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real cyclotomic fields of conductor pq

by

Eleni Agathocleous (Nicosia)

1. Introduction. Let Q(ζm) be the cyclotomic field of conductor m
and denote by C its ideal class group and by h = |C| its class number. In
the same way let C+ and h+ denote the ideal class group and class number
of the maximal real subfield Q(ζm)+. The natural map C+ → C is an
injection [12, Theorem 4.14] and we have the well known result h = h+h−.
The relative class number h− is easy to compute as there is an explicit and
easily computable formula for its order [12, Theorem 4.17]. The number h+,
however, is extremely hard to compute. The class number formula is not
so useful as it requires the units of Q(ζm)+ to be known. Methods that
use the classical Minkowski bound become useless as m grows, and other
methods based on Odlyzko’s discriminant bounds (see [9] and [10]) are only
applicable to fields with small conductor. Masley [8] computed the class
numbers for real abelian fields of conductor ≤ 100, and van der Linden [7]
was able to calculate the class numbers of a large collection of real abelian
fields of conductor ≤ 200. For fields of larger conductor, however, the above
methods cannot be effective.

Many of the other methods that were developed employ the well known
Leopoldt decomposition of the class number h+ of a real abelian field K (see
[6]), which derives from Leopoldt’s decomposition of the cyclotomic units
into the product of the cyclotomic units of all cyclic subfields Kχ of K.
More specifically, we have h+ = Q

∏
χ hχ, where the product runs over all

non-trivial characters χ irreducible over the rationals, each ‘class number’
hχ is the index of the cyclotomic units of Kχ in its full group of units Eχ,
and Q is some value which equals 1 in the case where the extension K/Q
is cyclic of prime order, but which is very hard to compute in the general
case.
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A different method is introduced by Schoof [11] and is designed for real
cyclotomic fields of prime conductor. Schoof developed an algorithm that
computes the order of the module B = Units/(Cyclotomic Units), which is
precisely equal to h+ in the case he considers, where the conductor of the
field is a prime number. One of the great advantages of his method is that it
does not exclude the primes dividing the order of the extension, as opposed
to other methods.

In this paper we extend Schoof’s method to real cyclotomic fields of
conductor equal to the product of two distinct odd primes. We apply our
algorithm to real cyclotomic fields of conductor < 2000 and we calculate the
l-part of h+ for all odd primes l < 10000.

2. Our cyclotomic unit η. In our case, where the conductor of the
field is not a prime number, the group of cyclotomic units has a complicated
structure. We therefore work with a cyclic subgroup, yet of finite index in
the group of units, which we present below.

Let p and q be distinct odd primes. From now on, G will denote the
Galois group Gal(Q(ζpq)

+/Q), E will denote the group of units of the real
cyclotomic field Q(ζpq)

+, and O its ring of integers. Without loss of gener-
ality we will always assume that p < q. Choose and fix g and h, primitive
roots modulo p and q, respectively. Denote by η(g,h) the following real unit
of Q(ζpq)

+:

η(g,h) = ζ−(p+q)pq (1− ζpqp+q)2
ζ
−g/2
p

ζ
−1/2
p

1− ζgp
1− ζp

ζ
−h/2
q

ζ
−1/2
q

1− ζhq
1− ζq

,

and by H(g,h) the group ±ηZ[G]
(g,h). We will omit the subscripts and just write

H and η, since we will let ηα denote the result of the action of the element
α ∈ G on η. With this notation in mind, we are ready to prove a statement
about the regulator of the units {ηα}α∈G.

Proposition 2.1. Let E be the group of units of Q(ζpq)
+ and H =

±ηZ[G] = ±ηZ[G]
(g,h) as above, where g and h are any two fixed primitive roots

modulo p and q, respectively. The index [E : H] is always finite and equals

[E : H] =
2|G|−1h+

|G|
·
∏

χ=χp 6=1

1

2
[2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1)]

·
∏

χ=χq 6=1

1

2
[2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)],

where the characters χ in the first product are the even characters χp of
conductor p, and those in the second product are the even characters χq of
conductor q.
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Proof. Define f by f(α) = log |ηα|. We see that
∑

α f(α) = log |
∏
α ηα|

= 0. Denote by χ an even Dirichlet character and note that for any root of
unity ζ we have log |ζi(1 − ζj)| = log |1 − ζj |, where i and j are arbitrary.
The regulator R of the units ηα is:

R = R({ηα}) = ±det (log |ηαβ|)α,β 6=1 = ±det (f(αβ))α,β 6=1

= ±det (f(βα−1))α,β 6=1 (by rearranging the rows)

= ± 1

|G|
∏
χ 6=1

∑
β∈G

χ(β)f(β) (by [12, Lemma 5.26(c)])

= ± 1

|G|
∏
χ 6=1

1

2

∑
1≤β≤pq
(β,pq)=1

χ(β)

[
log |1−ζβ(p+q)pq |2 +log

∣∣∣∣1− ζgβp
1− ζβp

∣∣∣∣+log

∣∣∣∣1− ζhβq
1− ζβq

∣∣∣∣].
For a character χ and the second summand we have∑

1≤β≤pq
(β,pq)=1

χ(β)
[

log |1− ζgβp | − log |1− ζβp |
]

= 0

for fχ = pq by [12, Lemma 8.4] and for fχ = q by [12, Lemmas 8.4, 8.5].

For fχ = p and by applying [12, Lemmas 8.4 and 8.5], the above sum
equals

χ(g)−1
∑

gβ (mod pq)
(β,pq)=1

χ(gβ) log |1− ζgβp | −
∑

1≤β≤pq
(β,pq)=1

χ(β) log |1− ζβp |

= (χ(g−1)− 1)
∑

1≤α≤pq
(α,pq)=1

χ(α) log |1− ζαp |.

To sum up, the second summand gives:
0 if fχ = pq,

(χ(g−1)− 1)(q − 1)
∑

1≤α≤p χ(α) log |1− ζαp | if fχ = p,

0 if fχ = q.

Similarly, the third summand equals:
0 if fχ = pq,

0 if fχ = p,

(χ(h−1)− 1)(p− 1)
∑

1≤α≤q χ(α) log |1− ζαq | if fχ = q.

Summands of the form 0 · log 0 are treated as 0 in formulae as above.

Putting all three summands together and denoting by χpq, χp and χq
the characters of conductor pq, p and q, respectively, we have
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R = ± 1

|G|
∏

χ=χpq 6=1

1

2
· 2χ(p+ q)−1

∑
1≤β≤pq

χ(β)log|1− ζβpq|

·
∏

χ=χp 6=1

1

2

[
2χ(q)−1(1− χ(q)) + (χ(g−1)− 1)(q − 1)

] ∑
1≤α≤p

χ(α)log|1− ζαp |

·
∏

χ=χq 6=1

1

2

[
2χ(p)−1(1− χ(p)) + (χ(h−1)− 1)(p− 1)

] ∑
1≤α≤q

χ(α)log|1− ζαq |.

To show that [E : H] is always finite it suffices to show that the regulator
is never zero. Assume it is zero. Then for some character of conductor p the
sum

2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1)

is zero, or for some character of conductor q the sum

2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)

is zero. But

2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1) = 0

⇔ 2χ(q)−1 + (q − 1)χ(g)−1 = 2 + (q − 1),

which never happens as χ(g)−1 can never equal 1, since g is a primitive root.
Similarly for a character of conductor q. Therefore, the regulator is never
zero and this completes the proof of Proposition 2.1.

