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1. Introduction. Let B be an indefinite quaternion division algebra
over Q with discriminant d. Fix a maximal order O of B. A QM-abelian
surface by O over a field F is a pair (A, i) where A is an abelian variety
over F of dimension 2, and i : O ↪→ EndF (A) is an injective ring homo-
morphism (sending 1 to id) (cf. [6, p. 591]). Here EndF (A) is the ring of
endomorphisms of A defined over F . We assume that A has a left O-action.
We will sometimes omit “by O” and simply write “a QM-abelian surface”
if there is no risk of confusion. Let MB be the coarse moduli scheme over Q
parameterizing isomorphism classes of QM-abelian surfaces by O (cf. [9,
p. 93]). Then MB is a proper smooth curve over Q, called a Shimura curve.
Throughout this article, let p be a prime number not dividing d. Let MB

0 (p)
be the coarse moduli scheme over Q parameterizing isomorphism classes of
triples (A, i, V ), where (A, i) is a QM-abelian surface by O and V is a left
O-submodule of A[p] of Fp-dimension 2. Here A[p] is the kernel of multipli-
cation by p in A. Then MB

0 (p) is a proper smooth curve over Q, which we
call a Shimura curve of Γ0(p)-type. We have a natural map

πB(p) : MB
0 (p)→MB

over Q defined by (A, i, V ) 7→ (A, i).
In previous articles, we showed that for number fields in a certain large

class, there are at most elliptic points on MB
0 (p) if p is large enough. In

this article, we prove that in fact there are no elliptic points, and obtain an
effective bound for such p. The main result is:

Theorem 1.1. Let k be a finite Galois extension of Q which does not
contain the Hilbert class field of any imaginary quadratic field. Assume
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that there is a prime number q which splits completely in k and satisfies
B⊗QQ(

√
−q) � M2(Q(

√
−q)). Then there is an effectively computable con-

stant C0(k) depending on k and independent of B such that MB
0 (p)(k) = ∅

if p > max{4q, C0(k)}, p 6= 13.

We can identify MB
0 (p)(C) with a quotient of the upper half-plane, and

we use the notion of elliptic points in this context, assuming that k is a
subfield of C. The Shimura curve MB

0 (p) is an analogue of the modular curve
X0(p). Points on X0(p) rational over Q and quadratic fields are studied in
[11], [12] (see [1] for related topics). We can also define a proper smooth curve
MB

0 (p) over Q for B = M2(Q) that is isomorphic to X0(p). But Theorem 1.1
does not apply in this setting because B ⊗Q Q(

√
−q) ∼= M2(Q(

√
−q)) for

any prime q.

In §2–4, we review a part of [3]. In §5–6, we classify the characters asso-
ciated to QM-abelian surfaces, and show that there are no k-rational points
on MB

0 (p) if p (> 4q, 6= 13) does not belong to an exceptional finite set
N new

1 (k). In §7, we give an upper bound of N new
1 (k) by the method of [7].

In §8, we give an example of the estimate of p.

Remark 1.2. MB(R) = ∅ (see [13, Theorem 0]), and so MB
0 (p)(R) = ∅.

Notation. For a field F , let charF denote the characteristic, F an
algebraic closure, F sep (resp. F ab) the separable closure (resp. the maxi-
mal abelian extension) inside F , and let GF := Gal(F sep/F ) and Gab

F :=
Gal(F ab/F ). For a prime number p and a field F with charF 6= p, let
θp : GF → F×p denote the mod p cyclotomic character.

Let | · | denote the usual complex absolute value on C. For a number
field k, let nk := [k : Q]; fix an inclusion k ↪→ C and take the algebraic
closure k inside C; let Ok denote the ring of integers; let N(q) := ](Ok/q)
for a prime q of k; let dk denote the absolute value of the discriminant; Clk
the ideal class group; hk the class number; rk the rank of the unit group O×k ;
Rk the regulator; kv the completion of k at v, where v is a place (or a prime)
of k; and Ram(k) the set of prime numbers which are ramified in k.

