An effective bound of p for algebraic points on Shimura curves of $\Gamma_{0}(p)$-type

by
Keisuke Arai (Tokyo)

1. Introduction. Let B be an indefinite quaternion division algebra over \mathbb{Q} with discriminant d. Fix a maximal order \mathcal{O} of B. A QM-abelian surface by \mathcal{O} over a field F is a pair (A, i) where A is an abelian variety over F of dimension 2, and $i: \mathcal{O} \hookrightarrow \operatorname{End}_{F}(A)$ is an injective ring homomorphism (sending 1 to id) (cf. [6, p. 591]). Here $\operatorname{End}_{F}(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O}-action. We will sometimes omit "by \mathcal{O} " and simply write "a QM-abelian surface" if there is no risk of confusion. Let M^{B} be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of QM-abelian surfaces by \mathcal{O} (cf. [9, p. 93]). Then M^{B} is a proper smooth curve over \mathbb{Q}, called a Shimura curve. Throughout this article, let p be a prime number not dividing d. Let $M_{0}^{B}(p)$ be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of triples (A, i, V), where (A, i) is a QM-abelian surface by \mathcal{O} and V is a left \mathcal{O}-submodule of $A[p]$ of \mathbb{F}_{p}-dimension 2. Here $A[p]$ is the kernel of multiplication by p in A. Then $M_{0}^{B}(p)$ is a proper smooth curve over \mathbb{Q}, which we call a Shimura curve of $\Gamma_{0}(p)$-type. We have a natural map

$$
\pi^{B}(p): M_{0}^{B}(p) \rightarrow M^{B}
$$

over \mathbb{Q} defined by $(A, i, V) \mapsto(A, i)$.
In previous articles, we showed that for number fields in a certain large class, there are at most elliptic points on $M_{0}^{B}(p)$ if p is large enough. In this article, we prove that in fact there are no elliptic points, and obtain an effective bound for such p. The main result is:

Theorem 1.1. Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field. Assume

[^0]that there is a prime number q which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not \not \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$. Then there is an effectively computable constant $C_{0}(k)$ depending on k and independent of B such that $M_{0}^{B}(p)(k)=\emptyset$ if $p>\max \left\{4 q, C_{0}(k)\right\}, p \neq 13$.

We can identify $M_{0}^{B}(p)(\mathbb{C})$ with a quotient of the upper half-plane, and we use the notion of elliptic points in this context, assuming that k is a subfield of \mathbb{C}. The Shimura curve $M_{0}^{B}(p)$ is an analogue of the modular curve $X_{0}(p)$. Points on $X_{0}(p)$ rational over \mathbb{Q} and quadratic fields are studied in [11, [12] (see [1] for related topics). We can also define a proper smooth curve $M_{0}^{B}(p)$ over \mathbb{Q} for $B=\mathrm{M}_{2}(\mathbb{Q})$ that is isomorphic to $X_{0}(p)$. But Theorem 1.1 does not apply in this setting because $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$ for any prime q.

In $\S 2-4$, we review a part of [3]. In $\S 5-6$, we classify the characters associated to QM-abelian surfaces, and show that there are no k-rational points on $M_{0}^{B}(p)$ if $p(>4 q, \neq 13)$ does not belong to an exceptional finite set $\mathcal{N}_{1}^{\text {new }}(k)$. In $\S 7$, we give an upper bound of $\mathcal{N}_{1}^{\text {new }}(k)$ by the method of [7]. In $\S 8$, we give an example of the estimate of p.

Remark 1.2. $M^{B}(\mathbb{R})=\emptyset($ see [13, Theorem 0$\left.]\right)$, and so $M_{0}^{B}(p)(\mathbb{R})=\emptyset$.
Notation. For a field F, let char F denote the characteristic, \bar{F} an algebraic closure, $F^{\text {sep }}$ (resp. F^{ab}) the separable closure (resp. the maximal abelian extension) inside \bar{F}, and let $\mathrm{G}_{F}:=\operatorname{Gal}\left(F^{\text {sep }} / F\right)$ and $\mathrm{G}_{F}^{\mathrm{ab}}:=$ $\operatorname{Gal}\left(F^{\mathrm{ab}} / F\right)$. For a prime number p and a field F with char $F \neq p$, let $\theta_{p}: \mathrm{G}_{F} \rightarrow \mathbb{F}_{p}^{\times}$denote the $\bmod p$ cyclotomic character.

Let $|\cdot|$ denote the usual complex absolute value on \mathbb{C}. For a number field k, let $n_{k}:=[k: \mathbb{Q}]$; fix an inclusion $k \hookrightarrow \mathbb{C}$ and take the algebraic closure \bar{k} inside \mathbb{C}; let \mathcal{O}_{k} denote the ring of integers; let $\mathrm{N}(\mathfrak{q}):=\sharp\left(\mathcal{O}_{k} / \mathfrak{q}\right)$ for a prime \mathfrak{q} of k; let d_{k} denote the absolute value of the discriminant; Cl_{k} the ideal class group; h_{k} the class number; r_{k} the rank of the unit group \mathcal{O}_{k}^{\times}; R_{k} the regulator; k_{v} the completion of k at v, where v is a place (or a prime) of k; and $\operatorname{Ram}(k)$ the set of prime numbers which are ramified in k.