Denote by P the factor

2|G|−1

|G|
·
∏

χ=χp 6=1

[
2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1)

]
·
∏

χ=χq 6=1

[
2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)

]
,

which appears in the index [E : H] in Proposition 2.1 above. We now have

[E : H] = P · h+.
One can take advantage of the fact that any choice of primitive roots g and h
gives a finite index, and for each field Q(ζpq)

+ one can choose the pair (g,h)
with the property that P(g,h) is divisible by the smallest number of distinct
primes. Furthermore, for the primes that appear in this P(g,h) one can check
whether those primes divide the greatest common divisor of all the P(g,h) for
every pair of primitive roots (g,h). In the case that a prime l does not divide
the greatest common divisor, there is some pair (g0, h0) for which l does
not divide P(g0,h0). We can therefore repeat the first part of our algorithm
that we present in Section 5, for this pair (g0, h0) and for this prime l. We
continue with the next step of the algorithm for this prime l only if it gives
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a non-trivial factor. These facts are very useful in the computations, since
they narrow down the number of primes that one needs to check to see if
they divide h+.

3. The module B = E/H = E/±ηZ[G]. We denote by B the Z[G]-
module E/H, where H = ±ηZ[G] as above. From Proposition 2.1 we know
that the order of B is finite and equals the index [E : H]. Therefore, by
generalizing Schoof’s method, we can calculate the order of B and then
multiply by 1/P to get h+, as desired.

Since H is of finite index in E, the map

Φ : Z[G]→ E, α 7→ ηa,

is a homomorphism whose image H is of finite index and therefore Z-
isomorphic to Z|G|−1. We have H/{±1} ∼= Z[G]/NG as Z[G]-modules, where
NG is the norm of G. Let M > 1 denote a power of a prime l. We let
F = Q(ζpq)

+(ζ2M ) and ∆ = Gal(F/Q(ζpq)
+).

The following lemma appears in [11]. We prove it again here as we found
a few omissions in the original proof.

Lemma 3.1. The kernel of the natural map

j : E/EM → F ∗/F ∗M

is trivial if l is odd, and it has order two and is generated by −1 if l = 2.

Proof. Fix an embedding F ⊂ C. Then Q(ζpq)
+ identifies with a subfield

of R. Suppose 0 < x ∈ E ⊂ R is in Ker j. Then x = yM for some y ∈ F ∗.
Since µM ⊂ F , we may assume that y ∈ R and therefore conj(y) = y,
where conj is complex conjugation in ∆. Since ∆ is commutative, s(y) =
s(conj(y)) = conj(s(y)) for all s ∈ ∆, therefore s(y) = ±y for all s ∈ ∆, as
y and all its conjugates are real Mth roots of x. If l 6= 2 then M is odd.
Assume there exists s ∈ ∆ with s(y) = −y. Then x = s(x) = s(yM ) =
(s(y))M = (−y)M = −x, a contradiction. Therefore ∆ fixes y and hence
y ∈ (Q(ζpq)

+)∗ and x ∈ EM . Since we took x > 0, we need to check for −1
as well. Since M is odd, (−1)M = −1, therefore −1 ∈ EM as well, and in
this case j is an injection. If l = 2, we see that s(y2) = s(y)2 = y2, therefore
y2 ∈ Q(ζpq)

+∗. The quadratic subextensions of F/Q(ζpq)
+ are Q(ζpq)(i) and

Q(ζpq)
+(
√
±2), and hence y2 = 2u2 or = ±u2 for some u ∈ E. If y2 = 2u2

then 2 = y2v2 with v such that vu = 1, which cannot happen since then
(2) = (v)2 as ideals but 2 does not ramify in Q(ζpq)

+. So we can only have

the second case where x = yM = (y2)2
(k−1)

. For k ≥ 2 we have x = u2, and
therefore x ∈ EM . When k = 1 we have x = y2 = ±u2, but since x > 0 we
still get x = u2, which implies that x ∈ EM . For −1, observe that −1 = ζM2M ,
but −1 is not even a square in Q(ζpq)

+, which means that Ker j = 〈−1〉 is
of order two in this case.
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Let Ω = Gal(F/Q). We have the following exact sequence of Galois
groups:

0→ ∆→ Ω → G→ 0.

Let < be any prime ideal of F of degree 1, ρ a prime ideal of Q(ζpq)
+

and r a prime number such that < | ρ | r. We have r ≡ ±1 (mod pq) and
r ≡ 1 (mod 2M). Moreover, |G| = (p− 1)(q − 1)/2 and we consider the
diagram

ε∈E
f1 // ~ε ∈ (O/rO)∗

f3

��

f2 // (OF /rOF )∗∆

f ′3
��

µM (O/rO) µM (OF /rOF )∆
f ′2oo (Z/MZ)[Ω]∆

f4oo (Z/MZ)[G]
f5oo

The maps f1, f2, f
′
2, f3, f

′
3, f4, f5 are defined as in [11]. Let f< =

f−15 f−14 f ′3f2f1. In a similar manner to the proof of Theorem 2.2 in [11],
it can be shown that the maps f< correspond to the Frobenius elements
of the primes over < in Gal(F (M

√
E)/F ). Furthermore, every map in

HomR(E/±EM , R) is of the form f< for some < ∈ S, where S denotes
the set of unramified prime ideals < of Q(ζpq)

+(ζ2M ) of degree 1 and R =
(Z/MZ)[G]. We can therefore state the following theorem, whose proof we
omit as it is very similar to that of Theorem 2.2 in [11].

Theorem 3.2. Let l and M be as above, and let I denote the augmen-
tation ideal of R = (Z/MZ)[G]. Then B[M ]⊥ ∼= I/{f<(η) : < ∈ S}.

4. The computations

4.1. Reformulating Theorem 3.2 in terms of polynomials. Let l
be a fixed odd prime, M > 1 some fixed power of l, and G the Galois group
of Q(ζpq)

+. Then G is of order (p−1)(q−1)/2 and we have the isomorphisms

G ∼=
(
(Z/pZ)? × (Z/qZ)?

)
/{±1}

∼= 〈σ, τ : σ(p−1) = 1, τ (q−1) = 1, σ(p−1)/2τ (q−1)/2 = 1, στ = τσ〉

where σ : ζp 7→ ζγp and τ : ζq 7→ ζδq with γ and δ being fixed primitive
roots modulo p and q, respectively. The third relation is that of complex
conjugation. The primitive roots γ and δ will be fixed throughout and will
always represent the generators of (Z/pZ)× and (Z/qZ)×, respectively. We
see that

Z[G] ∼= Z[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1)

via the map that sends σ to x and τ to y. Similarly,

(Z/MZ)[G] ∼= (Z/MZ)[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1).
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Using this notation, the maps f< that were introduced in the previous section
can now be expressed as polynomials in the variables x and y as follows:

f<(x, y) =
∑

1≤i≤p−1

∑
1≤j≤(q−1)/2

logr(η(i,j)) · xi · yj

where

η(i,j) = ζ−γ
i

p ζ−δ
j

q (1− ζγip ζδ
j

q )2
ζ
−gγi/2
p

ζ
−γi/2
p

1− ζgγ
i

p

1− ζγ
i

p

ζ
−hδj/2
q

ζ
−δj/2
q

1− ζhδjq

1− ζδjq
.

Here, logr denotes the discrete log which gives logr η = s where s ∈ Z/MZ
is such that η(r−1)/M ≡ ζsM (mod <).

