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1. Introduction. Let F ∈ Z[x] (where Z denotes the ring of integers)
be a fixed polynomial with integer coefficients, with degF ≥ 2 and with
distinct roots (over the complex numbers). For N ∈ Z, N > 1, denote by
P(N) the largest prime factor of N . The problem of giving a lower bound for
P(F (n)) in terms of n as n → ∞ has been much studied. Pólya [9] proved
that P(F (n))→∞ as n→∞ for the case degF = 2, and the general case
can be deduced from Siegel’s theorem on the finiteness of integer points on
curves with positive genus. Keates [3] proved a bound of the form

(1) P(F (n))�F log log n

(the implicit constant depending on F ) for degF = 2, 3, after some special
cases had been obtained by Mahler [7], Nagell [8] and Schinzel [11]. Kotov [4],
building on the work of Sprindžuk [12], extended this result to F of any
degree ≥ 2. It is conjectured that in fact

(2) P(F (n)) > (degF − 1− ε) log n

for any fixed F, ε > 0 and n sufficiently large. This would follow from the
conditional results of Granville [2] and Langevin [5, 6], which assume the
ABC-conjecture.

We are concerned with the function field analogue of this problem. Let p
be a prime, q its power and Fq the field with q elements. Let K be the
function field of the curve CK defined over Fq. By a curve we will al-
ways mean a smooth projective algebraic curve. For a function f ∈ K×

we denote by (f) its divisor which can be decomposed into its zero and
polar components (f) = (f)0 − (f)∞. The height of f is defined to be
ht f = deg(f)0 = deg(f)∞. For a divisor D on K we denote by supD its
support (the set of prime divisors appearing in D with nonzero coefficient)
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and define

δ(f) = max
P∈sup(f)

degP

(for f nonconstant).

Now fix p, q,K, 0 6= F ∈ K[x]. We are concerned with a lower bound
for δ(F (f)) in terms of ht f as ht f → ∞. For this problem we may as-
sume without loss of generality that F has no repeated irreducible factors
in K[x] (i.e. squarefree), otherwise just replace it with the product of its
irreducible factors. In the case of function fields it can happen that δ(F (f))
stays bounded while ht f →∞. For example if F ∈ Fq[x] has constant coef-

ficients, t ∈ K and f = tq
k
, then F (f) = F (t)q

k
, so δ(F (f)) = δ(F (t)) while

ht f → ∞ as k → ∞. Under certain restrictions on F such pathologies do
not occur and we will obtain a bound analogous to (2).

We denote by Fq ⊂ K the algebraic closures of Fq and K respectively.
A polynomial F ∈ K[x] is called separable if it has distinct roots in K. Our
main result is the following

Theorem 1. Let q, K, and 0 6= F ∈ K[x] be fixed with F squarefree (in
K[x]). Assume that F is either nonseparable or has (at least) three distinct
roots a1, a2, a3 in K such that

a1 − a2
a1 − a3

6∈ Fq.

Then there exists a constant λ depending on F such that

δ(F (f)) > logq ht f − λ
for all f ∈ K (for which F (f) is not constant).

We call a separable squarefree polynomial F ∈ K[x] exceptional if it
fails the condition of Theorem 1. This is the function field analogue of the
exceptional polynomials in Z[x] as defined in [4], to which the main method
of [4] is not applicable but which can be treated by other means (to obtain
the bound (1)). Our notion of exceptional polynomial should not be confused
with that of exceptional polynomial over Fq as defined in [1]. For exceptional
polynomials we will obtain the following result:

Theorem 2. Let F ∈ K[x] be a fixed separable polynomial.

(i) The polynomial F is exceptional if and only if there exist s, t ∈ K
and n ≥ 0 such that F divides the polynomial

(3) xq
n − sx+ t

and the latter polynomial is nonzero.
(ii) If F is exceptional then there is a sequence fk ∈ K such that

ht fk →∞ as k →∞ but δ(F (fk)) stays bounded.
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(iii) Assume that F with degF > 1 is exceptional and divides the nonzero
polynomial (3) for some s, t ∈ K and n ≥ 0. Let ε > 0 be fixed.
Then for f ∈ K such that sf − t is not a pth power in K and ht f is
sufficiently large (i.e. larger than some constant depending only on
F and ε), we have

(4) δ(F (f)) > logq ht f + logq(degF − 1) + logq(1− 1/q)− ε.