2. Galois representations associated to QM-abelian surfaces.
We briefly review [3, §2] in order to consider the Galois representations
associated to a QM-abelian surface. Let F be a field with charF 6= p.
Let (A, i) be a QM-abelian surface by O over F . The action of GF on
A[p](F sep) ∼= F4p determines a representation ρ : GF → GL4(Fp). By a
suitable choice of basis, ρ factors as

ρ : GF →
{(

sI2 tI2

uI2 vI2

)∣∣∣∣ (s t

u v

)
∈ GL2(Fp)

}
⊆ GL4(Fp).
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Let

(2.1) ρA,p : GF → GL2(Fp)

denote the Galois representation induced from ρ by “
(
s t
u v

)
”, so that

ρA,p(σ) =

(
s(σ) t(σ)

u(σ) v(σ)

)
for any σ ∈ GF if ρ(σ) =

(
s(σ)I2 t(σ)I2

u(σ)I2 v(σ)I2

)
.

Suppose A[p](F sep) has a left O-submodule V which has dimension 2
over Fp and is stable under the action of GF . Then we may assume that

ρA,p(GF ) ⊆
{(

s t

0 v

)}
⊆ GL2(Fp).

Let

(2.2) λ : GF → F×p
denote the character induced from ρA,p by “s”, so that ρA,p(σ) =

(
λ(σ) ∗
0 ∗

)
for any σ ∈ GF . Note that GF acts on V by λ (i.e. ρ(σ)(v) = λ(σ)v for any
σ ∈ GF , v ∈ V ).

3. Automorphism groups. We give a brief summary of [3, §3] con-
cerning the automorphism groups of a QM-abelian surface. Let (A, i) be a
QM-abelian surface by O over a field F . Let End(A) (resp. Aut(A)) denote
the ring of endomorphisms (resp. the group of automorphisms) of A defined
over F . Define

EndO(A) := {f ∈ End(A) | f ◦ i(g) = i(g) ◦ f for any g ∈ O},
AutO(A) := Aut(A) ∩ EndO(A).

If charF = 0, then AutO(A) ∼= Z/2Z, Z/4Z or Z/6Z.

Let (A, i, V ) be a triple, where (A, i) is a QM-abelian surface by O over F
and V is a left O-submodule of A[p](F ) of Fp-dimension 2. Define a subgroup
AutO(A, V ) of AutO(A) by

AutO(A, V ) := {f ∈ AutO(A) | f(V ) = V }.

Assume charF = 0. Then AutO(A, V ) ∼= Z/2Z, Z/4Z or Z/6Z. Note that
AutO(A) ∼= Z/2Z (resp. AutO(A, V ) ∼= Z/2Z) if and only if AutO(A) = {±1}
(resp. AutO(A, V ) = {±1}).

4. Fields of definition. From now on, let k be a number field. We recall
from [3, §4] some facts about the field of definition of a point of MB

0 (p)(k).
Fix a point

x ∈MB
0 (p)(k).
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Let x′ ∈ MB(k) be the image of x by the map πB(p) : MB
0 (p) → MB.

Then x′ is represented by a QM-abelian surface (say (Ax, ix)) over k, and
x is represented by a triple (Ax, ix, Vx) where Vx is a left O-submodule of
A[p](k) of Fp-dimension 2. For a finite extension M of k, we say that we can
take (Ax, ix, Vx) to be defined over M if there is a QM-abelian surface (A, i)
over M and a GM -stable left O-submodule V of A[p](k) with dimFp V = 2

such that there is an isomorphism between (A, i) ⊗M k and (Ax, ix) under
which V corresponds to Vx. Let

Aut(x) := AutO(Ax, Vx) and Aut(x′) := AutO(Ax).

Then Aut(x) is a subgroup of Aut(x′). Note that x is an elliptic point of
order 2 (resp. 3) if and only if Aut(x) ∼= Z/4Z (resp. Aut(x) ∼= Z/6Z). Since
x is a k-rational point, σx = x for any σ ∈ Gk. Then for any σ ∈ Gk, there
is an isomorphism

φσ : σ(Ax, ix, Vx)→ (Ax, ix, Vx),

which we fix once for all. For σ, τ ∈ Gk, let

cx(σ, τ) := φσ ◦ σφτ ◦ φ−1στ ∈ Aut(x).