2. Galois representations associated to QM-abelian surfaces.

 We briefly review [3, §2] in order to consider the Galois representations associated to a QM-abelian surface. Let F be a field with char $F \neq p$. Let (A, i) be a QM-abelian surface by \mathcal{O} over F. The action of G_{F} on $A[p]\left(F^{\text {sep }}\right) \cong \mathbb{F}_{p}^{4}$ determines a representation $\bar{\rho}: \mathrm{G}_{F} \rightarrow \mathrm{GL}_{4}\left(\mathbb{F}_{p}\right)$. By a suitable choice of basis, $\bar{\rho}$ factors as$$
\bar{\rho}: \mathrm{G}_{F} \rightarrow\left\{\left(\begin{array}{cc}
s I_{2} & t I_{2} \\
u I_{2} & v I_{2}
\end{array}\right) \left\lvert\,\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)\right.\right\} \subseteq \mathrm{GL}_{4}\left(\mathbb{F}_{p}\right)
$$

Let

$$
\begin{equation*}
\bar{\rho}_{A, p}: \mathrm{G}_{F} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \tag{2.1}
\end{equation*}
$$

denote the Galois representation induced from $\bar{\rho}$ by " $\left(\begin{array}{cc}s & t \\ u & v\end{array}\right)$ ", so that

$$
\bar{\rho}_{A, p}(\sigma)=\left(\begin{array}{cc}
s(\sigma) & t(\sigma) \\
u(\sigma) & v(\sigma)
\end{array}\right) \quad \text { for any } \sigma \in \mathrm{G}_{F} \quad \text { if } \quad \bar{\rho}(\sigma)=\left(\begin{array}{cc}
s(\sigma) I_{2} & t(\sigma) I_{2} \\
u(\sigma) I_{2} & v(\sigma) I_{2}
\end{array}\right)
$$

Suppose $A[p]\left(F^{\text {sep }}\right)$ has a left \mathcal{O}-submodule V which has dimension 2 over \mathbb{F}_{p} and is stable under the action of G_{F}. Then we may assume that

$$
\bar{\rho}_{A, p}\left(\mathrm{G}_{F}\right) \subseteq\left\{\left(\begin{array}{cc}
s & t \\
0 & v
\end{array}\right)\right\} \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Let

$$
\begin{equation*}
\lambda: \mathrm{G}_{F} \rightarrow \mathbb{F}_{p}^{\times} \tag{2.2}
\end{equation*}
$$

denote the character induced from $\bar{\rho}_{A, p}$ by " s ", so that $\bar{\rho}_{A, p}(\sigma)=\left(\begin{array}{cc}\lambda(\sigma) & * \\ 0 & *\end{array}\right)$ for any $\sigma \in \mathrm{G}_{F}$. Note that G_{F} acts on V by λ (i.e. $\bar{\rho}(\sigma)(v)=\lambda(\sigma) v$ for any $\left.\sigma \in \mathrm{G}_{F}, v \in V\right)$.
3. Automorphism groups. We give a brief summary of [3, §3] concerning the automorphism groups of a QM-abelian surface. Let (A, i) be a QM-abelian surface by \mathcal{O} over a field F. Let $\operatorname{End}(A)($ resp. Aut $(A))$ denote the ring of endomorphisms (resp. the group of automorphisms) of A defined over \bar{F}. Define

$$
\begin{aligned}
\operatorname{End}_{\mathcal{O}}(A) & :=\{f \in \operatorname{End}(A) \mid f \circ i(g)=i(g) \circ f \text { for any } g \in \mathcal{O}\} \\
\operatorname{Aut}_{\mathcal{O}}(A) & :=\operatorname{Aut}(A) \cap \operatorname{End}_{\mathcal{O}}(A)
\end{aligned}
$$

If char $F=0$, then $\operatorname{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 6 \mathbb{Z}$.
Let (A, i, V) be a triple, where (A, i) is a QM-abelian surface by \mathcal{O} over F and V is a left \mathcal{O}-submodule of $A[p](\bar{F})$ of \mathbb{F}_{p}-dimension 2. Define a subgroup $\operatorname{Aut}_{\mathcal{O}}(A, V)$ of $\operatorname{Aut}_{\mathcal{O}}(A)$ by

$$
\operatorname{Aut}_{\mathcal{O}}(A, V):=\left\{f \in \operatorname{Aut}_{\mathcal{O}}(A) \mid f(V)=V\right\}
$$

Assume char $F=0$. Then $\operatorname{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 6 \mathbb{Z}$. Note that $\operatorname{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z} / 2 \mathbb{Z}\left(\operatorname{resp} . \operatorname{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z} / 2 \mathbb{Z}\right)$ if and only if $\operatorname{Aut}_{\mathcal{O}}(A)=\{ \pm 1\}$ $\left(\right.$ resp. $\left.\operatorname{Aut}_{\mathcal{O}}(A, V)=\{ \pm 1\}\right)$.
4. Fields of definition. From now on, let k be a number field. We recall from [3, §4] some facts about the field of definition of a point of $M_{0}^{B}(p)(k)$. Fix a point

$$
x \in M_{0}^{B}(p)(k)
$$

Let $x^{\prime} \in M^{B}(k)$ be the image of x by the map $\pi^{B}(p): M_{0}^{B}(p) \rightarrow M^{B}$. Then x^{\prime} is represented by a QM-abelian surface (say $\left(A_{x}, i_{x}\right)$) over \bar{k}, and x is represented by a triple $\left(A_{x}, i_{x}, V_{x}\right)$ where V_{x} is a left \mathcal{O}-submodule of $A[p](\bar{k})$ of \mathbb{F}_{p}-dimension 2. For a finite extension M of k, we say that we can take $\left(A_{x}, i_{x}, V_{x}\right)$ to be defined over M if there is a QM-abelian surface (A, i) over M and a G_{M}-stable left \mathcal{O}-submodule V of $A[p](\bar{k})$ with $\operatorname{dim}_{\mathbb{F}_{p}} V=2$ such that there is an isomorphism between $(A, i) \otimes_{M} \bar{k}$ and $\left(A_{x}, i_{x}\right)$ under which V corresponds to V_{x}. Let

$$
\operatorname{Aut}(x):=\operatorname{Aut}_{\mathcal{O}}\left(A_{x}, V_{x}\right) \quad \text { and } \quad \operatorname{Aut}\left(x^{\prime}\right):=\operatorname{Aut}_{\mathcal{O}}\left(A_{x}\right)
$$