Corollary 3. Let F ∈ Fq[x] with degF > 1 be a fixed squarefree poly-
nomial with constant coefficients. Then (4) holds (for any fixed ε > 0) when-
ever f ∈ K is not a pth power in K and ht f is sufficiently large.

Proof. A squarefree polynomial with constant coefficients always divides
a polynomial of the form xq

n − x, so we can apply Theorem 2 with s = 1
and t = 0.

2. Preliminaries. For the proof of our results we will need the following
proposition, which is an extension of the ABC-theorem for function fields.

Proposition 4. Let K be the function field of the curve CK over Fq
with genus gK . Let u ∈ K be a function which is not a pth power in K and
let b1, . . . , bm ∈ Fq. Then∑

P∈
⋃

sup(u−bi)

degP ≥ (m− 1) htu− (2gK − 2).

Proof. Consider the extension Fq(u) ⊂ K. This is a separable geometric
extension of function fields (because u is not a pth power in K) of degree
htu, so we may apply the Riemann–Hurwitz formula to obtain

2gK − 2 ≥ −2 htu+
∑
P

(eP − 1) degP,

where eP is the ramification index of the prime P of K in this extension
(equality is obtained if all the eP are coprime to p, but we do not assume
this). Restricting to the primes P ∈

⋃m
i=1 sup(u− bi), which are exactly the

primes lying over the primes Fq(u) corresponding to the points b1, . . . , bm,∞
on P1 (considering Fq(u) as the function field of P1) and using∑

P∈
⋃

sup(u−bi)

eP degP = [K : Fq(u)]#{b1, . . . , bm,∞} = (m+ 1) htu

we obtain

2gk − 2 + 2 htu ≥
∑

P∈
⋃

sup(u−bi)

(eP − 1) degP

= (m+ 1) htu−
∑

P∈
⋃

sup(u−bi)

degP.
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Therefore ∑
P∈

⋃
sup(u−bi)

degP ≥ (m− 1) htu− (2gK − 2),

as required.

Taking m = 2, b1 = 0, b2 = 1 in the last proposition we obtain the
ABC-theorem for function fields in the following form (see also [10, Theo-
rem 7.17]):

Proposition 5. Let K be the function field of the curve CK over Fq
with genus gK . Let u ∈ K be a function which is not a pth power in K.
Then ∑

P∈sup(u)∪sup(u−1)

degP ≥ htu− (2gK − 2).

3. Proof of Theorem 1. Let K be the function field of the curve CK
defined over Fq, and let F ∈ K[x] be a squarefree polynomial. We assume
without loss of generality that F is monic (if c is the leading coefficient of
F then δ(F (f)) = δ(F (f)/c) whenever δ(F (f)) > δ(c)).

Proposition 6. Assume there exist three distinct roots a1, a2, a3 ∈ K
of F such that

τ =
a1 − a2
a1 − a3

6∈ Fq.

Then the assertion of Theorem 1 holds for F .

Proof. Let L be the splitting field of F over K, and CL its underlying
curve with genus gL. Since τ 6∈ Fq, for some k the element τ ∈ L is not a
pkth power in L. Take any f ∈ K. Denote

u =
f − a2
a1 − a2

, v =
f − a3
a1 − a3

.

It is not possible that both u and v are pkth powers in L because then so
would be τ = v/u, which we assumed is not the case. Assume (by symmetry)
that u is not a pkth power and let l ≤ k be the largest integer such that u is
a plth power in L. Applying Proposition 5 to the function u1/p

l ∈ L (which
is not a pth power) we obtain

(5)
∑

P∈sup(u)∪sup(u−1)

degP ≥ p−l htu− (2gL − 2).

We note that when considering degrees of divisors on CL we always consider
the degree over the field of constants of CL (which is a finite extension of
Fq) and not over Fq itself. For a function h ∈ K× we will denote by (h)K
and htK h its divisor and height (respectively) over K, and similarly for L.
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Note that

u− 1 =
f − a1
a1 − a2

.

