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1. Introduction. Let Q(x) ∈ Z[x1, x2, x3] be a non-singular quadratic
form. We denote by Z3

prim the integer vectors x that are primitive, i.e.
gcd(x) = 1. Our main concern in this paper is the number of primitive
integer zeros of Q contained in an expanding region of R3. It is therefore
only the case that Q is isotropic that we are interested in, and we will
proceed under this assumption for the rest of the paper.

For an arbitrary norm ‖ · ‖ : R3 → R≥0 define the counting function

N(Q,B) := #{x ∈ Z3
prim : Q(x) = 0, ‖x‖ ≤ B}.

A very special case of [7] establishes the asymptotic formula

N(Q,B) ∼ cQB
as B →∞. This confirms the Manin conjecture; furthermore cQ = cQ(‖ · ‖)
is a positive constant which was later interpreted by Peyre [10].

Let 〈Q〉 denote the maximum modulus of the coefficients ofQ. As pointed
out in [2], one expects the existence of absolute constants β, γ > 0 such that

N(Q,B) = cQB +O(B1−γ〈Q〉β).

Our aim is to establish such an estimate and furthermore to state explicitly
admissible values for β and γ.

We begin by recalling some related results. Let w : R3 → R≥0 be a
smooth weight function of compact support and let

Nw(Q,B) :=
∑

x∈Z3
prim

Q(x)=0

w(B−1x).

It is proved in [8, Cor. 2] that there exists a positive constant c1 such that

Nw(Q,B) = cQ,wB +OQ,w(B exp{−c1

√
logB})

as B →∞. The proof is carried out via a modification of the circle method.
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Let ∆Q and δQ be respectively the discriminant and the greatest common
divisor of the 2× 2 minors of the matrix of the form Q. In [1, Cor. 2], it is
proved that

N(Q,B)� τ(|∆Q|)
(

1 +
Bδ

1/2
Q

|∆Q|1/3

)
,

where τ denotes the divisor function. It should be stressed that the implied
constant is absolute.

We provide the definition of the leading constant cQ before stating our
main result. We define the Hardy–Littlewood local densities following [8].
Let

(1.1) σ∞ := σ∞(Q, ‖ · ‖) = lim
ε→0

1

2ε

�

|Q(x)|≤ε
‖x‖≤1

1 dx,

and similarly for any prime p, let

(1.2) σp := σp(Q) = lim
n→∞

1

p2n
N∗Q(pn),

where for any positive integer n,

N∗Q(pn) := #{x (mod pn) : p -x, Q(x) ≡ 0 (mod pn)}.

The Peyre constant is then defined as

cQ =
1

2
σ∞
∏
p

σp

where the product is taken over the set of primes and is convergent. Let
C ⊆ P2 be the smooth projective curve defined by Q. The factor α(C) = 1

2
is due to the fact that the anticanonical line bundle is twice the generator
of the Picard group Pic(C) ∼= Z, where α(C) is the volume of a certain
polytope contained in the cone of effective divisors.

As usual, we denote by ‖ · ‖ and ‖ · ‖2 the maximum and the Euclidean
norm on R3 respectively. Next, for any norm ‖ · ‖ : R3 → R≥0, let

(1.3) K‖·‖ := 1 + sup
x 6=0

‖x‖∞
‖x‖

,

and notice that K‖·‖ is a constant depending only on the choice of ‖ · ‖.
Finally, let us recall that two norms ‖ · ‖, ‖ · ‖′ : R3 → R≥0 are called

isometric when there exists a matrix g ∈ GL3(R) such that ‖gx‖ = ‖x‖′ for
all x ∈ R3.

We have the following result.



Rational points on conics 3

Main Theorem 1.1. Let Q be a ternary non-singular integer quadratic
form with a rational zero and ‖ · ‖ be any norm isometric to the maximum
or the Euclidean norm. Then

N(Q,B) = cQB +O
(
(BK‖·‖)

1/2 log(BK‖·‖)〈Q〉5
)

for B ≥ 2. The implied constant is absolute.

