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over finite fields
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1. Introduction. Let Fq denote the finite field with q elements. A poly-
nomial f ∈ Fq[x] is called a permutation polynomial (PP) of Fq if the map-
ping x 7→ f(x) is a permutation of Fq. Permutation polynomials over finite
fields are studied for both theoretic [E, Hi1, Hi2, LN, NR] and practical
[GM, L, LB, LC] reasons. PPs with few terms (excluding monomials) are
particularly sought after [AW, LP, MPW, MZ, T, W1, W2, Z]

In the present paper we consider trinomials of the form f = ax + bxq +
x2q−1 ∈ Fq[x]. Since f ≡ (a + b + 1)x (mod xq − x), f is a PP of Fq if and
only if a + b + 1 6= 0. The question that we are interested in is when f
is a PP of Fq2 . This question will be completely answered in Theorem A
(for odd q) and Theorem B (for even q). Partial solutions to the question
appeared in two recent papers: PPs of Fq2 the form tx + x2q−1 (t ∈ F∗q) and

of the form −x + txq + x2q−1 (t ∈ F∗q) were determined in [Ho3] and [Ho4],
respectively. For the proofs of Theorems A and B, we draw on the methods
of [Ho3] and [Ho4], especially, the approach of [Ho4]. However, the proofs in
the present paper are much more than a routine adaptation of the ones in
[Ho3, Ho4]. We find a new method for proving the uniqueness of a solution
x ∈ Fq2 of the equation ax + bxq + x2q−1 = y, where y ∈ Fq2 . A common
theme throughout the proofs of Theorems A and B is that complicated
computations that appear to be heading nowhere can produce surprisingly
nice results. For example, a seemingly out-of-control polynomial of degree 4
not only factors but factors exactly the way we desire (see (3.13)).

Theorem A provides a solution to a related problem. For each integer
n ≥ 0, let gn,q ∈ Fp[x] (p = charFq) be the polynomial defined by the
functional equation ∑

c∈Fq

(x + c)n = gn,q(x
q − x).
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The permutation property of the polynomial gn,q was the focus of several
recent papers [FHL, Ho1, Ho2]. These studies have led to the discovery of
many new interesting PPs including the ones in [Ho3, Ho4] and in the present
paper. The ultimate goal concerning gn,q is to determine all triples of integers
(n, e; q) for which gn,q is a PP of Fqe ; we call such triples desirable. While
this goal may be out of reach for the time being, significant progress has
been made. It was observed through computer search that many desirable
triples appear in the form (qα− qβ−1, 2; q), where α > β ≥ 0. However, the
chaotic values of those α and β were quite bewildering; see [FHL, Section 5
and Table 1]. In the present paper, we are able to determine all desirable
triples of this form; the results are stated in Theorems C (for even q) and D
(for odd q). Theorem C is an immediate consequence of some existing results.
For Theorem D, we note that when n = qα − qβ − 1, the polynomial gn,q,

modulo xq
2−x, can be transformed through an invertible change of variable

into the form Ax+Bxq+Cx2q−1. Hence Theorem D follows from Theorem A.

2. Statements of Theorems A and B. The main results of the paper
are the following theorems.

Theorem A. Let f = ax+ bxq + x2q−1 ∈ Fq[x], where q is odd. Then f
is a PP of Fq2 if and only if one of the following is satisfied:

(i) a(a− 1) is a square in F∗q, and b2 = a2 + 3a.

(ii) a = 1, and b2 − 4 is a square in F∗q.
(iii) a = 3, b = 0, q ≡ −1 (mod 6).
(iv) a = b = 0, q ≡ 1, 3 (mod 6).

Theorem B. Let f = ax + bxq + x2q−1 ∈ Fq[x], where q is even. Then
f is a PP of Fq2 if and only if one of the following is satisfied:

(i) q > 2, a 6= 1, Trq/2
(

1
a+1

)
= 0, b2 = a2 + a.

(ii) q > 2, a = 1, b 6= 0, Trq/2
(
1
b

)
= 0.

