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Piatetski-Shapiro sequences via Beatty sequences
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1. Introduction. Piatetski-Shapiro sequences are sequences of the form
(bncc)n≥1, where c > 1 is not an integer. They are named after I. Piatetski-
Shapiro, who proved the following Prime Number Theorem (see [19]): If
1 < c < 12/11, then

(1) |{n ≤ x : bncc is prime}| ∼ x

c log x
.

The range for c has been extended several times, the currently best known
upper bound being c < 2817

2426 , obtained by Rivat and Sargos [21]. It is ex-
pected that the asymptotic formula (1) holds for all c ∈ (1, 2), an expectation
backed up by the fact that it is true for almost all c ∈ [1, 2] with respect to
the Lebesgue measure (see [12]).

For a collection of arithmetic results on Piatetski-Shapiro sequences see
the article [1] by Baker et al. For example in that article it is proved in
detail that for 1 < c < 149

87 the number of squarefree integers of the form
bncc behaves as expected: for c in this range we have

|{n ≤ x : bncc is squarefree}| = 6

π2
x+O(x1−ε).

According to [1], this result was sketched before by Cao and Zhai [5].
A more basic question is to ask about the distribution of bncc in residue

classes. In this case it is known that for all noninteger c > 1, all positive
integers m and all a ∈ Z we have

|{n ≤ x : bncc ≡ a mod m}| = x/m+O(x1−ε)

for some ε = ε(c) that can be given explicitly; see Deshouillers [6] and
Morgenbesser [18].

Another line of research was initiated by Mauduit and Rivat [13]; it
concerns the behaviour of q-multiplicative functions on Piatetski-Shapiro
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sequences. For an integer q ≥ 2, a functionϕ : N→ C is called q-multiplicative
if for all a ≥ 0, k ≥ 0 and for 0 ≤ b < qk we have ϕ(qka+b) = ϕ(qka)ϕ(b). The
function e(αsq(n)), where sq denotes the sum-of-digits function in base q,
and the trigonometric monomial e(αn) are examples of q-multiplicative
functions. Gelfond [9] solved the problem of describing the distribution of
the values sq(n) in residue classes, where n itself is restricted to a residue class,
and posed the analogous problem of describing the distribution of sq(P (n))
in residue classes, where P is a polynomial of degree greater than one such
that P (N)⊆N. The study of q-multiplicative functions on Piatetski-Shapiro
sequences can be seen as a step towards the resolution of this question, in the
same way that the Piatetski-Shapiro Prime Number Theorem is an approach
to unsolved problems such as proving that there are infinitely many prime
numbers of the form n2 + 1. In [14] Mauduit and Rivat proved the following
theorem.

Theorem A (Mauduit and Rivat). Let c ∈ (1, 7/5) and γ = 1/c. For
all δ ∈ (0, (7 − 5c)/9) there exists a constant C = C(γ, δ) such that for all
q-multiplicative functions χ taking values in {z ∈ C : |z| = 1} and all x ≥ 1
we have

(2)
∣∣∣ ∑
1≤n≤x

χ(bncc)−
∑

1≤m≤xc
γmγ−1χ(m)

∣∣∣ ≤ C(γ, δ)x1−δ.

Morgenbesser [18] gave a nontrivial bound for the sum
∑

e(αsq(bncc))
for all noninteger c > 1, provided only that q is large enough (depending
on c). Deshouillers, Drmota and Morgenbesser [7] investigated subsequences
of automatic sequences of the form bncc for c < 7/5 by generalizing the
method from [14]. Mauduit and Rivat [15] gave a complete description of the
distribution of the sum of digits of squares in residue classes, thus solving the
conjecture of Gelfond for the case of P (X) = X2. The problem of proving (2)
when c ≥ 7/5 is not an integer, χ(n) = e(αsq(n)) and q is small could not
be solved, however.

In the present article we follow a new approach to problems on Piatetski-
Shapiro sequences. This approach is based on the idea of approximating the
function xc by a family of tangents xα+β, each restricted to a small interval.
Let δ ∈ (0, 1 − c/2) and ε > 0 be given. Then by linear approximation we
can choose for x0 ≥ 1 some α and β in such a way that |xc − xα− β| < ε if
|x−x0| < Cxδ, where C does not depend on x0. It therefore seems likely that
bncc = bnα+ βc for most integers n in such an interval. These observations
are made precise in the lemmas of Section 4.1.

Algebraic properties of the function x 7→ xc are not needed for such an
approximation. Consequently our method can be adapted to treat functions
from a larger class, defined by certain conditions on the derivatives. Func-
tions like xc logη x or xc exp(logε x), where 1 < c < 2, η ∈ R and 0 ≤ ε < 1,
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are contained in this class, as well as linear combinations with positive co-
efficients of all elements.

A sequence of integers of the form (bnα+ βc)n≥1, where α > 0, is called
a (nonhomogeneous) Beatty sequence. They are named after S. Beatty, who
posed a problem (concerning the homogeneous case) in the American Math-
ematical Monthly in 1926 (see [3]), which essentially states that for irra-
tional α1, α2 > 1 such that 1/α1 + 1/α2 = 1 the sequences (bnα1c)n≥1 and
(bnα2c)n≥1 form a partition of the set of positive integers. This fact was al-
ready found in 1894 by Rayleigh [20, pp. 122–123], and therefore it is called
Rayleigh’s Theorem or Beatty’s Theorem. We refer to [2] for some references
to the newer literature concerning Beatty sequences.

We consider a bounded arithmetic function ϕ and a differentiable func-
tion f : R+ → R+ satisfying f ′ > 0 and other conditions on its derivatives,
and ask whether

(3)
∑

A<n≤2A
ϕ(bf(n)c)−

∑
f(A)<m≤f(2A)

ϕ(m)(f−1)′(m) = o(A)

as A → ∞. The two terms on the left hand side resemble those involved
in the change of variables in an integral. Heuristically, we expect therefore
that “well-behaved” functions ϕ yield a small error term on the right hand
side. This expectation is in general very difficult to verify, which is obvious
from the observation that, for instance, (1) can be reduced to a statement
of the form (3).

The main result of this paper, based on the method of approximating
bncc by Beatty sequences and the approximation of the periodic Bernoulli
polynomial ψ(x) = x−bxc−1/2 by trigonometric polynomials, is a sufficient
condition for (3) to hold. More precisely we give an upper bound on the error
term that involves the exponential sum

∑
ϕ(m) e(mθ) over short intervals.

We give several applications of this theorem. One is an improvement of
the bound 7/5 = 1.4 in Theorem A to the value 1.42 in the case where χ
is the Thue–Morse sequence, which expresses the parity of the number of
ones in the binary representation of a natural number. In order to prove this
result, we use an estimate of the L1-norm of the corresponding exponential
sum (as a function in θ) given by Fouvry and Mauduit [8].

Another application concerns the joint distribution of sum-of-digits func-
tions on Piatetski-Shapiro sequences. It is another problem posed by Gel-
fond [9] to prove that if q1, q2 ≥ 2, m1,m2 ≥ 1 and l1, l2 are integers such
that (q1, q2) = 1, (m1, q1 − 1) = 1 and (m2, q2 − 1) = 1, then there exists
ε > 0 such that

(4) |{n ≤ x : sq1(n) ≡ l1 mod m1 and sq2(n) ≡ l2 mod m2}|

=
x

m1m2
+O(x1−ε).
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This statement was proved by Kim [11], but a weaker form of this result,
specifically with a nonexplicit error term, had been provided by Bésineau
long before (see [4]). To the author’s knowledge the problem of proving a re-
sult such as (4) for subsequences bncc of the integers has not been dealt with
in the literature. We obtain such a result for all c in the interval (1, 18/17).
In the proof we make use (besides the main theorem) of discrete Fourier
coefficients related to the sum-of-digits function. These Fourier coefficients
have proven to be an excellent tool for treating problems related to the sum
of digits (see [15, 16]) and can also be used in our context. We also note
that their use leads to an alternative method of proving (4).

As the third application we prove a result on the distribution in residue
classes of the Zeckendorf sum-of-digits function sZ evaluated on Piatetski-
Shapiro sequences. By the well-known theorem of Zeckendorf [22] every pos-
itive integer n can be uniquely represented as a sum of nonconsecutive Fi-
bonacci numbers. The number of summands in this representation is called
the Zeckendorf sum-of-digits of n, which we denote by sZ(n). We prove that
for integers m ≥ 1 and a and for all c ∈ (1, 4/3) there exists ε > 0 such that

|{n ≤ x : sZ(bncc) ≡ a mod m}| = x/m+O(x1−ε).

In this article, we denote the set of positive real numbers by R+ and
the set of nonnegative integers by N. For x ∈ R we write e(x) = e2πix,
‖x‖ = minn∈Z |n − x| and {x} = x − bxc. Conditions like i < n under a
summation or product sign are to be read as 0 ≤ i < n.