Let a4, . . . , adegF ∈ L be the other roots of F , so that F (x) =
∏degF
i=1 (x−ai).

We have

(6) F (f) =

degF∏
i=1

(f − ai) = u(u− 1)(a1 − a2)2
degF∏
i=3

(f − ai).

Denote

M = max
1≤i,j≤degF

ai 6=aj

max
P∈sup(ai−aj)

degP.

Let P be a prime divisor of L with degP > M . Then P is a pole of f − ai
for one i iff it is a pole of each f − aj , 1 ≤ j ≤ degF . Also P ∈ sup(u) iff
P ∈ sup(f − a2), and P ∈ sup(u − 1) iff P ∈ sup(f − a1). We see that if
P ∈ sup(u) then it cannot cancel out in the product on the right hand side
of (6), and so P ∈ sup(F (f))L. The same holds if P ∈ sup(u− 1).

We will denote by O(1) quantities which are bounded by a constant
depending only on F . We will use the notation P ∈ PDiv(L) to mean that
P is a prime divisor of L, and similarly with K. We have∑

P∈PDiv(L)
degP≤M

degP = O(1),

and so using (5) we obtain

(7)
∑

P∈sup(F (f))L

degP ≥
∑

P∈sup(u)∪sup(u−1)

degP −O(1) ≥ p−l htL u−O(1).

For any prime divisor Q of K we have∑
P∈CL
P overQ

degP ≤ [L : K]

ν
degQ,

where Fqν is the field of constants of L (equality occurs if Q is unramified).
Therefore ∑

Q∈sup(F (f))K

degQ ≥ νp−l

[L : K]
htL u−O(1).

Assuming that htL f > htL a1, we see that htL f = htL u+O(1), and using

htL f = [L:K]
ν htK f we obtain

(8)
∑

Q∈sup(F (f))K

degQ ≥ p−l htK f −O(1).
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Let d = δ(F (f)) be the degree of the largest prime divisor of K appearing
in the support of (F (f))K . By the prime number theorem for function fields
(see [10, Theorem 5.12]), for every natural number e we have∑

Q∈CK
deg q=e

degQ = qe(1 + o(1)),

with the o(1) term tending to zero as e→∞, so∑
Q∈CK
deg q≤d

degQ ≤ (1 + o(1))
( d∑
e=1

qe
)

= (1 + o(1))(1− 1/q)−1qd.

By (8) we obtain

(9) (1 + o(1))(1− 1/q)−1qd ≥ p−l htK f −O(1),

and taking logarithms this becomes

δ(F (f)) = d ≥ logq htK f −O(1),

as required.

Proposition 7. Assume that F is nonseparable. Then the assertion of
Theorem 1 holds for F .

Proof. Since F is squarefree and nonseparable, it has a nonseparable
irreducible factor F1 ∈ K[x]. It must be of the form F1(x) = G(xp) with
G ∈ K[x] \ Fq[x] monic. Of course G is also irreducible over K. Let L be
the maximal separable extension of K contained in the splitting field of G
over K. Over L we have a factorization of the form

(10) G(x) =

m∏
i=1

(xp
r − αi), αi ∈ L,

for some r ≥ 0, with the αi distinct. If all the αi are pth powers in L then
the coefficients of G are pth powers in L and therefore also in K (because
the extension K ⊂ L is separable), so F1(x) = G(xp) is a pth power of
a polynomial in K[x], which is impossible because F1 divides F and F is
squarefree. Therefore we may assume that one and therefore all the αi (since
they are conjugate over K) are not pth powers in L.

Take some f ∈ K and denote u = α−11 fp
r+1

. Since α1 is not a pth power
in L, neither is u. We have

u− 1 = α−11 (fp
r+1 − α1).

We may apply Proposition 5 to u to obtain∑
P∈sup(u)∪sup(u−1)

degP > htL u−O(1) = pr+1 htL f −O(1).
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However,∑
P∈sup(u)0

degP ≤
∑

P∈sup((f)L)0

degP +
∑

P∈sup(α1)

degP ≤ htL f +O(1),

and u and u− 1 have the same polar divisors, so

(11)
∑

P∈sup(u−1)

degP > (pr+1 − 1) htL f −O(1).