We note here that the second sum in the definition of f<(x, y) goes from
1 up to (q − 1)/2 since we are in the real subfield of Q(ζpq).

Given the above, we can now reformulate Theorem 3.2 as follows:

Theorem 4.1. Let l be a fixed prime, and let M > 1 be some fixed power
of l. Denote by R the ring

(Z/MZ)[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1),

and let B[M ]⊥ be as in Theorem 3.2. Then

B[M ]⊥ ∼= (x− 1, y − 1)/{f<(x, y) : < ∈ S}
where S = {the degree 1 prime ideals of Q(ζpq)

+(ζ2M )}.
Proof. From our polynomial description of Z[G] above, it follows that

the augmentation ideal of (Z/MZ)[G] is (x − 1, y − 1). The result is now
immediate from Theorem 3.2.

4.2. The decomposition of the modules B[M ]⊥. Let G̃ denote the
Galois group of the extension Q(ζpq)/Q. We can write Zl[G̃] as follows: For
the same fixed prime l as above, write p − 1 = m1l

a1 and q − 1 = m2l
a2

where la1 ‖ p− 1 and la2 ‖ q − 1. Since now l does not divide m1 and m2,

Zl[G̃] ∼= Zl[x, y]/(xp−1 − 1, yq−1 − 1)

∼= Zl[x, y]/((xl
a1

)m1 − 1, (yl
a2

)m2 − 1)

∼=
∏
φx,φy

Zl[x, y]/(φx(xl
a1

), φy(y
la2 ))

∼=
∏
φx

Zl[x]/(φx(xl
a1

))⊗
∏
φy

Zl[y]/(φy(y
la2 ))

where the products run over all irreducible divisors φx of xm1 − 1 and φy of
ym2−1. We see that Zl[x]/(φx(xl

a1 )) and Zl[y]/(φy(y
la2 )) are complete local

Zl[G̃]-algebras with maximal ideals (l, φx(x)) and (l, φy(y)), respectively, and
the orders of their residue fields are lf1 and lf2 , where f1 = deg(φx(x)) and
f2 = deg(φy(y)). Let ∆ denote the subgroup of G̃ of order prime to l. From
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the decomposition of Zl[G̃] above, we can write any finite Zl[G̃]-module A
as a product of its φ-parts:

Aφx,φy = A⊗Zl[G̃]

(
Zl[x]/(φx(xl

a1
))⊗ Zl[y]/(φy(y

la2 ))
)
.

The simple Jordan–Hölder factors of each Aφx,φy over Zl[∆] are the same

as those over Zl[G̃] since we ‘removed’ the powers of x and y dividing the
order of G̃.

All of the above about the module A also holds in particular for B, the
various B[M ]⊥ and their φ-parts B[M ]⊥φx,φy . Therefore, when we want to find
the Jordan–Hölder factors of B we can start by taking all combinations of
the degrees f1 and f2. Since x and y are non-zero elements in the correspond-
ing residue fields [Zl[x]/(φx(xl

a1 ))]/(l, φx(x)) and [Zl[y]/(φy(y
la2 )]/(l, φy(y)),

the orders of x and y in the ring attached to φx and φy must divide lf1−1 and
lf2 − 1, respectively. Let d1 = gcd(p− 1, lf1 − 1) and d2 = gcd(q− 1, lf2 − 1),
and let

Rd1,d2 = (Z/MZ)[x, y]/((xl
a1

)d1 − 1, (yl
a2

)d2 − 1).

Since the rings Rd1,d2 and Rφx,φy are direct summands of R, any map from
their modules B[M ]d1,d2 and B[M ]φx,φy , respectively, to R will end up in

these smaller rings. Therefore we can refer to B[M ]⊥d1,d2 and B[M ]⊥φx,φy as
Rd1,d2- and Rφx,φy -modules, respectively, where

(i) B[M ]⊥d1,d2
∼= Id/〈(xl

a1
)d1 − 1, (yl

a2
)d2 − 1, cnj, f<(x, y) : < ∈ S〉

and similarly for B[M ]⊥φx,φy . Here cnj denotes the conjugation relation al-

ready defined in Section 4.1. Basically B[M ]⊥d1,d2 is the direct sum of the

B[M ]⊥φx,φy ’s and we therefore have |B[M ]⊥d1,d2 | =
∏
φx,φy

|B[M ]⊥φx,φy |.
Since (1± cnj)/2 are idempotents in (Z/MZ)[G̃] for M odd, the conju-

gation relation in the ideal

(ii) J = 〈(xla1 )d1 − 1, (yl
a2

)d2 − 1, cnj, f<(x, y) : < ∈ S〉
from (i) above makes B[M ]⊥d1,d2 a (Z/MZ)[G]-module as well.

Note that here the polynomials f< are restrictions of the Frobenius el-
ements of Theorem 4.1 to this smaller extension determined by the set of
polynomials (xl

a1 )d1 − 1 and (yl
a2 )d2 − 1. They are therefore of the form

(iii) f<(x, y) =
∑

1≤i≤d1la1

∑
1≤j≤d2la2

logr

( ∏
m≡i (mod d1la1 )
n≡j (mod d2la2 )

η(m,n)

)
· xi · yj .

4.3. Gröbner bases. We make use of Gröbner bases, which we present
here following [1], in order to handle the appearance of two variables in
our calculations of the ideals J defined in the previous section, and enable
calculating the order of the various B[M ]⊥d1,d2 .
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As before, d1 = gcd(p− 1, lf1 − 1) and d2 = gcd(q − 1, lf2 − 1), where f1
and f2 are the degrees of some irreducible polynomials φx and φy, respec-
tively. Again, let B[M ]⊥d1,d2 be the corresponding Rd1,d2-module, and J the
ideal as in (ii) above. All the computations for the calculation of the Frobe-
nius polynomials were performed in PARI [2] and the computations for a
basis for J in Mathematica [13], which allows the computations of bases for
ideals whose elements are polynomials in more than one variable and their
coefficients are in any ring Z/MZ, not necessarily a field.

In this section, R = (Z/MZ)[x, y] will be our polynomial ring in two
variables x and y with coefficients in the Noetherian ring Z/MZ, which
makes R Noetherian as well. Because of the appearance of more than one
variable in our polynomials, we need to agree on the order of the variables
and also find a way to compare elements. We call an element of the form
xayb with a, b non-negative integers a power product, and we denote by T 2

the set of all power products in our polynomial ring R. Following [1], we
define:

Definition 4.2. By a term order on T 2 we mean a total order < on T 2

which satisfies the following conditions:

(i) 1 < xayb for all 1 6= xayb ∈ T 2.
(ii) If xa1yb1 < xa2yb2 then xa1yb1xcyd < xa2yb2xcyd for all xcyd ∈ T 2.

The type of term order that we use here is the lexicographical order
which we define below:

Definition 4.3. The lexicographical order on T 2 with x > y is defined
as follows: For (a1, b1), (a2, b2) with ai, bi positive integers, xa1yb1 < xa2yb2

if and only if (a1 < a2 or (a1 = a2 and b1 < b2)). We therefore have

1 < y < y2 < y3 < · · · < x < xy < xy2 < · · · < x2 < · · · .

Now that we have chosen a term order on our polynomial ring, for each
polynomial

f = c1x
a1yb1 + · · ·+ cnx

anybn

with ci 6= 0 in Z/MZ and xa1yb1 > · · · > xanybn , we can define:

• lp(f) = xa1yb1 , the leading power product of f ,
• lc(f) = c1, the leading coefficient of f ,
• lt(f) = c1x

a1yb1 , the leading term of f .