Then $\operatorname{Aut}(x)$ is a subgroup of $\operatorname{Aut}\left(x^{\prime}\right)$. Note that x is an elliptic point of order 2 (resp. 3) if and only if $\operatorname{Aut}(x) \cong \mathbb{Z} / 4 \mathbb{Z}(\operatorname{resp} . \operatorname{Aut}(x) \cong \mathbb{Z} / 6 \mathbb{Z})$. Since x is a k-rational point, ${ }^{\sigma} x=x$ for any $\sigma \in \mathrm{G}_{k}$. Then for any $\sigma \in \mathrm{G}_{k}$, there is an isomorphism

$$
\phi_{\sigma}:{ }^{\sigma}\left(A_{x}, i_{x}, V_{x}\right) \rightarrow\left(A_{x}, i_{x}, V_{x}\right)
$$

which we fix once for all. For $\sigma, \tau \in \mathrm{G}_{k}$, let

$$
c_{x}(\sigma, \tau):=\phi_{\sigma} \circ{ }^{\sigma} \phi_{\tau} \circ \phi_{\sigma \tau}^{-1} \in \operatorname{Aut}(x)
$$

Then c_{x} is a 2-cocycle, and it defines the cohomology class $\left[c_{x}\right]$ in $H^{2}\left(\mathrm{G}_{k}, \operatorname{Aut}(x)\right)$. Here, the action of G_{k} on $\operatorname{Aut}(x)$ is defined in a natural manner (cf. [3, §4]). For a place v of k, let $\left[c_{x}\right]_{v} \in H^{2}\left(\mathrm{G}_{k_{v}}\right.$, $\left.\operatorname{Aut}(x)\right)$ denote the restriction of $\left[c_{x}\right]$ to $\mathrm{G}_{k_{v}}$.

Proposition 4.1 ([3, Proposition 4.2]).
(1) Suppose $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$. Further, assume $\operatorname{Aut}(x) \neq\{ \pm 1\}$ or $\operatorname{Aut}\left(x^{\prime}\right) \nsubseteq \mathbb{Z} / 4 \mathbb{Z}$. Then we can take $\left(A_{x}, i_{x}, V_{x}\right)$ to be defined over k.
(2) Assume $\operatorname{Aut}(x)=\{ \pm 1\}$. Then there is a quadratic extension K of k such that we can take $\left(A_{x}, i_{x}, V_{x}\right)$ to be defined over K.

Lemma 4.2 ([3, Lemma 4.3]). Let K be a quadratic extension of k. Assume $\operatorname{Aut}(x)=\{ \pm 1\}$. Then the following conditions are equivalent:
(1) We can take $\left(A_{x}, i_{x}, V_{x}\right)$ to be defined over K.
(2) For any place v of k satisfying $\left[c_{x}\right]_{v} \neq 0$, the tensor product $K \otimes_{k} k_{v}$ is a field.
5. Classification of characters. We keep the notation from Section 4 . Throughout this section, we assume $\operatorname{Aut}(x)=\{ \pm 1\}$. Let K be a quadratic extension of k which satisfies the equivalent conditions in Lemma 4.2. Then x is represented by a triple (A, i, V), where (A, i) is a QM-abelian surface over K and V is a left \mathcal{O}-submodule of $A[p](\bar{k})$ of \mathbb{F}_{p}-dimension 2 which is stable under the action of G_{K}. Let $\lambda: \mathrm{G}_{K} \rightarrow \mathbb{F}_{p}^{\times}$be the character associated
to V in 2.2 . Let $\lambda^{\mathrm{ab}}: \mathrm{G}_{K}^{\mathrm{ab}} \rightarrow \mathbb{F}_{p}^{\times}$be the natural map induced from λ. Let

$$
\begin{equation*}
\varphi:=\lambda^{\mathrm{ab}} \circ \operatorname{tr}_{K / k}: \mathrm{G}_{k} \rightarrow \mathrm{G}_{K}^{\mathrm{ab}} \rightarrow \mathbb{F}_{p}^{\times} \tag{5.1}
\end{equation*}
$$

where $\operatorname{tr}_{K / k}: \mathrm{G}_{k} \rightarrow \mathrm{G}_{K}^{\mathrm{ab}}$ is the transfer map. Then φ^{12} is unramified at every prime of k not dividing p (see [3, Corollary 5.2]), and so φ^{12} corresponds to a character of the ideal group $\mathfrak{I}_{k}(p)$ consisting of fractional ideals of k prime to p. By abuse of notation, let φ^{12} also denote the corresponding character of $\mathfrak{I}_{k}(p)$.

Let us now introduce several sets in a manner similar to [3, §5]. Let $\mathcal{M}^{\text {new }}(k)$ be the set of prime numbers which split completely in k. Note that a prime number in the set \mathcal{M} of [3] does not divide $6 h_{k}$. Let $\mathcal{N}^{\text {new }}(k)$ be the set of primes of k which divide some prime number in $\mathcal{M}^{\text {new }}(k)$. Fix a finite subset $\emptyset \neq \mathcal{S}^{\text {new }}(k) \subseteq \mathcal{N}^{\text {new }}(k)$ which generates Cl_{k}. For each prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$, fix an element $\alpha_{\mathfrak{q}} \in \mathcal{O}_{k} \backslash\{0\}$ satisfying

$$
\begin{equation*}
\mathfrak{q}^{h_{k}}=\alpha_{\mathfrak{q}} \mathcal{O}_{k} \tag{5.2}
\end{equation*}
$$

For an integer $n \geq 1$, let

$$
\mathcal{F R}(n):=\left\{\beta \in \mathbb{C} \mid \beta^{2}+a \beta+n=0 \text { for some } a \in \mathbb{Z} \text { with }|a| \leq 2 \sqrt{n}\right\}
$$

