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A dynamical Shafarevich theorem
for twists of rational morphisms

by

Brian Justin Stout (Annapolis, MD)

1. Introduction. Let K be a number field and S a finite set of places of
K which includes all the Archimedian places. For arithmetic objects defined
over K one can pose questions about the number of K-isomorphism classes
which have good reduction at all places not in S. Initially, Shafarevich asked
this question for elliptic curves overK and proved the number of classes to be
finite (see [11]). Faltings subsequently proved the same for abelian varieties
(see [4]).

The similarity between the arithmetic theory of elliptic curves and the
arithmetic theory of endomorphisms of varieties has prompted many ques-
tions about dynamical analogues of Shafarevich’s theorem for rational mor-
phisms on projective space. A similar finiteness result for rational morphisms
can easily be seen to be false: any monic polynomial defined over OK on P1

exhibits everywhere good reduction. For each d ≥ 2 it is easy to show that
there are infinitely many such polynomials which are non-isomorphic.

The notion of a dynamical Shafarevich theorem was studied first by
Szpiro and Tucker in [13] for rational maps on P1 defined over a num-
ber field K. Szapiro and Tucker weaken the notion of K-isomorphism of
rational maps by allowing pre-composition and post-composition with dif-
ferent elements of PGL2 and altering the notion of good reduction. They
subsequently obtain a finiteness result for rational maps with critical good
reduction. In [6] Petsche obtains a different finiteness theorem by restrict-
ing the families of rational maps on P1 under consideration, but retains
the normal notion of K-isomorphism for rational maps. In a previous pa-
per the author and Petsche consider whether the set of quadratic rational
maps of P1 with good reduction outside S is Zariski dense in the moduli
space M2 of quadratic rational maps (see [8]). On the contrary, quadratic
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rational maps with everywhere good reduction over Z are Zariski dense in
M2(Q). By restricting the class of rational maps to those with two unrami-
fied fixed points and strengthening the notion of good reduction, the author
and Petsche prove a Zariski non-density result.

In the present paper we consider a Shafarevich question originally posed
by Silverman in Chapter 3 of [12] regarding the finiteness of rational mor-
phisms ψ : Pn → Pn defined over K of degree d ≥ 2 which have good
reduction at all places v 6∈ S and are twists of a given rational morphism φ
defined over K.

We say that two rational morphisms φ, ψ : Pn → Pn defined over K are
K̄-isomorphic if ψ = φf for f ∈ PGLn+1(K̄), and K-isomorphic if ψ = φf

for f ∈ PGLn+1(K). Here φf denotes the conjugation of φ by f (see Sec-
tion 2). These notions are clearly equivalence relations; we denote the set of
rational morphisms which are K̄-isomorphic to φ by

[φ] = {ψ defined over K | ψ = φf for some f ∈ PGLn+1(K̄)},
and the set of rational morphisms which are K-isomorphic to φ by

[φ]K = {ψ defined over K | ψ = φf for some f ∈ PGLn+1(K)}.
We then define the set of twists of φ as the set of K-isomorphism classes of
rational morphisms ψ defined over K which are K̄-isomorphic to φ:

Twist(φ/K) = {[ψ]K | ψ is defined over K and [φ] = [ψ]}.
We say that a morphism φ : Pn → Pn defined over K has good reduction

at a non-Archimedean place v of K if there exists some conjugate ψ = φf

defined over K for f ∈ PGLn+1(K̄) such that ψ extends to a morphism
of the same degree over the ring of v-adic integers Ov. For an equivalent
and more precise definition, see Section 2. We remark that the notion of
good reduction of a morphism is K-isomorphism invariant, and therefore
the notion of good reduction of a twist at a place v is immediate.

The principal theorem of this paper is the following.

Theorem 1. Let φ : Pn → Pn be a rational morphism of degree d ≥ 2
defined over K and let S be a finite set of places including the Archimedean
places. Let

V(S) = {[ψ]K ∈ Twist(φ/K) | [ψ]K has good reduction outside S }.
Then V(S) is finite.