Since the coefficients are not necessarily in a field, we need to redefine
division.

Definition 4.4. Let f and h be polynomials in R, and G a set of poly-
nomials in R, G = {g1, . . . , gn}. We say that f reduces to h modulo G in one
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step, denoted

f
G−→1 h,

if

h = f − (c1x
a1yb1g1 + · · ·+ csx

asybsgs)

for c1, . . . , cs ∈ Z/MZ and with lp(f) = xaiybi lp(gi) for all i such that ci 6= 0
and lt(f) = c1x

a1yb1 lt(g1) + · · ·+ csx
asybs lt(gs).

Definition 4.5. Let f , h and f1, . . . , fs be polynomials in R, with fi 6= 0
for all 1 ≤ i ≤ s, and let F = {f1, . . . , fs}. We say that f reduces to h
modulo F , denoted

f
F−→ h,

if there exist polynomials h1, . . . , ht−1 ∈ R such that

f
F−→1 h1

F−→1 h2
F−→1 · · ·

F−→1 ht−1
F−→1 h.

Note that if

f
F−→ h

then f − h ∈ 〈f1, . . . , fs〉.

We will now recall [1, Theorem 4.1.12] which basically serves as the
definition for a Gröbner basis. Here, the leading term ideal of an ideal V of
our ring R, denoted by LT(V ), is defined by

LT(V ) = 〈{lt(v) : v ∈ V }〉.

Theorem 4.6. Let V be an ideal of R, and let G = {g1, . . . , gn} be a set
of non-zero polynomials in V . The following are equivalent:

(i) LT(G) = LT(V ).
(ii) For any polynomial f ∈ R we have

f ∈ V if and only if f
G−→ 0.

(iii) For all f ∈ V we have f = h1g1 + · · ·+ hngn for some polynomials
h1, . . . , hn ∈ R such that lp(f) = max1≤i≤n(lp(hi) lp(gi)).

Definition 4.7. A set G of non-zero polynomials contained in an ideal
V of our ring R is called a Gröbner basis for V if G satisfies any one of the
three equivalent conditions of Theorem 4.6 above. Obviously, G is a Gröbner
basis for 〈G〉.

The Noetherian property of the ring R together with Theorem 4.6 yields
the following result [1, Corollary 4.1.17]:

Theorem 4.8. Let V ⊆ R be a non-zero ideal. Then V has a finite
Gröbner basis.
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We compute in Mathematica a Gröbner basis for our ideal J of the
ring R, which we denote by GJ . We see that the order of B[M ]⊥d1,d2 is the
order of the quotient Id/〈GJ〉.

In the last step of the algorithm we will also need to compute the an-
nihilator of some ideal 〈GJ〉 over the finite ring Rd1,d2 . For this we follow
the method outlined in [1, Proposition 4.3.11] and we calculate the ideal
quotient

(T : 〈GJ〉) = {f ∈ R : f〈GJ〉 ⊆ T}

where T = 〈(xla1 )d1 − 1, (yl
a2 )d2 − 1〉 is the zero ideal of Rd1,d2 . We see that

AnnRd1,d2 (〈GJ〉) = (T : 〈GJ〉).

5. The algorithm

5.1. Step 1. Fix distinct odd primes p and q and an odd prime l. The
product pq is the conductor of the field Q(ζpq)

+ whose class number h+

we want to calculate, and M = l is the prime that we check to see if it
divides h+. Factor xm1 − 1 and ym2 − 1 into irreducibles in Z/lZ where,
as above, gcd(mi, l) = 1 for i = 1, 2 and m1l

a1 = p − 1 and m2l
a2 =

q − 1. As before, let (f1, f2) be a pair of degrees of irreducible polynomials
φx, φy, respectively, which appear in the factorization of Z[G̃]. Let d1 =
gcd(p − 1, lf1 − 1) and d2 = gcd(q − 1, lf2 − 1). For various primes r with
r ≡ ±1 (mod pq) and r ≡ 1 (mod 2l) we calculate the Frobenius elements
f< as in (iii) of Section 4.2. Let J0 denote the zero ideal of Rd1,d2 together
with the conjugation relation cnj. We pick several Frobenius polynomials
f<i that we calculated above and we let Ji = Ji−1 + (f<i). This ascending
chain of ideals will computationally stabilize at some ideal J l ⊆ Id. If J l

happens to equal the whole ideal Id then the module B[l]d1,d2 is trivial. If,
however, for some pair of degrees (f1, f2) we have a strict inclusion J l ⊂ Id
then the corresponding B[l]⊥d1,d2 is not trivial, if J l has indeed stabilized at
the correct ideal J . Hence we believe that l divides the index [E : H].

As expected, in most cases the ideal J l is the whole ideal Id and so we do
not continue to Steps 2 and 3 for this prime l. When we do get a non-trivial
quotient Id/J

l for some l, we do not proceed to the next step right away but
we follow first the procedure outlined right after the proof of Proposition 2.1.

5.2. Step 2. In this step we repeat the procedure of Step 1 but with
higher powers of l, i.e. for M = l2, l3, etc., and only for those primes which
‘passed’ Step 1. The coefficients of the Frobenius polynomials f< now lie in
Z/MZ and we have to make sure that the primes r satisfy r ≡ 1 (mod 2M)
for the specific power M of l. As before, Rd1,d2 = (Z/MZ)[x, y]/((xl

a1 )d1−1,
(yl

a2 )d2 − 1), and Id is the ideal (x − 1, y − 1) in Rd1,d2 . As in Step 1, for
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each M the sequence of ideals

J0 ⊂ J1 ⊂ · · · ⊂ Ji ⊂ · · ·
will stabilize at some ideal JM and the order of the quotients

. . . , Id/J
M , Id/J

lM , . . .

is non-decreasing. Since B[M ]⊥d1,d2 is finite and its order is bounded above
by |Bd1,d2 |, which is finite and independent of M , the orders of the quotients
Id/J

M will have to stabilize. For some power M of l we will get |Id/J lM | =
|Id/JM |, hence Id/J

lM ∼= Id/J
M . Therefore M annihilates Id/J

lM as well
as its quotient (Id/J

lM )/〈f<(x, y) : < ∈ S〉 ∼= B[lM ]⊥d1,d2 . This implies that

M(B[lM ]duald1,d2
) = 0, which gives M(B[lM ]d1,d2) = 0 since B[lM ]duald1,d2

and

B[lM ]d1,d2 are isomorphic as finite abelian groups. Therefore B[lM ]d1,d2 =
B[M ]d1,d2 and

|MBd1,d2 | = |Bd1,d2/B[M ]d1,d2 | = |Bd1,d2 |/|B[Ml]d1,d2 | = |lMBd1,d2 |.
Thus (MBd1,d2)/l(MBd1,d2) = 0, and by Nakayama’s lemma, MBd1,d2 = 0.
Again, since Bd1,d2 and Bdual

d1,d2
are isomorphic as finite abelian groups, we

obtain MB⊥d1,d2 = 0. Hence the map g : Id/J
M → B⊥d1,d2 is surjective.

Let GCD(P(g,h)) denote the greatest common divisor of all the P(g,h) that
were defined in the last paragraph of Section 2. We need to mention here
that if |Id/JM | = |GCD(P(g,h))|l then we do not have to proceed to Step 3

for this prime since |Id/JM | ≥ |Bd1,d2 |l ≥ |GCD(P(g,h))|l and no power of l
divides h+.