In Theorem B(i), we can write 1
a+1 = d2 + d4, where d ∈ Fq \ F2. Then

(a, b, 1) = 1
d2+d4

(1 +d2 +d4, 1 +d+d2, d2 +d4). Similarly, in Theorem B(ii),

we can write 1
b = d+ d2, d ∈ Fq \F2. Then (a, b, 1) = 1

d+d2
(d+ d2, 1, d+ d2).

Let PG(2,Fq) denote the projective plane over Fq and define

X = {[a : b : c] ∈ PG(2,Fq) : ax + bxq + cx2q−1 is a PP of Fq2}.
Then for even q we have

X = {[1 + d2 + d4 : 1 + d+ d2 : d2 + d4] : d ∈ Fq \ F2}
∪ {[d+ d2 : 1 : d+ d2] : d ∈ Fq \ F2}
∪ {[d : 1 : 0] : d ∈ Fq \ {1}} ∪ {[1 : 0 : 0]}.
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3. Proof of Theorem A

3.1. The case a(a− 1)b = 0

Case 1. Assume a = b = 0. Then f = x2q−1 is a PP of Fq2 if and only
if gcd(2q − 1, q2 − 1) = 1, i.e., q ≡ 1, 3 (mod 6).

Case 2. Assume a 6= 0, b = 0. By [Ho3, Theorem 1.1], f = ax+ x2q−1 is
a PP of Fq2 if and only if one of the following occurs:

(a) a = 1, q ≡ 1 (mod 4);
(b) a = −3, q ≡ ±1 (mod 12);
(c) a = 3, q ≡ −1 (mod 6).

Condition (c) is (iii) in Theorem A; condition (a) is equivalent to (ii) in
Theorem A with b = 0. Note that 3 is square in F∗q if and only if q ≡ ±1
(mod 12) [IR, §5.2]. Hence condition (b) is equivalent to (i) in Theorem A
with b = 0.

Case 3. Assume a = 0, b 6= 0. For integers α, β ≥ 0 with α+ β = q− 1,
it follows from (3.17) below that∑

x∈Fq2

f(x)α+βq = −
∑
k,l

α+1+k−l=0, q+1

(
α

k

)(
β

l

)
b−(k+l).

Setting α = q − 1 and β = 0, we have∑
x∈Fq2

f(x)q−1 = −
(
q − 1

1

)
b−1 = b−1 6= 0.

By Hermite’s criterion [LN, Lemma 7.3], f cannot be a PP of Fq2 in this case.

Case 4. Assume a = 1. We show that f = x + bxq + x2q−1 is a PP of
Fq2 if and only if f1 = x2 + bx + 1 has two distinct roots in Fq.

(⇐) Let x, y ∈ Fq2 be such that f(x) = y. We show that x is uniquely
determined by y.

First assume y 6= 0. Let t = xy = x2 + x2q + bxq+1 ∈ Fq. Then

t

y
+ b

(
t

y

)q
+

(
t

y

)2q−1
= y, i.e., t

(
1

y
+

b

yq
+

1

y2q−1

)
= y.

Hence t is unique. It follows that x is unique.
Next assume y = 0. We claim that x = 0. Assume to the contrary that

x 6= 0. Then we have

(3.1) 1 + bxq−1 + x2(q−1) = 0,

i.e., f1(x
q−1) = 0. Thus xq−1 ∈ Fq. Therefore x2(1−q) = x(q−1)

2
= 1, and

hence xq−1 = ±1. It follows from (3.1) that b = ±2. Thus f1 = (x ± 1)2,
which is a contradiction.
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(⇒) Assume to the contrary that f1 does not have two distinct roots
in Fq.

If f1 is irreducible over Fq, let y ∈ Fq2 be a root of f1. Since y1+q =
Nq2/q(y) = 1, there exists an x ∈ F∗q2 such that y = xq−1. Then f(x) =

xf1(y) = 0 = f(0), which is a contradiction.
If f1 is not irreducible over Fq, then f1 = (x − ε)2, where ε = 1 or

−1. Since ε1+q = 1, again there exists x ∈ F∗q2 such that ε = xq−1. Then

f(x) = xf1(ε) = 0 = f(0), which is a contradiction.
This completes the proof of Theorem A for a(a − 1)b = 0. In the next

two subsections, we assume that a(a− 1)b 6= 0 and we prove that f is a PP
of Fq2 if and only if a(a− 1) is a square in F∗q and b2 = a2 + 3a.