2. Main results. The main result is an estimate of the error term in (3)
for a special class of functions f .

Theorem 1. Assume that f is a twice continuously differentiable real
valued function on R+ such that f, f ′, f ′′ > 0 and that there exist c1 ≥ 1/2
and c2 > 0 such that for 0 < x ≤ y ≤ 2x we have c1f

′′(x) ≤ f ′′(y) ≤ c2f ′′(x).
Let A0 ≥ 2 be such that f ′(A0) ≥ 1. There exists a constant C = C(f) such
that for all complex valued arithmetic functions ϕ bounded by 1, for all
integers A ≥ A0 and for all z > 0 we have

(5)
1

A

∣∣∣ ∑
A<n≤2A

ϕ(bf(n)c)−
∑

f(A)<m≤f(2A)

ϕ(m)(f−1)′(m)
∣∣∣

≤ C
(
f ′′(A)

f ′(A)2
z2 + f ′(A)(logA)3J(A, z)

)
,

where

(6) J(A, z) =

1�

0

sup
f(A)<x≤f(2A)

1

z

∣∣∣ ∑
x<m≤x+z

ϕ(m) e(mθ)
∣∣∣ dθ.
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Theorem 1 is a consequence of the following result, which provides a
way to prove a discrete substitution rule by solving a problem about the
behaviour of ϕ on Beatty sequences.

Proposition 1. Assume that f is a twice continuously differentiable
real valued function on R+ such that f, f ′, f ′′ > 0, and that there exist
c1 ≥ 1/2 and c2 > 0 such that for 0 < x ≤ y ≤ 2x we have c1f

′′(x) ≤
f ′′(y) ≤ c2f

′′(x). There exists C = C(f) such that for all complex valued
arithmetic functions ϕ bounded by 1, for all A ≥ 2 and K > 0 we have

(7)
1

A

∣∣∣ ∑
A<n≤2A

ϕ(bf(n)c)−
∑

f(A)<m≤f(2A)

ϕ(m)(f−1)′(m)
∣∣∣

≤ C
∣∣∣∣f ′′(A)K2 +

(logA)2

K
+ I(A,K)

∣∣∣∣,
where I(A,K) is defined by

(8) I(A,K) =
1

f ′(2A)− f ′(A)

×
f ′(2A)�

f ′(A)

sup
f(A)<β≤f(2A)

1

K

∣∣∣∣ ∑
0<n≤K

ϕ(bnα+ βc)− 1

α

∑
β<m≤β+Kα

ϕ(m)

∣∣∣∣ dα.
3. Applications. In the proofs of our applications concerning sum-of-

digits functions, we make use of bounds for the exponential sum∑
x<m≤x+z

ϕ(m) e(mθ)

that are independent of x. Moreover, for simplicity we concentrate on the
case f(x) = xc, although it would be possible to derive analogous results
for a larger class of functions, as we noted in the introduction. We state a
corollary of Theorem 1 that is adjusted to this situation.

Corollary 1. Let ϕ be a complex valued arithmetic function bounded
by 1. If a ∈ (0, 1] and C are such that

(9)

1�

0

sup
x≥0

∣∣∣ ∑
x<m≤x+z

ϕ(m) e(mθ)
∣∣∣ dθ ≤ Cza

for z ≥ 1, then for all c ∈ (1, 2) and all η ∈
(
0, 2−(a+1)c

3−a
)

there is a C1 =
C1(a, c, C, η) such that

(10)
1

N

∣∣∣∣ ∑
1≤n≤N

ϕ(bncc)− 1

c

∑
1≤m≤Nc

ϕ(m)m1/c−1
∣∣∣∣ ≤ C1N

−η

for N ≥ 1.
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Proof. For A > 0 we write

(11) F (A) =

∣∣∣∣ ∑
A<n≤2A

ϕ(bncc)− 1

c

∑
Ac<m≤(2A)c

ϕ(m)m1/c−1
∣∣∣∣.

Let 1 < c < 2 and set z = A
2c−1
3−a for A ≥ 2. From hypothesis (9) and

Theorem 1 it follows by a short calculation that for all integers A ≥ 2 and
all ε > 0 we have

(12) F (A)� A1−ρ+ε

with the choice ρ = 2−c(a+1)
3−a . The implied constant in (12) may depend on

a, c, C and ε. Altering the summation limits in (11) to bAc < n ≤ b2Ac and
bAcc < m ≤ b2Acc respectively introduces an error term of O(1), which
is negligible. Therefore (12) holds for all real A ≥ 2 and ε > 0. We have
F (A) = 0 for A < 1/2, and it is clear that F (A) is bounded for 0 < A ≤ 2.
From these observations and (12) it follows that F (A) � A1−ρ+ε for all
A > 0. Since ρ− ε < 1, we get∣∣∣∣ ∑
1≤n≤N

ϕ(bncc)− 1

c

∑
1≤m≤Nc

ϕ(m)m1/c−1
∣∣∣∣

=

∣∣∣∣∑
i≥1

( ∑
N/2i<n≤N/2i−1

ϕ(bncc)− 1

c

∑
(N/2i)c<n≤(N/2i−1)c

ϕ(m)m1/c−1
)∣∣∣∣

≤
∑
i≥1

F

(
N

2i

)
� CN1−ρ+ε.

From this the assertion follows.

3.1. The Thue–Morse sequence. In our first application we are in-
terested in the special case that the function ϕ is the Thue–Morse sequence
of the form ϕ(n) = (−1)s2(n), where s2(n) denotes the sum of digits of n in
base 2.

Theorem 2 (The Thue–Morse sequence on bncc). There exists a in

[0, 0.4076) such that for all c ∈ (1, 2) and all η ∈
(
0, 2−(a+1)c

3−a
)

there is a
constant C = C(c, η) such that for all N ≥ 2,

1

N

∣∣∣ ∑
1≤n≤N

(−1)s2(bn
cc)
∣∣∣ ≤ CN−η.

In particular, for 1 < c ≤ 1.42 there exist η > max{0, (7 − 5c)/9} and C
such that this estimate holds.

In order to prove this, we want to apply Corollary 1, and therefore we
have to find an estimate for the expression on the left hand side of (9). We
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use the following statement which follows from Théorème 3 and inequality
(1.5) in the paper [8] by Fouvry and Mauduit.

Lemma 1. There exists ρ ∈ (0.6543, 0.6632) such that

1�

0

∏
0≤k<λ

|sin(2kπθ)| dθ � ρλ

for all λ ≥ 0.

The number ρ is clearly uniquely determined. No simple representation
of ρ seems to be known and in fact the above bounds were obtained with the
help of numerical computations. The authors of the cited article also remark
that evaluating the numerical value of the integral for about a dozen values
of λ (by means of splitting up the interval [0, 1] into 2λ subintervals of
equal length and using the fact that for k < λ the function sin(2kπθ) has a
constant sign on each of them) suggests that ρ = 0.661 . . . . From Lemma 1
we deduce the following estimate, which is the main component of the proof
of Theorem 2.

Proposition 2. Let ρ be defined as in Lemma 1. Then uniformly for
z ≥ 1 we have

1�

0

sup
x≥0

∣∣∣ ∑
x<m≤x+z

(−1)s2(m) e(mθ)
∣∣∣ dθ � z

1+ log ρ
log 2 .

Proof. If L is an interval of the form [`2λ, (`+ 1)2λ), where ` and λ are
nonnegative integers, then

(13)
∣∣∣∑
m∈L

(−1)s2(m) e(mθ)
∣∣∣ =

∏
0≤k<λ

|1− e(2kθ)|.

This is clear for λ = 0. If λ > 0, then by the relations s2(2m) = s2(m) and
s2(2m+ 1) = s2(2m) + 1 we have∣∣∣∑
m∈L

(−1)s2(m) e(mθ)
∣∣∣

=
∣∣∣ ∑
`2λ−1≤m<(`+1)2λ−1

(
(−1)s2(2m) e(2mθ) + (−1)s2(2m+1) e((2m+ 1)θ)

)∣∣∣
= |(1− e(θ))|

∣∣∣ ∑
`2λ−1≤m<(`+1)2λ−1

(−1)s2(m) e(2mθ)
∣∣∣,

from which (13) follows by induction. Using the trigonometric identity
|1− e(θ)| = 2|sin(πθ)| we get

(14)
∣∣∣∑
m∈L

(−1)s2(m) e(mθ)
∣∣∣ = 2λ

∏
0≤k<λ

|sin(2kπθ)|.
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If L is any finite nonempty interval of nonnegative integers, we use dyadic
decomposition of L in the form of the following statement: Let a < b be
nonnegative integers. There exists a decomposition a = a0 ≤ · · · ≤ aL =
bL ≤ · · · ≤ b0 = b such that for j < L we have aj+1 − aj ∈ {0, 2j}, 2j | aj
and bj − bj+1 ∈ {0, 2j}, 2j | bj .