5.3. Step 3. In this last step we determine the structure and hence the
order of the module B⊥d1,d2 , by showing that the surjective map g : Id/J

M →
B⊥d1,d2 is actually an isomorphism.

Let M be as in Step 2, i.e. the power of l which annihilates B⊥d1,d2 .

Consider the following exact sequence, where ψ′ raises an element to its
Mth power:

0→ B[M ]
ψ′−→ H/±HM → H/±EM → 0.

Since M annihilates B⊥d1,d2
∼= HomRd1,d2

(Bd1,d2 , Rd1,d2), this implies that M
also annihilates Bd1,d2 . Therefore, we obtain the following exact sequence of
Rd1,d2-modules:

0→ Bd1,d2
ψ−→ (H/±HM )d1,d2 → (H/±EM )d1,d2 → 0

where the generator ηd1,d2 of the unit groups is the unit η with the norm
map

Nd =
(xp−1 − 1)(yq−1 − 1)

(xl
a1d1 − 1)(yl

a2d2 − 1)

applied to it.
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From the surjection g : Id/J
M → B⊥d1,d2 established in Step 2 we obtain

the injection

Ψ : Bd1,d2 ↪→ (Id/J
M )⊥.

We have (Id/J
M )⊥=HomRd1,d2

(Id/J
M , Rd1,d2)∼=Rd1,d2/AnnRd1,d2 (Id/J

M ),

where AnnRd1,d2 (Id/J
M ) = AnnRd1,d2 (Id + JM/JM ) = (JM : Id), which is

the ideal quotient already discussed in Section 4.3. Therefore, (Id/J
M ) ∼=

AnnRd1,d2 ((JM : Id)). One can think of (JM : Id), which we denote by JM ,

as the ideal JM modulo its Id-part. Assume now that AnnRd1,d2 (JM ) an-

nihilates (H/±HM )d1,d2/ψ(Bd1,d2). Then AnnRd1,d2 (JM ) ⊆ ψ(Bd1,d2). But
now we have

|AnnRd1,d2 (JM )| ≤ |ψ(Bd1,d2)| = |Bd1,d2 | = |Ψ(Bd1,d2)| ≤ |AnnRd1,d2 (JM )|.

Therefore the orders of Id/J
M and B⊥d1,d2 are equal and so g is an isomor-

phism. Hence, if we show that AnnRd1,d2 (JM ) annihilates (H/±EM )d1,d2 ,
from the second exact sequence above we will have proved that g is an
isomorphism.

To find the annihilator AnnRd1,d2 (JM ) we first compute JM = (JM : Id)

and then the ideal quotient (T : JM ) of Section 4.3. For each generator of

AnnRd1,d2 (JM ), we need to apply a lift h(x, y) ∈ Z[x, y] of this generator

to the unit ηd1,d2 ∈ (H/±EM )d1,d2 . If η
h(x,y)
d1,d2

is an Mth power of a unit
in E then we are done. To see whether it is an Mth power we follow a
method similar to the one in Gras and Gras [3] that we also mentioned in
the Introduction. We reformulate here the main proposition from [3] in order
to make it applicable to our case, and we prove it again, for l odd only, since
we only calculate the odd l-parts of h+.

We denote by ηhd the unit η
h(x,y)
d1,d2

that we already described above, and by
Gd the quotient of G containing the coset representatives of the embeddings
in G, which map ζp to ζg

i

p and ζq to ζh
j

q for 1 ≤ i ≤ la1d1 and 1 ≤ j ≤ la2d2.

Proposition 5.1. Let M be a fixed power of an odd prime l as above
and consider the polynomial

P (X) =
∏
a∈Gd

(
X − (a(ηhd ))1/M

)
where (a(ηhd ))1/M denotes the real M th root of a(ηhd ). If P has coefficients
in Z then ηhd is an M th power in Q(ζpq)

+.

Proof. Let N be the largest power of l for which the unit (ηhd )1/N lies in

Q(ζpq)
+. If M = N then we are done, so we assume N < M . Then (ηhd )1/N is

not an element of (Q(ζpq)
+)l and therefore by [5, Chapter VIII, Theorem 16]
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the polynomial

T (X) = XM/N − (ηhd )1/N

is irreducible in Q(ζpq)
+. Since M/N ≥ 3, T (X) has at least one complex

root. Therefore (ηhd )1/M has at least one Galois conjugate that is not real.
But P (X) ∈ Z[X] implies that the Galois conjugates are roots of P (X)
which are real. Therefore we have a contradiction.

Most of the times the P (X)’s are very large polynomials with huge coef-
ficients. We can prove that the coefficients are integers by applying a method
outlined in Schoof [11], which requires that we round off the coefficients of
P (X) and then show that this new polynomial divides P (XM ).

6. Examples

6.1. The field of conductor 469 = 7 · 67. We confirm Hakkarainen’s
result [4] that 3 is the only odd prime < 10000 which divides h+. However,
he only obtained a 31 dividing hξ, whereas our results show that the 3-part
of h+ has order 32.

Let r = 3, p = 7, q = 67, and Q(ζpq)
+ be the real cyclotomic field

of conductor pq = 469. We first compute the factor P(g,h) for all pairs of
primitive roots (g, h) and then their greatest common divisor GCD(P(g,h)).

From the calculations we have GCD(P(g,h)) = 232, and so we see that it is
best to run the test with the pair (g′, h′) = (3 (mod 7), 7 (mod 67)), for which
P(g′,h′) has the smallest number of factors. In particular, P(g′,h′) = 298 · 172.
Next, we decompose the group ring Z[G] as shown in Section 4.2. We have
xp−1−1 = (x3)2−1 and yq−1−1 = (y3)22−1, and factoring into irreducibles
in Z/3Z gives

x2 − 1 = (x+ 1)(x+ 2)

and

y22 − 1 = (y + 1)(y + 2)(y5 + 2y3 + y2 + 2y + 2)(y5 + 2y3 + 2y2 + 2y + 1)

× (y5 + 2y4 + 2y3 + 2y2 + 1)(y5 + y4 + 2y3 + y2 + 2);

so we run Step 1 for all possible degrees d1 and d2, which in this case are
d1 = 2 and d2 = 2 and 22. Step 1 showed 2, 3 and 17 to be the only
primes < 10000 that are possible divisors of the index. Since we chose not
to calculate the 2-part of h+, the only primes we have to consider are 3
and 17. Before proceeding to Step 2, however, we run Step 1 again for the
prime 17 because it did appear as a factor of P(g′,h′) but not of GCD(P(g,h))

and therefore it is possible that it might only divide P(g′,h′) and not h+.
The pair (g0, h0) = (5 (mod 7), 7 (mod 67)) does not have 17 as a factor of
P(g0,h0), and Step 1 for 17 with this pair of primitive roots only gives trivial
Jordan–Hölder factors. Therefore we proceed to the next steps only for the
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prime 3. In Step 2 we repeat the same procedure as in Step 1 but with higher
powers of 3. Below we show the Frobenius polynomials obtained for M = 3,
32 and 33 for the pair of degrees (d1, d2) = (2, 2), the ideals JM at which
the ideals Ji stabilize and the orders of the quotients |Id/JM |.

