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Optimal curves differing by a 5-isogeny
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Dongho Byeon and Taekyung Kim (Seoul)

1. Introduction. For a positive integer N , let X1(N) = H∗/Γ1(N)
and X0(N) = H∗/Γ0(N) denote the usual modular curves. Let C denote an
isogeny class of elliptic curves defined over Q of conductor N . For i = 0, 1,
there is a unique curve Ei ∈ C and a parametrization φi : Xi(N)→ Ei such
that for any E ∈ C and parametrization φ′i : Xi(N)→ E, there is an isogeny
πi : Ei → E such that πi ◦ φi = φ′i. For i = 0, 1, the curve Ei is called the
Xi(N)-optimal curve.

It seems that for most isogeny classes C, E0 and E1 are the same. How-
ever, there are also several examples of isogeny classes with non-isomorphic
optimal curves. For example, E0 = X0(11) and E1 = X1(11) differ by a 5-
isogeny. Based on numerical observations, Stein and Watkins [SW] made a
precise conjecture on the classification of isogeny classes with non-isomorphic
optimal curves. According to those authors, in any isogeny class C, the op-
timal curves E0 and E1 are only isogenous by an isogeny of degree 1, 2, 3,
4, or 5. For the 5-isogeny case, they made the following

Conjecture (Stein and Watkins). For i = 0, 1, let Ei be the Xi(N)-
optimal curve of an isogeny class C of elliptic curves defined over Q of
conductor N . Then E0 and E1 differ by a 5-isogeny if and only if E0 =
X0(11) and E1 = X1(11).

Remark. This conjecture needs to be modified as in the case of 3-
isogeny (cf. [BY2]) because there is a counterexample when N is not square-
free or 5 |N . For example, assuming Stevens’s conjecture [St, Conjecture
2.4]), consider the isogeny class ‘33825be’ in Cremona’s database of elliptic
curves [Cr]. In this case, the curves ‘33825be1’ and ‘33825be3’ areX0(33825)-
and X1(33825)-optimal, respectively.

In [BY2], Byeon and Yhee proved that the conjecture of Stein and
Watkins is true for the case of 3-isogeny if N is square-free and 3 - N .
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(There is an error in the proof of (ii) of Theorem 1.1 in [BY2]. However
this error can be amended by using Proposition 4.1 below. For details, see
Remark in §4.) In this paper, we prove that the conjecture of Stein and
Watkins is true for the case of 5-isogeny if N is square-free and 5 - N :

Theorem 1.1. For i = 0, 1, let Ei be the Xi(N)-optimal curve of an
isogeny class C of elliptic curves defined over Q of conductor N . Suppose
that N is square-free and 5 - N . Then E0 and E1 differ by a 5-isogeny if
and only if E0 = X0(11) and E1 = X1(11).

2. Preliminaries. Let C be an isogeny class of elliptic curves defined
over Q. For any E ∈ C, let EZ be the Néron model over Z and ωE a Néron
differential on E. Let π : E → E′ be an isogeny with E,E′ ∈ C. We say
that π is étale if the extended morphism EZ → E′Z between Néron models
is étale. Equivalently, π is étale if kerπ is an étale group scheme. We need
the following facts about étale isogenies (cf. [Va]):

• If π : E′ → E is any isogeny over Q, then we have π∗(ωE) = nπωE′

for some non-zero nπ ∈ Z. Moreover, the isogeny π is étale if and only
if nπ = ±1.
• If π is any isogeny of prime degree, then precisely one of π or its dual

isogeny π̂ is étale.
• The composition of two étale isogenies is also étale.
• Any étale isogeny is necessarily cyclic.
• Let E be an elliptic curve over Q which admits a cyclic l-isogeny
E → E′, for an odd prime l. Then it is étale if and only if its kernel is
isomorphic to Z/lZ as a Gal(Q/Q)-module.

Stevens [St] proved that in every isogeny class C of elliptic curves defined
over Q, there exists a unique curve Emin ∈ C such that for every E ∈ C,
there is an étale isogeny π : Emin → E. The curve Emin is called the minimal
curve in C. Stevens conjectured that Emin = E1 and Vatsal [Va] proved the
following theorem.

Theorem 2.1 (Vatsal). Suppose that the isogeny class C consists of
semi-stable curves. Then the étale isogeny π : Emin → E1 has degree a
power of two.

Dummigan [Du] proved the following theorem under a certain condition
and later Byeon and Yhee [BY1] proved that it is in fact unconditionally
true.

