii)]. Take any prime $\mathbf{q} \in \mathcal{S}^{\text{new}}(k)$. Let q be the residual characteristic of \mathbf{q} , and let \mathbf{q}_K be the unique prime of K above \mathbf{q} . Then $\lambda^{12}(\mathbf{q}_K) \equiv \beta^{12}$ modulo a prime of $\mathbb{Q}(\beta)$ above p, where $\beta \in \mathcal{FR}(q)$ is an element satisfying $\beta^{24h_k} = q^{12h_k}$. Then we have seen in the proof of Theorem 5.1 that $\beta^{24} = q^{12}$. Note that we may not have $\beta = \pm \sqrt{-q}$. Therefore, $\lambda^{12}(\mathbf{q}\mathcal{O}_K) = \lambda^{12}(\mathbf{q}_K^2) = \lambda^{24}(\mathbf{q}_K) \equiv \beta^{24} = q^{12} \equiv \theta_p^{12}(\mathbf{q}_K) = \theta_p^6(\mathbf{q}\mathcal{O}_K) \mod p$, as required.

We have the following lemma with the same proof as in [2-4]:

LEMMA 5.3 (cf. [2, Lemma 5.6], [3, Lemma 5.12], [4, 3]). Suppose that $p \ge 11, p \ne 13, p \notin \mathcal{N}_1^{\text{new}}(k)$, and that φ is of type 2. Let $q \in \mathcal{M}^{\text{new}}(k)$ be a prime number satisfying q < p/4. Then $\left(\frac{q}{p}\right) = -1$ and $q^{(p-1)/2} \equiv -1 \mod p$. Furthermore, $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$.

6. Irreducibility of $\overline{\rho}_{A,p}$ and algebraic points on $M_0^B(p)$. Let (A, i) be a QM-abelian surface by \mathcal{O} over k. Assume that the representation

$$\overline{\rho}_{A,p}: \mathbf{G}_k \to \mathbf{GL}_2(\mathbb{F}_p)$$

in (2.1) is reducible. Then there is a 1-dimensional subrepresentation of $\overline{\rho}_{A,p}$, and let ν be its associated character. In this case, there is a left \mathcal{O} -submodule V of $A[p](\overline{k})$ satisfying $\dim_{\mathbb{F}_p} V = 2$ on which G_k acts by ν , and so the triple (A, i, V) determines a point $x \in M_0^B(p)(k)$. Take any quadratic extension Kof k. Then we have the characters $\lambda : G_K \to \mathbb{F}_p^{\times}$ and $\varphi : G_k \to \mathbb{F}_p^{\times}$ associated to the triple $(A \otimes_k K, i, V)$. Note that $\varphi = \nu^2$ by the construction of φ .

From now to the end of this section, assume that k is Galois over \mathbb{Q} , that k does not contain the Hilbert class field of any imaginary quadratic field, and that there is a prime number $q \in \mathcal{M}^{\text{new}}(k)$ satisfying

$$B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \ncong \mathrm{M}_2(\mathbb{Q}(\sqrt{-q})).$$

Fix such a q. Then we have the following irreducibility result for $\overline{\rho}_{A,p}$:

THEOREM 6.1 (cf. [2, Theorem 6.5]). If p > 4q, $p \neq 13$ and $p \notin \mathcal{N}_1^{\text{new}}(k)$, then the representation $\overline{\rho}_{A,p} : \mathbf{G}_k \to \mathbf{GL}_2(\mathbb{F}_p)$ is irreducible.

Proof. Assume that $\overline{\rho}_{A,p}$ is reducible. Then the associated character φ is of type 2 in Theorem 5.1, because k does not contain the Hilbert class field of any imaginary quadratic field. By Lemma 5.3, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$. This contradicts the assumption.

We have the following theorem concerning the algebraic points on $M_0^B(p)$:

THEOREM 6.2 (cf. [2, Theorem 1.3]). If p > 4q, $p \neq 13$ and $p \notin \mathcal{N}_1^{\text{new}}(k)$, then $M_0^B(p)(k) = \emptyset$.