For any element $\beta \in \mathcal{F} \mathcal{R}(n)$, we have $|\beta|=\sqrt{n}$. From now to the end of this section, assume that k is Galois over \mathbb{Q}. Define

$$
\begin{aligned}
\mathcal{E}(k) & :=\left\{\varepsilon_{0}=\sum_{\sigma \in \operatorname{Gal}(k / \mathbb{Q})} a_{\sigma} \sigma \in \mathbb{Z}[\operatorname{Gal}(k / \mathbb{Q})] \mid a_{\sigma} \in\{0,8,12,16,24\}\right\}, \\
\mathcal{M}_{1}^{\text {new }}(k) & :=\left\{\left(\mathfrak{q}, \varepsilon_{0}, \beta_{\mathfrak{q}}\right) \mid \mathfrak{q} \in \mathcal{S}^{\text {new }}(k), \varepsilon_{0} \in \mathcal{E}(k), \beta_{\mathfrak{q}} \in \mathcal{F} \mathcal{R}(\mathrm{N}(\mathfrak{q}))\right\}, \\
\mathcal{M}_{2}^{\text {new }}(k) & :=\left\{\operatorname{Norm}_{k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}^{\varepsilon_{0}}-\beta_{\mathfrak{q}}^{24 h_{k}}\right) \in \mathbb{Z} \mid\left(\mathfrak{q}, \varepsilon_{0}, \beta_{\mathfrak{q}}\right) \in \mathcal{M}_{1}^{\text {new }}(k)\right\} \backslash\{0\}, \\
\mathcal{N}_{0}^{\text {new }}(k) & :=\left\{\text { prime divisors of some of the integers in } \mathcal{M}_{2}^{\text {new }}(k)\right\}, \\
\mathcal{T}^{\text {new }}(k) & :=\left\{\text { prime numbers divisible by some prime in } \mathcal{S}^{\text {new }}(k)\right\} \cup\{2,3\}, \\
\mathcal{N}_{1}^{\text {new }}(k) & :=\mathcal{N}_{0}^{\text {new }}(k) \cup \mathcal{T}^{\text {new }}(k) \cup \operatorname{Ram}(k) .
\end{aligned}
$$

Note that all the sets $\mathcal{F} \mathcal{R}(n), \mathcal{E}(k), \mathcal{M}_{1}^{\text {new }}(k), \mathcal{M}_{2}^{\text {new }}(k), \mathcal{N}_{0}^{\text {new }}(k), \mathcal{T}^{\text {new }}(k)$ and $\mathcal{N}_{1}^{\text {new }}(k)$ are finite. We have the following classification of φ :

Theorem 5.1 (cf. [3, Theorem 5.6]). If $p \notin \mathcal{N}_{1}^{\text {new }}(k)$, then the character $\varphi: \mathrm{G}_{k} \rightarrow \mathbb{F}_{p}^{\times}$is of one of the following types:

TYPE 2: $\varphi^{12}=\theta_{p}^{12}$ and $p \equiv 3 \bmod 4$.
Type 3: There is an imaginary quadratic field L such that:
(a) The Hilbert class field H_{L} of L is contained in k.
(b) There is a prime \mathfrak{p}_{L} of L lying over p such that

$$
\varphi^{12}(\mathfrak{a}) \equiv \delta^{24} \bmod \mathfrak{p}_{L}
$$

for any fractional ideal \mathfrak{a} of k prime to p. Here, δ is any element of L such that $\operatorname{Norm}_{k / L}(\mathfrak{a})=\delta \mathcal{O}_{L}$.

Proof. It suffices to modify the proof of [3, Theorem 5.6] slightly. By replacing K if necessary, we may assume that every prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$ is ramified in K / k (see Lemma 4.2). Suppose $p \notin \mathcal{T}^{\text {new }}(k) \cup \operatorname{Ram}(k)$. Take any prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$. Let q be the residual characteristic of \mathfrak{q}, and let \mathfrak{q}_{K} be the unique prime of K above \mathfrak{q}. Then $p \neq q$. Without assuming $q \geq 5$, we know that the abelian surface $A \otimes_{K} K_{\mathfrak{q}_{K}}$ over $K_{\mathfrak{q}_{K}}$ has good reduction over a totally ramified finite extension $M(\mathfrak{q}) / K_{\mathfrak{q}_{K}}$ (see [9, Proposition 3.2]). Choose a prime \mathfrak{p} of k above p. Then $\lambda^{12}\left(\mathfrak{q}_{K}\right) \equiv \beta_{\mathfrak{q}}^{12} \bmod \mathfrak{p}_{2}$, where $\beta_{\mathfrak{q}}$ is an element of $\mathcal{F} \mathcal{R}(q)$ and \mathfrak{p}_{2}, which depends on \mathfrak{p}, is a prime of $\mathbb{Q}\left(\beta_{\mathfrak{q}} \mid \mathfrak{q} \in \mathcal{S}^{\text {new }}(k)\right)$ above p. We find an element $\varepsilon \in \mathcal{E}(k)$ which satisfies the condition (ii) in [3, Lemma 5.4(2)] and $\varphi^{12}\left(\gamma \mathcal{O}_{k}\right) \equiv \gamma^{\varepsilon} \bmod \mathfrak{p}$ for any $\gamma \in k^{\times}$prime to p. Suppose $p \notin \mathcal{N}_{1}^{\text {new }}(k)$. Then for any prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$, we have $\alpha_{\mathfrak{q}}^{\varepsilon}=\beta_{\mathfrak{q}}^{24 h_{k}}$. Choose a prime $\mathfrak{q}_{0} \in \mathcal{S}^{\text {new }}(k)$. Applying [3, Lemma 5.5] to \mathfrak{q}_{0}, we see that ε is of type 2 or 3 in the sense of [3].

First, assume that ε is of type 2 . For any prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$, we have $\beta_{\mathfrak{q}}^{24 h_{k}}=q^{12 h_{k}}$. We prove $\beta_{\mathfrak{q}}^{24}=q^{12}$ without assuming $q \nmid 6 h_{k}$. Write $\beta=\beta_{\mathfrak{q}}$ for simplicity. Let $\bar{\beta}$ be the complex conjugate of β. Since $\beta^{24 h_{k}}=\bar{\beta}^{24 h_{k}}$, we have $\bar{\beta}=\zeta \beta$ for some $\zeta \in \mathbb{C}$ with $\zeta^{24 h_{k}}=1$. Since

$$
\mathbb{Q}(\beta)=\mathbb{Q}(\bar{\beta})=\mathbb{Q}(\zeta \beta)=\mathbb{Q}(\beta, \zeta) \supseteq \mathbb{Q}(\zeta) \quad \text { and } \quad[\mathbb{Q}(\beta): \mathbb{Q}]=2,
$$

we have $\zeta^{4}=1$ or $\zeta^{6}=1$. Then $\zeta^{12}=1$. This implies $\bar{\beta}^{12}=\zeta^{12} \beta^{12}=\beta^{12}$, and so $\beta^{12} \in \mathbb{Q}$. Since $|\beta|=\sqrt{q}$, we have $\beta^{12}= \pm q^{6}$. Therefore $\beta^{24}=q^{12}$.

