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1. Introduction. Starting from the work of Riemann [16], the zeta
function ζ(s) (as a function of the complex variable s = σ + it) has been
primarily investigated in the vertical sense, especially in the critical strip 0 ≤
σ ≤ 1 and on the critical line σ = 1/2. Questions related to the horizontal
behaviour of |ζ(s)| have been considered by Saidak and Zvengrowski [17],
and earlier by Spira [19]. Indeed, the opening page of the article on the
Riemann zeta function in the Wolfram MathWorld [24] has a plot showing
horizontal “ridges” of |ζ(σ + it)| for 0 < σ < 1 and 1 < t < 100. To
quote from that article, “the fact that the ridges decrease monotonically
for 0 < σ < 1/2 is not a coincidence since it turns out that monotone
decrease implies the Riemann hypothesis” (cf. [17] and [2]). Of course, strict
decrease of the modulus of any continuous complex function f along any
curve in the complex plane clearly implies that f can have no zero along
that curve. In this note, among other things, we shall prove that the assertion
that |ζ(σ + it)| is strictly decreasing in σ for 0 < σ < 1/2 (with the minor
additional condition |t| ≥ 8) is in fact equivalent to the Riemann hypothesis,
and also show (without the Riemann hypothesis) that |ζ(s)| is decreasing in
σ in the region σ < 0, again for |t| ≥ 8.

Recently a paper by Sondow and Dumitrescu [18] explores this question
for the related Riemann ξ function, defined by

(1) ξ(s) := (s− 1) · Γ (s/2 + 1) · π−s/2 · ζ(s).

Here we shall consider this question for ζ(s) (as mentioned above), as well
as for ξ(s) and Euler’s function η (cf. [5]); this function is also known as the
Dedekind η function and is defined by η(s) := (1− 21−s)ζ(s) or, for σ > 0,
by the alternating Dirichlet series η(s) =

∑
n≥1(−1)n+1/ns. Furthermore,
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we shall also consider the same question for Dirichlet characters χ that
are primitive (all relevant definitons are given in §2) and the corresponding
functions L(s, χ) and ξ(s, χ). A recent paper of Srinivasan and Zvengrowski
[20] also examines this question, for the Γ function, and another recent paper
of Alzer [1], titled “Monotonicity properties of the Riemann zeta function,”
concerns monotonicity of a function related to the zeta function, but only
along the real line. For completeness, let us quote the results in [18] and [20].

Theorem 1.1 (Sondow–Dumitrescu). The ξ function is increasing in
modulus along every horizontal half-line lying in any open right half-plane
that contains no zeros of ξ. Similarly, the modulus decreases along each
horizontal half-line lying in any zero-free, open, left half-plane.

Theorem 1.2 (Srinivasan–Zvengrowski). For any fixed t with |t| > 5/4,
|Γ (s)| is increasing in σ.

Section 2 starts by quoting an elementary lemma from [20] that relates
the horizontal increase or decrease of |f(s)|, for any holomorphic function f ,
to <(f ′(s)/f(s)), the real part of the logarithmic derivative of f . Using this
lemma we give a very short proof of the Sondow–Dumitrescu theorem (The-
orem 2.5 and Corollary 2.6). We also show how a portion of this theorem
was implicitly anticipated in a paper of Pólya [15] written in 1927. It is
also related to work of Lagarias [12], Haglund [7], and others; again this is
briefly discussed in Section 2. A short introduction is then given to Dirich-
let characters and L-functions. The same results are then proved for the
corresponding ξ(s, χ) function whenever the character χ is primitive and
non-unit (see Theorem 2.5L and Corollary 2.6L).

Theorem 2.5 and Corollary 2.6 are equivalent to the theorem of Sondow
and Dumitrescu, stated as Theorem 1.1 above. The second part of the corol-
lary, which is the same as Corollary 1 in [18], is actually implicit, after a suit-
able interpretation, in Pólya’s paper [15] which discusses the “Nachlass” of
J. L. W. V. Jensen. Namely, following I′ on p. 18 of [15], and using z = x+iy
as in that reference, we consider the holomorphic function F (z) = ξ(1/2−iz)
= ξ(1/2 + y − ix). Note that |F (z)| = |ξ(1/2 + y − ix)| = |ξ(1/2 + y + ix)|,
since ξ(s) = ξ(s). The condition that all zeros of F are real is precisely
the Riemann hypothesis; in fact, this was Riemann’s original formulation.
According to condition I′, this is equivalent to ∂2|ξ(1/2 + y+ ix)|2/∂y2 ≥ 0.
This implies that |ξ(1/2+y+ix)|2 is a convex function of y. By symmetry it
has zero derivative at y = 0, hence it is increasing for y ≥ 0 and decreasing
for y ≤ 0. The same is then also true for |ξ(1/2+y+ ix)|. And conversely, as
already remarked before Corollary 2.6, these monotonicity properties imply
the Riemann hypothesis.

