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On limit points of subsequences of
uniformly distributed sequences
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1. Introduction. If a sequence (xn)∞n=1 is dense in the interval [0, 1], it
is a standard exercise to prove that for any nonempty closed set C ⊂ [0, 1]
there exists an increasing sequence (nk)

∞
k=1 of positive integers such that

the set of all limit points of the subsequence (xnk
)∞k=1 is equal to C. The

question becomes more complicated if one imposes additional conditions on
the growth of (nk). On the one hand, this growth can be arbitrarily rapid,
on the other hand, it cannot be too slow in general. Recently Bugeaud [B],
extending the previous result by Dubickas [D], proved the following theorem.

Theorem 1.1 ([B]). Let ξ be an irrational real number. Let S be a finite,
nonempty set of distinct real numbers in [0, 1]. Let (gn)∞n=1 be a sequence of
real numbers such that gn ≥ 1 for n ≥ 1 and limn→∞ gn = +∞. Then there
exists an increasing sequence (an)∞n=1 of positive integers satisfying an ≤ ngn
for n ≥ 1 and such that the set of limit points of the sequence of fractional
parts of (anξ)

∞
n=1 is equal to S.

The purpose of this paper is to generalize this theorem in two directions.
Firstly, the finite set S is replaced by an arbitrary nonempty closed subset
of [0, 1]. Secondly, the special sequence (nξ) is replaced by an arbitrary
sequence uniformly distributed modulo 1.

Recall that for a set A = {a1 < a2 < · · · } ⊂ N, denoting by A(n) the
cardinality of A∩ {1, . . . , n}, the lower and upper asymptotic densities of A
are defined respectively by

d(A) = lim inf
n→∞

A(n)

n
and d(A) = lim sup

n→∞

A(n)

n
,

or equivalently by

d(A) = lim inf
n→∞

n

an
and d(A) = lim sup

n→∞

n

an
.
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When the above values are equal, we speak about the asymptotic density
of A and use the notation d(A). For the Lebesgue measure of a set X of real
numbers we use the symbol λ(X), and {x} stands for the fractional part of
a real number x. A sequence (xn) of real numbers is uniformly distributed
(u.d.) mod. 1 if for every interval J ⊂ [0, 1],

(1.1) d({n ∈ N; {xn} ∈ J}) = λ(J).

Note that the above equality then also holds for J being any finite union of
disjoint intervals.

For a sequence (xn) and a set A ⊂ N we denote by L(xA) the set of
all limit points of the subsequence ({xn})n∈A. For simplicity, we will not
distinguish infinite subsets of N from the increasing sequences of all their
elements, i.e. A = (an) means that the set A is formed by all terms of the
increasing sequence of positive integers a1 < a2 < · · · .

For more references on this topic see [KN] or [SP].

2. Results

Theorem 2.1. Let (xn) be a u.d. sequence mod. 1, let C be a nonempty
closed subset of [0, 1] and let hn → λ(C) be a sequence of positive real
numbers with hn ≤ 1 for n ≥ 1. Then there exists an increasing sequence
A = (an)∞n=1 of positive integers satisfying an ≤ n/hn for n ≥ 1 and such
that L(xA) = C.

Proof. The conclusion definitely holds if λ(C) = 1, i.e. C = [0, 1], thus
we assume λ(C) < 1. Set h0 = 1 and denote by k0 the smallest positive
integer such that hk < 1 for all k ≥ k0. First we show that we can assume
that hn > hn+1 for all n ≥ k0. If this is not the case, set h′i = 1 for all
i = 1, . . . , k0 − 1 and for ε = 1− sup{hk; k ≥ k0} define

h′n = sup{hk; k ≥ n}+ ε/2n

for n = k0, k0 + 1, . . . , and note that

(i) h′n → λ(C),
(ii) h′n > h′n+1 for all n ≥ k0,

(iii) h′n ≥ hn, consequently an ≤ n/h′n implies an ≤ n/hn for every
n ∈ N.

This shows that it is sufficient to prove the theorem for the sequence (h′n),
thus we can assume from the outset that the original sequence is decreasing
for n ≥ k0.