Note that the case $\beta^{12}=-q^{6}$ really occurs (e.g. $q=2$ and $\beta=1+\sqrt{-1}$). Then

$$
\varphi^{12}\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\varphi^{12}(\mathfrak{q})=\lambda^{24}\left(\mathfrak{q}_{K}\right) \equiv \beta_{\mathfrak{q}}^{24}=q^{12}=\mathrm{N}(\mathfrak{q})^{12} \equiv \theta_{p}\left(\operatorname{Frob}_{\mathfrak{q}}\right)^{12} \bmod p
$$ where $\operatorname{Frob}_{\mathfrak{q}} \in \mathrm{G}_{k}$ is any (arithmetic) Frobenius element at \mathfrak{q}. Combining this with $\varphi^{12}\left(\gamma \mathcal{O}_{k}\right) \equiv \operatorname{Norm}_{k / \mathbb{Q}}(\gamma)^{12} \bmod p$ for any $\gamma \in k^{\times}$prime to p, we conclude that $\varphi^{12}=\theta_{p}^{12}$.

Next, assume that ε is of type 3 (for \mathfrak{q}_{0}). Then by the same argument as in the proof of [3, Theorem 5.6] we obtain the desired result. -

As for λ, we have:
Lemma 5.2 (cf. [4, Lemma 5.11]). Suppose that $p \geq 11, p \neq 13$ and $p \notin \mathcal{N}_{1}^{\text {new }}(k)$. Further, assume that the following conditions hold:
(a) Every prime \mathfrak{p} of k above p is inert in K / k.
(b) Every prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$ is ramified in K / k.

If φ is of type 2, then we have the following assertions:
(i) The character $\lambda^{12} \theta_{p}^{-6}: \mathrm{G}_{K} \rightarrow \mathbb{F}_{p}^{\times}$is unramified everywhere.
(ii) The map $\mathrm{Cl}_{K} \rightarrow \mathbb{F}_{p}^{\times}$induced from $\lambda^{12} \theta_{p}^{-6}$ is trivial on $C_{K / k}:=$ $\operatorname{Im}\left(\mathrm{Cl}_{k} \rightarrow \mathrm{Cl}_{K}\right)$, where $\mathrm{Cl}_{k} \rightarrow \mathrm{Cl}_{K}$ is the map defined by $[\mathfrak{a}] \mapsto\left[\mathfrak{a} \mathcal{O}_{K}\right]$.

Proof. (i) The proof is the same as that of [4, Lemma 5.11(i)].
(ii) We slightly modify the argument in the proof of [4, Lemma 5.11(ii)]. Take any prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$. Let q be the residual characteristic of \mathfrak{q}, and let \mathfrak{q}_{K} be the unique prime of K above \mathfrak{q}. Then $\lambda^{12}\left(\mathfrak{q}_{K}\right) \equiv \beta^{12}$ modulo a prime of $\mathbb{Q}(\beta)$ above p, where $\beta \in \mathcal{F} \mathcal{R}(q)$ is an element satisfying $\beta^{24 h_{k}}=q^{12 h_{k}}$. Then we have seen in the proof of Theorem 5.1 that $\beta^{24}=q^{12}$. Note that we may not have $\beta= \pm \sqrt{-q}$. Therefore, $\lambda^{12}\left(\mathfrak{q}_{K}\right)=\lambda^{12}\left(\mathfrak{q}_{K}^{2}\right)=\lambda^{24}\left(\mathfrak{q}_{K}\right) \equiv$ $\beta^{24}=q^{12} \equiv \theta_{p}^{12}\left(\mathfrak{q}_{K}\right)=\theta_{p}^{6}\left(\mathfrak{q} \mathcal{O}_{K}\right) \bmod p$, as required.

We have the following lemma with the same proof as in $[2-4]$:
Lemma 5.3 (cf. [2, Lemma 5.6], [3, Lemma 5.12], [4, 3]). Suppose that $p \geq 11, p \neq 13, p \notin \mathcal{N}_{1}^{\text {new }}(k)$, and that φ is of type 2 . Let $q \in \mathcal{M}^{\text {new }}(k)$ be a prime number satisfying $q<p / 4$. Then $\left(\frac{q}{p}\right)=-1$ and $q^{(p-1) / 2} \equiv-1 \bmod p$. Furthermore, $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$.
6. Irreducibility of $\bar{\rho}_{A, p}$ and algebraic points on $M_{0}^{B}(p)$. Let (A, i) be a QM-abelian surface by \mathcal{O} over k. Assume that the representation

$$
\bar{\rho}_{A, p}: \mathrm{G}_{k} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

in (2.1) is reducible. Then there is a 1-dimensional subrepresentation of $\bar{\rho}_{A, p}$, and let ν be its associated character. In this case, there is a left \mathcal{O}-submodule V of $A[p](\bar{k})$ satisfying $\operatorname{dim}_{\mathbb{F}_{p}} V=2$ on which G_{k} acts by ν, and so the triple (A, i, V) determines a point $x \in M_{0}^{B}(p)(k)$. Take any quadratic extension K of k. Then we have the characters $\lambda: \mathrm{G}_{K} \rightarrow \mathbb{F}_{p}^{\times}$and $\varphi: \mathrm{G}_{k} \rightarrow \mathbb{F}_{p}^{\times}$associated to the triple $\left(A \otimes_{k} K, i, V\right)$. Note that $\varphi=\nu^{2}$ by the construction of φ.

From now to the end of this section, assume that k is Galois over \mathbb{Q}, that k does not contain the Hilbert class field of any imaginary quadratic field, and that there is a prime number $q \in \mathcal{M}^{\text {new }}(k)$ satisfying

$$
B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \nsubseteq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q})) .
$$

Fix such a q. Then we have the following irreducibility result for $\bar{\rho}_{A, p}$:
Theorem 6.1 (cf. [2, Theorem 6.5]). If $p>4 q, p \neq 13$ and $p \notin \mathcal{N}_{1}^{\text {new }}(k)$, then the representation $\bar{\rho}_{A, p}: \mathrm{G}_{k} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is irreducible.