Then cx is a 2-cocycle, and it defines the cohomology class [cx] in
H2(Gk,Aut(x)). Here, the action of Gk on Aut(x) is defined in a natural
manner (cf. [3, §4]). For a place v of k, let [cx]v ∈ H2(Gkv ,Aut(x)) denote
the restriction of [cx] to Gkv .

Proposition 4.1 ([3, Proposition 4.2]).

(1) Suppose B ⊗Q k ∼= M2(k). Further, assume Aut(x) 6= {±1} or
Aut(x′) � Z/4Z. Then we can take (Ax, ix, Vx) to be defined over k.

(2) Assume Aut(x) = {±1}. Then there is a quadratic extension K of k
such that we can take (Ax, ix, Vx) to be defined over K.

Lemma 4.2 ([3, Lemma 4.3]). Let K be a quadratic extension of k. As-
sume Aut(x) = {±1}. Then the following conditions are equivalent:

(1) We can take (Ax, ix, Vx) to be defined over K.
(2) For any place v of k satisfying [cx]v 6= 0, the tensor product K ⊗k kv

is a field.

5. Classification of characters. We keep the notation from Section 4.
Throughout this section, we assume Aut(x) = {±1}. Let K be a quadratic
extension of k which satisfies the equivalent conditions in Lemma 4.2. Then
x is represented by a triple (A, i, V ), where (A, i) is a QM-abelian surface
over K and V is a left O-submodule of A[p](k) of Fp-dimension 2 which is
stable under the action of GK . Let λ : GK → F×p be the character associated
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to V in (2.2). Let λab : Gab
K → F×p be the natural map induced from λ. Let

(5.1) ϕ := λab ◦ trK/k : Gk → Gab
K → F×p ,

where trK/k : Gk → Gab
K is the transfer map. Then ϕ12 is unramified at every

prime of k not dividing p (see [3, Corollary 5.2]), and so ϕ12 corresponds to a
character of the ideal group Ik(p) consisting of fractional ideals of k prime to p.
By abuse of notation, letϕ12 also denote the corresponding character of Ik(p).

Let us now introduce several sets in a manner similar to [3, §5]. Let
Mnew(k) be the set of prime numbers which split completely in k. Note
that a prime number in the set M of [3] does not divide 6hk. Let N new(k)
be the set of primes of k which divide some prime number in Mnew(k). Fix
a finite subset ∅ 6= Snew(k) ⊆ N new(k) which generates Clk. For each prime
q ∈ Snew(k), fix an element αq ∈ Ok \ {0} satisfying

(5.2) qhk = αqOk.
For an integer n ≥ 1, let

FR(n) := {β ∈ C | β2 + aβ + n = 0 for some a ∈ Z with |a| ≤ 2
√
n}.

For any element β ∈ FR(n), we have |β| =
√
n. From now to the end of

this section, assume that k is Galois over Q. Define

E(k) :=
{
ε0 =

∑
σ∈Gal(k/Q)

aσσ ∈ Z[Gal(k/Q)]
∣∣∣ aσ ∈ {0, 8, 12, 16, 24}

}
,

Mnew
1 (k) := {(q, ε0, βq) | q ∈ Snew(k), ε0 ∈ E(k), βq ∈ FR(N(q))},

Mnew
2 (k) := {Normk(βq)/Q(αε0q − β24hkq ) ∈ Z | (q, ε0, βq) ∈Mnew

1 (k)} \ {0},
N new

0 (k) := {prime divisors of some of the integers in Mnew
2 (k)},

T new(k) := {prime numbers divisible by some prime in Snew(k)} ∪ {2, 3},
N new

1 (k) := N new
0 (k) ∪ T new(k) ∪ Ram(k).