3.2. The case a(a− 1)b 6= 0, sufficiency. Assume that a(a− 1) is a
square in F∗q and b2 = a2 + 3a.

1◦ We claim that f(Fq2 \ Fq) ⊂ Fq2 \ Fq.
Assume to the contrary that there exists an x ∈ Fq2 \ Fq such that

f(x)q = f(x). Then

axq + bx+ x2−q = ax+ bxq + x2q−1,

i.e.,

(a− b)(xq − x) +
x3 − x3q

x1+q
= 0.

Since xq − x 6= 0, we have

a− b− x2 + x1+q + x2q

x1+q
= 0,

i.e.,

(3.2) x2(q−1) − (a− b− 1)xq−1 + 1 = 0.

Using the relation b2 = a2 + 3a, we find that

(a− b− 1)2 − 4 =
a− 1

a
(a− b)2,

which is a square in F∗q . So x2 − (a− b− 1)x + 1 is reducible over Fq. Thus

by (3.2), we have xq−1 ∈ Fq. Then 1 = x(q−1)
2

= xq
2−2q+1 = x2(1−q). Since

x /∈ Fq, we must have x1−q = −1. Then (3.2) becomes a−b+1 = 0. However,

(3.3) (a+ b+ 1)(a− b+ 1) = (a+ 1)2− b2 = (a+ 1)2− (a2+ 3a) = 1− a 6= 0,

which is a contradiction.

2◦ Let x, y ∈ Fq2 be such that f(x) = y. We show that x is uniquely
determined by y.

If y ∈ Fq, by 1◦, we have x ∈ Fq, so f(x) = (a + b + 1)x. By (3.3),
a+ b+ 1 6= 0, so we must have x = y/(a+ b+ 1).

Therefore, we assume y ∈ Fq2 \ Fq. It follows that x ∈ Fq2 \ Fq.
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3◦ We write T = Trq2/q and N = Nq2/q. It suffices to show that T(x)
and N(x) are uniquely determined by y. (If x1 ∈ Fq2 \ Fq is such that
f(x1) = y and T(x1) = T(x), N(x1) = N(x), then x1 = x or xq. Since
f(xq) = f(x)q = yq 6= y, we must have x1 = x.)

We observe that

(3.4) T(f(x)) = T(y), N(f(x)) = N(y),

where

T(f(x)) = (a+ b)T(x) + T(x2q−1),(3.5)

N(f(x)) = (ax+ bxq + x2q−1)(axq + bx+ x2−q)(3.6)

= (a2 + b2 + 1)N(x) + (ab+ b)T(x2) + aT(x3−q).

We wish to express T(f(x)) and N(f(x)) in terms of T(x) and N(x). For
this purpose, we need a few formulas: For z ∈ F∗q2 , we have

T(z2) = T(z)2 − 2N(z),(3.7)

T(z3) = T(z)3 − 2N(z)T(z),

T(z2q−1) = T(z3q · z−(1+q)) =
T(z3)

N(z)
=

T(z)3

N(z)
− 3T(z),(3.8)

T(z3−q) = T(z4 · z−(1+q)) =
T(z4)

N(z)
=

1

N(z)
[T(z2)2 − 2N(z2)](3.9)

=
1

N(z)
[(T(z)2 − 2N(z))2 − 2N(z2)]

=
T(z)4

N(z)
− 4T(z)2 + 2N(z).

Put t = T(x), n = N(x), τ = T(y), η = N(y). By (3.5)–(3.9), we have

T(f(x)) = (a+ b)t+
t3

n
− 3t =

t3

n
+ (a+ b− 3)t,

N(f(x)) = (a2 + b2 + 1)n+ (ab+ b)(t2 − 2n) + a

(
t4

n
− 4t2 + 2n

)
= a

t4

n
+ (ab− 4a+ b)t2 + (a− b+ 1)2n.