The following is a sketch of the ideas behind the proof. Assume [ψ]K is
a twist of [φ]K , both with good reduction outside S. Let f ∈ PGLn+1(K̄)
be the automorphism such that ψ = φf . Fix an integer M > n + 1 and
let PrePer(φ,M) denote the set of preperiodic points for φ with forward
orbit of size less than or equal to M . Then the automorphism f defines
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a bijection between PrePer(φ,M) and PrePer(ψ,M) by P 7→ f(P ). The
premise of the proof is that, after letting M become sufficiently large, the
sets PrePer(ψ,M) and PrePer(φ,M) can be assumed to be equal, from
the Diophantine finiteness theorem which we will prove in Section 3. The
main ingredient of this step will follow from a finiteness theorem for forms
with unit discriminant due to Evertse–Győry [2]. Consequently, f will be a
bijection on a finite subset of Pn and, after concluding that some subset of
PrePer(φ,M) is in general position, only finitely many f can exist.

The referee of this paper pointed out a proof for the analagous theorem
for abelian varieties over number fields, which does not translate to the
dynamical setting. Let A be an abelian variety defined over K, O ∈ A(K)
be the identity point, and GK̄/K the absolute Galois group for K. It is well

known that Twist((A,O)/K) ∼= H1(GK̄/K ,Aut(A)), or equivalently, that
every K-twist of A can be obtained via a character χ : GK̄/K → Aut(A).
We will denote by Aχ the twist of A by χ.

Let v be a non-Archimedean place of K and kv the corresponding residue
field. Furthermore, for m ≥ 1 let A[m] denote the m-torsion points of A.
The Néron–Ogg–Shafarevich criterion states that A has good reduction at v
if and only if A[m] is unramified at v for all integers m ≥ 1 relatively prime
to char(kv). It follows that if A has good reduction outside a finite set of
places S, and if for each v 6∈ S, gcd(m, char(kv)) = 1, then K(A[m])/K is
an unramified extension at all v 6∈ S.

Let χ : GK̄/K → Aut(A) be a character and Aχ the corresponding
twist. We claim that Aχ has good reduction outside S if and only if the
character χ is unramified outside S. This again will follow from the Néron–
Ogg–Shafarevich criterion when one sees that the action of σ ∈ Iv in the
inertia subgroup on Aχ[m] is the same action by χ(σ) on A[m]. Showing
that there are finitely many twists of A over K with good reduction outside
S now reduces to showing that there are only finitely many characters un-
ramified outside S. Proposition C.4.2 of [5] shows this always to be the case
when Aut(A) is finite, in particular for elliptic curves and polarized abelian
varieties.

The critical step in this proof is the equivalence of the following three
statements:

(1) A has good reduction at v.
(2) A[m] is unramified at v for all m such that m and char(kv) are

relatively prime.
(3) K(A[m])/K is unramified at v for all m such that m and char(kv)

are relatively prime.

Such a theorem does not exist in the dynamical case. A theorem does
exist going one way which states that for almost all places the extension
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generated by points of exact period m is unramified when φ has good re-
duction and m is relatively prime to char(kv) (see [10, Proposition 3.63]). It
is not known to the author whether a converse exists.

2. Preliminaries

2.1. Review of rational morphisms on projective space. We will
fix the notation and definitions regarding the dynamics of rational mor-
phisms on projective space; for more details see [10].

Fix coordinates (X0 : . . . : Xn) of Pn(K̄). An arbitrary rational morphism
φ : Pn → Pn defined over K̄ is given by an (n+ 1)-tuple

φ(X0 : . . . : Xn) = (F0(X0 : . . . : Xn) : . . . : Fn(X0 : . . . : Xn))

where Fi(X0, . . . , Xn) is a homogeneous polynomial of degree d for i =
0, . . . , n and F0, . . . , Fn have no non-trivial common solutions.