Proof. Assume that $\bar{\rho}_{A, p}$ is reducible. Then the associated character φ is of type 2 in Theorem 5.1, because k does not contain the Hilbert class field of any imaginary quadratic field. By Lemma 5.3, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong$ $\mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$. This contradicts the assumption.

We have the following theorem concerning the algebraic points on $M_{0}^{B}(p)$:
Theorem 6.2 (cf. [2, Theorem 1.3]). If $p>4 q, p \neq 13$ and $p \notin$ $\mathcal{N}_{1}^{\text {new }}(k)$, then $M_{0}^{B}(p)(k)=\emptyset$.

Proof. Suppose $p>4 q, p \neq 13$ and $p \notin \mathcal{N}_{1}^{\text {new }}(k)$. Assume that there is a point $x \in M_{0}^{B}(p)(k)$.
(1) Suppose $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_{2}(k)$.
(1-i) Assume $\operatorname{Aut}(x) \neq\{ \pm 1\}$ or $\operatorname{Aut}\left(x^{\prime}\right) \not \not \mathbb{Z} / 4 \mathbb{Z}$. Then x is represented by a triple (A, i, V) defined over k by Proposition 4.1(1), and the representation $\bar{\rho}_{A, p}$ is reducible. This contradicts Theorem 6.1.
(1-ii) Assume otherwise (i.e. $\operatorname{Aut}(x)=\{ \pm 1\}$ and $\left.\operatorname{Aut}\left(x^{\prime}\right) \cong \mathbb{Z} / 4 \mathbb{Z}\right)$. Then x is represented by a triple (A, i, V) defined over a quadratic extension of k by Proposition 4.1(2), and we have a character $\varphi: \mathrm{G}_{k} \rightarrow \mathbb{F}_{p}^{\times}$as in (5.1). By Theorem 5.1 and Lemma 5.3, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q})$, which is a contradiction.
(2) Suppose $B \otimes_{\mathbb{Q}} k \not \equiv \mathrm{M}_{2}(k)$.
(2-i) Assume $\operatorname{Aut}(x)=\{ \pm 1\}$. Then by the same argument as in (1-ii), we have a contradiction.
(2-ii) Assume otherwise. Then x is an elliptic point of order 2 or 3 . Let $\mathbb{Q}(x)$ be the number field generated over \mathbb{Q} by the coordinates of x on $M_{0}^{B}(p)$. Then $\mathbb{Q}(x)=\mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$ by [8, Theorem 5.12], and so $k \supseteq \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$. This contradicts the assumption because $\mathbb{Q}(\sqrt{-1})$ (resp. $\mathbb{Q}(\sqrt{-3}))$ is the Hilbert class field of itself.
7. An estimate of $\mathcal{N}_{1}^{\text {new }}(k)$. We give an upper bound of the set $\mathcal{N}_{1}^{\text {new }}(k)$ by the method of $[7$. The following theorem and proposition are key ingredients of the estimate:

Theorem 7.1 ([10, Theorem 1.1]). There is an absolute, effectively computable constant $A_{1}>1$ such that for every finite extension k_{1} of \mathbb{Q}, every finite Galois extension k_{2} of k_{1} and every conjugacy class C of $\operatorname{Gal}\left(k_{2} / k_{1}\right)$, there is a prime \mathfrak{q} of k_{1} which is unramified in k_{2}, for which $\mathrm{Fr}_{\mathfrak{q}}=C$ and $\mathrm{N}(\mathfrak{q})$ is a prime number satisfying $\mathrm{N}(\mathfrak{q}) \leq 2 d_{k_{2}}^{A_{1}}$. Here, $\mathrm{Fr}_{\mathfrak{q}}$ is the (arithmetic) Frobenius conjugacy class at \mathfrak{q} in $\operatorname{Gal}\left(k_{2} / k_{1}\right)$.

Proposition 7.2 ([7, Proposition 4.2]). Assume that k is Galois over \mathbb{Q}. Let A_{1} be the constant in Theorem 7.1. Then we can take $\mathcal{S}^{\text {new }}(k)$ so that every prime $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$ satisfies $\mathrm{N}(\mathfrak{q}) \leq 2 d_{k}^{A_{1} h_{k}}$.

For a place v of k and an element $\alpha \in k$, define $\|\alpha\|_{v}$ as follows:

- If v is finite, let \mathfrak{q} be the prime of k corresponding to v, and let $\|\alpha\|_{v}:=$ $\mathrm{N}(\mathfrak{q})^{-\operatorname{ord}_{\mathfrak{q}}(\alpha)}$ where $\operatorname{ord}_{\mathfrak{q}}(\alpha)$ is the order of α at \mathfrak{q}. Here, we let $\|\alpha\|_{v}:=0$ if $\alpha=0$.
- If v is real, let $\tau: k \hookrightarrow \mathbb{R}$ be the embedding corresponding to v, and let $\|\alpha\|_{v}:=|\tau(\alpha)|$.
- If v is complex, let $\tau: k \hookrightarrow \mathbb{C}$ be one of the embeddings corresponding to v, and let $\|\alpha\|_{v}:=|\tau(\alpha)|^{2}$.