The proof of Theorem 1.1 reveals that for any ε > 0, at the expense of an
implied constant that depends on ε, one can replace 〈Q〉5 in the error term

by 〈Q〉19/20+ε as well as by 〈Q〉4+εδ
1/2
Q (see (6.2)). Further improvements

may follow using [9, Theorem 1]. We hope it will be apparent to the reader
that the main value of Theorem 1.1 lies in its generality rather than the
exponent of 〈Q〉 obtained.

The proof is conducted in two stages. Firstly, in §2–§5, we prove Theo-
rem 1.1 for conics of a special shape, using the fact that since C(Q) 6=∅, there
is a morphism P1 → C. The conditions involving the resulting parametrising
functions lead to a lattice counting problem. We stress that the choice of
the parametrising functions is not unique, and choosing them appropriately
plays a significant rôle. Some related work has been done in [4] and [11]. The
second stage is performed in §6. Here we apply a unimodular transformation
to a conic of general shape to transform the problem into the one we have
already treated.

Notation. The implied constants in the O(·) notation will be absolute
throughout this paper, except where specifically indicated by a subscript.
The norm notation ‖ · ‖ will be reserved for norms of elements of R3 while
‖ · ‖∞ will be used for the matrix supremum norm in R3×3, defined by
‖(ai,j)1≤i,j≤3‖∞ := max1≤i,j≤3 |ai,j |, as well as the supremum norm in R3.
We denote the generalised divisor function by τk(n), which is defined to be
the number of representations of n as the product of k natural numbers.
The well-known bound τk(n) �k,ε n

ε, valid for each ε > 0, will be used.
By
∑∗

(s,t) (modn), we shall denote summation over s, t ∈ [1, n] subject to the

condition gcd(s, t, n) = 1.

2. Preliminary estimates. Throughout §2–§5, we denote by Q qua-
dratic forms of which (0, 1, 0) is a zero, i.e.

Q(x) = ax2 + bxy + dxz + eyz + fz2,

where a, . . . , f ∈ Z. We will denote by ∆Q its discriminant,

∆Q = ae2 − deb+ fb2.

It is our intention in the aforementioned sections to prove the following spe-
cial version of Theorem 1.1. Its proof hinges upon the classical parametri-
sation of a conic by the lines going through a given point.
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Proposition 2.1. Let Q be a non-singular integer ternary quadratic
form as above. Then for any norm isometric to the maximum or the Eu-
clidean norm and for any ε > 0,

N(Q,B) = cQB

+Oε
(
(BK‖·‖)

1/2 log(BK‖·‖) min{|∆Q|1/4, δ1/2
Q }(|∆Q|+〈Q〉)〈Q〉ε

)
for B ≥ 2.

Let

Π :=

 b e 0

−a −d −f
0 b e


and define the three binary quadratic forms q1, q2, q3 via

(2.1) q(s, t) = Π

s
2

st

t2


where q = (q1, q2, q3)T . One can verify that det(Π) = ∆Q, in particular the
matrix Π is invertible. Hence

(2.2) adj(Π)q(s, t) = ∆Q

s
2

st

t2

 .

Notice that for

(2.3)
g(s, t) := as2 + dst+ ft2,

L(s, t) := bs+ et,

one has

(2.4)

q1(s, t) = sL(s, t),

q2(s, t) = −g(s, t),

q3(s, t) = tL(s, t).

For each integer n, let

(2.5) ρ∗(n) := #{(s, t) ∈ [0, n)2 : n |q(s, t), gcd(s, t, n) = 1},
and note that ρ∗ is a multiplicative function. Equations (2.4) imply that

ρ∗(n) = #{(s, t) ∈ [0, n)2 : n | (L(s, t), g(s, t)), gcd(s, t, n) = 1}.
Lemma 2.2.

(i) The function ρ∗ is supported on the divisors of ∆Q/gcd(b, e).
(ii) For all integers n we have

ρ∗(n) ≤ n gcd(b, e).
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Proof. (i) It suffices to show that for each prime p and integer ν ≥ 1
with ρ∗(pν) 6= 0 we have

ν + min{vp(b), vp(e)} ≤ vp(∆Q).