Let j = (j0, . . . , jn) be a multi-index where 0 ≤ jk ≤ d for each k and

j0 + · · ·+ jn = d. We will let Xj denote the monomial Xj0
0 · · ·X

jn
n and then

write

Fi =
∑
j

aijX
j

with coefficients aij ∈ K̄. There are
(
n+d
d

)
monomials of degree d in n + 1

variables and so φ can be identified with a point (a0j : . . . : anj) ∈ PN where

N = N(n, d) = (n+ 1)
(
n+d
d

)
− 1. Conversely, any point of PN determines a

rational map φ : Pn → Pn, although this map may not be a morphism. The
requirement that φ be a morphism is equivalent to the non-vanishing of the
Macaulay resultant polynomial, i.e. Res(F0, . . . , Fn) 6= 0, where the resultant
polynomial is a multi-homogeneous polynomial over Z in the coefficients aij .
For further details about this polynomial and proof of the above claim with
regard to when a rational map is a morphism, see [1, Chapter 3].

There is a natural PGLn+1(K̄) action on rational morphisms which sends
f ∈ PGLn+1(K̄) and φ to φf = f ◦ φ ◦ f−1. When φ is a rational morphism
it may be iterated and we write φn = φ ◦ · · · ◦ φ to denote the nth iterate
of φ. The action of conjugation is compatible with iteration in the sense that
(φf )n = (φn)f .

There are natural sets of points in Pn which can be associated to a
rational morphism φ : Pn → Pn. A point P ∈ Pn(K̄) is periodic if φm(P ) = P
for some positive integer m ≥ 1, and preperiodic if some iterate φn(P ) is
periodic. Equivalently, P is preperiodic if and only if the forward orbit of P
is finite.

We use Per(φ) and PrePer(φ) to denote the set of all periodic points
and all preperiodic points, respectively, for a fixed rational morphism φ. Let
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Oφ(P ) denote the forward orbit of P under φ. We write

(1) PrePer(φ,M) = {P ∈ Pn | |Oφ(P )| ≤M}
for the set of preperiodic points with forward orbit of length at most M . We
use Fix(φ) = {P ∈ Pn | φ(P ) = P} to denote the set of fixed points of φ.

2.2. Review of twists of rational morphisms. Suppose that φ, ψ :
Pn → Pn are rational morphisms of degree d defined over K. We have al-
ready stated the definition of twist, K-isomorphism, and K̄-isomorphism in
Section 1. It is further possible to give a description of twists using Galois
cohomology of PGLn(K̄) and the automorphism group Aut(φ). For more de-
tails, see [10, Chapter 4, Section 9]. We will not make use of this description
in this paper.

Two rational morphisms φ, ψ defined overK which are twists have identi-
cal geometric properties as morphisms on Pn(K̄) but may have significantly
different arithmetic properties as morphisms on Pn(K). Let Homn

d denote
the parameter space of rational morphisms of degree d on Pn. Then φ, ψ are
twists if and only if they descend to the same point in the moduli spaceMn

d
under the quotient map

Homn
d → Homn

d/PGLn+1 =Mn
d .

The space Mn
d is known to be a coarse solution to the moduli problem for

rational maps. Moreover, it is a good geometric quotient in the sense of
geometric invariant theory. For more details regardingMn

d and its structure
as a variety, see [12, Chapter 2].

When n = 1, it is essential to note that the theorem proved in this paper
is fundamentally different from the other dynamical-Shafarevich results of
[6], [8], and [13] in the sense that the finiteness theorem of this paper holds
only within a single K̄-isomorphism class of morphisms defined over K.

2.3. Review of number-theoretic preliminaries. Let MK denote
the set of places of the number field K. For any place v ∈ MK let | · |v
denote any absolute value on K associated to v. If v is non-Archimedean,
let Kv denote the completion of K with respect to v, and

Ov = {x ∈ Kv | |x|v ≤ 1}, O×v = {x ∈ Kv | |x|v = 1}
denote the subring of v-integral elements and the group of v-adic units
in Ov, respectively. Then Ov is a discrete local ring with maximal ideal
mv = {x ∈ K | |x|v < 1}. Let Ov → kv = Ov/mv be the reduction map onto
the residue field kv. For x ∈ Ov we denote the image of this map by x̃v or
just x̃ if v is understood.

For a rational morphism φ : Pn → Pn defined over K and v ∈MK we can
define the reduction of φ at the place v in the following manner. Having the
natural embedding K → Kv one can consider φ to be a rational morphism
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over Kv. As Kv = Frac(Ov) and Ov is a PID, one can choose homogeneous
coefficients for φ = (a0j : . . . : anj) as a point in PN such that |aij |v ≤ 1 and
maxi,j(|aij |v) = 1.