By (10) we have

F1(f) =
m∏
i=1

(fp
r+1 − αi).

As in the proof of Proposition 6 we see that a prime divisor P of L of
sufficiently large degree (depending only on F ) occurring in sup(u − 1)L
must also occur in sup(F1(f))L. Using (11) and arguing in the same way as
in the proof of Proposition 6 we obtain

δ(F1(f)) > logq htL f −O(1) = logq htK f −O(1).

Denote H = F/F1 ∈ K[x]. If F = F1 and H = 1, we are done. Otherwise
let Q be a prime divisor of K. There exists a constant N depending only
on F such that if degQ > N then Q is a pole of either F1(f) or H(f) iff
it is a pole of f (we just take N to be the maximum of the degrees of all
the poles of the coefficients of F1, H). For such Q, if Q ∈ sup(F1(f))K then
also Q ∈ sup(F (f))K (zeroes and poles cannot cancel out those of H(f)).
Therefore

δ(F (f)) > δ(F1(f))−O(1) > logq htL f −O(1) = logq htK f −O(1),

as required.

Now Theorem 1 follows by combining Propositions 6 and 7.

4. Proof of Theorem 2. Let F ∈ K[x] be a separable polynomial of
degree m = degF , with roots a1, . . . , am ∈ K.

4.1. Proof of Theorem 2(i). Let F be exceptional. We want to show
that it must divide a nonzero polynomial of the form

(12) xq
n − sx+ t, s, t ∈ K, n ≥ 0,

as asserted in Theorem 2(i). Let L be the splitting field of F over K, and
Fqν the field of constants in L. Since F is exceptional, for all distinct 1 ≤
i, j, k ≤ m we have (ai−aj)/(ai−ak) ∈ Fq. Equivalently, there exist α, β ∈ L
and bi ∈ Fqν , 1 ≤ i ≤ m, such that ai = αbi + β (if the former condition
holds, just take β = a1, α = a2 − a1, bj = (aj − a1)/(a2 − a1); the other
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implication is clear). Consider the polynomial

(13) G(x) =
∏
b∈Fqν

(x− αb− β) = xq
ν − αqν−1

x+ αq
ν−1

β − βqν ∈ L[x]

(to see that this identity holds just substitute αb + β into the RHS to see
that it is a root for every b ∈ Fqν ). If G ∈ K[x] then F divides G, which
has the form (12). If G 6∈ K[x] then there exists an automorphism σ of L
over K such that Gσ 6= G (where Gσ is obtained from G by applying σ to
each coefficient). The polynomial F divides G, and since F ∈ K[x] it also
divides Gσ. Therefore F divides G−Gσ. But from (13) we see that G−Gσ
is linear, so F must be linear and already has the form (12). This concludes
the proof of one implication of Theorem 2(i).

To prove the other implication assume that F divides G(x) = xq
n−sx+t

for some n ≥ 1 and s, t ∈ K (if F is linear it is obviously exceptional, so we
may assume n ≥ 1). There exist α, β ∈ K such that

αq
n−1 = s, αq

n−1β − βqn = t.

The roots of G over K are precisely

αb+ β, b ∈ Fqn ,
so the roots of F have the form ai = αbi + β, bi ∈ Fqn and F is exceptional.
This concludes the proof of Theorem 2(i).

4.2. Proof of Theorem 2(ii). Suppose F is exceptional and therefore
it divides the nonzero polynomial

G(x) = xq
n − sx+ t, s, t ∈ K.

Since the assertion of Theorem 2(ii) is trivial for F linear, we assume that
n ≥ 1. If s = 0 then G has only one root over K, and F cannot be separable
unless it is linear. Hence we assume that s 6= 0. Choose some f0 ∈ K with
a pole P of degree degP > δ(s), δ(t) and define recursively

fk+1 =
f q

n

k + t

s
, k ≥ 0.