Proof. Suppose p > 4q, $p \neq 13$ and $p \notin \mathcal{N}_1^{\text{new}}(k)$. Assume that there is a point $x \in M_0^B(p)(k)$.

(1) Suppose $B \otimes_{\mathbb{Q}} k \cong M_2(k)$.

(1-i) Assume Aut $(x) \neq \{\pm 1\}$ or Aut $(x') \ncong \mathbb{Z}/4\mathbb{Z}$. Then x is represented by a triple (A, i, V) defined over k by Proposition 4.1(1), and the representation $\overline{\rho}_{A,p}$ is reducible. This contradicts Theorem 6.1.

(1-ii) Assume otherwise (i.e. $\operatorname{Aut}(x) = \{\pm 1\}$ and $\operatorname{Aut}(x') \cong \mathbb{Z}/4\mathbb{Z}$). Then x is represented by a triple (A, i, V) defined over a quadratic extension of k by Proposition 4.1(2), and we have a character $\varphi : \operatorname{G}_k \to \mathbb{F}_p^{\times}$ as in (5.1). By Theorem 5.1 and Lemma 5.3, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong \operatorname{M}_2(\mathbb{Q}(\sqrt{-q}))$, which is a contradiction.

(2) Suppose $B \otimes_{\mathbb{O}} k \cong M_2(k)$.

(2-i) Assume $Aut(x) = \{\pm 1\}$. Then by the same argument as in (1-ii), we have a contradiction.

(2-ii) Assume otherwise. Then x is an elliptic point of order 2 or 3. Let $\mathbb{Q}(x)$ be the number field generated over \mathbb{Q} by the coordinates of x on $M_0^B(p)$. Then $\mathbb{Q}(x) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$ by [8, Theorem 5.12], and so $k \supseteq \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$. This contradicts the assumption because $\mathbb{Q}(\sqrt{-1})$ (resp. $\mathbb{Q}(\sqrt{-3})$) is the Hilbert class field of itself.

7. An estimate of $\mathcal{N}_1^{\text{new}}(k)$. We give an upper bound of the set $\mathcal{N}_1^{\text{new}}(k)$ by the method of [7]. The following theorem and proposition are key ingredients of the estimate:

THEOREM 7.1 ([10, Theorem 1.1]). There is an absolute, effectively computable constant $A_1 > 1$ such that for every finite extension k_1 of \mathbb{Q} , every finite Galois extension k_2 of k_1 and every conjugacy class C of $\operatorname{Gal}(k_2/k_1)$, there is a prime \mathfrak{q} of k_1 which is unramified in k_2 , for which $\operatorname{Fr}_{\mathfrak{q}} = C$ and $\mathrm{N}(\mathfrak{q})$ is a prime number satisfying $\mathrm{N}(\mathfrak{q}) \leq 2d_{k_2}^{A_1}$. Here, $\operatorname{Fr}_{\mathfrak{q}}$ is the (arithmetic) Frobenius conjugacy class at \mathfrak{q} in $\operatorname{Gal}(k_2/k_1)$.

PROPOSITION 7.2 ([7, Proposition 4.2]). Assume that k is Galois over \mathbb{Q} . Let A_1 be the constant in Theorem 7.1. Then we can take $S^{\text{new}}(k)$ so that every prime $\mathfrak{q} \in S^{\text{new}}(k)$ satisfies $N(\mathfrak{q}) \leq 2d_k^{A_1h_k}$.

For a place v of k and an element $\alpha \in k$, define $\|\alpha\|_v$ as follows:

- If v is finite, let q be the prime of k corresponding to v, and let ||α||_v := N(q)^{-ordq(α)} where ord_q(α) is the order of α at q. Here, we let ||α||_v := 0 if α = 0.
- If v is real, let $\tau : k \hookrightarrow \mathbb{R}$ be the embedding corresponding to v, and let $\|\alpha\|_v := |\tau(\alpha)|$.
- If v is complex, let $\tau : k \hookrightarrow \mathbb{C}$ be one of the embeddings corresponding to v, and let $\|\alpha\|_v := |\tau(\alpha)|^2$.