Definition. The reduction of φ at v is the rational map

φ̃v = (ã0j : . . . : ãnj) ∈ PN (kv)

This reduction is independent of the choice of homogeneous coordinates.
The reduction of a morphism may or may not be a morphism over the
residue field.

Definition. For a rational morphism φ : Pn → Pn of degree d we say
that φ has good reduction at v if there exists some f ∈ PGLn+1(K) such

that φ̃fv : Pn → Pn is a morphism defined over kv and deg(φ̃fv ) = d. We say
φ has bad reduction otherwise.

By definition, the notion of good reduction is seen to be a PGL2(K)-
invariant concept and is therefore well defined for a K-equivalence class [φ]K .

In this paper S denotes a finite subset of MK which includes all of the
Archimedean places, OS the S-integers of K, O×S the S-unit group of K.
More specifically,

OS = {x ∈ K | |x|v ≤ 1 for all v 6∈ S},
O×S = {x ∈ K | |x|v = 1 for all v 6∈ S}.

Definition. The absolute S-integers of K̄ will consist of all elements
of K̄ which are w-integral for every place w of K̄ whose restriction to K is
not in S. The absolute S-integers of K̄ are denoted by OS .

For a point P = (p0 : . . . : pn) ∈ Pn(K) and a place v we say that the
coordinates are normalized with respect to v, or v-normalized, if |pi|v ≤ 1
for 0 ≤ i ≤ n and |pi| = 1 for some i. The following lemma is well known,
so we omit the proof.

Lemma 2. Let P ∈ Pn(K) and S be sufficiently large such that OS is
a principal ideal domain. Then there exist coordinates (p0 : . . . : pn) for P
which are v-normalized for all v 6∈ S.

We will also call such coordinates normalized, and context will make it
clear whether we refer to a single place v or to all places v 6∈ S.

3. A Diophantine result. Fix a number field K, an algebraic clo-
sure K̄, and a morphism φ : Pn → Pn of degree at least d ≥ 2 defined
over K. Fix projective coordinates (X0 : . . . : Xn) on Pn and let v denote a
non-Archimedean place of K.
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Definition. A form F ∈ K[X0, . . . , Xn] is called decomposable defined
over K if it can be factored over K̄ as F = `k11 · · · `

kt
t where `1, . . . , `t are pair-

wise non-proportional homogeneous linear polynomials over K̄ and k1, . . . , kt
are positive integers such that k1 + · · ·+ kt = deg(F ).

This type of form is studied by Evertse and Győry in [2]. Each decompos-
able form has an associated discriminant which is a fractional ideal of OS .
From this point on, by “ideal” we mean fractional ideal.

Let V ⊂ Pn(K̄) be a finite subset with |V| > n. Let P0, . . . , Pn ∈ V
be a collection of n + 1 points. We define det(P0, . . . , Pn) to be the deter-
minant of the n + 1 by n + 1 matrix of the coordinates of the Pi. This
determinant depends on the choice of representation used to compute it. If
the coordinates of Pi are replaced by (rpi0 : . . . : rpin) with r ∈ K, then
the determinant changes by a factor of r as well. Any linear homogeneous
form ` ∈ K[X0, . . . , Xn] in n + 1 variables can be identified as a point in
projective space by

(2) ` =
∑
i

piXi 7→ P = (p0 : . . . : pn).

We can therefore define det(`0, . . . , `n) for n+1 linear forms ofK[X0, . . . , Xn]
in the analogous way.

Definition. Suppose F (X0, . . . , Xn) is a decomposable form and F =
`k11 · · · `

kt
t as a polynomial over K̄. Let I(F ) be the collection of K̄-linearly

independent subsets {`i0 , . . . , `in} of {`0, . . . , `t}, and let (`i) denote the ideal
generated by the coefficients of `i. Assume I(F ) 6= ∅. Then the discriminant
of F , denoted DF , is an ideal of OS defined as follows:

(3) DF =
∏
I(F )

(
det(`i0 , . . . , `in)

(`i0) · · · (`in)

)2

.