To prove this, one first establishes the special case that a < 2K ≤ b <
2K+1 for some K, and obtains the general case by adding a multiple of 2K+1.
We skip the details of the proof since we will return to a very similar problem
in Section 3.3. We can therefore decompose L into intervals of the form
[`2λ, (` + 1)2λ) in such a way that for each λ there are at most two such
intervals of length 2λ. From this, using (14) we obtain∣∣∣∑

m∈L
(−1)s2(m) e(mθ)

∣∣∣� ∑
0≤λ≤ log |L|

log 2

2λ
∏

0≤k<λ
|sin(2kπθ)|.

By Lemma 1 (note that in particular 2ρ > 1) this implies

1�

0

sup
x≥0

∣∣∣ ∑
x<m≤x+z

(−1)s2(m) e(mθ)
∣∣∣ dθ � ∑

λ≤ log(z+1)
log 2

2λ
1�

0

∏
k<λ

|sin(2kπθ)| dθ

�
∑

λ≤ log(z+1)
log 2

2λρλ � (2ρ)
log(z+1)

log 2
+1 � (2ρ)

log z
log 2 = z

1+ log ρ
log 2

for all z ≥ 1.

Proof of Theorem 2. Note first that 1 + log ρ
log 2 < 0.4076 according to the

estimate ρ < 0.6632. Combining Proposition 2 and Corollary 1 we get the
following statement: there exists a < 0.4076 such that for all c ∈ (1, 2) and

all η ∈
(
0, 2−(a+1)c

3−a
)

there exists C such that for all N ≥ 2 we have

(15)
1

N

∣∣∣∣ ∑
1≤n≤N

(−1)s2(bn
cc) − 1

c

∑
1≤m≤Nc

(−1)s2(m)m1/c−1
∣∣∣∣ ≤ CN−η.

To prove the main statement, it remains to eliminate the second sum in this
inequality. For all nonnegative integers K we have

∑
m<2K(−1)s2(m) = 0,

therefore it follows by partial summation that

1

N

∑
1≤m≤Nc

(−1)s2(m)m1/c−1 � 1

N
(N c)1/c−1 sup

1≤u≤Nc

∣∣∣ ∑
1≤m≤u

(−1)s2(m)
∣∣∣

� N−c.

This quantity is dominated by the error term, so we may remove the second
sum in (15). To finish the proof, we note that 2− (a+ 1)c > 0 and 7−5c

9 <
2−(a+1)c

3−a for c ≤ 1.42 and a < 0.4076.
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We remark that our method even yields a value around 1.425 for the
upper bound on c, if indeed ρ is around 0.661 as the computations suggest.
In [8, p. 579], an analogous remark on the dependence of a parameter on ρ
is made.

3.2. The joint distribution of sum-of-digits functions. For inte-
gers q ≥ 2 and n ≥ 0 we denote by sq(n) the sum of digits of n in base q.
In this section we prove the following independence result for sum-of-digits
functions with respect to coprime bases q1 and q2.

Theorem 3 (Joint distribution of sum-of-digits functions on bncc). Let
q1, q2 ≥ 2, m1,m2 ≥ 1, and let l1, l2 be integers such that (q1, q2) = 1,
(m1, q1−1) = 1 and (m2, q2−1) = 1. Let 1 < c < 18/17. There exists ε > 0
such that

(16) |{n ≤ x : sq1(bncc) ≡ l1 mod m1 and sq2(bncc) ≡ l2 mod m2}|

=
x

m1m2
+O(x1−ε).

Generalizing this theorem (and its proof) to more than two bases is
straightforward, however the upper bound on c that we can obtain using our
method has then to be adjusted. In order to prove Theorem 3, we estimate
the relevant integral as well as the integrand at θ = 0.

Proposition 3. Let q1, q2 ≥ 2 be relatively prime integers. There exists
C = C(q1, q2) such that for all α, β ∈ R and z ≥ 1 we have

(17)

1�

0

sup
x≥0

∣∣∣ ∑
x<n≤x+z

e(αsq1(n) + βsq2(n) + nθ)
∣∣∣ dθ ≤ Cz8/9.

Moreover,

(18) sup
x≥0

∣∣∣ ∑
x<n≤x+z

e(αsq1(n) + βsq2(n))
∣∣∣ ≤ C1z

1−η(α)

for z ≥ 1, where η(α) = ‖(q1−1)α‖2
15 log q1

and C1 may depend on α, β, q1 and q2.

In the proof of this proposition we make use of the truncated sum-of-
digits function sq,λ, which adds up the first λ digits of the base-q repre-
sentation of a nonnegative integer n. That is, if n =

∑
i≥0 εiq

i and εi is in
{0, 1, . . . , q − 1} for all i, then

sq,λ(n) =
∑

0≤i<λ
εi = sq(n mod qλ).

For convenience we extend sq,λ to a qλ-periodic function on Z. By periodicity,
we can represent the function e(αsq,λ(n)) with the aid of the discrete Fourier
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transform. For integers q ≥ 2, λ ≥ 0 and n we have

e(αsq,λ(n)) =
∑
h<qλ

e(hnq−λ)Fq,λ(h, α),(19)

e(−αsq,λ(n)) =
∑
h<qλ

e(hnq−λ)Fq,λ(−h, α),(20)

where

Fq,λ(h, α) =
1

qλ

∑
u<qλ

e(αsq,λ(u)− huq−λ).

The Fourier coefficients Fq,λ(h, α) may be estimated uniformly in h using
the following lemma [15, Lemme 9].

Lemma 2. Let q, λ ≥ 2 and h be integers and α ∈ R. Then

|Fq,λ(h, α)| ≤ eπ2/48q−cq‖(q−1)α‖
2λ,

where

cq =
π2

12 log q

(
1− 2

q + 1

)
.

We prove the following lemma on the truncated sum-of-digits function,
which is a way of expressing the idea that addition of an integer r to n
should only change digits at low positions in most cases.

Lemma 3. Let q ≥ 2, λ ≥ 0 and r be integers, and let I be a finite
interval in N such that I + r ⊆ N. Then

|{n ∈ I : sq(n+ r)− sq(n) 6= sq,λ(n+ r)− sq,λ(n)}| ≤ |I| |r|
qλ

+ |r|.

Proof. It is sufficient to assume that r is nonnegative, since the other
case then follows by shifting the interval I.

For a nonnegative integer n, there exist unique t and u such that n =
tqλ + u, where u < qλ. Clearly we have sq(n) = sq(t) + sq(u) and sq,λ(n) =
sq(u). If n ≡ k mod qλ for some k such that 0 ≤ k < qλ−r, then sq(n+r) =
sq(t) + sq(u + r) and sq,λ(n + r) = sq(u + r), therefore sq(n + r)− sq(s) =
sq,λ(n+ r)− sq,λ(n). It therefore remains to show that

|{n ∈ I : qλ − r ≤ n mod qλ < qλ}| ≤ |I|r/qλ + r,

which is not difficult.

The inequality of van der Corput is well known. For our purposes, we
will employ it in the following form.

Lemma 4. Let I be a finite interval in Z and let an ∈ C for n ∈ I. Then∣∣∣∑
n∈I

an

∣∣∣2 ≤ |I| − 1 +R

R

∑
0≤|r|<R

(
1− |r|

R

) ∑
n∈I
n+r∈I

an+ran

for all integers R ≥ 1.
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Proof of Proposition 3. To estimate the left hand side of (17), we intro-
duce two parameters to be chosen later, λ1 and λ2. Rounding off z to the
nearest multiple M of qλ11 qλ22 introduces an error term O(qλ11 qλ22 ). Let x ≥ 0,
z ≥ 1 and let R ∈ [1, z] be an integer. Then by van der Corput’s inequality
we get∣∣∣ ∑
x<n≤x+M

e(αsq1(n) + βsq2(n) + nθ)
∣∣∣2 � z

R

∑
|r|<R

(
1− |r|

R

)
×

∑
x<n, n+r≤x+M

e
(
α(sq1(n+ r)− sq1(n)) + β(sq2(n+ r)− sq2(n)) + rθ

)
.

Applying Lemma 3 in order to replace sq1 and sq2 by sq1,λ1 and sq2,λ2 respec-
tively and omitting the summation condition x < n+ r ≤ x+M afterwards
we get an error term O(zR+ z2R(1/qλ11 + 1/qλ22 )), and after inserting equa-
tions (19) and (20) it remains to estimate the quantity

(21)
z

R2

∑
h1,k1<q

λ1
1

h2,k2<q
λ2
2

Fq1,λ1(h1, α)Fq1,λ1(−k1, α)Fq2,λ2(h2, β)Fq2,λ2(−k2, β)

×
∑

x<n≤x+M
e

(
n

(
h1 + k1

qλ11
+
h2 + k2

qλ22

)) ∑
|r|<R

(R− |r|) e

(
r

(
h1

qλ11
+
h2

qλ22
+ θ

))
.