The fact that <(ξ′(s)/ξ(s)) > 0 when σ > 1, and that the Riemann
hypothesis is equivalent to the same statement for σ > 1/2 (cf. [18] or



Horizontal monotonicity of the zeta function 191

Theorem 2.5 and Corollary 2.6 below), also appears in the 1999 paper of
Lagarias [12] and the 1997 paper of Hinkkanen [8]. Combining this with
Lemma 2.3 gives an immediate proof of Theorem 1.1. Another version of
the Sondow–Dumitrescu result appears as a “known result” at the begin-
ning of Section 6 of [7], this time for the related Ξ function (the horizontal
monotonicity of ξ being equivalent to vertical monotonicity of Ξ), but no
reference or proof is given.

In Section 3 we prove our next main result, namely

Theorem 1.3. For |t| ≥ 8 and σ < 1, one has

(2) <
(
η′(s)

η(s)

)
< <

(
ζ ′(s)

ζ(s)

)
< <

(
ξ′(s)

ξ(s)

)
.

This relates the horizontal growth rates of all three functions under con-
sideration. The subsequent main result, which follows as a corollary of (2)
together with the results in Section 2, is now stated.

Theorem 1.4. The moduli of all three functions η(s), ζ(s), and ξ(s)
are decreasing with respect to σ in the region σ ≤ 0, |t| ≥ 8. Extending
this region to σ ≤ 1/2, for any of the three functions, is equivalent to the
Riemann hypothesis.

The corresponding results for L-functions are stated below and also
proved in Section 3, except that the Euler η function has no standard ana-
logue here so is omitted. This is due to the fact that ζ has a pole at s = 1
which is removed by multiplication by 1−2s−1, thereby producing η, whereas
the L-functions we are considering have no poles.

Theorem 1.3L. For |t| ≥ 8, σ < 1, and any primitive Dirichlet char-
acter χ, one has

<
(
L′(s, χ)

L(s, χ)

)
< <

(
ξ′(s, χ)

ξ(s, χ)

)
.

Theorem 1.4L. With χ as above, the moduli of L(s, χ) and ξ(s, χ)
are decreasing with respect to σ in the region σ ≤ 0, |t| ≥ 8. Extending
this region to σ ≤ 1/2, for either of these functions, is equivalent to the
generalized Riemann hypothesis.

Returning to ζ(s), the inequality (1) seems to indicate that in order to
seek further results on monotonicity for σ < 1/2, the most promising of the
three functions is η, and the least promising ξ. On the other hand, combining
the monotonicity results for ζ with the Voronin Universality Theorem [23]
for ζ (or for log ζ) seems to offer an approach to possibly showing that
the Riemann hypothesis is false. We also note that the inequality |t| ≥ 8 is
essential. Slightly smaller numbers than 8 will also work, but for |t| < 6.2897
the conclusion of Theorem 3.4 is false for both ζ and η. Also for σ > 1/2,
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neither |ζ| nor |η| is monotone (by “monotone” we always mean monotone
with respect to σ).

Finally, in Section 4, we show that the main results, Theorems 1.4 and
1.4L, can be combined into a single omnibus theorem about monotonicity
for the degree 1 Selberg class.

2. Monotonicity of |ξ(s)| and |ξ(s, χ)|. To measure the rate of change
of |f(s)| with respect to σ, the following elementary lemma is useful. For a
proof see [20].

Lemma 2.1. For any holomorphic function f with f(s) 6= 0 in some
open domain D,

<
(
f ′(s)

f(s)

)
=

1

|f(s)|
· ∂|f(s)|

∂σ
, s ∈ D.

Corollary 2.2. For s ∈ D,

sgn

(
∂|f(s)|
∂σ

)
= sgn

(
<
(
f ′(s)

f(s)

))
.

The fact that Lemma 2.1 does not apply at a zero of f is not a problem
towards our main objectives, as the next lemma shows.

Lemma 2.3.