Remark. For each linear form `i, the ideal (`i) is actually an ideal of
the integral closure of OS in some extension of K, but DF is an ideal of OS .
For more details see the introduction of [2].

Definition. Let F and G be two decomposable forms in n+1 variables
of degree d. The forms F and G are weakly OS-equivalent if

F (X0, . . . , Xn) = λG(A(X0, . . . , Xn))

for some λ ∈ K× and some A ∈ GLn+1(OS).

To any finite subset V ⊂ Pn(K̄) which is Gal(K̄/K)-stable we can as-
sociate a decomposable homogeneous form FV ∈ K[X0, . . . , Xn] in the fol-
lowing manner: Let L denote the field of definition of the set V, i.e. L is
the smallest extension of K such that for each P ∈ V, P ∈ Pn(L). For
P = (p0 : . . . : pn) ∈ V the homogeneous form of degree 1 is `P =

∑
i piXi,

and this form is defined over L. The form `P is well defined up to multipli-
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cation by a non-zero scalar of L. Set

(4) FV =
∏
P∈V

`P .

As V is Gal(K̄/K)-stable, it follows that FV is a decomposable form
of K[X0, . . . , Xn] of degree |V| and is well defined up to multiplication by
a non-zero scalar of K. Furthermore, it follows that DFV is a well defined
fractional ideal of OS . The discriminant ideal is unchanged if we multiply
FV by a scalar of γ ∈ K×, so we may choose some γ and, after multiplying
FV through, assume that FV ∈ OS [X0, . . . , Xn].

Definition. Let N ≥ n+ 1 be an integer and consider the set P(S,N)
of all subsets V ⊂ Pn(K̄) such that:

(1) |V| = N .
(2) V is Gal(K̄/K)-stable.
(3) V contains at least one linearly independent (n+ 1)-point subset.
(4) DFV = OS .

Condition (4) generalizes the familiar notion of pairwise S-integrality for
points of projective space. Recall that pairwise S-integrality in P1 merely
requires that two distinct points P,Q ∈ P1(K) reduce to distinct points in
P1(kv) for every v 6∈ S. The above requirement on the discriminant ideal
is strictly stronger than pairwise S-integrality as it requires that linearly
independent points of Pn(K̄) not only remain distinct after reduction at
each place v, but also that they remain linearly independent. In general,
for any place v of K with v(DFV ) > 0 (of which there can only be finitely
many), some set of n+1 linearly independent points P0, . . . , Pn ∈ V descend
to linearly dependent points in P̃0, . . . , P̃n ∈ Pn(kv).

Lemma 3. Let V,W ⊂ Pn(K̄) be two Gal(K̄/K)-invariant subsets such
that |V| = |W| = N , both contain at least one linearly independent (n+ 1)-
point subset, and f(V) =W for some f ∈ PGLn+1(OS). Then DFV = DFW .
In particular, DFV = OS if and only if DFf(V)

= OS.

Proof. Let L/K be a finite extension such that V,W are subsets of Pn(L)
and such that f ∈ PGLn(OT ), where OT refers to the integral closure of
OS in L. Let A ∈ GLn+1(OT ) be a lift of f . Let At denote the transpose
of A. It follows that At defines a weak OS-equivalence between FV and FW .
By Section 1 of [2] the discriminant is invariant under weak OS-equivalence.
Consequently, DFV = DFW .

Lemma 4. There exists a group action

PGLn+1(OS)× P(S,N)→ P(S,N)

defined by (f,V) 7→ f(V) = {f(P ) | P ∈ V}.
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Proof. Let f, g, h ∈ PGLn+1(OS) and V ∈ P(S,N). We must show that
conditions (1) to (4) in the definition of P(S,N) hold for f(V). Requirements
(1) and (4) are obviously satisfied since f is an automorphism of Pn. Let σ ∈
Gal(K̄/K) and f(P ) ∈ f(V). Then, since f is defined over K = Frac(OS)
and V is Gal(K̄/K)-stable we have σ · f(P ) = f(σ · P ) = f(Q) ∈ f(V) for
some Q ∈ V, proving condition (2). Lastly, (3) follows from Lemma 3.