Note that all the sets FR(n), E(k), Mnew
1 (k), Mnew

2 (k), N new
0 (k), T new(k)

and N new
1 (k) are finite. We have the following classification of ϕ:

Theorem 5.1 (cf. [3, Theorem 5.6]). If p /∈ N new
1 (k), then the character

ϕ : Gk → F×p is of one of the following types:

Type 2: ϕ12 = θ12p and p ≡ 3 mod 4.
Type 3: There is an imaginary quadratic field L such that:

(a) The Hilbert class field HL of L is contained in k.
(b) There is a prime pL of L lying over p such that

ϕ12(a) ≡ δ24 mod pL

for any fractional ideal a of k prime to p. Here, δ is any
element of L such that Normk/L(a) = δOL.
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Proof. It suffices to modify the proof of [3, Theorem 5.6] slightly. By
replacing K if necessary, we may assume that every prime q ∈ Snew(k) is
ramified in K/k (see Lemma 4.2). Suppose p /∈ T new(k)∪Ram(k). Take any
prime q ∈ Snew(k). Let q be the residual characteristic of q, and let qK be
the unique prime of K above q. Then p 6= q. Without assuming q ≥ 5, we
know that the abelian surface A⊗KKqK over KqK has good reduction over a
totally ramified finite extension M(q)/KqK (see [9, Proposition 3.2]). Choose
a prime p of k above p. Then λ12(qK) ≡ β12q mod p2, where βq is an element
of FR(q) and p2, which depends on p, is a prime of Q(βq | q ∈ Snew(k))
above p. We find an element ε ∈ E(k) which satisfies the condition (ii) in
[3, Lemma 5.4(2)] and ϕ12(γOk) ≡ γε mod p for any γ ∈ k× prime to p.

Suppose p /∈ N new
1 (k). Then for any prime q ∈ Snew(k), we have αεq = β24hkq .

Choose a prime q0 ∈ Snew(k). Applying [3, Lemma 5.5] to q0, we see that ε
is of type 2 or 3 in the sense of [3].

First, assume that ε is of type 2. For any prime q ∈ Snew(k), we have

β24hkq = q12hk . We prove β24q = q12 without assuming q - 6hk. Write β = βq

for simplicity. Let β be the complex conjugate of β. Since β24hk = β
24hk , we

have β = ζβ for some ζ ∈ C with ζ24hk = 1. Since

Q(β) = Q(β) = Q(ζβ) = Q(β, ζ) ⊇ Q(ζ) and [Q(β) : Q] = 2,

we have ζ4 = 1 or ζ6 = 1. Then ζ12 = 1. This implies β
12

= ζ12β12 = β12,
and so β12 ∈ Q. Since |β| = √q, we have β12 = ±q6. Therefore β24 = q12.

Note that the case β12 = −q6 really occurs (e.g. q = 2 and β = 1+
√
−1).

Then

ϕ12(Frobq) = ϕ12(q) = λ24(qK) ≡ β24q = q12 = N(q)12 ≡ θp(Frobq)
12 mod p,

where Frobq ∈ Gk is any (arithmetic) Frobenius element at q. Combining
this with ϕ12(γOk) ≡ Normk/Q(γ)12 mod p for any γ ∈ k× prime to p, we

conclude that ϕ12 = θ12p .
Next, assume that ε is of type 3 (for q0). Then by the same argument as

in the proof of [3, Theorem 5.6] we obtain the desired result.

As for λ, we have:

Lemma 5.2 (cf. [4, Lemma 5.11]). Suppose that p ≥ 11, p 6= 13 and
p /∈ N new

1 (k). Further, assume that the following conditions hold:

(a) Every prime p of k above p is inert in K/k.
(b) Every prime q ∈ Snew(k) is ramified in K/k.

If ϕ is of type 2, then we have the following assertions:

(i) The character λ12θ−6p : GK → F×p is unramified everywhere.

(ii) The map ClK → F×p induced from λ12θ−6p is trivial on CK/k :=
Im(Clk→ClK), where Clk→ClK is the map defined by [a] 7→ [aOK ].
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Proof. (i) The proof is the same as that of [4, Lemma 5.11(i)].