(a) Let f be holomorphic in an open domain D and not identically zero.
Suppose <(f ′(s)/f(s)) < 0 for all s ∈ D such that f(s) 6= 0. Then
|f(s)| is strictly decreasing with respect to σ in D, i.e. for each s0 ∈ D
there exists a δ > 0 such that |f(s)| is strictly decreasing with respect
to σ on the horizontal interval from s0 − δ to s0 + δ.

(b) Conversely, if |f(s)| is decreasing with respect to σ in D, then
<(f ′(s)/f(s)) ≤ 0 for all s ∈ D such that f(s) 6= 0.

Proof. (a) From Lemma 2.1 and Corollary 2.2 it clearly suffices to show
this for those s0 = σ0 + it0 ∈ D, where f(s0) = 0. Thanks to f being
holomorphic and not identically 0, there exists δ > 0 with {s : |s− s0| < δ}
⊂ D and with no further zeros of f in this open disc. Then using the next
part of the hypothesis and Corollary 2.2, |f(s)| is strictly decreasing with
respect to σ on the two horizontal open intervals from σ0−δ+it0 to σ0+it0,
and from σ0 + it0 to σ0 + δ + it0. Since |f | is continuous in D, a simple
continuity argument shows that it must be strictly decreasing on the entire
horizontal interval from σ0 − δ + it0 to σ0 + δ + it0.

(b) Conversely, we are assuming ∂|f(s)|/∂σ ≤ 0 in D, so Lemma 2.1
implies that <(f ′(s)/f(s)) ≤ 0 at any s ∈ D for which f(s) 6= 0.

Of course, analogous results hold for monotonic increase and<(f ′(s)/f(s))
> 0. Combining Lemma 2.3 with the fact that a function can have no zeros
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in an open domain in which its modulus is strictly decreasing (increasing)
with respect to σ gives the next result.

Corollary 2.4. With the same hypotheses as in Lemma 2.3(a), f has
no zeros in D.

Let us now apply the above to the Riemann ξ function and thereby give
a short proof of Theorem 1.1. It is well known that ξ(1− s) = ξ(s) and that
ξ(s) = ξ(s). Hence |ξ(1/2−σ+it)| = |ξ(1/2+σ−it)| = |ξ(1/2+σ+it)|, which
shows that |ξ| is symmetrical about the critical line σ = 1/2. So showing
that |ξ| is decreasing in a domain to the left of the critical line is equivalent
to showing that it is increasing in the reflection of the same domain about
the point s = 1/2, and this is what we shall show.

Theorem 2.5. Let σ0 be greater than or equal to the real part of any
zero of ξ. Then |ξ(s)| is strictly increasing in the half-plane σ > σ0.

Proof. We start with the formula due to Hadamard [6] and von Mangoldt
[13] (cf. also [11], (36), or simply take the logarithmic derivative of the final
formula given in [4, §2.8])

(3)
ξ′(s)

ξ(s)
=
∑
ρ

1

s− ρ
,

where the summation is taken over all zeros ρ of ξ (which, as is well known,
lie in the critical strip 0 < <(ρ) < 1), in conjugate pairs and in order of
increasing =(ρ). If any such zero is written as ρ = α+iβ, then by hypothesis
σ > α. It is then trivial to check that

<(1/(s− ρ)) = (σ − α)/[(σ − α)2 + (t− β)2] > 0,

hence <(ξ′(s)/ξ(s)) > 0 and by Corollary 2.4 |ξ(s)| is increasing in σ, in the
given half-plane σ > σ0.

Combining this theorem with well known facts about the zeros of ξ, and
then employing the same reasoning used to obtain Corollary 2.4, gives the
next result.

Corollary 2.6. In the right (resp. left) half-plane σ ≥ 1 (resp. σ ≤ 0),
|ξ| is increasing (resp. decreasing). The same is true for the right (resp. left)
half-plane σ ≥ 1/2 (resp. σ ≤ 1/2) if and only if the Riemann hypothesis is
true.

We shall now establish results similar to Theorem 2.5 and Corollary 2.6
for Dirichlet L-functions. For the definition of Dirichlet L-functions, the as-
sociated Dirichlet characters modulo q, and standard related definitions such
as the “unit” (or “principal”) character, “primitive” character, “even, odd”
character, etc., we refer the reader to [14] or any other standard references
on this material.
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In particular, following [14, §5.3, 5.4], the corresponding symmetrized
function ξ(s, χ) is defined by

(4) ξ(s, χ) =

(
q

π

)(s+a)/2

Γ

(
s+ a

2

)
L(s, χ), where a =

{
0, χ even,

1, χ odd.