Let (s, t) be counted by ρ∗(pν). We may assume without loss of generality
that vp(b) ≤ vp(e). Since gcd(b, e)2 |∆Q, in the case ν ≤ vp(b) our claim is

trivial. If ν > vp(b) then we may write b = pvp(b)b′, e = pvp(e)e′ with p - b′e′.
Plugging these values into the congruence L(s, t) ≡ 0 (mod pν) yields

(2.6) b′s ≡ −pvp(e)−vp(b)e′t (mod pν−vp(b))

and hence p - t, since otherwise we would have p | (s, t), which would contra-
dict the definition of ρ∗(pn). We deduce that

t2(ae2p−2vp(b) − deb′p−vp(b) + fb′
2
) ≡ b′2g(s, t) ≡ 0 (mod pν−vp(b))

and therefore pν+vp(b) | ae2 − deb+ fb2 = ∆Q, which concludes the proof of
the first part.

(ii) It suffices to prove that for all primes p and integers ν ≥ 1 we have

(2.7) ρ∗(pν)/pν ≤ pmin{vp(b),vp(e)}.

Let (s, t) be counted by ρ∗(pν). As previously, we may assume vp(b) ≤ vp(e).
If ν ≤ vp(b), then (2.7) is a consequence of the trivial bound ρ∗(pν) ≤ p2ν .
In the opposite case we proceed as in the proof of (i). Then (2.6) shows that
s/t (mod pν−vp(b)) is uniquely determined and can be lifted to at most pvp(b)

values modulo pν , which proves (2.7) in all cases.

We record a generalisation of Möbius inversion that will be used later.

Lemma 2.3. Let A be a finite subset of Z2 and n a fixed integer. Then

#{(s, t) ∈ A : gcd(s, t) = 1}

=

∞∑
m=1

gcd(m,n)=1

µ(m)#

{
(s, t) ∈ A :

gcd(s, t, n) = 1,

m | s, m | t

}
.

Proof. Define 1A : Z2 → {0, 1} to be the indicator function of A. Möbius
inversion gives ∑

gcd(s,t,n)=1
gcd(s,t)=1

1A(s, t) =
∞∑
m=1

µ(m)
∑

gcd(s,t,n)=1
m|s,m|t

1A(s, t).

Our assertion is proved upon noticing that only m coprime to n are taken
into account in the summation.
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3. Parametrisation of the conic. In this section, we begin by showing
how the problem of counting points on conics can be rephrased using the
parametrisation functions q(s, t). This will lead us to count primitive integer
points in regions of R2.

Let

(3.1) N (Q,B) := #{(s, t) ∈ Z2
prim : t > 0, ‖q(s, t)‖ ≤ λB},

where λ = gcd(q(s, t)) ∈ Z.

Lemma 3.1. N(Q,B) = N (Q,B) +O(1), where the implied constant is
absolute.

Proof. Let C ⊂ P2 be the curve given by Q = 0 and denote the point
(0, 1, 0) of C by ξ. The tangent line to C through ξ is given by

Lξ := {ez = bx}.

Let L be the set of projective lines in P2 that pass through ξ, and L(Q) be
the corresponding subset of lines that are defined over Q. Define U ⊂ C as
the open subset formed by deleting ξ from C. Letting U := L \ {Lξ}, we
note that the sets U(Q) and U(Q) are in bijection.

The general element of L(Q) is given by

Ls,t := {sz = tx}

for integer pairs (s, t) such that gcd(s, t) = 1. The condition (s, t) 6= (b,e)
gcd(b,e)

ensures that we have a point in U(Q). One can ignore this, since the con-
tribution of such s, t is O(1). The bijection between lines with t > 0 and
t < 0 allows us to consider the contribution coming from the former.
The contribution of pairs (s, t) with t = 0 is O(1) due to the condition
gcd(s, t) = 1.