For M = 3, JM = (y2−1, y−x) ≡ ((y+ 1)(y−1), (y−1)− (x−1)) with
coefficients in Z/3Z. From the second polynomial in JM we see that the two
generators of the augmentation ideal Id become equivalent in Id/J

M . From
the first one we have y(y− 1) ≡ −(y− 1) in JM , therefore we can only have
constants in front of the only generator of Id/J

M . Since we are in Z/3Z, we
see that |Id/JM | = 3.

For M = 9, JM = (y2− 3y+ 2, 3−x− 2y) = ((y− 1)(y− 2),−2(y− 1)−
(x−1)) with coefficients in Z/9Z. The same reasoning as above for the ideal
J3 applies here as well and we have |Id/JM | = 32. Since |Id/J3| is strictly

smaller than |Id/J32 |, we need to continue as above with M = 33.

For M = 27, JM = (9(y − 1), 2 − 3y + y2, 3 − x − 2y) with coefficients

in Z/27Z. We see here that J33 is generated by the same polynomials as

J32 but it has the extra polynomial 9(y − 1), which reduces the number of

constants to 9 instead of 27. Therefore |Id/J32 | = |Id/J33 | = 9 and so, as
expected, the orders of these quotients stabilize with M = 32. The factors
φx, φy contained in the ideals J above are φx(x) = x+ 1 and φy(y) = y− 2.
These are the only two factors that gave a non-trivial quotient Id/J

M .

For the pair of degrees (d1, d2) = (2, 22), the Frobenius polynomials give
exactly the same ideals JM as above and therefore we have the same two
factors φx and φy. Hence, we only need to consider the case of (d1, d2) =
(2, 2).

l The Frobenius maps for M = 3

l1 = 7521823 f<1
= (y5 + y4 + 2y3 + 2y2 + 2y + 2)x5 + (2y5 + 2y4 + 2y3 + 2y2 + y + 2)x4+

(2y5 + y4 + y2 + 1)x3 + (2y5 + 2y4 + 2y3 + 2y2 + y + 2)x2 + (y5 + y4 + y3+

2y + 1)x+ (y5 + y4 + y3 + 2y)

l2 = 8889427 f<2
= (2y5 + 2y4 + y3 + 2y2 + y + 2)x5 + (2y5 + 2y3 + 2y2 + 2y)x4 + (2y5+

2y4 + y3 + 2y + 2)x3 + (y5 + 2y3 + 2y2 + 2y)x2 + (2y4 + y)x+ (y5 + 2y4+

2y3 + 2y2 + y)

l3 = 9573229 f<3
= (y4 + 2y3 + 2y + 1)x5 + (y4 + y3 + y2)x4 + (y5 + 2y2 + y + 2)x3+

(2y4 + 2y3)x2 + (2y5 + 2y4 + y3 + y + 2)x+ (y5 + y3 + 1)

l4 = 10257031 f<4
= (y5 + y + 2)x5 + (2y5 + 2y4 + 2y3 + 2y2)x4 + (2y4 + 2y3 + y2 + 2y)x3+

(y5 + y2 + y + 1)x2 + (2y5 + 2y4 + y2 + 2y + 2)x+ (2y5 + y4 + 2y3 + y2 + y)

l5 = 20514061 f<5
= (2y5 + y3 + y2 + 2y + 1)x5 + (2y4 + y3 + y2 + 2y + 2)x4 + (2y5 + y4+

2y3 + y + 2)x3 + (y2 + y)x2 + (2y5 + y2 + 2y + 1)x+ (y5 + 2y3 + y2 + y)

l6 = 22565467 f<6
= (2y4 + y3 + y2 + 2)x5 + (2y5 + 2y3 + y + 1)x4 + (y5 + y4 + y3 + y2+

2y + 1)x3 + (2y4 + 2y3 + y2 + y + 2)x2 + (y5 + 2y4 + 2y3 + y2 + 2)x+

(2y5 + 2y4 + y3 + y2 + 1)
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l The Frobenius maps for M = 32

l1 = 7521823 f<1
= (4y5 + 7y4 + 5y3 + 8y2 + 5y + 2)x5 + (5y5 + 8y4 + 5y3 + 2y2 + 4y

+8)x4 + (8y5 + 4y4 + 6y3 + 7y2 + 6y + 4)x3 + (2y5 + 8y4 + 2y3 + 2y2 + y

+8)x2 + (y5 + 7y4 + y3 + 3y2 + 8y + 7)x+ (y5 + 4y4 + 7y3 + 3y2 + 2y + 6)

l2 = 8889427 f<2
= (2y5 + 2y4 + y3 + 2y2 + 4y + 5)x5 + (2y5 + 3y4 + 8y3 + 2y2 + 5y + 3)x4

+(2y5 + 8y4 + y3 + 5y + 5)x3 + (7y5 + 6y4 + 5y3 + 2y2 + 2y + 6)x2 + (6y5+

2y4 + 3y2 + y)x+ (y5 + 2y4 + 5y3 + 2y2 + y + 6)

l3 = 9573229 f<3
= (4y4 + 8y3 + 5y + 1)x5 + (3y5 + 7y4 + 7y3 + 7y2 + 6y)x4 + (y5 + 6y3+

5y2 + y + 2)x3 + (6y5 + 5y4 + 5y3 + 3y2 + 3y + 3)x2 + (5y5 + 5y4 + y3 + 7y

+8)x+ (4y5 + 3y4 + 7y3 + 3y2 + 6y + 7)

l4 = 10257031 f<4
= (y5 + 3y4 + y + 2)x5 + (2y5 + 5y4 + 2y3 + 8y2)x4 + (6y5 + 2y4 + 5y3+

y2 + 5y)x3 + (4y5 + 7y2 + y + 4)x2 + (8y5 + 5y4 + 6y3 + y2 + 2y + 8)x+

(8y5 + 7y4 + 8y3 + 4y2 + 4y + 6)

l5 = 20514061 f<5
= (5y5 + 3y4 + 7y3 + 7y2 + 2y + 4)x5 + (5y4 + 7y3 + 4y2 + 2y + 2)x4+

(5y5 + 4y4 + 8y3 + 3y2 + y + 2)x3 + (3y5 + 6y4 + 3y3 + y2 + y + 3)x2+

(8y5 + 6y4 + 3y3 + 7y2 + 8y + 7)x+ (4y5 + 3y4 + 8y3 + 7y2 + 7y + 6)

l6 = 22565467 f<6
= (3y5 + 5y4 + y3 + y2 + 3y + 2)x5 + (5y5 + 6y4 + 8y3 + 7y + 7)x4+

(y5 + 7y4 + 7y3 + 4y2 + 8y + 1)x3 + (3y5 + 5y4 + 2y3 + 7y2 + 7y + 8)x2+

(7y5 + 2y4 + 8y3 + 7y2 + 5)x+ (2y5 + 5y4 + y3 + y2 + 7)

l The Frobenius maps for M = 33

l1 = 7521823 f<1
= (13y5 + 7y4 + 14y3 + 26y2 + 14y + 20)x5 + (5y5 + 17y4 + 5y3 + 11y2+

13y + 26)x4 + (17y5 + 4y4 + 24y3 + 16y2 + 6y + 4)x3 + (20y5 + 8y4 + 11y3+

11y2 + y + 26)x2 + (y5 + 25y4 + 19y3 + 21y2 + 26y + 7)x+ (10y5 + 22y4+

25y3 + 3y2 + 2y + 6)

l2 = 8889427 f<2
= (20y5 + 2y4 + y3 + 11y2 + 22y + 23)x5 + (2y5 + 12y4 + 26y3 + 11y2+