For an element $\alpha \in k$, let $H(\alpha)$ denote the absolute height of α defined by

$$\mathbf{H}(\alpha) := \left(\prod_{v} \max\{1, \|\alpha\|_{v}\}\right)^{1/n_{k}}$$

where v runs through all places of k. We know that there is a positive constant δ_k , depending on k, such that for every non-zero element $\alpha \in k$ that is not a root of unity, $\log H(\alpha) \geq \delta_k/n_k$ (cf. [5, p. 70]). We can take $\delta_k = \log 2/(r_k + 1)$ for $n_k = 1, 2$. Both

$$\delta_k = \frac{1}{53n_k \log 6n_k}$$
 and $\delta_k = \frac{1}{1201} \left(\frac{\log \log n_k}{\log n_k}\right)^3$

are appropriate choices for $n_k \geq 3$. Fix such a constant δ_k . Let

$$C_1(k) := r_k^{1+r_k} \delta_k^{1-r_k}/2.$$

LEMMA 7.3. Let \mathfrak{q} be a prime of k. Then there is an element $\alpha'_{\mathfrak{q}} \in \mathcal{O}_k \setminus \{0\}$ which satisfies

 $\mathfrak{q}^{h_k} = \alpha'_\mathfrak{q} \mathcal{O}_k \quad and \quad \mathrm{H}(\alpha'_\mathfrak{q}) \leq |\mathrm{Norm}_{k/\mathbb{Q}}(\alpha'_\mathfrak{q})|^{1/n_k} \exp(C_1(k)R_k).$

Proof. Take an element $\gamma \in \mathcal{O}_k \setminus \{0\}$ which satisfies $\mathfrak{q}^{h_k} = \gamma \mathcal{O}_k$. Then, by [7, Lemme 3] (or [5, Lemma 2]), there is an element $u \in \mathcal{O}_k^{\times}$ satisfying

 $\mathbf{H}(u\gamma) \le |\operatorname{Norm}_{k/\mathbb{Q}}(\gamma)|^{1/n_k} \exp(C_1(k)R_k).$

If we let $\alpha'_{\mathfrak{q}} = u\gamma$, then $\mathfrak{q}^{h_k} = \alpha'_{\mathfrak{q}}\mathcal{O}_k$ and

$$\begin{aligned} \mathrm{H}(\alpha'_{\mathfrak{q}}) &\leq |\mathrm{Norm}_{k/\mathbb{Q}}(u^{-1}\alpha'_{\mathfrak{q}})|^{1/n_{k}}\exp(C_{1}(k)R_{k}) \\ &= |\mathrm{Norm}_{k/\mathbb{Q}}(\alpha'_{\mathfrak{q}})|^{1/n_{k}}\exp(C_{1}(k)R_{k}). \end{aligned}$$

The last equality holds because $\operatorname{Norm}_{k/\mathbb{Q}}(u^{-1}) \in \mathbb{Z}^{\times} = \{\pm 1\}$.

Let $C_2(k) := \exp(24n_kC_1(k)R_k)$. Until the end of this section, assume that k is Galois over \mathbb{Q} .

LEMMA 7.4. Under the situation of Lemma 7.3, we have

$$|(\alpha'_{\mathfrak{q}})^{\varepsilon}| \leq \mathcal{N}(\mathfrak{q})^{24h_k} C_2(k)$$

for any $\varepsilon \in \mathcal{E}(k)$.

Proof. Let $\varepsilon = \sum_{\sigma \in \text{Gal}(k/\mathbb{Q})} a_{\sigma} \sigma$. Then $|(\alpha'_{\mathfrak{g}})^{\varepsilon}|$

$$= \left| \prod_{\sigma \in \operatorname{Gal}(k/\mathbb{Q})} (\alpha'_{\mathfrak{q}})^{a_{\sigma}\sigma} \right| \leq \left(\prod_{\sigma \in \operatorname{Gal}(k/\mathbb{Q})} \max\{1, |(\alpha'_{\mathfrak{q}})^{\sigma}|\} \right)^{24} = \prod_{v \mid \infty} \max\{1, ||\alpha'_{\mathfrak{q}}||_{v}\}^{24}$$