The bijection between U(Q) and U(Q) can be made explicit as follows.
Recall the definition of L, g in (2.3). A computation reveals that the line Ls,t
intersects C in the point (x, y, z) if and only if either zg(s, t) + ytL(s, t) = 0
or z = 0. In the latter case, one gets the point ξ, which is to be ignored. In
the former case, we have

−g(s, t)xt = −g(s, t)sz = syL(s, t)t,

by the equation for Ls,t. The primitive integer vectors (x, y, z) represent a
point in C(Q) if and only if

(x, y, z) = ±
(
sL(s, t)/λ,−g(s, t)/λ, tL(s, t)/λ

)
,

where λ = gcd(sL(s, t),−g(s, t), tL(s, t)). Making use of (2.4) concludes the
proof of the lemma.
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For any T ∈ R≥1 and n, σ, τ ∈ N, define

(3.2) M∗σ,τ (T, n) := #

{
(s, t) ∈ Z2

prim :
(s, t) ≡ (σ, τ) (mod n),

t > 0, ‖q(s, t)‖ ≤ T

}
.

Lemma 3.2.

N (Q,B) =
∑

kλ|∆Q/gcd(b,e)

µ(k)
∑∗

(σ,τ) (mod kλ)
kλ|(L(σ,τ),g(σ,τ))

M∗σ,τ (Bλ, kλ).

Proof. Any integer λ that appears in (3.1) satisfies λ |q(s, t) for some

coprime integers s, t, so Lemma 2.2(i) implies that λ | ∆Q

gcd(b,e) . Therefore

N (Q,B) =
∑

λ|∆Q/gcd(b,e)

#

{
(s, t) ∈ Z2

prim :
λ |q(s, t), gcd(q(s, t)/λ) = 1,

t > 0, ‖q(s, t)‖ ≤ Bλ

}
.

Using Lemma 2.3 with n = 1 gives

(3.3) N (Q,B) =
∑

kλ|∆Q/gcd(b,e)

µ(k)M∗(Bλ, kλ),

where for any T ≥ 1 and n ∈ N,

M∗(T, n) := #

{
(s, t) ∈ Z2

prim :
n |q(s, t), t > 0,

‖q(s, t)‖ ≤ T

}
.

Partitioning into congruence classes modulo n yields

M∗(T, n) =
∑∗

(σ,τ) (modn)
n|(L(σ,τ),g(σ,τ))

M∗σ,τ (T, n),

which, when used along with (3.3), yields the proof of the lemma.

4. Counting lattice points. The quantity appearing in (3.2) involves
integer points (s, t) which are primitive. We will use Möbius inversion to deal
with this condition. This will lead us to count integer points in a dilated
region. In order to do so, one needs certain information regarding this region,
which is the purpose of the next lemma.

Recall the definition (2.1). Define

(4.1) V := {(s, t) ∈ R2 : t > 0, ‖q(s, t)‖ ≤ 1}.
Lemma 4.1. The region V is bounded, and in particular contained in the

rectangle given by
|s|, |t| � 〈Q〉(K‖·‖/|∆Q|)1/2.

The length of the boundary of V , denoted by |∂V |, satisfies

|∂V | � 〈Q〉(K‖·‖/|∆Q|)1/2,
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where the implied constant is absolute. Furthermore, any line parallel to one
of the two coordinate axes intersects V in a set of points which, if not empty,
consists of at most O(1) intervals, where the implied constant is absolute.

Proof. For each (s, t) ∈ V, from (2.2) one gets

|s|2, |t|2 � K‖·‖‖adj(Π)‖∞|∆Q|−1.

Using the estimates ‖adj(Π)‖∞ � ‖Π‖2 � 〈Q〉2 concludes the proof of
the first assertion. The assumption that the norm ‖ · ‖ is isometric to the
maximum or the Euclidean norm implies that V is a finite union of at
most O(1) convex sets. Therefore |∂V | is bounded by an absolute constant
multiplied by the length of the box that contains V . Our last assertion is a
consequence of [6] as the set V is semi-algebraic, owing to the fact that ‖ · ‖
is isometric to the supremum or the Euclidean norm.