Theorem 2.2 (Dummigan). Let E ∈ C be an elliptic curve defined
over Q of square-free conductor N with a rational point of order l - N .
Then E0 ∈ C has a rational point of order l.
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3. Hadano’s conjecture. Let E be a rational elliptic curve of conduc-
tor N having a rational torsion point of order n, and p be a prime dividing n.
In [Ha], Hadano investigated whether the p-isogenous curve E′ to E has a
rational torsion point of order n again. In this paper, we need the case when
n = p = 5. For this case, Hadano’s work can be restated as follows.

When a rational elliptic curve E has a rational 5-torsion point, we can
take a Weierstrass equation for E:

(1) E : y2 + (v − u)xy − uv2y = x3 − uvx2

where u, v ∈ Z with (u, v) = 1 and u > 0. Note that the discriminant ∆
of E is given by

∆ = u5v5(u2 − 11uv − v2)
and the torsion group is T = {∞, (0, 0), (uv, u2v), (uv, 0), (0, uv2)}.

Lemma 3.1. The Weierstrass equation of the form (1) with u, v ∈ Z,
(u, v) = 1, and u > 0 is minimal.

Proof. We only need to check the minimality of (1) for primes divid-
ing ∆ = u5v5(u2 − 11uv − v2). For primes p dividing uv, we can ob-
tain minimality by simply looking at the order of the constant c4: indeed,
ordp c4 = 0. Suppose that a prime p divides u2 − 11uv − v2, and assume
ordp∆ = ordp(u

2 − 11uv − v2) ≥ 12. Note that in this case p can divide
neither u nor v, as (u, v) = 1. Since c4 = u4 − 12u3v+ 14u2v2 + 12uv3 + v4,
by dividing c4 by u2 − 11uv − v2 we have

c4 = (u2 − 11uv − v2)(−4u2 − uv − v2) + 5u3(u− 11v).

If p | c4, then we must have p = 5 or p | (u− 11v) (or both). If p | (u− 11v),
then since u2−11uv−v2 = (u−11v)u−v2, we must have p | v, a contradiction.
Thus, in any remaining cases, we have ordp c4 ≤ 1, and hence the equation
is minimal at p.

Let E′ be an elliptic curve defined by E′ = E/T . Then E′ is given by a
model

(2) E′ : y2 + (v − u)xy − uv2y = x3 − uvx2 + (5uv3 − 10u2v2 − 5u3v)x

+ (uv5 − 15u2v4 + 5u3v3 − 10u4v2 − u5v)

with discriminant ∆′ = uv(u2 − 11uv − v2)5.

Lemma 3.2. The Weierstrass equation (2) with u, v ∈ Z, (u, v) = 1, and
u > 0 is minimal, possibly outside of the prime p = 5.

Proof. As in Lemma 3.1, we only need to consider the primes p dividing
∆′ = uv(u2 − 11uv − v2)5. If p divides uv, then the c4-invariant c′4 of the
equation (2) has order 0 at p. So suppose that p divides u2 − 11uv − v2.
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In order to show minimality, we can also assume ordp(u
2 − 11uv − v2) ≥ 3.

Note that in this case we have neither p |u nor p | v. Since

c′4 = u4 + 228u3v + 494u2v2 − 228uv3 + v4

= (u2 − 11uv − v2)(−3124u2 + 239uv − v2) + 55u3(u− 11v),

and since u2 − 11uv − v2 = (u − 11v)u − v2, we must have p = 5 and
p - (u− 11v).

Note that when equation (2) is not minimal modulo p = 5, the minimal
discriminant of the equation is exactly ∆′/512. For E′ to have a rational
point of order 5 again, the equation must be transformed into the form

(3) E′ : y2 + (V − U)xy − UV 2y = x3 − UV x2

for some U, V ∈ Z with (U, V ) = 1 and U > 0. Since (2) and (3) must define
the same curve, we can compare their discriminants and c4-invariants. Since
(3) is minimal (Lemma 3.1), we have

(4) uv(u2 − 11uv − v2)5 = 512kU5V 5(U2 − 11UV − V 2)

and

(5) v4 − 228uv3 + 494u2v2 + 228u3v + u4

= 54k(V 4 + 12UV 3 + 14U2V 2 − 12U3V + U4),

for some k ∈ {0, 1} chosen according to whether equation (2) is minimal or
not.

Let

r =
u2 − 11uv − v2

UV
∈ Q.

Then

UV r = u2 − 11uv − v2,
uvr5 = 512k(U2 − 11UV − V 2).