By our choice of M and by the Chinese Remainder Theorem, the contribu-
tion of the case that (h1 +k1, h2 +k2) 6≡ (0, 0) mod (qλ11 , qλ22 ) is 0. Using the
identity ∑

|r|<R

(R− |r|) e(rx) =
∣∣∣∑
r<R

e(rx)
∣∣∣2,

we see that (21) is bounded by the expression

(22)
z2

R2

∑
h1<q

λ1
1

h2<q
λ2
2

|Fq1,λ1(h1, α)|2|Fq2,λ2(h2, β)|2
∣∣∣∣ ∑
|r|<R

e

(
r

(
h1

qλ11
+
h2

qλ22
+ θ

))∣∣∣∣2,
which is independent of x.

In order to prove the first part of Proposition 3, we use the Cauchy–
Schwarz inequality, Parseval’s identity and the identity

1�

0

∣∣∣∑
r∈I

e(r(t+ θ))
∣∣∣2 dθ = |I|,

and collect the error terms to arrive at the estimate
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(23)

1�

0

sup
x≥0

∣∣∣ ∑
x<n≤x+z

e(αsq1(n) + βsq2(n) + nθ)
∣∣∣ dθ

= O
(
qλ11 qλ22 + z1/2R1/2 + zR1/2(q

−λ1/2
1 + q

−λ2/2
2 ) + zR−1/2

)
,

which is valid for all real α, β and z ≥ 1 and all integers R ∈ [1, z] and
λ1, λ2 ≥ 0. The implied constant is an absolute one. This estimate is also
valid for real R, λ1 and λ2, however the implied constant may then depend
on q1 and q2. We set

λ1 =
4 log z

9 log q1
, λ2 =

4 log z

9 log q2
and R = z2/9.

Then clearly R ∈ [1, z], and a short calculation shows that all four summands
in the error term are � z8/9, which proves the first part.

For the second part we make use of Lemma 2 and Parseval’s identity to
estimate (22) by

(24)
z2

R2
sup
h∈Z
|Fq1,λ1(h, α)|2 sup

t∈R

∣∣∣ ∑
h1<q

λ1
1

min{R2, ‖h1/qλ11 + t‖−2}
∣∣∣

×
∑

h2<q
λ2
2

|Fq2,λ2(h2, β)|2 � z2q−2cλ11

qλ11
R
,

where c = cq1‖(q1−1)α‖2. Therefore for some constant C the following holds
for all x, z ≥ 0 and all integers R ∈ [1, z]:∣∣∣ ∑
x<n≤x+z

e(αsq1(n) + βsq2(n))
∣∣∣

≤ C
(
qλ11 qλ22 + z1/2R1/2 + zR1/2(q

−λ1/2
1 + q

−λ2/2
2 ) + zq

λ1(1/2−c)
1 R−1/2

)
.

Again we may assume that R, λ1 and λ2 are real numbers. We set

λ1 =
2 log z

(4 + c) log q1
, λ2 =

2 log z

(4 + c) log q2
and R = z

2−2c
4+c .

With these choices, after a short calculation we get∑
x<n≤x+z

e(αsq1(n) + βsq2(n))� z1−c/(4+c).

To get a convenient form of the exponent, we note that q1 ≥ 2, which implies
cq1 ≥ π2/(36 log q1). By the same condition and monotonicity of x/(4 + x)
we get

c

4 + c
≥ π2‖(q1 − 1)α‖2

36 log q1
(
4 + π2‖(q1−1)α‖2

36 log q1

) ≥ ‖(q1 − 1)α‖2
144 log q1

π2 + 1
4

≥ ‖(q1 − 1)α‖2

15 log q1
.
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By Corollary 1 and (17) we see that for all real α and β the function
ϕ(m) = e(αsq1(m) + βsq2(m)) admits a “change of variables” as long as
2 − (8/9 + 1)c > 0, that is, c < 18/17. We assume now that (q1 − 1)α 6∈ Z
or (q2 − 1)β 6∈ Z. Then by partial summation and equation (18) the second
sum in (10) can be eliminated, leading to the following statement:

Let q1, q2 ≥ 2 be relatively prime and α, β ∈ R such that (q1 − 1)α 6∈ Z
or (q2 − 1)β 6∈ Z. Then for all c ∈ (1, 18/17) there exist ε > 0 and C such
that for N ≥ 1 we have∑

1≤n≤N
e
(
αsq1(bncc) + βsq2(bncc)

)
≤ CN1−ε.

From this exponential sum estimate we get the statement of Theorem 3 by
an orthogonality argument.

Note that by the same orthogonality argument, (4) can be deduced from
from (18), which gives an alternative to Kim’s proof [11].

3.3. The Zeckendorf sum-of-digits function. In our third applica-
tion we study the distribution in residue classes of the values of the Zeck-
endorf sum-of-digits function on bncc.

For k ≥ 0 let Fk be the kth Fibonacci number, that is, F0 = 0, F1 = 1
and Fk = Fk−1 + Fk−2 for k ≥ 2. By Zeckendorf’s Theorem [22] every
positive integer n admits a unique representation

n =
∑
i≥2

εiFi,

where εi ∈ {0, 1} and εi = 1 ⇒ εi+1 = 0. By this theorem we may write
the ith coefficient εi as a function of n. The Zeckendorf sum-of-digits of n
is then defined as

sZ(n) =
∑
i≥2

εi(n).

We set sZ(0) = 0. We note that sZ(n) is the least k such that n is the sum
of k Fibonacci numbers.

Theorem 4 (The Zeckendorf sum-of-digits function on bncc). Let m ≥ 1
and a be integers. Then for all c ∈ (1, 4/3) there exists ε > 0 such that
uniformly for x ≥ 1 we have

|{n ≤ x : sZ(bncc) ≡ a mod m}| = x

m
+O(x1−ε).

The proof of this statement is based on the following proposition.

Proposition 4. There exists C such that for all α ∈ R and z ≥ 1 we
have

(25)

1�

0

sup
x≥0

∣∣∣ ∑
x<n≤x+z

e(αsZ(n) + nθ)
∣∣∣ dθ ≤ Cz1/2.
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Moreover, for α 6∈ Z there exist η > 0 and C1 such that for all z ≥ 1,

(26) sup
x≥0

∣∣∣ ∑
x<n≤x+z

e(αsZ(n))
∣∣∣ ≤ C1z

1−η.

Proof. For k ≥ 0 we define

Gk(α, θ) =
∑

0≤u<Fk

e(αsZ(u) + θu).

By the Cauchy–Schwarz inequality and the formula Fk � ϕk, where ϕ =
(
√

5 + 1)/2, we clearly have

(27)

1�

0

∣∣∣ ∑
n<Fk

Gk(α, θ)
∣∣∣ dθ ≤ F 1/2

k � ϕk/2.

Moreover, by the relation sZ(u+ Fk) = 1 + sZ(u) that holds for k ≥ 2 and
0 ≤ u < Fk−1 the terms Gk(α, 0) satisfy the linear recurrence relation

Gk+1(α, 0) = Gk(α, 0) + e(α)Gk−1(α, 0).

Its characteristic polynomial has the roots 1
2±

1
2

√
1 + 4 e(α), whose absolute

values are bounded by 1
2 + 1

2(17 + 8 cos(2πα))1/4. This expression is equal
to ϕ if α ∈ Z, and strictly less than ϕ otherwise. Consequently, if α 6∈ Z,
then there is some η > 0 such that

(28) Gk(α, 0)� ϕk(1−η).

The expression for Gk(α, θ) involves a sum over the interval [0, Fk). In order
to deal with arbitrary finite intervals I in N, we decompose the interval I
according to the Zeckendorf representation of its endpoints. This procedure
is analogous to the decomposition of an interval into dyadic intervals, which
we used in the proof of Theorem 2.

Lemma 5. Let 0 ≤ A < B be integers. There exist integers L ≥ 2 and
aj, bj for 2 ≤ j ≤ L such that A = a2 ≤ · · · ≤ aL = bL ≤ · · · ≤ b2 = B
having the properties that εi(aj) = εi(bj) = 0 for 2 ≤ i < j ≤ L and that
aj+1 − aj ∈ {0, Fj−1} and bj − bj+1 ∈ {0, Fj} for 2 ≤ j < L.

Proof. We first show that it is sufficient to assume that 0 ≤ A < FK ≤
B < FK+1 for some K ≥ 2. Let K = max{i : εi(A) 6= εi(B)} and C =∑

i>K εi(A)Fi =
∑

i>K εi(B)Fi. Then 0 ≤ A − C < FK ≤ B − C < FK+1

and by our assumption we get a decomposition A − C = a2 ≤ · · · ≤ aL =
bL ≤ · · · ≤ b2 = B − C as in the lemma. We have εi(aj) = εi(bj) = 0 for
2 ≤ j ≤ L and i > K, and since εK(B) = 1, we have εi(C) = 0 for i ≤ K+1.
Therefore A = a2 + C ≤ · · · ≤ aL + C = bL + C ≤ · · · ≤ b2 + C = B is a
valid decomposition of the interval [A,B].