Theorem 5. The group action of PGLn+1(OS) on P(S,N) has only
finitely many orbits.

Proof. This theorem is a reformulation of Corollary 2 of Evertse and
Győry [2]. Their corollary states that there are only finitely many weak OS-
equivalence classes of decomposable forms in K[X0, . . . , Xn] of fixed degree
N and given discriminant ideal D.

To conclude the proof of Theorem 5 it suffices to show that if

V = {P1, . . . , PN},W = {Q1, . . . , QN} ∈ P(S,N)

and if the forms FV and FW are weakly OS-equivalent, then the sets V and
W are in the same PGLn+1(OS)-orbit.

Let F and G denote FV and FW , respectively. If F and G are weakly
OS-equivalent then there exist λ ∈ K× and A ∈ GLn+1(OS) such that

F (X0, . . . , Xn) = λG(A(X0, . . . , Xn)).

It follows that∏
1≤i≤N

`Pi(X0, . . . , Xn) = λ
∏

1≤i≤N
`Qi(A(X0, . . . , Xn)).

Let At ∈ GLn+1(OS) be the transpose of A. After reordering we have

`Pi(X0, . . . , Xn) = λi`Qi(A(X0, . . . , Xn))

for λi ∈ K×. Equating coefficients gives

(p0i, . . . , pni) = λiA
t(q0i, . . . , qni).

Let a ∈ PGLn+1(OS) be the projective linear transformation corresponding
to At. Note that when we pass to projective space the scalars λi become
irrelevant. Then Pi = a(Qi) and therefore V = a(W).

4. Main theorem. Let M ≥ 1. Recall that PrePer(φ,M) denotes the
set of all points in Pn(K̄) which are φ-preperiodic and whose forward orbit
has size at most M . We remark that the set PrePer(φ,M) is finite. It follows
from Northcott’s theorem that the set of preperiodic points for a morphism
of projective space, defined over a number field, and degree greater than one,
is a set of bounded height. Further requiring that the forward orbit of these
preperiodic points be less than M bounds their degree of definition. Sets
of bounded height and degree are finite. See [10, Chapter 3, Section 2] for
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proofs of these two facts. Let N = |PrePer(φ,M)|. Every rational morphism
of degree at least 2 has infinitely many preperiodic points, so by increasing
M we may assume that N ≥ n+ 2.

Definition. A subset V ⊂ Pn(K̄) with |V| ≥ n+1 is in general position
if no (n+ 1)-point subset of V lies in a hyperplane.

From Fakhruddin’s result on the Zariski density of preperiodic points (see
[3, Theorem 5.1]), by increasing M we may assume that there is a subset of
PrePer(φ,M) consisting of n+ 2 points which lie in general position.

Lemma 6. Let V,W ⊂ Pn(K̄) be finite, and assume that V has a subset
V0 in general position with |V0| = n+ 2. Then there exist only finitely many
automorphisms f ∈ PGLn+1(K̄) such that f(V) =W.

Proof. Suppose that f1, f2, . . . ∈ PGLn+1(K̄) is an infinite sequence of
distinct automorphisms such that fi(V) =W. Since W is finite, it has only
finitely many subsets, and we may assume, after perhaps passing to an
infinite subsequence, that there exists a subset W0 ⊂ W in general position
with |W0| = n+ 2 and fi(V0) = W0 for all i. Choose g ∈ PGLn+1(K̄) such
that g(W0) = V0. Then the compositions g ◦ fi form an infinite sequence of
distinct automorphisms in PGLn+1(K̄) such that g ◦fi(V0) = V0. This gives
a contradiction as there are only (n+ 2)! such automorphisms.

Definition. A homogeneous lift of φ is a map Φ : Ån+1 → Ån+1 given
by an (n+ 1)-tuple (F0, . . . , Fn) of forms Fi such that

φ(p0 : . . . : pn) = (F0(p0 : . . . : pn) : . . . : Fn(p0 : . . . : pn))

for all points P = (p0 : . . . : pn) ∈ Pn.

Proposition 7. Assume that OS is a PID. Let φ, ψ : Pn → Pn be
rational morphisms defined over K of degree d, both having good reduction
at all places v of K outside S. Assume that [ψ]K ∈ Twist(φ/K).