14y + 21)x4 + (2y5 + 26y4 + y3 + 18y2 + 14y + 23)x3 + (16y5 + 15y4 + 14y3

+20y2 + 11y + 15)x2 + (6y5 + 11y4 + 21y2 + 19y)x+ (10y5 + 11y4 + 23y3+

11y2 + 10y + 24)

l3 = 9573229 f<3
= (9y5 + 4y4 + 17y3 + 18y2 + 5y + 19)x5 + (12y5 + 16y4 + 7y3 + 7y2

+15y)x4 + (10y5 + 24y3 + 14y2 + 10y + 20)x3 + (24y5 + 5y4 + 5y3 + 3y2+

12y + 12)x2 + (5y5 + 5y4 + 19y3 + 9y2 + 7y + 26)x+ (13y5 + 21y4 + 25y3

+12y2 + 6y + 16)

l4 = 10257031 f<4
= (10y5 + 3y4 + 18y3 + 19y + 2)x5 + (20y5 + 14y4 + 2y3 + 17y2 + 9y

+9)x4 + (24y5 + 2y4 + 23y3 + 10y2 + 14y + 9)x3 + (22y5 + 9y4 + 9y3 + 7y2

+10y + 22)x2 + (26y5 + 5y4 + 15y3 + y2 + 2y + 26)x+ (17y5 + 16y4 + 26y3

+4y2 + 22y + 15)

l5 = 20514061 f<5
= (14y5 + 3y4 + 25y3 + 16y2 + 11y + 22)x5 + (18y5 + 23y4 + 16y3 + 22y2

+2y + 20)x4 + (23y5 + 22y4 + 17y3 + 21y2 + 10y + 20)x3 + (21y5 + 6y4+

12y3 + 19y2 + y + 3)x2 + (17y5 + 15y4 + 21y3 + 7y2 + 26y + 16)x+ (13y5+

3y4 + 26y3 + 25y2 + 7y + 24)

l6 = 22565467 f<6
= (12y5 + 23y4 + 19y3 + 10y2 + 12y + 11)x5 + (14y5 + 24y4 + 8y3 + 25y

+7)x4 + (10y5 + 16y4 + 7y3 + 4y2 + 8y + 1)x3 + (21y5 + 5y4 + 20y3 + 16y2+

16y + 8)x2 + (25y5 + 2y4 + 8y3 + 16y2 + 5)x+ (20y5 + 14y4 + y3 + y2 + 16)
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We now proceed to Step 3 of the algorithm where we prove that Id/J
M

is isomorphic to B⊥d1,d2 . The computations for the ideal JM gave us the basis

(−2+y, 1+x) in Z/9Z. Since the degree of both x and y in Rd1,d2 is 3 ·2 = 6,
we compute the annihilator of (−2+y3, 1+x3) in (Z/9Z)[x, y]/(x6−1, y6−1).

We found the following polynomial to be the generator of AnnRd1,d2 (JM ):

h(x, y) = 3− 3x3 − 3y3 + 3x3y3.

Factoring h(x, y) in Z[x, y] we get

h(x, y) = 3(−1 + x)(1 + x+ x2)(−1 + y)(1 + y + y2)

= 3(x− 1)(y − 1)Φ3(x)Φ3(y)

where Φk is the kth cyclotomic polynomial. Therefore, we apply to η the

norm map (x6−1)(y66−1)
(x6/3−1)(y6/3−1) instead of (x6−1)(y66−1)

(x6−1)(y6−1) , and then the annihila-

tor h′(x, y) = 3(−1 + x)(−1 + y). The polynomials P (x) and P (xM ) of
Proposition 5.1 were calculated with a precision of 500 and are shown in the
table below. Finally, we showed that P (x) divides P (xM ), hence proving
rigorously that 32 ‖h+.

P (x) x4 − 35667454 · x3 + 318041818710531 · x2 − 35667454 · x+ 1

P (xM ) x36 − 364929542762806942594907901654249278525439344697663012299174707204 ·
x27 + 33293392795267835243258623959180895487795677296162956508170492359406

402192775112912608077373493763985920516781456745581649782374406 · x18−
364929542762806942594907901654249278525439344697663012299174707204 · x9 + 1

6.2. Step 3 for the field of conductor 1477 = 7 · 211. We found
that the only primes l < 10000 dividing h+ are 7 and 11. In this example we
will show our work for l = 7 where there are more than one pair of (φx, φy)
contained in JM .

Step 2 of our algorithm showed that the orders of the quotients Id/J
M

stabilize at M = 7 with JM = (3 + 3y + y2, 3 + 6x + 4y + xy, 5 + x3 + y)
in Z/7Z for both possible combinations of (d1, d2), and we therefore choose
the smaller pair (6, 6). The pairs of (φx, φy) contained in JM are (x+3, y−1),
(x+4, y+4), (x+5, y−1). As expected, |B[M ]⊥d1,d2 |=

∏
φx,φy

|B[M ]⊥φx,φy |=73

(we found |B[M ]⊥φx,φy | = 7 for each pair (φx, φy)). We have |GCD(P(g,h))|7
= 72, hence, after Step 3, we will have proved that 7 ‖h+.

The computations for the annihilator gave us only one generator:

h(x, y) = Φ3(x)Φ3(y)Φ21(y)
(
4 + 2x− 4x2 + 5x3 + 2y7− 6xy7 + 5x2y7− x3y7

− 4y14 + 5xy14 − 3x2y14 + 2x3y14 + 5y21 − xy21 + 2x2y21 + x3y21
)

= Φ3(x)Φ3(y)Φ21(y)h′(x, y).
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From basic properties of cyclotomic polynomials, we can establish the rela-
tion

(∗) Γ ′δ =
∏

k∈D(|Γ |)\D(δ)

Φk(σ)

where Γ is any finite cyclic group of order |Γ |, D(|Γ |) = {k ∈ N : k | |Γ |}
and Γ ′δ is the sum of all the elements of the subgroup Γδ = 〈σδ〉 of index δ
in Γ .

Let us recall that our Galois group G̃ of the extension Q(ζpq)/Q is such

that G̃ ∼= G̃1×G̃2 where G̃i is finite cyclic of order p−1 = 6 and q−1 = 270 in
this example, for i = 1 and 2 respectively. As (d1, d2) = (6, 6) and la2 = 7 we
have the subgroup G̃1×G̃2 of G̃ of order 6·42. As we work in the real subfield
Q(ζpq)

+, we can assume that the subgroup G1×G2 of G = Gal(Q(ζpq)
+/Q)

is of order 6 · 21. We then see that Φ3(y) · Φ21(y) = (G2)
′
7, which, according

to the formula (∗) above, is the sum of the elements of the group (G2)7
of index 7 in G2. The norm map that we therefore need to apply to η is
(x6−1)(y210−1)

(x6/3−1)(y42/7−1) , and then the annihilator h′(x, y). The polynomials P (x)

and P (xM ) of Proposition 5.1 were calculated with a precision of 1000 and
we showed that P (x) divides P (xM ), hence proving rigorously that 7 ‖h+.
The polynomial P (x) is presented below, whereas P (xM ) is omitted as it is
too long.