For any T ∈ R≥1 and n, σ, τ ∈ N such that gcd(σ, τ, n) = 1, define

(4.2) Mσ,τ (T, n) := #

{
(s, t) ∈ Z2 :

(s, t) ≡ (σ, τ) (mod n),

t > 0, ‖q(s, t)‖ ≤ T

}
.

Lemma 4.2. For any T, n, σ, τ as above with gcd(σ, τ, n) = 1 and
n |q(σ, τ), one has

M∗σ,τ (T, n) =
∑

1≤m≤(2TK‖·‖/n)1/2

gcd(m,n)=1

µ(m)Mm̄σ,m̄τ (T/m2, n),

where m̄ denotes the inverse of m modulo n.

Proof. The condition ‖q(s, t)‖ ≤ T implies, by Lemma 4.1, that the
number of (s, t) counted by M∗σ,τ (T, n) is finite. Therefore Lemma 2.3 may
be applied to yield

(4.3) M∗σ,τ (T, n) =
∞∑
m=1

gcd(m,n)=1

µ(m)Mm̄σ,m̄τ

(
T

m2
, n

)
.

If we have m > (2K‖·‖T/n)1/2, then each (s, t) taken into account by

Mm̄σ,m̄τ (T/m2, n), satisfies ‖q(s, t)‖∞ < n/2, due to (1.3). The assump-
tions on σ, τ, n imply that n |q(s, t), which is only possible if q(s, t) = 0.
Due to (2.2), one has t = 0, which contradicts the definition of (4.2). This
shows that only integers m ≤ (2K‖·‖T/n)1/2 make a non-zero contribution
to (4.3), which concludes the proof.

Recall the definitions (4.1) and (4.2).
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Lemma 4.3. For any T , n, σ, τ as above, we have

Mσ,τ (T, n) = vol(V )
T

n2
+O

(
1 +

(K‖·‖T )1/2

n

〈Q〉
|∆Q|1/2

)
.

Proof. The quantity Mσ,τ (T, n) equals the number of integer points in
the region

T 1/2

n
V −

(
σ

n
,
τ

n

)
,

where V is defined in (4.1). We thus deduce that

Mσ,τ (T, n) = ]

{
Z2 ∩ V T 1/2

n

}
+O

(
1 + |∂V | T

1/2

n

)
,

where |∂V | denotes the length of the boundary of V. The assumptions of
the theorem in [5, p. 180] are fulfilled due to Lemma 4.1, thus yielding

]

{
Z2 ∩ V T 1/2

n

}
= vol(V )

T

n2
+O

(
1 +

(K‖·‖T )1/2

n

〈Q〉
|∆Q|1/2

)
.

This estimate, when combined with the second assertion of Lemma 4.1,
finishes the proof.

5. The asymptotic formula. We are now in possession of the re-
quired lemmata to show the validity of Proposition 2.1. Before proceeding
to the proof we should remark that we shall show the asymptotic formula
of Proposition 2.1 with a different constant in place of cQ, and at the end
of this section we will explain why the two constants coincide.

Let us now define the new constant, which we denote by c′Q. Recall the
definitions (2.5) and (4.1). Let

σ′∞ := vol(V )

and for any prime p, let

σ′p :=

(
1− 1

p2

)(
1 +

1

1 + 1/p

∑
d≥1

ρ∗(pd)

pd

)
.

Lemma 2.2 shows that the product
∏
p σ
′
p taken over all primes p converges

and we may thus define

c′Q := σ′∞
∏
p

σ′p.

Notice that Lemma 4.3 implies that

(5.1) σ′∞ � 〈Q〉
2 K‖·‖

|∆Q|
.
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In light of Lemma 3.1, it suffices to prove Proposition 2.1 for N (Q,B)
in place of N(Q,B). Combining Lemmata 3.2 and 4.2 gives

(5.2) N (Q,B)

=
∑

kλ|∆Q/gcd(b,e)

µ(k)
∑∗

(σ,τ) (mod kλ)
kλ|q(σ,τ)

∑
m≤(2BK‖·‖/k)1/2

gcd(m,kλ)=1

µ(m)Mm̄σ,m̄τ (Bλ/m2, kλ).