Then (3.4) becomes

(3.10)


t3

n
+ (a+ b− 3)t = τ,

a
t4

n
+ (ab− 4a+ b)t2 + (a− b+ 1)2n = η.

We proceed to show that (3.10) has at most one solution (t, n) ∈ Fq × Fq.
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First assume τ = 0. Since y ∈ Fq2 \ Fq, q must be odd. We claim that
t = 0. If, on the contrary, t 6= 0, then by the first equation of (3.10), we have
t2/n = −(a+ b− 3). Using the relation b2 = a2 + 3a, we find that

t2

n

(
t2

n
− 4

)
= (a+ b+ 1)(a+ b− 3) =

a− 1

a
(a+ b)2,

which is a square in Fq. Then x ∈ Fq, which is a contradiction. So the claim
is proved. By the second equation of (3.10), we have n = η/(a− b+ 1)2.
Hence (t, n) is unique.

Now assume τ 6= 0. It follows that t 6= 0. Put s = t2/n and σ = τ2/η,
and write (3.10) as

(3.11)


t(s+ a+ b− 3) = τ,

t2
(
as+ (ab− 4a+ b) + (a− b+ 1)2

1

s

)
=
τ2

σ
.

Eliminating t and τ in (3.11), we have

as+ (ab− 4a+ b) + (a− b+ 1)2 1s
(s+ a+ b− 3)2

=
1

σ
,

i.e.,

(3.12) s3 + (−aσ + 2a+ 2b− 6)s2

+ [(4a− b− ab)σ + (a+ b− 3)2]s− (a− b+ 1)2σ = 0.

It suffices to show that (3.12) has at most one solution s ∈ Fq.
Let g(s) ∈ Fq[s] denote the polynomial given by the left side of (3.12).

We find that the discriminant of g is given by

(3.13) D(g) = (a− 1)2σ(σ − 4)h(σ),

where

h(σ) = a2(b2 − 4a)σ2 − 2(ab(a+ b)2 − 8a3 − 6a2b− 2b3 + 9ab)σ(3.14)

+ (a+ b+ 1)(a+ b− 3).

Here we emphasize that (3.13) and (3.14) hold with a and b treated as
independent parameters. Using the relation b2 = a2 + 3a, we find that

(3.15) h(σ) = a3(a− 1)

(
σ − 2a2 + 2ab− 3b

a2

)2

.

(Note: Equations (3.13) and (3.15), especially (3.13), are painful to com-
pute by hand, but they are easily obtained using a symbolic computation
program.) By (3.13) and (3.15),

(3.16) D(g) = a3(a− 1)3σ(σ − 4)

(
σ − 2a2 + 2ab− 3b

a2

)2

.



Permutation trinomials over finite fields 259

In (3.16), σ(σ − 4) is a nonsquare in F∗q because y ∈ Fq2 \ Fq. If σ 6=
(2a2 + 2ab− 3b)/a2, then D(g) is a nonsquare in F∗q . Therefore g has at
most one root in Fq, and we are done.

4◦ Now assume σ = (2a2 + 2ab− 3b)/a2. We have

σ(σ − 4) =

(
2 +

b(2a− 3)

a2

)(
−2 +

b(2a− 3)

a2

)
=
b2(2a− 3)2

a4
− 4

=
a(a+ 3)(2a− 3)2

a4
− 4 = −27(a− 1)

a3
.

Since σ(σ − 4) 6= 0 (a nonsquare in F∗q), we have 3 - q. Using the relations

σ = (2a2 + 2ab− 3b)/a2 and b2 = a2 + 3a, we find that

g(s) = s3 +
3(−2a+ b)

a
s2 +

3(5a− 4b+ 3)

a
s +
−14a2 + 13ab− 18a+ 3b

a2
.

Then

g′ = 3s2 +
6(−2a+ b)

a
s +

3(5a− 4b+ 3)

a
.

The discriminant of g′ is given by

D(g′) =

[
2(−2a+ b)

a

]2
− 4

5a− 4b+ 3

a
.

Using the relation b2 = a2 + 3a, we find that

D(g′) = 0.

Thus

g′ = 3

(
s +
−2a+ b

a

)2

.