P (x) x12 − 253285672818085597920117540833320566764 · x11 + 16038408013727576378675398

205615384849932252547671390045959497056856423999746 · x10

−7447696110433675817548561818649227038803699459085663820108397789285266813843
540443700 · x9 + 86911768356572921123499159325706075635679782571876578383262

7442647577671131436873144346703615 · x8 − 1045502371457459906661385781160012228

359906832607656705019244404117434162718039857442427623338144074 · x7 +
31606394380090436053358292646577202064791027624187676425

1660067572877683081961563342938807318368386032296 · x6 − 332994422221005688150

10667879016823147457384730252190107458282081938117105395253036177107901993728

31287574 · x5 + 877094806999502083991271352174430122151878622656805163463

0457643479432149168032626544704205804528987979615 · x4−
1944459765899336452214557670670811109932072061509042393676

0599147020507012734321450 · x3 + 10777026227137095866981035797948

453135069447299390696542871 · x2 − 207623109700797451167702365014 · x+ 1

6.3. Step 3 for the field of conductor 1355 = 5 · 271. We found
that the only prime l < 10000 dividing h+ is 37. Step 2 of our algorithm
showed that the orders of the quotients Id/J

M stabilize at M = 37 with
JM = (9 + 27y + y2, 8 + x+ 28y) in Z/37Z and with (d1, d2) = (4, 18). The
only two factors that gave a non-trivial quotient Id/J

M were φx(x) = x+ 1
and φy(y) = y + 28. The computations for the annihilator gave us only one
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generator:

h(x, y) = Φ4(x)Φ2(y)Φ6(y)Φ18(y)
(
4 + 33x+ 21y+ 16xy+ 27y2 + 10xy2 + 3y3

+34xy3+25y4+12xy4+11y5+26xy5+30y6+7xy6+28y7+9xy7+36y8+xy8
)

= Φ4(x)Φ2(y)Φ6(y)Φ18(y)h′(x, y)

According to the formula (∗) above, Φ4(x) = (G1)
′
2 and Φ2(y)Φ6(y)Φ18(y)

= (G2)
′
9, hence the norm map that we need to apply to η is (x4−1)(y270−1)

(x4/2−1)(y18/9−1) ,

and then the annihilator h′(x, y). The polynomials P (x) and P (xM ) of
Proposition 5.1 were calculated with a precision of 7000 and we showed that
P (x) divides P (xM ), hence proving rigorously that 37 ‖h+. The polynomial
P (x) is given below, whereas P (xM ) is omitted as it is too long.

P (x) x4 − 534186444472275956720533076216968091508192072459731400996 · x3 +
71338789364482991009380877708435286461900572928062358768758453333592004560

744265699158031988648292121436237448006 · x2 − 534186444472275956720533076216

968091508192072459731400996 · x+ 1

7. Table and discussion of the results. We applied Steps 1 and 2
of the algorithm to real cyclotomic fields of conductor pq < 2000. We tested
the divisibility of |B| = [E : H] = P · h+ by all primes l < 10000. All the
primes appearing in the greatest common divisor of the P(g,h) for all pairs
of primitive roots (g, h) came up as possible divisors, as expected. These
primes are listed in the ‘GCD’ column of Table 1 below. Since we do not
calculate the 2-part of h+ or the l-part for l > 10000, we leave out the
powers of 2 as well as the primes > 10000 from the ‘GCD’. Therefore, if
a ‘1’ appears in the ‘GCD’ column for some field, this means that no odd
primes < 10000 divide the greatest common divisor of the various P(g,h).
However, there are always powers of 2 in the ‘GCD’, as we see from our
calculations of the index [E : H] in Section 2. In the ‘l’ column we present
all other primes that Step 1 gave to be possible divisors of h+, besides the
ones that already appear in the ‘GCD’ column. Step 2 verified for all fields
that indeed, for some M , we have |B[M ]d1,d2 | = |B[lM ]d1,d2 |. As mentioned
right before Section 5.3 above, we proceed to Step 3 only for those primes
l with |Id/JM | > |GCD(Pg,h)|l. Finally, in the ‘Degree’ column we list the
smallest degrees (d1l

a1 , d2l
a2) for which the module B⊥d1,d2 turned out to be

non-trivial, and the ‘h̃+’ column shows the l-part of h+ for all odd primes
l < 10000. The order of appearance of the degrees in the ‘Degree’ column
corresponds to the order of appearance of the primes in the ‘h̃+’. column. For
example, for the field of conductor 13 ·97, h̃+ = 5 ·72 ·97 with corresponding
degrees (4, 4) for the prime 5, (6, 6) for the prime 7 and (12, 96) for the
prime 97.
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For the primes l not dividing the degree of the extension, our results
agree with Hakkarainen [4]. For those primes l that divide the degree of
the extension, our results complete his results in the sense that we veri-
fied that either no higher powers of l divide h+, or there are indeed such
higher powers of l. We found five such fields where higher powers of l
divide h+, and we mark them with an asterisk in the column ‘h̃+’ of
Table 1.

Table 1

f GCD l Degree h̃+ f GCD l Degree h̃+

3·107 1 3 (2,2) 3 7·61 1 5 (2,20) 5

7·67 1 3 (6,6) 32 (∗) 11·43 34·52·74 - (10,6) 3

13·37 7·19 - (6,18) 19 19·29 5 - (2,4) 5

17·37 34·19 5 (4,4), (2,18) 5·19 17·41 33·7 - (2,2) 3

19·37 316·5 13, (6,12), 13·37 3·251 1 11 (2,10) 11

37 (18,36)

7·109 34 13 (6,12) 13 19·41 52 41 (2,40) 41

5·157 32·79 - (2,6) 3 13·61 320·5·7 37 (6,60), (12,12) 3·37 (∗)
19·43 1 5 (2,2) 5 11·79 1 79 (2,78) 79

7·127 34·72 - (6,42) 7 13·71 33 61 (12,10) 61

5·197 33·11 - (2,2) 3 3·331 1 3 (2,6) 32 (∗)
3·367 1 3 (2,6) 3 17·67 37·117 89 (8,22), (8,22) 11·89 (∗)
7·163 1 19 (6,18) 19 17·71 32 17, (16,2), 17

19·61 33·7 73 (18,12) 73 17·73 34·7·37·109 5 (4,4) 5

7·173 1 7 (6,2) 7 3·419 1 3 (2,2) 3

11·113 5·37 41 (10,8) 41 31·41 33·56 7 (6,2) 7·
13·97 73 5, (4,4), (6,6), 5·72·97 11, (10,10), 11·

97 (12,96) 31, (30,10), 31

13·101 3·52 31 (6,10) 31 17·79 5 17 (16,2) 17

5·271 33·5 37 (4,18) 37 5·277 32·139 5, 7 (4,4), (2,6) 5·7
19·73 34·7·101 17, (18,8), 172·19·37 7·199 1 5 (2,2) 5

19, (18,18),

37 (18,36)

5·293 32·72 - (4,4) 32 7·211 32·52·72 11 (6,42), (2,10) 7·11
3·503 1 3 (2,2) 3 17·89 113·17·41 13 (4,4) (16,8) 13·17
37·43 326·78·11· 43 (6,42) 43 3·541 1 13 (2,12) 13

19·487
3·547 1 5 (2,2) 5 13·127 33·7 5 (12,2) 52

7·241 1 13 (6,12) 13 5·347 3·29 5 (4,2) 5

37·47 235 5 (4,2) 5 17·103 37·177 - (8,6), (16,34) 32·17 (∗)
3·587 1 7 (2,2) 7 5·353 32·59 - (2,2) 3

5·373 32·11·17 5 (4,4) 5 11·173 3 173 (2,172) 173

17·113 33·19 17, (16,16), 173·29 13·149 32·52·7 109 (6,2), (12,4) 3·109
29 (4,28)
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