Now notice that for

L :=
(K‖·‖B)1/2

kλ1/2

〈Q〉
|∆Q|1/2

,

the bound (5.1) and Lemma 4.3 imply that

Mm̄σ,m̄τ

(
Bλ

m2
, kλ

)
=

σ′∞
B

m2k2λ
+O

(
L
m

)
if m ≤ L,

O(1) otherwise.

The contribution to (5.2) coming from those m with m > L is therefore
�ε (BK‖·‖)

1/2|∆Q|〈Q〉ε. We have used the bound τk(n) �k,ε n
ε as well as

the second part of Lemma 2.2. The contribution of the remaining m is

σ′∞B
∑
kλ|∆Q

µ(k)ρ∗(kλ)

k2λ

∑
m≤L

gcd(m,kλ)=1

µ(m)

m2

+Oε
(
(BK‖·‖)

1/2 log(BK‖·‖)〈Q〉1+ε gcd(b, e)1/2
)
.

If we extend the summation over m to infinity, the error introduced in

the main term is �ε (BK‖·‖)
1/2〈Q〉1+ε gcd(b, e)1/2, where we have made

use of (5.1). The fact that gcd(b, e)2 |∆Q and gcd(b, e) | δQ provides the
error term in Proposition 2.1. Using the fact that ρ∗ is multiplicative and
supported on the divisors of ∆Q we deduce that∑
k,λ∈N

µ(k)ρ∗(kλ)

k2λ

∑
m∈N

gcd(m,kλ)=1

µ(m)

m2
=
∏
p

(
1− 1

p2
+

(
1− 1

p

)∑
d∈N

ρ∗(pd)

pd

)
,

which shows that the leading constant is equal to c′Q, as desired.

We proceed to explain why the leading constants cQ and c′Q are equal.
One can indeed produce an elementary, yet lengthy, argument of this asser-
tion, performing a parametrisation argument over Z/pnZ for appropriately
chosen primes p and positive integers n, instead of over Q. However, as
the referee kindly pointed out, it is shown in [10, Sections 3 and 6.2] that
the equality cQ = c′Q follows from [7]. More precisely, the fact that points
are equidistributed on the projective line implies that the leading constants
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agree for any height, including the one coming from the embedding of the
projective line as a conic. This concludes the proof of Proposition 2.1.

6. The proof of Theorem 1.1. In this section we complete the proof
of Theorem 1.1 by transforming the general form Q into one to which Propo-
sition 2.1 applies. The next lemma shows that one can find a suitable trans-
formation with the lowest possible height.

Lemma 6.1. Let a ∈ Z3
prim. Then there exists M ∈ SL3(Z) whose second

column is a and whose entries have maximum modulus O(‖a‖∞).

Proof. By renaming indices if needed, we may assume that

0 < |a1| ≤ |a2| ≤ |a3|.
Let us notice that an integer solution to the equation aty = 1 exists, owing
to the coprimality of a. The previous inequality implies that we can pick
s, t ∈ Z such that max{|y3 − a1t|, |y2 − a1s|} ≤ |a1|/2. Then the integer
vector

x := y + s(a2,−a1, 0) + t(a3, 0,−a1)

satisfies atx = 1 and ‖x‖∞ � ‖a‖∞.
We now let x′i := xi/gcd(x1, x2), i = 1, 2, so that gcd(x′1, x

′
2) = 1. We

know therefore that an integer solution (x, y) of x′1x + x′2y = x3 can be
found. Considering y − tx′1 in place of y if needed, we can prove as be-
fore that we can find (x, y) that satisfy the previous equation in addition
to max{|x|, |y|} � ‖x‖∞. A direct calculation then reveals that the ma-
trix

M :=

 x′2 a1 −x
−x′1 a2 −y

0 a3 gcd(x1, x2)


has the required properties.