We assume henceforth that χ is a primitive character modulo q > 1. Then
just like the Riemann ξ function, ξ(s, χ) satisfies a simple functional equation

(5) ξ(s, χ) = wχξ(1− s, χ),

where the complex number wχ is defined in [14, §5.3] and depends on a
certain Gauss sum, also on whether χ is even or odd. For our purposes it
suffices to simply quote [14, 5.3.2, 5.3.3], which establishes that |wχ| = 1 for
the characters under consideration, a simple fact but a key element of the
proof of Corollary 2.6L.

Theorem 2.5L. Let χ be any primitive Dirichlet character modulo q>1,
let ξ(s, χ) be as described above, and let σ0 be greater than or equal to the
real part of any zero of ξ(s, χ). Then |ξ(s, χ)| is strictly increasing in the
half-plane σ > σ0.

Proof. Following [14, §6.4], we have the Hadamard product formula

(6) ξ(s, χ) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ,

where the product is taken over all zeros ρ of ξ(s, χ) (which again lie in
the critical strip 0 < <(ρ) < 1), in conjugate pairs and in order of increas-
ing =(ρ). Furthermore eA = ξ(0, χ) and <(B) = −

∑
ρ<(1/ρ). Taking the

logarithmic derivative yields

(7)
ξ′(s, χ)

ξ(s, χ)
= B +

∑
ρ

1

s− ρ
+
∑
ρ

1

ρ
.

Now taking the real parts gives

(8) <
(
ξ′(s, χ)

ξ(s, χ)

)
=
∑
ρ

<
(

1

s− ρ

)
,

and from this point on, the remainder of the proof is formally identical to
that of Theorem 1.1, starting from (2).

We now wish to also consider the left half-plane and prove the analogue
of Corollary 2.6 for ξ(s, χ), but a little extra care is needed because whereas
ξ has the same modulus at the four points s, s, 1− s, 1− s, the same is not
true in general for ξ(s, χ) (it does hold for real characters χ). Noting that
L(s, χ) = L(s, χ), whence also ξ(s, χ) = ξ(s, χ), and recalling that |wχ| = 1,
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we deduce from (4) that

|ξ(s, χ)| = 1 · |ξ(1− s, χ)| = |ξ(1− s, χ)| = |ξ(1− s, χ)| = |ξ(1− σ + it, χ)|.
The same reasoning used to obtain Corollary 2.6 can now be followed to
obtain

Corollary 2.6L. Let χ be as above. In the right (resp. left) half-plane
σ ≥ 1 (resp. σ ≤ 0), |ξ(s, χ) is increasing (resp. decreasing). The same is
true for the right (resp. left) half-plane σ ≥ 1/2 (resp. σ ≤ 1/2) if and only
if the generalized Riemann hypothesis is true.

3. Proofs of Theorems 1.3, 1.4, and 1.3L, 1.4L. For convenience
we label the first inequality of Theorem 1.3 (formula (2)) as (A), and the
second (B). To prove either of these we shall take the logarithmic derivatives
of the formulae given for η, ξ in the Introduction, and then look at the real
parts of these logarithmic derivatives. Again, for convenience, we will divide
the proof into corresponding parts (A) and (B), and separately give two
lemmas that will be of use.

Lemma 3.1. For σ < 1, one has

<
(

1

2s−1 − 1

)
< 0.

Proof. First note that 2s−1 − 1 = 0 if and only if s = 1 + 2nπi/log 2,
n ∈ Z. In particular 2s−1 − 1 6= 0 for σ < 1. Now

(9) <
(

1

2s−1 − 1

)
=

2σ−1 cos(t log 2)− 1

|2s−1 − 1|2
.

The denominator of (9) is strictly positive since σ < 1. As for the numerator,
one has |2σ−1 cos(t log 2)| < |cos(t log 2)| ≤ 1, so the numerator is strictly
negative.

Proof of (A). From the formula for η (following (1)) given in the Intro-
duction, it follows that log(η(s)) = log(1− 21−s) + log(ζ(s)). Differentiating
gives

(10)
η′(s)

η(s)
=

21−s log 2

1− 21−s
+
ζ ′(s)

ζ(s)
=

log 2

2s−1 − 1
+
ζ ′(s)

ζ(s)
.

Taking the real parts of (11) and using Lemma 3.1 as well as log 2 > 0
completes the proof.