By induction the prime divisor degP is a pole of multiplicity at least qkn of
fk+1, therefore ht fk+1 →∞ as k →∞. Now observe that

G(fk+1) = f q
n

k+1 − sfk+1 + t =
f q

2n

k + tq
n

sqn
− f q

n

k

=
(f q

n

k − sfk + t)q
n

sqn
=

(
G(fk)

s

)qn
,

so
δ(G(fk+1)) ≤ max

(
δ(G(fk)), s

)
and therefore δ(G(fk)) stays bounded as k →∞.
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Now write G(x) = F (x)H(x), H ∈ K[x]. If G = F and H = 1 we are
done. Otherwise let P be a prime divisor not appearing in the supports of
the coefficients of F , H. Then for any f ∈ K×, P is a pole of F (f) iff it is a
pole of f and of H(f). We see that a sufficiently large (depending only on the
coefficients of F , H) prime divisor cannot be canceled out when we multiply
F (f) by H(f), so if δ(F (f)) is sufficiently large we have δ(G(f)) ≥ δ(F (f)),
hence δ(F (fk)) is also bounded as k → ∞. This concludes the proof of
Theorem 2(ii).

4.3. Proof of Theorem 2(iii). Assume that F is exceptional. As in
the proof of Theorem 1 we will also assume without loss of generality that
F is monic. If F is linear the assertion of Theorem 2(iii) is obvious, so we
assume degF = m ≥ 2. Assume that F divides

G(x) = xq
n − sx+ t, s, t ∈ K, n ≥ 1.

We fix one such G once and for all, so s, t, n are also fixed. We have
s 6= 0, otherwise F would be linear. It follows that G is separable because
its derivative is −s ∈ K×. Let α, β ∈ K be such that

αq
n−1 = s, αq

n−1β − βqn = t.

Then the roots of G are αb + β, b ∈ Fqn and the roots of F have the form
ai = αbi + β, bi ∈ Fqn , 1 ≤ i ≤ m. Let L be the splitting field of G over
KFqn (the composite of the fields K, Fqn). It is a separable extension of K
since G is separable. Since degG ≥ 2 and s 6= 0, G has at least two distinct
roots αb+ β and αb′ + β, from which it follows that α, β ∈ L.

Now let f ∈ K be such that sf − t is not a pth power in K. Denote
u = (f − β)/α ∈ L. We claim that u is not a pth power in L. Suppose to
the contrary that u is a pth power. Then so is u− b for any b ∈ Fqn . Now

G(f) =
∏
b∈Fqn

(f − αb− β) = αq
n
∏
b∈Fqn

(u− b),

so G(f) is a pth power in L and therefore also in K, because K ⊂ L is a
separable extension. But G(f) = f q

n − sf + t, so sf − t is also a pth power,
a contradiction. Therefore u is not a pth power.

Now we apply Proposition 4 to the field L, function u and constants
b1, . . . , bm. We obtain the inequality∑

P∈
⋃m
i=1 sup(u−bi)L

degP > (m− 1) htL u−O(1),

where O(1) stands for a quantity bounded by a constant depending only on
F and G (the latter was fixed for a given exceptional F ). Since

F (f) =

m∏
i=1

(f − αbi − β) = αm
m∏
i=1

(u− bi)
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we see that a prime divisor P of L with degP > δ(α) and appearing in⋃m
i=1 sup(u− bi)L must also appear in sup(F (f))L (note that u− bi have the

same poles for 1 ≤ i ≤ m), so

(14)
∑

P∈sup(F (f))L

degP > (m− 1) htL u−O(1).

Now denoting d = δ(F (f)) and arguing as in the proof of Proposition 6
(where we derived (9) from (7)) we deduce from (14) that

(1 + o(1))(1− 1/q)−1qd > (m− 1) htK f −O(1)

(here o(1) is a quantity tending to 0 as htK f → ∞ for fixed F,G), from
which it follows that

d > logq htK f + logq(m− 1) + logq(1− 1/q)− o(1),

and this is exactly the assertion of Theorem 2(iii).
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[6] M. Langevin, Partie sans facteur carré de F (a, b) (modulo la conjecture (abc)),
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