Our proof will involve an inductive construction of an increasing sequence
(nk) of positive integers as well as a nonincreasing sequence (Ck) of closed
sets, each being a union of finitely many disjoint closed intervals, such that⋂∞
k=1Ck = C.
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We start from the construction of (Ck). Set Ck = [0, 1] for each k =
0, . . . , k0 and for each k > k0 let Ck ⊂ Ck−1 be a finite union of disjoint
closed intervals, each intersecting C, and such that Ck ⊃ C and

(2.1) λ(Ck) = hk−1.

The existence of such a set is guaranteed by elementary topological proper-
ties of the real line and closedness of C. Also notice that

⋂∞
k=0Ck = C by

the convergence of (hk) to λ(C).

Now we construct (nk). First, set nk = k for all nonnegative integers
k < k0. Further, assume that nk has already been defined for all k < m where
m ≥ k0. We choose nm > nm−1 satisfying the following two conditions: for
all n ≥ nm we have

(2.2)
#{j ≤ n; {xj} ∈ Cm+1}

n
> hm+1

and for each c ∈ C there exists an i ∈ [nm−1, nm) such that

(2.3) {xi} ∈ Cm+1 and |{xi} − c| <
1

m+ 1
.

The existence of such an nm is guaranteed by (2.1), (1.1) and the note
following it, and uniform distribution of (xn).

For each k ∈ N denote Ik = {i ∈ N; {xi} ∈ Ck} = {ik1 < ik2 < · · · }. As
each Ck is a finite union of disjoint closed intervals, (2.1) shows that

(2.4) lim
n→∞

n/ikn = hk−1 for each k ∈ N,

and moreover

(2.5) n/ikn > hk for every ikn ≥ nk−1.

which follows from (2.2) by setting m = k − 1 and noting that

#{j ≤ ikn; {xj} ∈ Ck} = n.

Define

(2.6) A = {1, . . . , nk0} ∪
( ∞⋃
k=k0+1

(Ik ∩ (nk−1, nk])
)

= {a1 < a2 < · · · }.

We are going to show that

an ≤ n/hn
for every n ∈ N. This is definitely true for every n ≤ nk0 , as an = n. Now let
n > nk0 . There are unique k, j ∈ N such that an = ikj . As all Ik ∩ (nk−1, nk]
are nonempty and Ik ⊂ Ik−1 for all k ∈ N, by (2.6) we have k ≤ n and
j ≤ n. Using (2.5) and monotonicity of (hn) we obtain

an = ikj < j/hk ≤ n/hn.
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Now we are going to show that L(xA) = C. The inclusion L(xA) ⊂ C
is evident since L(xA) ⊂ Ck for all k ∈ N and

⋂∞
k=0Ck = C. Conversely,

C ⊂ L(xA) follows easily from (2.3).

Remark 2.2. Note that Theorem 1.1 can be deduced from the previous
one directly taking S = C a finite set and setting gn = 1/hn and xn = ξn.

The following theorem says that the bound on the growth of an in the
previous theorem cannot be relaxed.

Theorem 2.3. Let (xn) be a u.d. sequence mod. 1 and A ⊂ N. Then
d(A) ≤ λ(L(xA)).

Proof. Suppose d(A) > λ(L(xA)). Then L(xA), being compact, can be
covered by finitely many mutually disjoint open intervals whose union D
fulfils λ(D) < d(A). Denote I = {n ∈ N; {xn} ∈ D}. Then d(I) = λ(D), and
consequently A contains infinitely many elements outside of I, contradicting
L(xA) ⊂ D.

The last theorem of this paper says that there are no other bounds on
the asymptotic density except that stated in the previous theorem.

Theorem 2.4. Let (xn) be a u.d. sequence mod. 1, let C be a nonempty
closed subset of [0, 1] and 0 ≤ α ≤ β ≤ λ(C). Then there exists A ⊂ N with
d(A) = α, d(A) = β and L(xA) = C.

The proof will be based on three simple lemmas. By bxc we denote the
integer part of a real x.

Lemma 2.5. Let A = {a1 < a2 < · · · } ⊂ N be such that d(A) = d. For
every η ∈ (0, 1) let Aη = {abn/ηc; n ∈ N} ⊂ A. Then d(Aη) = ηd.

Proof. We calculate

d(Aη) = lim
n→∞

n

abn/ηc
= lim

n→∞

n

bn/ηc
lim
n→∞

bn/ηc
abn/ηc

= ηd.