(6)

Set s = v/u ∈ Q. If we write f(x, y) = x2 − 11xy − y2, then the right hand
side of (5) can be written as 54k(f(U, V )2 + 10UV f(U, V ) + 5U2V 2). We
divide both sides of (5) by u4 and consider the formulae (6) to obtain

(7) s4 − 228s3 + 494s2 + 228s+ 1

=
54k(f(U, V )2 + 10UV f(U, V ) + 5U2V 2)

u4

=
r2524k(f(U, V )2 + 10UV f(U, V ) + 5U2V 2)

520kr2u4
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=
u2v2r12 + 10 · 512kuvf(u, v)r6 + 5 · 524kf(u, v)2

520kr2u4

=
s2r12 + 2 · 512k+1(s− 11s2− s3)r6 + 524k+1(1− 22s+ 119s2 + 22s3 + s4)

520kr2
.

By multiplying both sides of (7) by 520kr2, we get the Diophantine equation

(8) 520kr2(s4 − 228s3 + 494s2 + 228s+ 1)

= s2r12 + 2 · 512k+1(s− 11s2 − s3)r6 + 524k+1(1− 22s+ 119s2 + 22s3 + s4).

Moreover, when k = 0, we get a simpler equation

[−r5s+ 5r4s− 15r3s+ 25r2s− 25rs+ s2 + 11s− 1]

× [r5s+ 5r4s+ 15r3s+ 25r2s+ 25rs+ s2 + 11s− 1]× [r2 − 5] = 0.

Since r ∈ Q, we drop the last factor to get

[s2 − 1− (r5 − 5r4 + 15r3 − 25r2 + 25r − 11)s]

× [s2 − 1 + (r5 + 5r4 + 15r3 + 25r2 + 25r + 11)s] = 0,

so if we make the substitution r + 1 = t or r − 1 = t, the above equation is
equivalent to

(9) s2 + (t4 + 5t2 + 5)st = 1.

Unlike the case k = 0, when k = 1, we cannot reduce the equation (8) to a
simpler one.

Hadano [Ha] only considered the case k = 0, and proved the following
proposition. We slightly modify his result to cover all possible cases.

Proposition 3.3 (Hadano). If a rational elliptic curve E of conductor
N has a rational point P of order 5 and E′ := E/〈P 〉 has a rational point
of order 5 again, then the Diophantine equation (8) has a rational solution
in (r, s) (specifically, the Diophantine equation (9) has a rational solution
in (s, t) when k = 0).

We can observe that (9) has trivial solutions (s, t) = (±1, 0), and these
correspond to the elliptic curves E = X1(11) and E′ = X0(11). Based on
this observation and Proposition 3.3, Hadano [Ha] conjectured the following.

Conjecture (Hadano). The Diophantine equation (9) has only trivial
solutions (s, t) = (±1, 0). In particular, if a rational elliptic curve E has a
rational point P of order 5 and E′ := E/〈P 〉 has a rational point of order 5
again, then E′ = X0(11) and E = X1(11).

Rubin and Silverberg [RS] considered some families of elliptic curves with
constant mod-p representations. In particular, following Klein, they defined
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an elliptic curve Bu over Q(u) as follows:

Bu : y2 = x3 − u20 − 228u15 + 494u10 + 228u5 + 1

48
x

+
u30 + 522u25 − 10005u20 − 10005u10 − 522u5 + 1

864
.

The curve Bu has the property that Bu[5] ∼= (Z/5Z)⊕µ5 as Gal(Q(u)/Q(u))-
module. Using this curve, we show:

Proposition 3.4. Hadano’s conjecture is not true.

Proof. By substituting a special value u ∈ Q, we get an elliptic curve de-
fined over Q which has its full 5-torsion subgroup isomorphic to (Z/5Z)⊕µ5
as Gal(Q/Q)-module. Hence, at least in the case that Bu gives a semistable
curve, we have a sequence of elliptic curves with étale isogenies

Bu/µ5 → Bu → Bu/(Z/5Z).

More concretely, if we substitute u = 3, then Bu becomes the semistable
curve ‘185163a2’ in Cremona’s database, and we have

‘185163a1’→ ‘185163a2’→ ‘185163a3’,

where both arrows indicate étale isogenies. This sequence corresponds to the
solution s = −1/243 and t = −8/3 of (9). So Hadano’s conjecture is not
true.

Remark. In the case k = 1, we have the following example. Consider
the elliptic curve Bu with u = 2. This gives a sequence

‘550k3’→ ‘550k2’→ ‘550k1’.

This curve corresponds to the solution (r, s) = (125/2,−1/32) of (8).

4. Proof of Theorem 1.1. Let f be the newform associated to an
elliptic curve E of conductor N . Consider the case that N is square-free.
For d |N , let Wd be the Atkin–Lehner involution and let wd = ±1 be such
that Wdf = wdf (cf. [AL]). We note that for primes p |N , wp = −1 or +1
according as the multiplicative reduction at p is split or non-split, respec-
tively.