Since D(g) = 0, gcd(g, g′) 6= 1. Thus we must have

g =

(
s +
−2a+ b

a

)3

.

In particular, g has a unique root in Fq. This completes the proof of the
sufficiency part of Theorem A under the assumption a(a− 1)b 6= 0.

3.3. The case a(a − 1)b 6= 0, necessity. Recall that f = ax + bxq +
x2q−1 ∈ Fq[x]. Let 0 ≤ s < q2−1 and write s = α+βq, where 0 ≤ α, β ≤ q−1.
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One has∑
x∈Fq2

f(x)s =
∑
x∈F∗

q2

(ax+ bxq + x2q−1)α+βq

=
∑
x∈F∗

q2

(ax+ bxq + x2q−1)α(axq + bx+ x2−q)β

=
∑
x∈F∗

q2

∑
i,j,k,l

(
α

i

)(
i

k

)
(ax)α−i(bxq)i−k(x2q−1)k

(
β

j

)(
j

l

)
(axq)β−j(bx)j−l(x2−q)l

=
∑
x∈F∗

q2

∑
i,j,k,l

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aα+β−i−jbi+j−k−lxα+βq+(q−1)(i+k−j−l).

If α+βq 6≡ 0 (mod q−1), then clearly
∑

x∈Fq2
f(x)s = 0. Assume α+βq ≡ 0

(mod q − 1). Then one must have α+ β = q − 1, and the above calculation
becomes∑
x∈Fq2

f(x)s

=
∑
x∈F∗

q2

∑
i,j,k,l

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aq−1−i−jbi+j−k−lx(q−1)(q−α+i+k−j−l)

= −
∑
i,j,k,l

q−α+i+k−j−l≡0 (mod q+1)

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aq−1−i−jbi+j−k−l.

For 0 ≤ k ≤ i ≤ α and 0 ≤ l ≤ j ≤ β, one has

−(q + 1) < q − α+ i+ k − j − l < 2(q + 1).

Hence

(3.17)
∑
x∈Fq2

f(x)s

= −
∑

q−α+i+k−j−l=0, q+1

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aq−1−i−jbi+j−k−l.

Now assume that a(a − 1)b 6= 0 and f is a PP of Fq2 . We proceed to
prove that a(a− 1) is a square in F∗q and b2 = a2 + 3a. The proof relies on
several lemmas which are provided afterwards.
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Letting α = 0 and β = q − 1 in (3.17), one has

(3.18) 0 = −
∑
x∈Fq2

f(x)(q−1)q =
∑

q−j−l=0

(
q − 1

j

)(
j

l

)
a−jbj−l

=
∑

1≤l≤q/2

(
q − 1

q − l

)(
q − l
l

)
a−(q−l)bq−2l =

b

a

∑
1≤l≤q/2

(−1)q−l
(
−l
l

)
alb−2l

= − b
a

∑
1≤l≤q/2

(
−l
l

)(
−a
b2

)l
= − b

a

( ∑
0≤l≤q/2

(
−l
l

)(
−a
b2

)l
− 1

)
.

Thus
∑

0≤l≤q/2
(−l
l

)
(−a/b2)l = 1. By Lemma 3.1, 1 + 4(−a/b2) is a square

in F∗q , i.e., b2 − 4a is a square in F∗q . (Note that b2 − 4a = a(a− 1) after we

prove that b2 = a2 + 3a.)

Next we prove that b2 = a2 + 3a. Letting α = 1 and β = q− 2 in (3.17),
one has

−
∑
x∈Fq2

f(x)1+(q−2)q

=
∑

q−1−j−l=0

(
q − 2

j

)(
j

l

)
a−jbj−l +

∑
q−j−l=0

(
q − 2

j

)(
j

l

)
a−1−jb1+j−l

+
∑

q+1−j−l=0, q+1

(
q − 2

j

)(
j

l

)
a−1−jbj−l

=
∑

1≤l≤(q−1)/2

(
q − 2

q − 1− l

)(
q − 1− l

l

)
a−(q−1−l)bq−1−2l

+
∑

2≤l≤q/2

(
q − 2

q − l

)(
q − l
l

)
a−1−(q−l)b1+q−2l

+
∑

3≤l≤(q+1)/2

(
q − 2

q + 1− l

)(
q + 1− l

l

)
a−1−(q+1−l)bq+1−2l + a−1.