Lemma 2.6. Let α < β and A,B ⊂ N be such that d(A) = α and
d(B) = β. Define

C =
( ∞⋃
k=1

((2n− 1)!, (2n)!] ∩A
)
∪
( ∞⋃
k=1

((2n)!, (2n+ 1)!] ∩B
)
.

Then d(C) = α and d(C) = β.

Proof. Obviously, for every sufficiently large n ∈ N,

A((2n)!)

(2n)!
≤ C((2n)!)

(2n)!
≤ A((2n)!)−A((2n− 1)!) + (2n− 1)!

(2n)!
.

As the limits of both the leftmost and rightmost terms are equal to α,
also limn→∞C((2n)!)/(2n)! = α. In a similar way one can easily show
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that limn→∞C((2n+ 1)!)/(2n+ 1)! = β. Finally, for every sufficiently large
k ∈ N we have

A(k)

k
≤ C(k)

k
≤ B(k)

k
,

thus limn→∞C(kn)/kn ∈ [α, β] provided the limit exists, which proves the
lemma.

Lemma 2.7. Let (tn) be a dense sequence in [0, 1] and let C be a non-
empty closed subset of [0, 1]. Then there is a set A ⊂ N such that d(A) = 0
and L(tA) = C.

Proof. For every n ∈ N there exist unique nonnegative integers k(n) and
l(n) such that l(n) < 2k(n) and n = 2k(n) + l(n). Define

Jn =

[
l(n)

2k(n)
,
l(n) + 1

2k(n)

]
, n = 2, 3, . . . .

Denote by (In) the subsequence of (Jk) consisting of all Jk intersecting C,
arranged in the same order as they appear in (Jk). Note that this se-
quence is infinite, as C is nonempty and for each k ∈ N the finite sequence
J2k , J2k+1, . . . , J2k+1−1 covers [0, 1]. Let A = {a1 < a2 < · · · } ⊂ N be any
sequence such that

tan ∈ In for all n ∈ N,(2.7)

an+1 ≥ 2an for all n ∈ N.(2.8)

Denseness of (tn) guarantees that there are many such sets A.
First we show that d(A) = 0. Indeed, it follows immediately from (2.8)

that an ≥ 2n−1, and consequently

d(A) = lim
n→∞

n

an
≤ lim

n→∞

n

2n−1
= 0.

Now we show L(tA) = C. For each x ∈ C there are infinitely many
nk such that x ∈ Ink

. As limk→∞ |Ink
| = 0, the relation (2.7) implies

that limk→∞ tank
= x, thus C ⊂ L(tA). On the other hand, as C is closed,

for every x /∈ C there is a k ∈ N such that (x − 1/2k, x + 1/2k) ∩ C = ∅.
Consequently, tn /∈ (x−1/2k, x+ 1/2k) for all n > 2k+1, thus x /∈ L(tA) and
L(tA) ⊂ C.

Proof of Theorem 2.4. The case λ(C) = 0 being straightforward, we
assume λ(C) > 0. The proof will consist of several short steps, each using
some previous statement.

In the first step we find a set A′ ⊂ N guaranteed by Theorem 2.1, i.e.
d(A′) = λ(C) and L(xA′) = C.

If α = λ(C), the proof is complete, otherwise use Lemma 2.5 twice, with
η1 = α/λ(C) and η2 = β/λ(C) respectively, to produce subsets A1 ⊂ A′ and
A2 ⊂ A′ such that d(A1) = η1λ(C) = α and d(A2) = η2λ(C) = β.
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In the next step we use Lemma 2.6 to find that the set

B =
( ∞⋃
k=1

((2n− 1)!, (2n)!] ∩A1

)
∪
( ∞⋃
k=1

((2n)!, (2n+ 1)!] ∩A2

)
has d(B) = α and d(B) = β. As B ⊂ A′, the relation L(xB) ⊂ C also holds.

In the last step we use Lemma 2.7 to find D ⊂ N such that d(D) = 0
and L(xD) = C.

To finish the proof, set A = B∪D. Obviously d(A) = d(B) = α, d(A) =
d(B) = β and L(xA) = C, so the proof is complete.
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