It remains to prove the simplified statement. In the case that A = 0
we set a2 = · · · = aK+1 = 0 and bj =

∑
i≥j εi(B)Fi for 2 ≤ j ≤ K + 1.
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Otherwise we set bj =
∑

i≥j εi(B)Fi for 2 ≤ j ≤ K, and to choose aj , we
use the following assertion which we prove by (downward) induction on k:

• Let K ≥ 2. Assume that 0 < A ≤ FK and k = min{i : εi(A) = 1}.
There exist integers A = ak ≤ · · · ≤ aK = FK such that for k ≤ j < K
and 2 ≤ i < j we have εi(aj) = 0 and aj+1 − aj ∈ {0, Fj−1}.

If k = K, then A = FK and we choose aK = A. Otherwise 2 ≤ k < K
and we set A′ = A + Fk−1 and k′ = min{i : εi(A

′) = 1}. Then k′ > k. We
choose ak′ , . . . , aK according to the assumption, ak = A and ak+1 = · · · =
ak′−1 = A′. This choice gives an admissible decomposition of the interval
[A,FK ] and the simplified statement is proved. Setting a2 = · · · = ak−1 = A
completes the proof of Lemma 5.

By this lemma we can decompose an arbitrary finite interval in N into
intervals of the form [A,A + Fj), where εi(A) = 0 for i ≤ j, in such a way
that for each j ≥ 1 there are at most two intervals of this form. Noting also
that sZ(n) = sZ(A) + sZ(n−A) for all n in such an interval and using the
formula Fk � ϕk, one can easily derive (25) and (26) from (27) and (28).

We plug (25) into Corollary 1 and eliminate the second sum in (10) by
partial summation and (26), which results in the statement that for α ∈ R\Z
and c ∈ (1, 4/3) there exist η > 0 and C such that∑

1≤n≤N
e(αsZ(bncc)) ≤ CN1−η

for N ≥ 1. By transferring this to a statement about residue classes, we
obtain Theorem 4.

4. Proofs of the main results. We start with a couple of lemmas that
we need in the proofs of Theorem 1 and Proposition 1. The first one will
allow proving that the left hand sides of (5) and (7) are always O(A).

Lemma 6. Let f : R+ → R+ be differentiable and assume that f ′ is
increasing and positive. Then∑

f(A)<m≤f(2A)

(f−1)′(m)� A for A > 0.

Proof. If g : R+ → R+ is decreasing and 0 < s ≤ t, we have∑
s<m≤t

g(m) =
∑

bsc+1≤m≤btc

g(m) =

btc�

bsc

g(bxc+ 1) dx

≤ g(bsc+ 1) +

btc�

bsc+1

g(x) dx ≤ g(s) +

t�

s

g(x) dx.
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We apply this to the function g(x) = (f−1)′(x), noting also that there is
some a > 0 such that the sum in the lemma is equal to 0 for A < a. For
A ≥ a we have∑

f(A)<m≤f(2A)

(f−1)′(m) ≤ 1

f ′(A)
+ f−1(x)|f(2A)f(A) ≤

1

f ′(a)
+A� A.

In the next lemma we study properties of functions f as in Theorem 1
and Proposition 1.

Lemma 7. Assume that f : R+ → R is twice continuously differentiable,
f, f ′, f ′′ > 0 and there exist c1 ≥ 1/2 and c2>0 such that for 0 < x ≤ y ≤ 2x
we have c1f

′′(x) ≤ f ′′(y) ≤ c2f ′′(x). Then:

xf ′′(x)� yf ′′(y) for 0 < x ≤ y,(29)

xf ′′(x)� f ′(x)� xf ′′(x) log x for x ≥ 2,(30)

f ′(x) ≤ f ′(y)� f ′(x) for 0 < x ≤ y ≤ 2x,(31)

log x� f ′(x)� xδ for some δ ≥ 0 and all x ≥ 2.(32)

Moreover for 0 < x ≤ a ≤ b ≤ 2x we have

f(b)− f(a) � f ′(x)(b− a),(33)

f ′(b)− f ′(a) � f ′′(x)(b− a).(34)

Proof. In order to prove (29), we show the equivalent statement that

f ′′(x)� af ′′(ax)

for a ≥ 1 and x > 0. This is clear for a = 2k by the inequalities c1f
′′(x) ≤

f ′′(2x) and c1 ≥ 1/2. If 2k ≤ a < 2k+1, we have f ′′(ax) ≥ c1f
′′(2kx) ≥

c12
−kf ′′(x) � 1/af ′′(x). We turn to the first inequality in (30). By the

Mean Value Theorem there exists some ξ ∈ [x/2, x] such that f ′(x) ≥ f ′(x)−
f ′(x/2) = (x/2)f ′′(ξ) ≥ (x/(2c2))f

′′(x). For the proof of the second inequal-
ity in (30), let x ≥ 2. For t ≤ xwe have tf ′′(t)� xf ′′(x) by (29), and therefore

f ′(x) = f ′(2) +

x�

2

f ′′(t) dt� f ′(2) + xf ′′(x)

x�

2

1

t
dt ≤ f ′(2) + xf ′′(x) log x.

For x ≥ 2 we have xf ′′(x) log x � f ′′(2) � f ′(2) by (29) and f ′, f ′′ > 0,
therefore f ′(x) � xf ′′(x) log x. The first inequality of (31) is obvious since
f ′ is increasing. By applying the Mean Value Theorem it follows that there
exists ξ ∈ [x, 2x] such that f ′(2x) − f ′(x) = xf ′′(ξ) � xf ′′(x). Together
with (30) this gives f ′(2x)� f ′(x). We prove (32). The first estimate follows
from (29) if we set x = 1 and integrate in y. By (31) there exists c > 0 such

that f ′(2z) ≤ cf ′(z) for all z > 0, from which we get f ′(x)� c
log x
log 2 f ′(1) for

all x ≥ 1. Let 0 < x ≤ a ≤ b ≤ 2x. By the Mean Value Theorem there is
some ξ ∈ [a, b] such that f(b)− f(a) = f ′(ξ)(b− a). From the monotonicity
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of f ′ and (31) we get (33). Analogously, (34) is proved via the assumption
c2f
′′(x) ≤ f ′′(y) ≤ c2f ′′(x).

In the following lemma we integrate over a well-known estimate for the
exponential sum

∑
e(nx), where the sum extends over an interval containing

B integers.

Lemma 8. Let a ≤ b be real numbers and B ≥ 2. Then
b�

a

min{B, ‖x‖−1} dx ≤ 2(b− a+ 1)(1 + logB).

Proof. Since the integrand is 1-periodic and symmetric with respect
to 1/2, we have

b�

a

min{B, ‖x‖−1} dx ≤ 2(b− a+ 1)

1/2�

0

min{B, ‖x‖−1} dx

≤ 2(b− a+ 1)
( 1/B�

0

B dx+

1/2�

1/B

x−1 dx
)

≤ 2(b− a+ 1)
(
1 + log(1/2)− log(1/B)

)
≤ 2(b− a+ 1)(1 + logB).

4.1. Proof of Proposition 1. We prepare for the proof by giving some
results on the approximation of a twice differentiable function by an affine
linear function.

Lemma 9. Let f : [a, b] → R be twice differentiable and |f ′′| ≤ M . For
all α ∈ f ′([a, b]) and a ≤ x ≤ b we have

|xα+ f(a)− aα− f(x)| ≤M(b− a)2.

Proof. By the Mean Value Theorem there exists some ξ1 ∈ [a, x] such
that f(x)−f(a) = f ′(ξ1)(x−a), that is, such that |xα+f(a)−aα−f(x)| =
(x − a)|f ′(ξ1) − α|. There exists some y ∈ [a, b] such that α = f ′(y). By
applying the Mean Value Theorem to f ′, we get some ξ2 between ξ1 and y
such that |f ′(ξ1) − α| = |f ′(ξ1) − f ′(y)| = |(ξ1 − y)f ′′(ξ2)|. From this the
statement follows easily.

The following result will permit us to replace the function bf(n)c by a
Beatty sequence on an interval (a, b].

Lemma 10. Let f : [a, b]→ R be twice differentiable and |f ′′| ≤M . For
all α ∈ f ′([a, b]) and a ≤ x ≤ b such that ‖xα+ f(a)− aα‖ > M(b− a)2 we
have

bf(x)c = bxα+ f(a)− aαc.
Proof. We write β = f(a) − aα and d = M(b − a)2. The condition

‖xα+β‖ > d in the statement of the lemma implies bxα+β−dc = bxα+βc =
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bxα+β+dc. Moreover by Lemma 9 we get xα+β−d ≤ f(x) ≤ xα+β+d.
Combining these observations yields the claim.