For the second inequality (B) it will be necessary to recall the digamma
function ψ(s) := Γ ′(s)/Γ (s). A few of its properties that will be needed are
listed in the next lemma. We also remark here that, as the proof will show,
(B) actually holds for s = σ + it, |t| ≥ 8, for all σ ∈ R.
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Lemma 3.2.

(i) ψ(s)− ψ(1− s) = −π cot(πs).
(ii) |<(ψ(s))−<(ψ(1− s))| < 3πe−2πt for t ≥ 0.1.

(iii) For given 0 < θ < π, in the sector −θ < arg(s) < θ one has

(11) ψ(s) = log s− 1

2s
+R′0(s), where |R′0(s)| ≤ sec3(θ/2) · B2

2|s|2
,

with B2 = 1/6 being the second Bernoulli number.
(iv) |x/(x2 + t2)| ≤ 1/(2|t|) for any x, t ∈ R, t 6= 0.
(v) For any σ ∈ R and |t| ≥ 4, we have <(ψ(s)) > 1.3091.

Proof. Formula (i) is a simple consequence of Euler’s reflection formula
for the Γ function; it can be found e.g. in [21, p. 14].

Formula (ii) follows from (i) and an elementary estimate of <(cot z),
since (i) implies

(12) |<(ψ(s))−<(ψ(1− s))| = |<(ψ(s)− ψ(1− s))| = π|<(cot z)|,
where for convenience we set πs = z = x + iy. We outline the remaining
steps towards proving (ii), which are essentially an exercise in calculus. First
recall that

(13) cot z =
cosx cosh y − i sinx sinh y

sinx cosh y + i cosx sinh y
.

From (13) it is easy to derive

(14) <(cot z) =
sin(2x)

b− cos(2x) + 1
=: gb(x), where b = 2 sinh2 y > 0.

We claim that |gb(x)| < 3e−2y when y > (log 3)/4. Indeed, using elemen-
tary calculus one shows that |gb(x)|max = 1/

√
b2 + 2b, hence proving the

claim reduces to showing 1/
√
b2 + 2b < 3e−2y. Using the definition of b,

this inequality reduces to y > (log 3)/4 and the claim is thus proved. Fi-
nally, substituting z = πs, we obtain (ii) with y = πt > (log 3)/4, i.e.
t > (log 3)/(4π) = .08742 . . . .

Formula (iii) is a special case (n = 0) of the Stirling series

(15) ψ(s) = log s− 1

2s
−

n∑
k=1

B2k

2ks2k
+R′2n

for the digamma function, together with the Stieltjes estimate for the error
term (cf. [4, p. 114], or the original manuscript of Stieltjes [22])

|R′2n| ≤
(

sec
θ

2

)2n+3∣∣∣∣ B2n+2

(2n+ 2)s2n+2

∣∣∣∣.
Formula (iv) is equivalent to 0 ≤ (|x| − |t|)2.
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Finally, to prove (v) first consider σ > 0, |t| ≥ 4. Then applying (iii) to
the sector −θ = −π/2 < arg(s) < π/2 = θ, we have θ/2 = π/4, and thus

(16) <(ψ(s)) = log |s| − σ

2|s|2
+ <(R′0(s)),

where |<(R′0(s))| ≤ |R′0(s)| < 2
√

2/(2 · 6 · |s|2). Using this estimate for the
remainder term, as well as |s| > 4, (10) now gives (to five significant digits)

(17) <(ψ(s)) ≥ log 4− 1

16
−
√

2

6 · 16
= 1.3091,

where (iv) was used to give the 1/16 estimate for the second term. To extend
this result from σ > 0 to all σ ∈ R, simply apply (i), which shows that
<(ψ(s)) and <(ψ(1 − s)) differ here by less than 3πe−8π = 1.1462 · 10−10,
which is negligible to within the accuracy of five significant digits. This
completes the proof of Lemma 3.2.

We remark that the estimate obtained in Lemma 3.2(v) is close to best
possible, which (using experimental evidence from MAPLE) equals 1.3837.

Proof of (B). The logarithmic derivative of formula (1) for ξ(s) gives

(18)
ξ′(s)

ξ(s)
=
ζ ′(s)

ζ(s)
+

1

s− 1
+

1

2
ψ

(
s

2
+ 1

)
− 1

2
log π.

Hence, to complete the proof of (B), it suffices to show that

(19) <
(

1

s− 1
+

1

2
ψ

(
s

2
+ 1

))
− 1

2
log π > 0, |t| ≥ 8.