For an element $\alpha \in k$, let $\mathrm{H}(\alpha)$ denote the absolute height of α defined by

$$
\mathrm{H}(\alpha):=\left(\prod_{v} \max \left\{1,\|\alpha\|_{v}\right\}\right)^{1 / n_{k}}
$$

where v runs through all places of k. We know that there is a positive constant δ_{k}, depending on k, such that for every non-zero element $\alpha \in k$ that is not a root of unity, $\log \mathrm{H}(\alpha) \geq \delta_{k} / n_{k}$ (cf. [5, p. 70]). We can take $\delta_{k}=\log 2 /\left(r_{k}+1\right)$ for $n_{k}=1,2$. Both

$$
\delta_{k}=\frac{1}{53 n_{k} \log 6 n_{k}} \quad \text { and } \quad \delta_{k}=\frac{1}{1201}\left(\frac{\log \log n_{k}}{\log n_{k}}\right)^{3}
$$

are appropriate choices for $n_{k} \geq 3$. Fix such a constant δ_{k}. Let

$$
C_{1}(k):=r_{k}^{1+r_{k}} \delta_{k}^{1-r_{k}} / 2
$$

Lemma 7.3. Let \mathfrak{q} be a prime of k. Then there is an element $\alpha_{\mathfrak{q}}^{\prime} \in \mathcal{O}_{k} \backslash\{0\}$ which satisfies

$$
\mathfrak{q}^{h_{k}}=\alpha_{\mathfrak{q}}^{\prime} \mathcal{O}_{k} \quad \text { and } \quad \mathrm{H}\left(\alpha_{\mathfrak{q}}^{\prime}\right) \leq\left|\operatorname{Norm}_{k / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}^{\prime}\right)\right|^{1 / n_{k}} \exp \left(C_{1}(k) R_{k}\right) .
$$

Proof. Take an element $\gamma \in \mathcal{O}_{k} \backslash\{0\}$ which satisfies $\mathfrak{q}^{h_{k}}=\gamma \mathcal{O}_{k}$. Then, by [7, Lemme 3] (or [5, Lemma 2]), there is an element $u \in \mathcal{O}_{k}^{\times}$satisfying

$$
\mathrm{H}(u \gamma) \leq\left|\operatorname{Norm}_{k / \mathbb{Q}}(\gamma)\right|^{1 / n_{k}} \exp \left(C_{1}(k) R_{k}\right) .
$$

If we let $\alpha_{\mathfrak{q}}^{\prime}=u \gamma$, then $\mathfrak{q}^{h_{k}}=\alpha_{\mathfrak{q}}^{\prime} \mathcal{O}_{k}$ and

$$
\begin{aligned}
\mathrm{H}\left(\alpha_{\mathfrak{q}}^{\prime}\right) & \leq\left|\operatorname{Norm}_{k / \mathbb{Q}}\left(u^{-1} \alpha_{\mathfrak{q}}^{\prime}\right)\right|^{1 / n_{k}} \exp \left(C_{1}(k) R_{k}\right) \\
& =\left|\operatorname{Norm}_{k / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}^{\prime}\right)\right|^{1 / n_{k}} \exp \left(C_{1}(k) R_{k}\right) .
\end{aligned}
$$

The last equality holds because $\operatorname{Norm}_{k / \mathbb{Q}}\left(u^{-1}\right) \in \mathbb{Z}^{\times}=\{ \pm 1\}$.
Let $C_{2}(k):=\exp \left(24 n_{k} C_{1}(k) R_{k}\right)$. Until the end of this section, assume that k is Galois over \mathbb{Q}.

Lemma 7.4. Under the situation of Lemma 7.3, we have

$$
\left|\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}\right| \leq \mathrm{N}(\mathfrak{q})^{24 h_{k}} C_{2}(k)
$$

for any $\varepsilon \in \mathcal{E}(k)$.
Proof. Let $\varepsilon=\sum_{\sigma \in \operatorname{Gal}(k / \mathbb{Q})} a_{\sigma} \sigma$. Then

$$
\left|\left(\alpha_{\mathrm{q}}^{\prime}\right)^{\varepsilon}\right|
$$

$$
=\left|\prod_{\sigma \in \operatorname{Gal}(k / \mathbb{Q})}\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{a_{\sigma} \sigma}\right| \leq\left(\prod_{\sigma \in \operatorname{Gal}(k / \mathbb{Q})} \max \left\{1,\left|\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\sigma}\right|\right\}\right)^{24}=\prod_{v \mid \infty} \max \left\{1,\left\|\alpha_{\mathfrak{q}}^{\prime}\right\|_{v}\right\}^{24}
$$

$$
=\mathrm{H}\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{24 n_{k}} \leq\left|\operatorname{Norm}_{k / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}^{\prime}\right)\right|^{24} \exp \left(24 n_{k} C_{1}(k) R_{k}\right)=\mathrm{N}(\mathfrak{q})^{24 h_{k}} C_{2}(k) .
$$

Note that the third equality holds because $\alpha_{\mathfrak{q}}^{\prime} \in \mathcal{O}_{k}$.
For $a>0$, let $C(k, a):=\left(a^{24 h_{k}} C_{2}(k)+a^{12 h_{k}}\right)^{2 n_{k}}$.

Lemma 7.5. Under the situation of Lemma 7.3, we have

$$
\left|\operatorname{Norm}_{k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}}\left(\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)\right| \leq C(k, \mathrm{~N}(\mathfrak{q}))
$$

for any $\varepsilon \in \mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{F} \mathcal{R}(\mathrm{N}(\mathfrak{q}))$.
Proof. For any $\tau \in \operatorname{Gal}\left(k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}\right)$, we have

$$
\left|\left(\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)^{\tau}\right| \leq\left|\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon \tau}\right|+\left|\beta_{\mathfrak{q}}^{24 h_{k} \tau}\right| \leq \mathrm{N}(\mathfrak{q})^{24 h_{k}} C_{2}(k)+\mathrm{N}(\mathfrak{q})^{12 h_{k}} .
$$

Then

$$
\begin{aligned}
& \left|\operatorname{Norm}_{k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}}\left(\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)\right|=\prod_{\tau \in \operatorname{Gal}\left(k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}\right)}\left|\left(\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)^{\tau}\right| \\
& \leq\left(\mathrm{N}(\mathfrak{q})^{24 h_{k}} C_{2}(k)+\mathrm{N}(\mathfrak{q})^{12 h_{k}}\right)^{2 n_{k}}=C(k, \mathrm{~N}(\mathfrak{q})) .
\end{aligned}
$$

Until the end of this section, assume that $\mathcal{S}^{\text {new }}(k)$ satisfies the condition in Proposition 7.2, and take $\alpha_{\mathfrak{q}}$ in (5.2) to be the $\alpha_{\mathfrak{q}}^{\prime}$ in Lemma 7.3 for any $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k)$.