= $\operatorname{H}(\alpha'_{\mathfrak{q}})^{24n_{k}} \leq |\operatorname{Norm}_{k/\mathbb{Q}}(\alpha'_{\mathfrak{q}})|^{24} \exp(24n_{k}C_{1}(k)R_{k}) = \operatorname{N}(\mathfrak{q})^{24h_{k}}C_{2}(k).$
Note that the third equality holds because $\alpha'_{\mathfrak{q}} \in \mathcal{O}_{k}$.
For $a > 0$, let $C(k, a) := (a^{24h_{k}}C_{2}(k) + a^{12h_{k}})^{2n_{k}}.$

K. Arai

LEMMA 7.5. Under the situation of Lemma 7.3, we have

$$|\operatorname{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}((\alpha'_{\mathfrak{q}})^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_k})| \leq C(k, \operatorname{N}(\mathfrak{q}))$$

for any $\varepsilon \in \mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{FR}(\mathcal{N}(\mathfrak{q}))$.

Proof. For any $\tau \in \operatorname{Gal}(k(\beta_{\mathfrak{q}})/\mathbb{Q})$, we have

$$|((\alpha_{\mathfrak{q}}')^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_k})^{\tau}| \le |(\alpha_{\mathfrak{q}}')^{\varepsilon\tau}| + |\beta_{\mathfrak{q}}^{24h_k\tau}| \le \mathrm{N}(\mathfrak{q})^{24h_k}C_2(k) + \mathrm{N}(\mathfrak{q})^{12h_k}.$$

Then

$$\operatorname{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}((\alpha_{\mathfrak{q}}')^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_{k}})| = \prod_{\tau \in \operatorname{Gal}(k(\beta_{\mathfrak{q}})/\mathbb{Q})} |((\alpha_{\mathfrak{q}}')^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_{k}})^{\tau}|$$
$$\leq (\operatorname{N}(\mathfrak{q})^{24h_{k}}C_{2}(k) + \operatorname{N}(\mathfrak{q})^{12h_{k}})^{2n_{k}} = C(k, \operatorname{N}(\mathfrak{q})).$$

Until the end of this section, assume that $\mathcal{S}^{\text{new}}(k)$ satisfies the condition in Proposition 7.2, and take $\alpha_{\mathfrak{q}}$ in (5.2) to be the $\alpha'_{\mathfrak{q}}$ in Lemma 7.3 for any $\mathfrak{q} \in \mathcal{S}^{\text{new}}(k)$.

LEMMA 7.6. For any $m \in \mathcal{M}_2^{\text{new}}(k)$, we have $|m| \leq C(k, 2d_k^{A_1h_k})$.

Proof. We have $m = \operatorname{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}(\alpha_{\mathfrak{q}}^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_k})$ for some $\mathfrak{q} \in \mathcal{S}^{\operatorname{new}}(k), \varepsilon \in \mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{FR}(\operatorname{N}(\mathfrak{q}))$. Then we obtain $|m| \leq C(k, \operatorname{N}(\mathfrak{q})) \leq C(k, 2d_k^{A_1h_k})$ by Proposition 7.2 and Lemma 7.5. \blacksquare

Finally we obtain an upper bound of $\mathcal{N}_1^{\text{new}}(k)$ as follows:

THEOREM 7.7. For any $l \in \mathcal{N}_1^{\text{new}}(k)$, we have $l \leq C(k, 2d_k^{A_1h_k})$.

Proof. Let $l \in \mathcal{N}_1^{\text{new}}(k)$. If $l \in \mathcal{N}_0^{\text{new}}(k)$, then $l \leq C(k, 2d_k^{A_1h_k})$ by Lemma 7.6. If $l \in \mathcal{T}^{\text{new}}(k)$, then $l \leq \max\{3, 2d_k^{A_1h_k}\}$. If $l \in \text{Ram}(k)$, then $l \leq d_k$. Since $A_1 > 1$, we conclude that $l \leq C(k, 2d_k^{A_1h_k})$.