Proof of Theorem 1.1. Since the quadratic form Q has a rational zero, one
can find, using Cassels [3], a non-trivial integer zero ξ := (x0, y0, z0) ∈ Z3

prim

of Q such that ‖ξ‖∞ � 〈Q〉. We now transform the form Q using a = ξ in
the previous lemma. This provides an integer matrix M of determinant 1
and of size

(6.1) ‖M‖∞ � 〈Q〉
such that the quadratic form Q′ defined by

Q′(x) := Q(Mx)

is zero at (0, 1, 0). We define a norm by

‖x‖′ := ‖Mx‖
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and notice that
〈Q′〉 � 〈Q〉3.

The fact that M is unimodular implies that the integer vector x is primitive
if and only if Mx is. It therefore follows that

N(Q,B) = N ′(Q′, B),

where the notation N ′ indicates the use of the norm ‖ · ‖′. Recall the def-
inition (1.3) of K‖·‖. Using the inequality ‖M−1‖∞ ≤ 2‖M‖2∞ and writing

x = M−1(Mx) for all x 6= 0 implies that

‖x‖∞ ≤ 2‖M‖2∞K‖·‖‖x‖′.
Therefore (6.1) shows that for K‖·‖′ := 1 + supx 6=0 ‖x‖∞/‖x‖′, we have

K‖·‖′ � K‖·‖〈Q〉2.
Finally, notice that the discriminants ∆Q and ∆Q′ as well as the greatest
common divisors δQ and δQ′ of the 2 × 2 minors of the matrices of the
quadratic forms Q and Q′ remain invariant under the unimodular transfor-
mation M.

We are now in a position to apply Proposition 2.1 to the form Q′ with
all the quantities involved modified as indicated. We get an error term

(6.2) �ε (BK‖·‖)
1/2 log(BK‖·‖) min{|∆Q|1/4, δ1/2

Q }〈Q〉
4+ε.

The bound |∆Q| � 〈Q〉3 implies that this is

�ε (BK‖·‖)
1/2 log(BK‖·‖)〈Q〉19/4+ε,

so that using the value ε = 1/4 we obtain the error term appearing in
Theorem 1.1. Recall the definitions (1.1) and (1.2) of the local densities. It
remains to show that they satisfy

σ∞(Q′, ‖ · ‖′) = σ∞(Q, ‖ · ‖) and σp(Q
′) = σp(Q)

for any prime p. The fact that the matrix M is invertible modulo pn shows
that N∗Q(pn) = N∗Q′(p

n), which when used in (1.2) proves the latter equal-
ity. The former is proved by performing the unimodular linear change of
variables x = MX in (1.1). Hence�

|Q(x)|≤ε
‖x‖≤1

1 dx =
�

|Q′(X)|≤ε
‖X‖′≤1

1 dX,

which finishes the proof of Theorem 1.1.

Acknowledgments. The author would like to express his gratitude to
T. Browning for suggesting the problem and for his valuable assistance dur-
ing the course of this project. He is furthermore indebted to Dr. Christopher
Frei for useful comments regarding an earlier version of this paper.



Rational points on conics 13

References

[1] T. D. Browning and D. R. Heath-Brown, Counting rational points on hypersurfaces,
J. Reine Angew. Math. 584 (2005), 83–115.

[2] T. D. Browning and K. Van Valckenborgh, Sums of three squareful numbers, Ex-
periment. Math. 21 (2012), 204–211.

[3] J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations,
Proc. Cambridge Philos. Soc. 51 (1955), 262–264.

[4] J. E. Cremona and D. Rusin, Efficient solution of rational conics, Math. Comp. 72
(2003), 1417–1441.

[5] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179–183.
[6] H. Davenport, Corrigendum: “On a principle of Lipschitz“, J. London Math. Soc. 39

(1964), 580.
[7] J. Franke, Yu. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano

varieties, Invent. Math. 95 (1989), 421–435.
[8] D. R. Heath-Brown, A new form of the circle method, and its application to quadratic

forms, J. Reine Angew. Math. 481 (1996), 149–206.
[9] C. Hooley, On the Diophantine equation ax2 + by2 + cz2 + 2fyz + 2gzx+ 2hxy = 0,

Arch. Math. (Basel) 19 (1968), 472–478.
[10] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math.

J. 79 (1995), 101–218.
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