We estimate the number of integers in an interval for which such an
approximation fails.

Lemma 11. Let a ≤ b be integers and let f : [a, b]→ R be twice differen-
tiable. Assume that |f ′′| ≤ M . For all α ∈ f ′([a, b]) and all R ≥ 1 we have
the estimate

|{n ∈ (a, b] : bf(n)c 6= bnα+ f(a)− aαc}|

≤ 2M(b− a)3 +
(b− a)

R
+
∑

1≤r≤R

1

r

∣∣∣ ∑
a<n≤b

e(nrα)
∣∣∣.

Proof. Write d = M(b− a)2 and β = f(a)− aα. If d ≥ 1/2 or a = b, the
statement follows immediately since the left hand side is bounded by b− a.
Otherwise it suffices by Lemma 10 to estimate the quantity

|{n ∈ (a, b] : ‖nα+ β‖ ≤ d}|.
To do this, we apply the inequality of Erdős and Turán to the sequence
({nα+ β + d})a<n≤b in [0, 1). According to [17, Lemma 1], the discrepancy
of any real valued finite sequence (x1, . . . , xN ) in [0, 1), whereN ≥ 1, satisfies

DN (x1, . . . , xN ) = sup
0≤r≤s<1

∣∣∣∣ 1

N
|{1 ≤ n ≤ N : r ≤ xn ≤ s}| − (s− r)

∣∣∣∣
≤ 1

H + 1
+

∑
1≤h≤H

1

h

∣∣∣∣ 1

N

∑
1≤n≤N

e(hxn)

∣∣∣∣
for all H ≥ 1. This is the classical inequality of Erdős and Turán with an
improved constant, equal to 1.

Considering the interval [0, 2d], we obtain from this the estimate∣∣∣∣ 1

b− a
|{n ∈ (a, b] : ‖nα+ β‖ ≤ d}| − 2d

∣∣∣∣
=

∣∣∣∣ 1

b− a
|{n ∈ (a, b] : {nα+ β + d} ∈ [0, 2d]}| − 2d

∣∣∣∣
≤ 1

R
+

1

b− a
∑

1≤r≤R

1

r

∣∣∣ ∑
a<n≤b

e(nrα+ rβ + rd)
∣∣∣,

from which the claim follows.

The rough idea of the proof of Proposition 1 is to relate the two sums
in (7) to each other in three steps, introducing the expression (8). We replace
the function bf(n)c by a Beatty sequence bnα+ βc on small subintervals of
(A, 2A]. Analogously, we replace the expression (f−1)′(m) by the constant
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value 1/α on the corresponding subintervals of (f(A), f(2A)]. To link the
two expressions thus obtained we insert (8), which expresses the error that
arises when we replace the sum of ϕ(n) over a Beatty sequence by the sum
of ϕ(n) over all integers in an interval. Afterwards we collect the error terms
and we are done.

Proof of Proposition 1. Let A ≥ 2. It is sufficient to concentrate on the
case that K is an integer and 2 ≤ K ≤ A, for the following reasons. If
K < 2, then (logA)2/K � 1, and if K > A, then f ′′(A)K2 ≥ Af ′′(A)A�
2f ′′(2) � 1 by (29). Therefore the right hand side of (7) is bounded below
for these cases, while the left hand side of (7) is always bounded above by
Lemma 6. For general K in [2, A] we have |I(A, bKc) − I(A,K)| � 1/K,
which can be deduced from the inequality |ab−a′b′| ≤ |a−a′||b|+ |a′||b− b′|
and the estimate α ≥ f ′(2) � 1 that is valid for α ∈ [f ′(A), f ′(2A)]. This
error is absorbed by the term (logA)2/K, therefore the general case can
easily be accounted for by adjusting the implied constant C.

To guarantee that all expressions involving ϕ are well defined, we set
ϕ(n) = 0 for n ≤ 0. For K an integer and 2 ≤ K ≤ A we partition (A, 2A]
into smaller intervals of length at most K as follows. Define integral partition
points ai = dAe + iK for i ≥ 0 and set L = max{i : ai ≤ 2A}, which is
well defined since K > 0. The integer L satisfies the estimate L ≤ A/K. We
have the decomposition

(35) (A, 2A] = (A, dAe] ∪
⋃

0≤i<L
(ai, ai+1] ∪ (aL, 2A].

Let α ∈ R. Then by the triangle inequality and the relation ai+1 − ai = K,
for i < L we have

(36)
∣∣∣ ∑
ai<n≤ai+1

ϕ(bf(n)c)−
∑

f(ai)<m≤f(ai+1)

ϕ(m)(f−1)′(m)
∣∣∣

≤ T1(α, i) + T2(α, i) + T3(α, i) + T4(α, i),

where

T1(α, i) =
∣∣∣ ∑
ai<n≤ai+1

(
ϕ(bf(n)c)− ϕ(bnα+ f(ai)− aiαc)

)∣∣∣,
T2(α, i) =

∣∣∣∣ ∑
0<n≤K

ϕ(bnα+ f(ai)c)−
1

α

∑
f(ai)<m≤f(ai)+Kα

ϕ(m)

∣∣∣∣,
T3(α, i) =

∣∣∣∣ 1α ∑
f(ai)<m≤ai+1α+f(ai)−aiα

ϕ(m)− 1

α

∑
f(ai)<m≤f(ai+1)

ϕ(m)

∣∣∣∣,
T4(α, i) =

∣∣∣∣ ∑
f(ai)<m≤f(ai+1)

ϕ(m)

(
1

α
− (f−1)′(m)

)∣∣∣∣.
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We integrate (36) in α from f ′(ai) to f ′(ai+1), divide by the length of the
integration range, and take the sum over i from 0 to L− 1, obtaining

(37)
∣∣∣ ∑
dAe<n≤aL

ϕ(bf(n)c)−
∑

f(dAe)<m≤f(aL)

ϕ(m)(f−1)′(m)
∣∣∣

≤
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

(
T1(α, i)+T2(α, i)+ T3(α, i)+T4(α, i)

)
dα.

The first summand will be estimated with the help of Lemma 11, the second
by AI(A,K), and the third and fourth terms will be estimated trivially.

We estimate the first summand in (37). If R is a positive integer, 0 ≤
i < L and α ∈ f ′([ai, ai+1]), then Lemma 11 gives

(38) T1(α, i) ≤ 2f ′′(A)K3 +
K

R
+
∑

1≤r≤R

1

r

∣∣∣ ∑
ai<n≤ai+1

e(nrα)
∣∣∣.

By (34) we have f ′(2A)− f ′(A)� Af ′′(A) and f ′(ai+1)− f ′(ai)� f ′′(A)K
for 0 ≤ i < L. Note also that Af ′′(A) � 2f ′′(2) > 0 for all A ≥ 2 by (29)
and f ′′ > 0. From Lemma 8 it follows that for 2 ≤ K ≤ A and r ≥ 1,

(39)
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

∣∣∣ ∑
ai<n≤ai+1

e(nrα)
∣∣∣ dα

� 1

f ′′(A)K

∑
0≤i<L

1

r

rf ′(ai+1)�

rf ′(ai)

∣∣∣ ∑
ai<n≤ai+1

e(xn)
∣∣∣ dx

≤ 1

f ′′(A)K

1

r

rf ′(2A)�

rf ′(A)

min{K, ‖x‖−1} dx

� 1

f ′′(A)K

1

r
2(rAf ′′(A) + 1)(1 + logK)� A

logK

K
.

From (38) and (39) and the estimates L ≤ A/K and
∑R

r=1
1
r ≤ logR+ 1 it

follows that for 2 ≤ K ≤ A and R ≥ 2 we have

(40)
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

T1(α, i) dα

� A

K

(
f ′′(A)K3 +

K

R

)
+
A logK (logR+ 1)

K

� A

(
f ′′(A)K2 +

1

R
+

logK logR

K

)
,

which concludes our treatment of the first term in (37).
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We turn to the second summand. Again we use (34) and obtain the
estimates

1

f ′(ai+1)− f ′(ai)
� 1

f ′′(A)K
=
A

K

1

Af ′′(A)
� A

1

f ′(2A)− f ′(A)

1

K

for 0 ≤ i < L. By this and the definition of T2(α, i), we easily obtain

(41)
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

T2(α, i) dα� AI(A,K).

To estimate the third term in (37), assume that 0 ≤ i < L and α is in
[f ′(ai), f

′(ai+1)]. We use Lemma 9 (setting x = ai+1) to get

|ai+1α+ f(ai)− aiα− f(ai+1)| ≤ c2f ′′(A)K2,

therefore the two sums in the definition of T3(α, i) differ by not more than
c2f
′′(A)K2 + 1 summands. Moreover, L ≤ A/K. Estimating 1/α ≤ 1/f ′(A)

we get

(42)
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

T3(α, i) dα

� A

K

1

f ′(A)
(f ′′(A)K2 + 1) = A

(
f ′′(A)K

f ′(A)
+

1

f ′(A)K

)
.