(ii) We slightly modify the argument in the proof of [4, Lemma 5.11(ii)].
Take any prime q ∈ Snew(k). Let q be the residual characteristic of q, and let
qK be the unique prime of K above q. Then λ12(qK) ≡ β12 modulo a prime
of Q(β) above p, where β ∈ FR(q) is an element satisfying β24hk = q12hk .
Then we have seen in the proof of Theorem 5.1 that β24 = q12. Note that
we may not have β = ±

√
−q. Therefore, λ12(qOK) = λ12(q2K) = λ24(qK) ≡

β24 = q12 ≡ θ12p (qK) = θ6p(qOK) mod p, as required.

We have the following lemma with the same proof as in [2–4]:

Lemma 5.3 (cf. [2, Lemma 5.6], [3, Lemma 5.12], [4, 3]). Suppose that
p ≥ 11, p 6= 13, p /∈ N new

1 (k), and that ϕ is of type 2. Let q ∈Mnew(k) be a
prime number satisfying q < p/4. Then

( q
p

)
= −1 and q(p−1)/2 ≡ −1 mod p.

Furthermore, B ⊗Q Q(
√
−q) ∼= M2(Q(

√
−q)).

6. Irreducibility of ρA,p and algebraic points on MB
0 (p). Let (A, i)

be a QM-abelian surface by O over k. Assume that the representation

ρA,p : Gk → GL2(Fp)

in (2.1) is reducible. Then there is a 1-dimensional subrepresentation of ρA,p,
and let ν be its associated character. In this case, there is a left O-submodule
V of A[p](k) satisfying dimFp V = 2 on which Gk acts by ν, and so the triple

(A, i, V ) determines a point x ∈MB
0 (p)(k). Take any quadratic extension K

of k. Then we have the characters λ : GK → F×p and ϕ : Gk → F×p associated

to the triple (A⊗k K, i, V ). Note that ϕ = ν2 by the construction of ϕ.

From now to the end of this section, assume that k is Galois over Q, that
k does not contain the Hilbert class field of any imaginary quadratic field,
and that there is a prime number q ∈Mnew(k) satisfying

B ⊗Q Q(
√
−q) � M2(Q(

√
−q)).

Fix such a q. Then we have the following irreducibility result for ρA,p:

Theorem 6.1 (cf. [2, Theorem 6.5]). If p > 4q, p 6= 13 and p /∈ N new
1 (k),

then the representation ρA,p : Gk → GL2(Fp) is irreducible.

Proof. Assume that ρA,p is reducible. Then the associated character ϕ is
of type 2 in Theorem 5.1, because k does not contain the Hilbert class field
of any imaginary quadratic field. By Lemma 5.3, we have B ⊗Q Q(

√
−q) ∼=

M2(Q(
√
−q)). This contradicts the assumption.

We have the following theorem concerning the algebraic points onMB
0 (p):

Theorem 6.2 (cf. [2, Theorem 1.3]). If p > 4q, p 6= 13 and p /∈
N new

1 (k), then MB
0 (p)(k) = ∅.
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Proof. Suppose p > 4q, p 6= 13 and p /∈ N new
1 (k). Assume that there is

a point x ∈MB
0 (p)(k).

(1) Suppose B ⊗Q k ∼= M2(k).

(1-i) Assume Aut(x) 6= {±1} or Aut(x′) � Z/4Z. Then x is represented
by a triple (A, i, V ) defined over k by Proposition 4.1(1), and the represen-
tation ρA,p is reducible. This contradicts Theorem 6.1.

(1-ii) Assume otherwise (i.e. Aut(x) = {±1} and Aut(x′) ∼= Z/4Z). Then
x is represented by a triple (A, i, V ) defined over a quadratic extension of
k by Proposition 4.1(2), and we have a character ϕ : Gk → F×p as in (5.1).
By Theorem 5.1 and Lemma 5.3, we have B ⊗Q Q(

√
−q) ∼= M2(Q(

√
−q)),

which is a contradiction.
(2) Suppose B ⊗Q k � M2(k).
(2-i) Assume Aut(x) = {±1}. Then by the same argument as in (1-ii),

we have a contradiction.
(2-ii) Assume otherwise. Then x is an elliptic point of order 2 or 3.