Since
(−2
k

)
= (−1)k(k + 1) for k ≥ 0, the above calculation gives

−
∑
x∈Fq2

f(x)1+(q−2)q

=
∑

1≤l≤(q−1)/2

(−1)q−1−l(q − l)
(
−1− l
l

)
alb−2l

+
∑

2≤l≤q/2

(−1)q−l(q − l + 1)

(
−l
l

)
al−2b−2l+2

+
∑

3≤l≤(q+1)/2

(−1)q+1−l(q + 2− l)
(

1− l
l

)
al−3b−2l+2 + a−1
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=
∑

1≤l≤(q−1)/2

(l + 1)

(
−l
l + 1

)
(−1)lalb−2l

+
∑

2≤l≤q/2

(l − 1)

(
−l
l

)
(−1)lal−2b−2l+2

+
∑

3≤l≤(q+1)/2

(l − 2)

(
−(l − 1)

l

)
(−1)l+1al−3b−2l+2 + a−1.

Put z = −a/b2. Then one has

(3.19) −
∑
x∈Fq2

f(x)1+(q−2)q

=
∑

0≤l≤(q−1)/2

(l + 1)

(
−l
l + 1

)
zl +

b2

a2

∑
0≤l≤q/2

(l − 1)

(
−l
l

)
zl +

b2

a2

+
∑

2≤l≤(q−1)/2

(l − 1)

(
−l
l + 1

)
(−1)lal−2b−2l + a−1

=
∑

0≤l≤(q−1)/2

[l + 1 + (l − 1)a−2]

(
−l
l + 1

)
zl

+
b2

a2

∑
0≤l≤q/2

(l − 1)

(
−l
l

)
(−1)lzl +

b2

a2
+

1

a

= (1 + a−2)
∑

0≤l≤(q−1)/2

(l + 1)

(
−l
l + 1

)
zl − 2a−2

∑
0≤l≤(q−1)/2

(
−l
l + 1

)
zl

+
b2

a2

∑
0≤l≤q/2

(l + 1)

(
−l
l

)
zl − 2

b2

a2

∑
0≤l≤q/2

(
−l
l

)
zl +

b2

a2
+

1

a

= (1 + a−2)
2z

1 + 4z
− 2a−2 +

b2

a2
1 + 3z

1 + 4z
− 2

b2

a2
+
b2

a2
+

1

a

(by Lemmas 3.1–3.3)

=
2(a− 1)(b2 − a2 − 3a)

a2(b2 − 4a)
.

Since f is a PP of Fq2 , one has
∑

x∈Fq2
f(x)1+(q−2)q = 0. Hence b2− a2− 3a

= 0. This completes the proof of the necessity part of Theorem A under the
assumption a(a− 1)b 6= 0.

The following lemmas, used in the above proof, hold for all (odd and
even) q.
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Lemma 3.1 ([Ho4, Lemma 5.1]). Let z ∈ F∗q and write x2 + x − z =
(x− r1)(x− r2), r1, r2 ∈ Fq2. Then

∑
0≤l≤ q

2

(
−l
l

)
zl =


1/2 if r1 = r2 ∈ Fq,
1 if r1, r2 ∈ Fq, r1 6= r2,

0 if r1, r2 /∈ Fq.

Lemma 3.2. Let z ∈ F∗q be such that x2 + x − z has two distinct roots
in Fq. Then ∑

0≤l≤q/2

(l + 1)

(
−l
l

)
zl =

1 + 3z

1 + 4z
.

Proof. We denote the constant term of a Laurent series in x by ct( ). We
have ∑

0≤l≤q/2

(l + 1)

(
−l
l

)
zl =

∑
0≤l≤q−2

(l + 1)

(
−l
l

)
zl

=
∑

0≤l≤q−2
(l + 1) · ct

(
1

xl(1 + x)l

)
· zl

= ct

[ ∑
0≤l≤q−2

(l + 1)

(
z

x(1 + x)

)l]
.