(a) There exist rational morphisms φ0 ∈ [φ]K and ψ0 ∈ [ψ]K , and homo-
geneous lifts Φ, Ψ : Ån+1 → Ån+1 of φ0 and ψ0, respectively, such that
Φ, Ψ have coefficients in OS and resultants Res(Φ),Res(Ψ) ∈ O×S .

(b) There exists A ∈ GLn+1(OS) such that Ψ = ΦA.
(c) For each integer M ≥ 1, we have

PrePer(ψ0,M) = f(PrePer(φ0,M)),

where f : Pn → Pn is the automorphism associated to A. Moreover,
PrePer(φ0,M) ∈ P(S,N) if and only if PrePer(ψ0,M) ∈ P(S,N).

Proof. Part (a) follows from the main theorem of [7] regarding the exis-
tence of global minimal models over principal ideal domains. The existence of
A ∈ GLn+1(K̄) follows from Φ, Ψ being lifts of twists. That A ∈ GLn+1(OS)
follows from [9, Lemma 6]. For (c), that PrePer(φ0,M) = f(PrePer(ψ0,M))
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is a consequence of the definition of these sets. As A ∈ GLn+1(OS) it
follows that f ∈ PGLn+1(OS), and it is immediate from Lemma 3 that
PrePer(φ0,M) ∈ P(S,N) if and only if PrePer(ψ0,M) ∈ P(S,N).

We are now ready to prove the main theorem.

Theorem 8. Let φ : Pn → Pn be a rational morphism of degree d > 1
defined over K and Twist(φ/K) the set of K-twists. Then there are only
finitely many twists [ψ]K ∈ Twist(φ/K) which have good reduction at all
places v 6∈ S.

Proof. If no twists of φ have good reduction outside S then there is
nothing to prove. Therefore, assume that at least one such twist exists,
and since being twists is an equivalence relation, without loss of generality
assume that φ has good reduction outside S. Let [ψ]K be a twist of φ with
good reduction outside S and let f ∈ PGLn+1(K̄) be the linear fractional
transformation such that ψ = φf .

We may assume by Fakhruddin’s result on Zariski density of preperiodic
points (see [3]) that we can increase M so that a set of n + 2 points of Pn
in general position is contained in PrePer(φ,M). Because φ is defined over
K the set PrePer(φ,M) is Gal(K̄/K)-stable. There are only finitely many
combinations of n+1 points of PrePer(φ,M) which are linearly independent;
let D0, . . . , Dt be their determinants. There are only finitely many places v
of K such that v(Di) > 0 for at least one i = 0, . . . , t. Enlarge S by these
places. It follows that D = OS where D is the discriminant associated to the
set PrePer(φ,M), and further enlarging S does not change this condition.
Hence,

PrePer(φ,M) ∈ P(S,N)

where N = |PrePer(φ,M)|. Finally, we may further enlarge S until OS is
a PID. Consequently, by Proposition 7 we have PrePer(ψ,M) ∈ P(S,N),
perhaps after replacing ψ with some K-isomorphic morphism within [ψ]K .

By Theorem 5, there are only finitely many PGLn+1(OS)-equivalence
classes in P(S,N). It will suffice to prove the theorem under the assumption
that PrePer(φ,M) and PrePer(ψ,M) lie in the same equivalence class. It
follows that there exists a linear transformation g ∈ PGLn+1(OS) such that

PrePer(ψ,M) = g(PrePer(φ,M))

and therefore

PrePer(ψg,M) = g−1(PrePer(ψ,M)) = PrePer(φ,M).

As ψg also has good reduction at all v 6∈ S, it suffices to replace ψ with ψg

and assume that PrePer(ψ,M) = PrePer(φ,M).
Consequently, f gives a bijection

(5) f : PrePer(φ,M)→ PrePer(φ,M).
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As PrePer(φ,M) is finite and contains a subset of n+2 points in general posi-
tion, it follows from Lemma 6 that only finitely many f can exist. Therefore,
there can only be finitely many twists of φ with good reduction at all v 6∈ S.
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