Let Q(x) be the number field generated over Q by the coordinates of x on
MB

0 (p). Then Q(x) = Q(
√
−1) or Q(

√
−3) by [8, Theorem 5.12], and so

k ⊇ Q(
√
−1) or Q(

√
−3). This contradicts the assumption because Q(

√
−1)

(resp. Q(
√
−3)) is the Hilbert class field of itself.

7. An estimate of N new
1 (k). We give an upper bound of the setN new

1 (k)
by the method of [7]. The following theorem and proposition are key ingre-
dients of the estimate:

Theorem 7.1 ([10, Theorem 1.1]). There is an absolute, effectively com-
putable constant A1 > 1 such that for every finite extension k1 of Q, every
finite Galois extension k2 of k1 and every conjugacy class C of Gal(k2/k1),
there is a prime q of k1 which is unramified in k2, for which Frq = C and

N(q) is a prime number satisfying N(q) ≤ 2dA1
k2

. Here, Frq is the (arithmetic)
Frobenius conjugacy class at q in Gal(k2/k1).

Proposition 7.2 ([7, Proposition 4.2]). Assume that k is Galois over Q.
Let A1 be the constant in Theorem 7.1. Then we can take Snew(k) so that

every prime q ∈ Snew(k) satisfies N(q) ≤ 2dA1hk
k .

For a place v of k and an element α ∈ k, define ‖α‖v as follows:

• If v is finite, let q be the prime of k corresponding to v, and let ‖α‖v :=
N(q)−ordq(α) where ordq(α) is the order of α at q. Here, we let ‖α‖v := 0
if α = 0.
• If v is real, let τ : k ↪→ R be the embedding corresponding to v, and

let ‖α‖v := |τ(α)|.
• If v is complex, let τ : k ↪→ C be one of the embeddings corresponding

to v, and let ‖α‖v := |τ(α)|2.



An effective bound 351

For an element α ∈ k, let H(α) denote the absolute height of α defined by

H(α) :=
(∏

v

max{1, ‖α‖v}
)1/nk

,

where v runs through all places of k. We know that there is a positive
constant δk, depending on k, such that for every non-zero element α ∈ k
that is not a root of unity, log H(α) ≥ δk/nk (cf. [5, p. 70]). We can take
δk = log 2/(rk + 1) for nk = 1, 2. Both

δk =
1

53nk log 6nk
and δk =

1

1201

(
log log nk

log nk

)3

are appropriate choices for nk ≥ 3. Fix such a constant δk. Let

C1(k) := r1+rkk δ1−rkk /2.

Lemma 7.3. Let q be a prime of k. Then there is an element α′q ∈ Ok\{0}
which satisfies

qhk = α′qOk and H(α′q) ≤ |Normk/Q(α′q)|1/nk exp(C1(k)Rk).

Proof. Take an element γ ∈ Ok \ {0} which satisfies qhk = γOk. Then,
by [7, Lemme 3] (or [5, Lemma 2]), there is an element u ∈ O×k satisfying

H(uγ) ≤ |Normk/Q(γ)|1/nk exp(C1(k)Rk).

If we let α′q = uγ, then qhk = α′qOk and

H(α′q) ≤ |Normk/Q(u−1α′q)|1/nk exp(C1(k)Rk)

= |Normk/Q(α′q)|1/nk exp(C1(k)Rk).

The last equality holds because Normk/Q(u−1) ∈ Z× = {±1}.
Let C2(k) := exp(24nkC1(k)Rk). Until the end of this section, assume

that k is Galois over Q.

Lemma 7.4. Under the situation of Lemma 7.3, we have

|(α′q)ε| ≤ N(q)24hkC2(k)

for any ε ∈ E(k).