Lemma 7.6. For any $m \in \mathcal{M}_{2}^{\text {new }}(k)$, we have $|m| \leq C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$.
Proof. We have $m=\operatorname{Norm}_{k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)$ for some $\mathfrak{q} \in \mathcal{S}^{\text {new }}(k), \varepsilon \in$ $\mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{F} \mathcal{R}(\mathrm{N}(\mathfrak{q}))$. Then we obtain $|m| \leq C(k, \mathrm{~N}(\mathfrak{q})) \leq C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$ by Proposition 7.2 and Lemma 7.5 .

Finally we obtain an upper bound of $\mathcal{N}_{1}^{\text {new }}(k)$ as follows:
Theorem 7.7. For any $l \in \mathcal{N}_{1}^{\text {new }}(k)$, we have $l \leq C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$.
Proof. Let $l \in \mathcal{N}_{1}^{\text {new }}(k)$. If $l \in \mathcal{N}_{0}^{\text {new }}(k)$, then $l \leq C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$ by Lemma 7.6. If $l \in \mathcal{T}^{\text {new }}(k)$, then $l \leq \max \left\{3,2 d_{k}^{A_{1} h_{k}}\right\}$. If $l \in \operatorname{Ram}(k)$, then $l \leq d_{k}$. Since $A_{1}>1$, we conclude that $l \leq C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$.

Now Theorem 1.1 follows from Theorems 6.2 and 7.7 Note that we can take $C_{0}(k)=C\left(k, 2 d_{k}^{A_{1} h_{k}}\right)$.
8. An example. We give an example of the estimate of p as follows:

Proposition 8.1. Let $k=\mathbb{Q}(\sqrt{-5})$. Assume that there is a prime number $q \in \mathcal{M}^{\text {new }}(k)$ satisfying $B \otimes \mathbb{Q} \mathbb{Q}(\sqrt{-q}) \not \neq \mathrm{M}_{2}(\mathbb{Q}(\sqrt{-q}))$. Then we have $M_{0}^{B}(p)(k)=\emptyset$ if $p>\max \left\{4 q,\left(3^{48}+3^{24}\right)^{4}\right\}$.

Proof. We have $n_{k}=2, h_{k}=2, r_{k}=0, C_{1}(k)=0, C_{2}(k)=1$ and $\mathcal{M}^{\text {new }}(k)=\{l:$ prime number $\mid l \equiv 1,3,7,9 \bmod 20\}$.
Let $\mathfrak{q}=(3,1+\sqrt{-5}) \subseteq \mathcal{O}_{k}$. Note that we do not assume $\mathfrak{q} \mid q$ here. Then $\mathrm{N}(\mathfrak{q})=3$ and we can take $\mathcal{S}^{\text {new }}(k)=\{\mathfrak{q}\}$. We have $\mathfrak{q}^{2}=(2-\sqrt{-5})$. Let $\alpha_{\mathfrak{q}}=\alpha_{\mathfrak{q}}^{\prime}=2-\sqrt{-5}$. Then $\mathrm{H}\left(\alpha_{\mathfrak{q}}\right)=3$ and $\operatorname{Norm}_{k / \mathbb{Q}}\left(\alpha_{\mathfrak{q}}\right)=9$. By Lemma 7.5.

$$
\left|\operatorname{Norm}_{k\left(\beta_{\mathfrak{q}}\right) / \mathbb{Q}}\left(\left(\alpha_{\mathfrak{q}}^{\prime}\right)^{\varepsilon}-\beta_{\mathfrak{q}}^{24 h_{k}}\right)\right| \leq C(k, 3)=\left(3^{48}+3^{24}\right)^{4}
$$

for any $\varepsilon \in \mathcal{E}(k)$ and $\beta_{\mathfrak{q}} \in \mathcal{F} \mathcal{R}(3)$. Then $\max \mathcal{M}_{2}^{\text {new }}(k) \leq\left(3^{48}+3^{24}\right)^{4}$ and $\max \mathcal{N}_{0}^{\text {new }}(k) \leq\left(3^{48}+3^{24}\right)^{4}$. Since $\mathcal{T}^{\text {new }}(k)=\{2,3\}$ and $\operatorname{Ram}(k)=\{2,5\}$, we conclude that $\max \mathcal{N}_{1}^{\text {new }}(k) \leq\left(3^{48}+3^{24}\right)^{4}$. Applying Theorem 6.2, we obtain the desired result.

Acknowledgments. The author would like to thank the anonymous referee for helpful comments.

References

[1] K. Arai, Galois images and modular curves, in: Proceedings of the Symposium on Algebraic Number Theory and Related Topics, RIMS Kôkyûroku Bessatsu B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 145-161.
[2] K. Arai, Algebraic points on Shimura curves of $\Gamma_{0}(p)$-type (II), arXiv:1205.3596v2 (2012).
[3] K. Arai and F. Momose, Algebraic points on Shimura curves of $\Gamma_{0}(p)$-type, J. Reine Angew. Math. 690 (2014), 179-202.
[4] K. Arai and F. Momose, Errata to "Algebraic points on Shimura curves of $\Gamma_{0}(p)$ type", J. Reine Angew. Math. 690 (2014), 203-205.
[5] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80.
[6] K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), 591-612.
[7] A. David, Caractère d'isogénie et critères d'irréductibilité, arXiv:1103.3892v2 (2012).
[8] J. González and V. Rotger, Non-elliptic Shimura curves of genus one, J. Math. Soc. Japan 58 (2006), 927-948.
[9] B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92-114.
[10] J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296.
[11] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), 129-162.
[12] F. Momose, Isogenies of prime degree over number fields, Compos. Math. 97 (1995), 329-348.
[13] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135-164.

Keisuke Arai
Department of Mathematics
School of Engineering
Tokyo Denki University
5 Senju Asahi-cho
Adachi-ku, Tokyo 120-8551, Japan
E-mail: araik@mail.dendai.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11G18, 14G05; Secondary 11G10, 11G15.
 Key words and phrases: effective bound, rational points, Shimura curves, QM-abelian surfaces.