Since ∑
1≤l≤q−1

lyl−1 =
d

dy

(
1− yq

1− y

)
=

1− yq

(1− y)2
,

we have∑
0≤l≤q−2

(l + 1)

(
z

x(1 + x)

)l
=

1−
(

z
x(1+x)

)q(
1− z

x(1+x)

)2
=

(
x(1 + x)

x(1 + x)− z

)2(
1− z

xq
+

z

(1 + x)q

)
.

Thus ∑
0≤l≤q/2

(l + 1)

(
−l
l

)
zl = ct

[
− z

xq

(
x(1 + x)

x(1 + x)− z

)2]

= ct

[
− z

xq

(
1 +

z

x2 + x− z

)2]
.

The rest of the calculation is almost identical to that in [Ho4, proof of
Lemma 5.3]. We omit the details.
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Lemma 3.3 ([Ho4, Lemmas 5.2 and 5.3]). Let z ∈ F∗q be such that x2 +
x− z has two distinct roots in Fq. Then∑

0≤l≤(q−1)/2

(
−l
l + 1

)
zl = 1,

∑
0≤l≤(q−1)/2

(l + 1)

(
−l
l + 1

)
zl =

2z

1 + 4z
.

4. Proof of Theorem B. We follow the same outline of the proof
of Theorem A. However, certain critical arguments in that proof fail in
characteristic 2, and they have to be replaced with new approaches. First, in
Subsection 3.2, the discriminant D(g) in (3.13), which was at the heart of the
proof there, is rendered useless in characteristic 2. Second, in Subsection 3.3,
the calculation in (3.19) does not produce any useful information, again
because of the even characteristic.

4.1. The case a(a− 1)b = 0

Case 1. Assume a = b = 0. Then f = x2q−1 is a PP of Fq2 if and only if

gcd(2q−1, q2−1) = 1, i.e., q = 22k, which is equivalent to (i) in Theorem B
with a = b = 0.

Case 2. Assume a 6= 0, b = 0. By [Ho3, Theorem 1.1], f = ax + x2q−1

is never a PP of Fq2 .

Case 3. Assume a = 0, b 6= 0. By Case 3 in Subsection 3.1, f cannot be
a PP of Fq2 .

Case 4. Assume a = 1. The conclusion in Case 4 of Subsection 3.1 also
holds for characteristic 2: f is a PP of Fq2 if and only if x2 + bx+ 1 has two
distinct roots in Fq, i.e., b 6= 0 and Trq/2(1/b) = 0, which is (ii) in Theorem B.
(Note: Theorem B with a = 1 also appeared as [Ho4, Theorem 1.2].)

4.2. The case a(a− 1)b 6= 0, sufficiency. We are given that q (> 2)
is even, a ∈ Fq \ F2, Trq/2(

1
a+1) = 0, and b2 = a2 + a. The goal is to show

that f is a PP of Fq2 .

For each y ∈ Fq2 , we show that there is at most one x ∈ Fq2 such
that f(x) = y. We only have to consider the case y ∈ Fq2 \ Fq. (We have

Trq/2
(

1
(a+b+1)2

)
= Trq/2

(
1

a+1

)
= 0. Thus x2+(a+b+1)x+1 has two distinct

roots in Fq. By the argument in Subsection 3.2, 1◦, f(Fq2 \ Fq) ⊂ Fq2 \ Fq.
By Subsection 3.2, 2◦, if y ∈ Fq, there is precisely one x ∈ Fq2 such that
f(x) = y.)

Put τ = Trq2/q(y), η = Nq2/q(y), σ = τ2/η. Then Trq/2(1/σ) = 1 since
y ∈ Fq2 \Fq. By (3.12) and the argument of Subsection 3.2, 3◦, it suffices to
show that the equation

(4.1) s3 + aσs2 + (a+ 1)(bσ + 1)s+ (a+ 1)σ = 0
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has at most one solution s ∈ Fq. Let u = 1/σ and rewrite (4.1) as

1

s3
+ (b+ u)

1

s2
+

a

a+ 1

1

s
+

u

a+ 1
= 0.