Proposition 4.1. Let E0 be the X0(N)-optimal curve of an isogeny
class C of elliptic curves defined over Q of conductor N , and l be an odd
prime. Suppose that N is square-free and l - N . If µ` ⊂ E0[`], then there is
only one prime p |N such that wp = −1.

Proof. By [Va, Theorem 1.1], µ` ⊂ E0[l] must be contained in the
Shimura subgroup Σ(N) of J0(N). By [LO, Theorem 1], Σ(N) is isomorphic
to a subgroup of Hom((Z/NZ)×, U), where U is the group of complex num-
bers of modulus 1. So µ` is isomorphic to a subgroup of Hom((Z/pZ)×, U)
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for a prime p |N such that p ≡ 1 (mod `). We know that wp = −1 because
p ≡ 1 (mod `) implies that E0 has split multiplicative reduction at p. By
[LO, Theorem 3], Wp acts on µ` by multiplication by −1, and Wq acts triv-
ially on µ` for primes q 6= p and q |N . This implies that wp = −1 and wq = 1
for primes q 6= p and q |N .

Proof of Theorem 1.1. The Q-isogeny class of X0(11) consists of three
elliptic curves ‘11a1’ = X0(11), ‘11a2’ = X0(11)/(Z/5Z) and ‘11a3’ =
X0(11)/µ5 = X1(11) (cf. Cremona’s database). So we have rational étale
isogenies

‘11a3’→ ‘11a1’→ ‘11a2’.

Hence X0(11)- and X1(11)-optimal curves differ by a 5-isogeny.
Now, let C be an isogeny class of elliptic curves over Q with a square-free

conductor N which is not divisible by 5. Suppose that E0 and E1 differ by
a 5-isogeny. (We can show that E0 and E1 cannot differ by an isogeny of
degree 5n, n > 1.) Then by Vatsal’s theorem (Theorem 2.1), there is an
étale rational 5-isogeny E1 → E0. So E1 contains a rational point of order 5.
By Dummigan’s theorem (Theorem 2.2), E0 also contains a rational point
of order 5, and by taking the quotient by the subgroup it generates, we can
find another curve E′ ∈ C. We know that E′ has no rational 5-torsion points
(cf. [Ke]). So we have the following diagram of curves with étale 5-isogenies:

E1 → E0 → E′.

Since the dual isogeny of E1 → E0 is not étale, the kernel of the dual isogeny
equals µ5 ⊂ E0[5].

Suppose that E1 has Weierstrass model given by

y2 + (v − u)xy − uv2y = x3 − uvx2,
where u, v ∈ Z with (u, v) = 1. Since wp = −1 for each prime p dividing uv,
we must conclude that uv is divisible by at most one prime p, by Proposition
4.1. Suppose that uv = ±1. Invoking Hadano’s considerations, our sequence
of curves with étale isogenies E1 → E0 → E′ corresponds to finding a
rational solution (s, t) ∈ Q×Q of equation (9) with the additional condition
s = v/u = ±1. Since the polynomial equation t4 + 5t2 + 5 does not admit
rational solutions, we must have t = 1 and this solution gives E0 = X0(11)
and E1 = X1(11).

Now, it remains to deal with the case uv = ±p for some prime p.
Hadano’s Diophantine equation (9) in this case has the form

(10) p2 ± p(t4 + 5t2 + 5)t = 1.

Changing this equation into a homogeneous form and viewing it modulo p,
we easily deduce that it does not admit a rational solution in t ∈ Q. This
proves Theorem 1.1.
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Remark. In the proof of (ii) of Theorem 1.1 in [BY2], to show that
if E0 and E1 differ by a 3-isogeny, there is only one prime p |N such that
wp = −1, we used the commutative diagram (see [BY2, (2), p. 225])

E(Q)tors
λ //

ψ̂
��

E(Qp)/E
0(Qp)

ψ̂′

��
J0(N)(Q)tors

λ′ // ΦN,p

and injectivity of ψ̂′. But we realize that ψ̂′ is not generally injective,
though ψ̂ is. For example, consider the curve ‘155a1’ in Cremona’s database.
When N = 155 = 5 · 31 and p = 5, the component group Φ155,5 has or-
der 3 · 25, which is easily obtained from Table 2 of the appendix in [Ma].
Meanwhile the Tamagawa number of ‘155a1’ at p = 5 is 5, which shows
that ψ̂′ cannot be injective. However, using Proposition 4.1 and the fact
that µ3 ⊂ E0, we can show that there is only one prime p |N such that
wp = −1.
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