Proof. Let ε =
∑

σ∈Gal(k/Q) aσσ. Then

|(α′q)ε|

=
∣∣∣ ∏
σ∈Gal(k/Q)

(α′q)
aσσ
∣∣∣ ≤ ( ∏

σ∈Gal(k/Q)

max{1, |(α′q)σ|}
)24

=
∏
v|∞

max{1, ‖α′q‖v}24

= H(α′q)
24nk ≤ |Normk/Q(α′q)|24 exp(24nkC1(k)Rk) = N(q)24hkC2(k).

Note that the third equality holds because α′q ∈ Ok.

For a > 0, let C(k, a) := (a24hkC2(k) + a12hk)2nk .
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Lemma 7.5. Under the situation of Lemma 7.3, we have

|Normk(βq)/Q((α′q)
ε − β24hkq )| ≤ C(k,N(q))

for any ε ∈ E(k) and βq ∈ FR(N(q)).

Proof. For any τ ∈ Gal(k(βq)/Q), we have

|((α′q)ε − β24hkq )τ | ≤ |(α′q)ετ |+ |β24hkτq | ≤ N(q)24hkC2(k) + N(q)12hk .

Then

|Normk(βq)/Q((α′q)
ε − β24hkq )| =

∏
τ∈Gal(k(βq)/Q)

|((α′q)ε − β24hkq )τ |

≤ (N(q)24hkC2(k) + N(q)12hk)2nk = C(k,N(q)).

Until the end of this section, assume that Snew(k) satisfies the condition
in Proposition 7.2, and take αq in (5.2) to be the α′q in Lemma 7.3 for any
q ∈ Snew(k).

Lemma 7.6. For any m ∈Mnew
2 (k), we have |m| ≤ C(k, 2dA1hk

k ).

Proof. We have m = Normk(βq)/Q(αεq− β
24hk
q ) for some q ∈ Snew(k), ε ∈

E(k) and βq ∈ FR(N(q)). Then we obtain |m| ≤ C(k,N(q)) ≤ C(k, 2dA1hk
k )

by Proposition 7.2 and Lemma 7.5.

Finally we obtain an upper bound of N new
1 (k) as follows:

Theorem 7.7. For any l ∈ N new
1 (k), we have l ≤ C(k, 2dA1hk

k ).

Proof. Let l ∈ N new
1 (k). If l ∈ N new

0 (k), then l ≤ C(k, 2dA1hk
k ) by Lem-

ma 7.6. If l ∈ T new(k), then l ≤ max{3, 2dA1hk
k }. If l ∈ Ram(k), then l ≤ dk.

Since A1 > 1, we conclude that l ≤ C(k, 2dA1hk
k ).

Now Theorem 1.1 follows from Theorems 6.2 and 7.7. Note that we can
take C0(k) = C(k, 2dA1hk

k ).

8. An example. We give an example of the estimate of p as follows:

Proposition 8.1. Let k = Q(
√
−5). Assume that there is a prime num-

ber q ∈ Mnew(k) satisfying B ⊗Q Q(
√
−q) � M2(Q(

√
−q)). Then we have

MB
0 (p)(k) = ∅ if p > max{4q, (348 + 324)4}.

Proof. We have nk = 2, hk = 2, rk = 0, C1(k) = 0, C2(k) = 1 and

Mnew(k) = {l : prime number | l ≡ 1, 3, 7, 9 mod 20}.
Let q = (3, 1 +

√
−5) ⊆ Ok. Note that we do not assume q | q here. Then

N(q) = 3 and we can take Snew(k) = {q}. We have q2 = (2 −
√
−5). Let

αq = α′q = 2−
√
−5. Then H(αq) = 3 and Normk/Q(αq) = 9. By Lemma 7.5,

|Normk(βq)/Q((α′q)
ε − β24hkq )| ≤ C(k, 3) = (348 + 324)4
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for any ε ∈ E(k) and βq ∈ FR(3). Then maxMnew
2 (k) ≤ (348 + 324)4 and

maxN new
0 (k) ≤ (348 + 324)4. Since T new(k) = {2, 3} and Ram(k) = {2, 5},

we conclude that maxN new
1 (k) ≤ (348 + 324)4. Applying Theorem 6.2, we

obtain the desired result.
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