Now, by Lemma 3.2(iv), the first term is greater than or equal to −1/16. By
Lemma 3.2(v), we have (1/2)<(ψ(z)) > 0.6545. Thus the sum in question
is greater than −1/16 + 0.6545− (log π)/2 = .01964 > 0.

We can now prove Theorem 1.4 rather easily.

Proof of Theorem 1.4. For σ ≤ 0, we have seen in the proof of Theorem
2.5 that <(ξ′(s)/ξ(s)) < 0. Combining this with the inequalities (2) shows
that the same is true for ζ and η, thus all three are decreasing in modulus
for σ ≤ 0, |t| ≥ 8. And the same argument used in Corollary 2.6 shows that
extending this to the larger region σ ≤ 1/2, |t| ≥ 8, is equivalent to the
Riemann hypothesis.

Let us now turn to extending the above results to the Dirichlet L-function
L(s, χ), for any primitive character χ modulo q > 1. We start with Theorem
1.3L, and remark that the proof runs quite parallel to that of inequality (B)
above (e.g. compare (18) and (20)).
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Proof of Theorem 1.3L. Taking the logarithmic derivative of (5) gives

(20)
ξ′(s, χ)

ξ(s, χ)
=

1

2
log q − 1

2
log π +

1

2
ψ

(
s+ a

2

)
+
L′(s, χ)

L(s, χ)
.

So, taking the real parts, to prove the theorem it suffices to show that

(21) log q − log π + <
(
ψ

(
s+ a

2

))
> 0, |t| ≥ 8.

Since (1/2)(s + a) = (σ + a)/2 + it/2, we can use Lemma 3.2(v) to obtain
log q−log π+<

(
ψ
(
s+a
2

))
> log 2−log π+1.3091 > 0, completing the proof.

Theorem 1.4L follows from Theorems 2.5L and 1.3L in the same way
as Theorem 1.4 followed from Theorems 2.5 and 1.3; it is not necessary to
repeat the proof.

Finally, for any q > 1 consider the unit character χ1 modulo q. Write the
prime factorization of q as q =

∏
pni
i . It is easy to calculate that L(s, χ1) =∏

(1−p−si )·ζ(s). Then it is easy to see that L(s, χ1) will have infinitely many
zeros along the vertical line σ = 0, of the form sn,i = tn,i = 2πn/log pi. Hence
|L(s, χ1)| cannot be monotone in σ for σ < 1/2 along any horizontal line
t = tn,i. However, it is decreasing for σ < 0, and this is easily proved from
the above formula for L(s, χ1) with the techniques we have been using. The
situation for non-primitive characters is analogous and proved similarly.

4. Relation to the Selberg class. The definition of the Selberg class
S of functions and their basic properties can be found in [3], [9], [14], and
a number of other sources. For our purposes we simply recall that all such
functions are meromorphic with at most a pole at s = 1, and each such
function has a degree d ≥ 0 (defined in terms of the Γ factors in the func-
tional equation it satisfies). The Riemann zeta function and the Dirichlet
functions L(s, χ), for χ a primitive character modulo q > 1, are well known
to be in the Selberg class. Indeed the functional equations (1) and (5) show
that they are in S1, the degree 1 Selberg class.

Since the functions L(s, χ) with χ as above have in fact no pole at all,
i.e. are entire, the vertically shifted functions L(s+ iθ, χ), for any constant
θ ∈ R, will also be in S1. This is not true for the Riemann zeta function
since it does have a pole at s = 1. Referring to Theorem 5.2 in [9] and
the material in the same section preceding this theorem, or to the original
papers of Conrey and Ghosh [3], and Kaczorowski and Perelli [10], we see
that S1 is in fact identical to the class of functions consisting of ζ and
the L(s + iθ, χ) (θ and χ as above). Since any horizontal monotonicity
properties of a function are obviously unaffected by a vertical shift, we can
now combine our main results, Theorems 1.4 and 1.4L, into the following
omnibus theorem.
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Theorem 4.1. Let f be any function in S1. Using the above notation,
|f(s)| is strictly decreasing in σ along any horizontal line s = σ + it, for
any fixed t, with |t| > 8 for ζ(s) and |t+ θ| > 8 for L(s+ iθ, χ), and σ < 0.
The continuation of this property for σ < 1/2 is equivalent to the Riemann
hypothesis and the generalized Riemann hypothesis.

We remark that it is also proved in [3, Theorem 3.1] and in [10] that the
only function f in S with degree 0 ≤ d < 1 is the constant function f = 1.
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