Now Theorem 1.1 follows from Theorems 6.2 and 7.7. Note that we can take $C_0(k) = C(k, 2d_k^{A_1h_k})$.

8. An example. We give an example of the estimate of p as follows:

PROPOSITION 8.1. Let $k = \mathbb{Q}(\sqrt{-5})$. Assume that there is a prime number $q \in \mathcal{M}^{\text{new}}(k)$ satisfying $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \ncong M_2(\mathbb{Q}(\sqrt{-q}))$. Then we have $M_0^B(p)(k) = \emptyset$ if $p > \max\{4q, (3^{48} + 3^{24})^4\}$.

Proof. We have $n_k = 2$, $h_k = 2$, $r_k = 0$, $C_1(k) = 0$, $C_2(k) = 1$ and

 $\mathcal{M}^{\text{new}}(k) = \{l : \text{prime number} \mid l \equiv 1, 3, 7, 9 \text{ mod } 20\}.$

Let $\mathfrak{q} = (3, 1 + \sqrt{-5}) \subseteq \mathcal{O}_k$. Note that we do not assume $\mathfrak{q} \mid q$ here. Then $N(\mathfrak{q}) = 3$ and we can take $\mathcal{S}^{\text{new}}(k) = \{\mathfrak{q}\}$. We have $\mathfrak{q}^2 = (2 - \sqrt{-5})$. Let $\alpha_{\mathfrak{q}} = \alpha'_{\mathfrak{q}} = 2 - \sqrt{-5}$. Then $H(\alpha_{\mathfrak{q}}) = 3$ and $\operatorname{Norm}_{k/\mathbb{Q}}(\alpha_{\mathfrak{q}}) = 9$. By Lemma 7.5,

$$|\operatorname{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}((\alpha_{\mathfrak{q}}')^{\varepsilon} - \beta_{\mathfrak{q}}^{24h_k})| \le C(k,3) = (3^{48} + 3^{24})^4$$

for any $\varepsilon \in \mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{FR}(3)$. Then $\max \mathcal{M}_2^{\operatorname{new}}(k) \leq (3^{48} + 3^{24})^4$ and $\max \mathcal{N}_0^{\operatorname{new}}(k) \leq (3^{48} + 3^{24})^4$. Since $\mathcal{T}^{\operatorname{new}}(k) = \{2, 3\}$ and $\operatorname{Ram}(k) = \{2, 5\}$, we conclude that $\max \mathcal{N}_1^{\operatorname{new}}(k) \leq (3^{48} + 3^{24})^4$. Applying Theorem 6.2, we obtain the desired result.

Acknowledgments. The author would like to thank the anonymous referee for helpful comments.

References

- K. Arai, Galois images and modular curves, in: Proceedings of the Symposium on Algebraic Number Theory and Related Topics, RIMS Kôkyûroku Bessatsu B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 145–161.
- [2] K. Arai, Algebraic points on Shimura curves of $\Gamma_0(p)$ -type (II), arXiv:1205.3596v2 (2012).
- [3] K. Arai and F. Momose, Algebraic points on Shimura curves of Γ₀(p)-type, J. Reine Angew. Math. 690 (2014), 179–202.
- [4] K. Arai and F. Momose, Errata to "Algebraic points on Shimura curves of $\Gamma_0(p)$ type", J. Reine Angew. Math. 690 (2014), 203–205.
- [5] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67–80.
- [6] K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), 591–612.
- [7] A. David, Caractère d'isogénie et critères d'irréductibilité, arXiv:1103.3892v2 (2012).
- [8] J. González and V. Rotger, Non-elliptic Shimura curves of genus one, J. Math. Soc. Japan 58 (2006), 927–948.
- B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92–114.
- [10] J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271–296.
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), 129–162.
- F. Momose, Isogenies of prime degree over number fields, Compos. Math. 97 (1995), 329–348.
- [13] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135–164.

Keisuke Arai Department of Mathematics School of Engineering Tokyo Denki University 5 Senju Asahi-cho Adachi-ku, Tokyo 120-8551, Japan E-mail: araik@mail.dendai.ac.jp

> Received on 24.1.2013 and in revised form on 2.4.2014

353

(7327)