Finally let 0 ≤ i < L, α ∈ f ′([ai, ai+1]) and f(ai) < m ≤ f(ai+1). Choose
x, y ∈ [ai, ai+1] in such a way that α = f ′(x) and m = f(y). Then by (34)
and the monotonicity of f ′ we have∣∣∣∣ 1α − (f−1)′(m)

∣∣∣∣ =

∣∣∣∣ 1

f ′(x)
− 1

f ′(y)

∣∣∣∣ =

∣∣∣∣f ′(y)− f ′(x)

f ′(x)f ′(y)

∣∣∣∣
≤ f ′(ai+1)− f ′(ai)

f ′(ai)2
� f ′′(A)K

f ′(A)2
.

Moreover, the length of summation in the definition of T4(α, i) can be es-
timated using (33), giving f(ai+1) − f(ai) + 1 � f ′(A)K + 1. It follows
that

(43)
∑

0≤i<L

1

f ′(ai+1)− f ′(ai)

f ′(ai+1)�

f ′(ai)

T4(α, i) dx

� A

K
(f ′(A)K + 1)

(
f ′′(A)K

f ′(A)2

)
� A

(
f ′′(A)K

f ′(A)
+
f ′′(A)

f ′(A)2

)
.

We still have to take care of the first and the last intervals in (35). To
do this, we take any interval (a, b] such that A ≤ a ≤ b ≤ a+K ≤ 2A. For
all m ∈ (f(a), f(b)] we have (f−1)′(m) = 1/f ′(f−1(m)) ≤ 1/f ′(A) since f ′
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is monotonic, moreover f(b) − f(a) + 1 � f ′(A)K + 1 � f ′(A)K by (33)
and the relation f ′(A) ≥ f ′(2) > 0, and finally b− a+ 1� K. Therefore

(44)
∣∣∣ ∑
a<n≤b

ϕ(bf(n)c)−
∑

f(a)<m≤f(b)

ϕ(m)(f−1)′(m)
∣∣∣

� K + f ′(A)K
1

f ′(A)
� K.

Combining (37) and (40)–(44) we get∣∣∣ ∑
A<n≤2A

ϕ(bf(n)c)−
∑

f(A)<m≤f(2A)

ϕ(m)(f−1)′(m)
∣∣∣

� A

(
f ′′(A)K2 +

1

R
+

logK logR

K
+ I(A,K)

+
f ′′(A)K

f ′(A)
+

1

f ′(A)K
+
f ′′(A)

f ′(A)2
+
K

A

)
for A,K,R ≥ 2. Since f ′(A) ≥ f ′(2)� 1, the first term dominates the fifth
and seventh terms and the third term dominates the sixth. Since Af ′′(A)�
2f ′′(2)� 1 by (29), we have f ′′(A)� 1/A, and therefore the first term also
dominates the last term. We choose R = A. Then the third term dominates
the second, and the error is

� A
(
f ′′(A)K2 + (logA)2/K + I(A,K)

)
.

4.2. Proof of Theorem 1. We want to find an estimate for (8); more
precisely, we want to treat the expression∑

a<n≤b
ϕ(bnα+ βc)

with the help of exponential sums. To do this, we resort to the following use-
ful approximation of the sawtooth function x 7→ {x}− 1/2 by trigonometric
polynomials that was given by Vaaler. (See [10, Theorem A.6].)

Lemma 12. Assume that H is a positive integer. There exist real num-
bers aH(h) ∈ [0, 1] for 1 ≤ |h| ≤ H such that

(45) |ψ(t)− ψH(t)| ≤ κH(t)

for all real t, where

ψ(x) = {x} − 1

2
, ψH(t) = − 1

2πi

∑
1≤|h|≤H

aH(h)

h
e(ht)

and

κH(t) =
1

2(H + 1)

∑
0≤|h|≤H

(
1− |h|

H + 1

)
e(ht).
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Note that κH(t) is a nonnegative real number since for all H we have∑
0≤|h|<H

(H − |h|) e(hx) =
∣∣∣ ∑
0≤h<H

e(hx)
∣∣∣2.

Let α and β be real numbers and suppose that α ≥ 1. An elementary
argument shows that for all integers m we have

(46)

⌊
−m− β

α

⌋
−
⌊
−m+ 1− β

α

⌋
=

{
1 if m = bnα+ βc for some integer n,

0 otherwise.
With the help of this characterization of the elements of a Beatty sequence
we prove the following statement, which allows us to deduce Theorem 1 from
Proposition 1.

Proposition 5. Let ϕ : N→ C be a function bounded by 1. For all real
α ≥ 1, β ≥ 0, K ≥ 0 and H ≥ 1 we have∣∣∣∣ ∑

0<n≤K
ϕ(bnα+ βc)− 1

α

∑
β<m≤β+Kα

ϕ(m)

∣∣∣∣
≤

∑
1≤|h|≤H

min

{
1

α
,

1

|h|

}∣∣∣∣ ∑
β<m≤β+Kα

ϕ(m) e

(
−mh

α

)∣∣∣∣
+

1

H

∑
0≤|h|≤H

∣∣∣∣ ∑
β<m≤β+Kα

e

(
−mh

α

)∣∣∣∣+O(1).

The implied constant is an absolute one.

Proof. We write ψ(x) = {x} − 1/2 = x − bxc − 1/2. Since α ≥ 1, the
function n 7→ bnα+ βc is injective. Using this fact and (46), we see that∑
0<n≤K

ϕ(bnα+βc) =
∑
m∈Z

ϕ(m) ·
{

1, m = bnα+ βc for some 0 < n ≤ K,

0, otherwise

=
∑

bβc<m≤bβ+Kαc

ϕ(m) ·
{

1, m = bnα+ βc for some n,

0, otherwise

=
∑

bβc<m≤bβ+Kαc

ϕ(m)

(⌊
−m− β

α

⌋
−
⌊
−m+ 1− β

α

⌋)
=

1

α

∑
β<m≤β+Kα

ϕ(m)

+
∑

β<m≤β+Kα
ϕ(m)

(
ψ

(
−m+ 1− β

α

)
− ψ

(
−m− β

α

))
+O(1).
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It remains to treat the second sum. For brevity, write

L = {m ∈ Z : β < m ≤ β +Kα}.
Let H ≥ 1 be an integer. For each m we replace ψ by ψH with the help
of (45) to get∣∣∣∣ ∑
m∈L

ϕ(m)

(
ψ

(
−m+ 1− β

α
− γ
)
− ψ

(
−m− β

α
− γ
))

− −1

2πi

∑
m∈L

ϕ(m)
∑

1≤|h|≤H

aH(h)

h

(
e

(
−hm+ 1− β

α

)
− e

(
−hm− β

α

))∣∣∣∣
≤ 1

2H + 2

∑
m∈L

∑
|h|≤H

(
1− |h|

H + 1

)(
e

(
−hm+ 1− β

α

)
+ e

(
−hm− β

α

))

≤ 1

H + 1

∑
0≤|h|≤H

∣∣∣∣∑
m∈L

e

(
−hm

α

)∣∣∣∣.
Finally we use the inequalities |aH(h)| ≤ 1 and | e(x)− 1| ≤ min{2, 2πx} to
calculate:∣∣∣∣ 1

2πi

∑
m∈L

ϕ(m)
∑

1≤|h|≤H

aH(h)

h

(
e

(
−hm+ 1− β

α

)
− e

(
−hm− β

α

))∣∣∣∣
=

∣∣∣∣ 1

2π

∑
1≤|h|≤H

aH(h)

h
e

(
−β
α

)(
e

(
−h
α

)
− 1

)∑
m∈L

ϕ(m)

(
−hm

α

)∣∣∣∣
≤

∑
1≤|h|≤H

min

{
1

α
,

1

|h|

}∣∣∣∣∑
m∈L

ϕ(m)

(
−hm

α

)∣∣∣∣.
If H ≥ 1 is a real number, we apply these calculations to bHc. Note that in
this process the summations over h remain unchanged and 1/(bHc + 1) ≤
1/H, therefore the assertion follows.

We will use the following standard lemma to extend the range of a sum-
mation in exchange for a controllable factor.

Lemma 13. Let x ≤ y ≤ z be real numbers and an ∈ C for x < n ≤ z.
Then ∣∣∣ ∑

x<n≤y
an

∣∣∣ ≤ 1�

0

min{y − x+ 1, ‖ξ‖−1}
∣∣∣ ∑
x<n≤z

an e(nξ)
∣∣∣ dξ.

Proof. Since
	1
0 e(kξ) dξ = δk,0 for k ∈ Z, it follows that∑

x<n≤y
an =

∑
x<n≤z

an
∑

x<m≤y
δn−m,0 =

1�

0

∑
x<m≤y

e(−mξ)
∑

x<n≤z
an e(nξ) dξ,

from which the statement follows.
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Finally, to obtain the correct error term in the theorem, we will use the
following lower bound on the L1-norm of an exponential sum.

Lemma 14. Let a < b be real numbers and xm a complex number for
a < m ≤ b. Then

1�

0

∣∣∣ ∑
a<m≤b

xm e(mθ)
∣∣∣ dθ ≥ max

a<m≤b
|xm|.

Proof. For a < n ≤ b we have

1�

0

∣∣∣ ∑
a<m≤b

xm e(mθ)
∣∣∣ dθ =

1�

0

∣∣∣ ∑
a<m≤b

xm e((m− n)θ)
∣∣∣ dθ

≥
∣∣∣ ∑
a<m≤b

xm

1�

0

e((m− n)θ) dθ
∣∣∣ = xn.

Proof of Theorem 1. Note first that by (32) we have f ′(x)→∞, there-
fore there exists A0 ≥ 2 such that f ′(A) ≥ 1 for A ≥ A0. Let z > 0. By
an argument similar to that at the beginning of the proof of Proposition 1
we may restrict ourselves to the case that z ≤ Af ′(A). Also, we may as-
sume that there exists an m in the range f(A) < m ≤ f(2A) + z such that
|ϕ(m)| = 1, since the general case follows from this one by rescaling both
sides of (5). To see this, we note that A ≥ 2 is an integer and f ′(x) ≥ 1 for
all x ≥ A, and therefore the relation (5) only depends on integers m in the
range f(A) < m ≤ f(2A) + z. By Lemma 14, this restriction implies

(47)

1�

0

sup
f(A)<x≤f(2A)

∣∣∣ ∑
x<m≤x+z

ϕ(m) e(mθ)
∣∣∣ dθ

≥ sup
f(A)<x≤f(2A)

1�

0

∣∣∣ ∑
x<m≤x+z

ϕ(m) e(mθ)
∣∣∣ dθ

≥ sup
f(A)<x≤f(2A)

sup
x<m≤x+z

|ϕ(m)| = sup
f(A)<m≤f(2A)+z

|ϕ(m)| ≥ 1.

If z < max{2, f ′(2A)}, this lower bound implies f ′(A)(logA)3J(A, z) � 1,
and since by Lemma 6 the left hand side of (5) is bounded, this proves the
assertion in this case. For the remaining part of the proof we assume there-
fore that max{2, f ′(2A)} ≤ z ≤ Af ′(A). Moreover, we assume throughout
that 1 ≤ K ≤ A and H ≥ 2. We want to apply Proposition 1 and there-
fore we have to find an estimate for I(A,K). We apply Proposition 5 to
the expression in the absolute value in equation (8), which is possible since
α ≥ f ′(A) ≥ 1 for all α in question, and obtain the estimate
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(48) I(A,K)� 1

f ′(2A)− f ′(A)

1

K

f ′(2A)�

f ′(A)

( ∑
1≤|h|≤H

min

{
1

α
,

1

|h|

}
S1(α, h)

+
1

H
S2(α, 0) +

1

H

∑
1≤|h|≤H

S2(α, h) +O(1)

)
dα,

where

S1(α, h) = sup
f(A)<x≤f(2A)

∣∣∣∣ ∑
x<m≤x+Kα

ϕ(m) e

(
−mh

α

)∣∣∣∣,
S2(α, h) = sup

f(A)<x≤f(2A)

∣∣∣∣ ∑
x<m≤x+Kα

e

(
−mh

α

)∣∣∣∣.
The four summands in (48) are arranged according to their importance. We
estimate them in the order of increasing importance, the treatment of the
fourth term being trivial:

(49)

f ′(2A)�

f ′(A)

O(1) dα� f ′(2A)− f ′(A).

To estimate the third term, it is sufficient to consider the sum over
1 ≤ h ≤ H, since S2(α,−h) = S2(α, h). We interchange the integration and
the summation and substitute θ = −h/α to obtain

f ′(2A)�

f ′(A)

1

H

∑
1≤h≤H

S2(α, h) dα

� 1

H

∑
1≤h≤H

h

−h/f ′(2A)�

−h/f ′(A)

1

θ2
min{f ′(2A)K + 1, ‖θ‖−1} dθ.

We note some simple estimates before applying Lemma 8. We have 0 <
f ′(1) ≤ f ′(2A)� Aδ for some δ ≥ 0 since f ′ is monotone and by (32), and
therefore f ′(2A)K + 1 � Aδ+1. By (31) we have 0 < −1/θ ≤ f ′(2A)/h �
f ′(A)/h for all θ under consideration. Moreover, the length of the integration
range is h/f ′(A) − h/f ′(2A) ≤ h/f ′(A), and finally from (30) and (34) it
follows that f ′(A)� (f ′(2A)− f ′(A)) logA. Hence Lemma 8 gives

(50)

f ′(2A)�

f ′(A)

1

H

∑
1≤h≤H

S2(α, h) dα

� f ′(A)
1

H

∑
1≤h≤H

f ′(A)

h

(
h

f ′(A)
+ 1

)
(1 + logAδ+1)
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� f ′(A)

(
1 +

f ′(A) logH

H

)
logA

�
(
f ′(2A)− f ′(A)

)
(logA)2

(
1 +

f ′(A) logH

H

)
.

The contribution of the second term in (48) is easily determined: the sum
occurring in the definition of S2 comprises not more than f ′(2A)K + 1 �
f ′(A)K summands, therefore

(51)

f ′(2A)�

f ′(A)

1

H
S2(α, 0) dα� (f ′(2A)− f ′(A))K

f ′(A)

H
.

Now we turn to the treatment of the main term in (48). We concen-
trate on the case h > 0. We exchange the integral and the sum and apply
the substitution −h/α = θ. The factor min{1/α, 1/h} then transforms into
min{−1/θ, 1/θ2}, which is� (f ′(A)/h) min{1, f ′(A)/h} by (31). We obtain

f ′(2A)�

f ′(A)

∑
1≤h≤H

min{1/α, 1/h}S1(α, h) dα

� f ′(A)
∑

1≤h≤H

1

h
min{1, f ′(A)/h}

−h/f ′(2A)�

−h/f ′(A)

S1(−h/θ, h) dθ,

and to estimate the integral we use Lemma 13:

−h/f ′(2A)�

−h/f ′(A)

S1(−h/θ, h) dθ �
1�

0

min{f ′(2A)K + 1, ‖ξ‖−1}

×
ξ−h/f ′(2A)�

ξ−h/f ′(A)

sup
f(A)<x≤f(2A)

∣∣∣ ∑
x<m≤x+f ′(2A)K

ϕ(m) e(mθ)
∣∣∣ dθ dξ.

The length of integration of the inner integral is bounded trivially by h/f ′(A)
and the integrand is 1-periodic, so that we may replace this integral, using
the definition (6) of J , by the upper bound(

h

f ′(A)
+ 1

)
f ′(2A)KJ(A, f ′(2A)K),

which is independent of ξ. We use the estimate f ′(2A)K+ 1� Aδ+1, which
we mentioned before, and Lemma 8, to obtain

1�

0

min{f ′(2A)K + 1, ‖ξ‖−1} dξ � logA.

Splitting the summation over h at f ′(A) we get
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∑
1≤h≤H

1

h
min

{
1,
f ′(A)

h

}(
h

f ′(A)
+ 1

)

�
∑

1≤h≤f ′(A)

1

h
+

∑
f ′(A)<h≤H

1

h

f ′(A)

h

h

f ′(A)
�

∑
1≤h≤H

1

h
� logH.

Collecting the terms and using the estimate f ′(2A)� (f ′(2A)−f ′(A)) logA,
which follows from Lemma 7, we arrive at

(52)

f ′(2A)�

f ′(A)

∑
1≤h≤H

min{1/α, 1/h}S1(α, h) dα

� f ′(A)
(
f ′(2A)− f ′(A)

)
K(logA)2(logH)J

(
A, f ′(2A)K

)
.

By analogous reasoning the sum over −H ≤ h ≤ −1 can be estimated by
the same expression.

We choose
H = z and K =

z

f ′(2A)
.

From the restrictions max{2, f ′(2A)} ≤ z ≤ Af ′(A) it easily follows that
1 ≤ K ≤ A and H ≥ 2, therefore this is an admissible choice. Note also that
logH � logA by (32). We combine (48)–(52) to get the estimate

I

(
A,

z

f ′(2A)

)
� f ′(A)(logA)3

z
+ f ′(A)(logA)3J(A, z).

Applying Proposition 1 we see that the left hand side of (5) is bounded by
a constant times

f ′′(A)

f ′(A)2
z2 +

f ′(A)(logA)3

z
+ f ′(A)(logA)3J(A, z).

By (47) the second term in this expression is dominated by the third, which
completes the proof.

Acknowledgements. The author is grateful to Michael Drmota for
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