So it suffices to show that

g := x3 + (b+ u)x2 +
a

a+ 1
x +

u

a+ 1

has at most one root in Fq. Put A = b + u, B = a/(a+ 1), C = u/(a+ 1).
Assume to the contrary that g has at least two distinct roots in Fq. Then g
splits in Fq. By a theorem of K. Conrad, stated as Theorem 4.1 at the end
of this subsection, we conclude that

x2 + (AB + C)x + (A3C +B3 + C2)

is reducible over Fq.
First assume AB + C 6= 0. Then

(4.2) Trq/2

(
A3C +B3 + C2

(AB + C)2

)
= 0.

We have

AB + C =
(a+ 1)u+ ab

a+ 1
,(4.3)

A3C +B3 + C2 =
1

(a+ 1)3
[(a+ 1)2(b+ u)3u+ a3 + (a+ 1)u2].

Hence
A3C +B3 + C2

(AB + C)2
=

(a+ 1)2(b+ u)3u+ a3 + (a+ 1)u2

(a+ 1)[(a+ 1)u+ ab]2
.

Using the relation b2 = a2 + a in the above equation, we find that

(4.4)
A3C +B3 + C2

(AB + C)2

= u2 +
1

a+ 1
+

bu

a+ 1
+

(
bu

a+ 1

)2

+
a2

(a+ 1)(bu+ a2)
+

[
a2

(a+ 1)(bu+ a2)

]2
.

It follows from (4.4) that

Trq/2

(
A3C +B3 + C2

(AB + C)2

)
= Trq/2(u

2) = 1,

which contradicts (4.2). It took some effort to find the desirable expression
in (4.4). But the verification of (4.4) should be straightforward.

Now assume AB + C = 0. By (4.3), u = ab/(a+ 1). Using this and the
relation b2 = a2 + a, we see that B3 = C2. Thus

g = x3+Ax2+Bx+C = x3+
C

B
x2+Bx+C =

(
x+

C

B

)
(x2+B) =

(
x+

C

B

)3

,

which is again a contradiction.
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This completes the proof of the sufficiency part of Theorem B under the
assumption a(a− 1)b 6= 0.

Theorem 4.1 ([Co, Theorem 2.1]). Let K be any field and f = x3 +
Ax2 +Bx + C ∈ K[x] have roots r1, r2, r3 in a splitting field. Then

(4.5)
(
x− (r21r2 + r22r3 + r23r1)

)(
x− (r22r1 + r21r3 + r23r2)

)
= x2 + (AB − 3C)x + (A3C +B3 + 9C2 − 6ABC),

and the above quadratic polynomial has the same discriminant as f .

Theorem 4.1, proved by direct computation, was used in [Co] to obtain a
criterion that determines whether the Galois group of a separable irreducible
cubic polynomial f over K (of any characteristic) is S3 or A3: the Galois
group is S3 (resp. A3) if the quadratic polynomial in (4.5) is irreducible
(resp. reducible) over K.

4.3. The case a(a − 1)b 6= 0, necessity. Assume that q is even and
f = ax + bxq + x2q−1 ∈ Fq[x] is a PP of Fq2 , where a(a− 1)b 6= 0. The goal

is to prove that Trq/2
(

1
a+1

)
= 0 and b2 = a2 + a.

Let z = a/b2. By (3.18),
∑

0≤l≤q/2
(−l
l

)
zl = 1. It follows from Lemma 3.1

that x2 + x + z is reducible over Fq. Hence Trq/2(z) = 0. (Note that z =

a/b2 = 1/(a+ 1) after we prove that b2 = a2 + a.)

It remains to show that b2 = a2 + a. Since z 6= 0 and Trq/2(z) = 0, we
must have q > 2. Letting α = 2 and β = q − 3 in (3.17), we have∑
x∈Fq2

f(x)2+(q−3)q

=
∑

q−2+i+k−j−l=0, q+1

(
2

i

)(
i

k

)(
q − 3

j

)(
j

l

)
a−i−jbi+j−k−l

=
∑

q−2−j−l=0, q+1

(
q − 3

j

)(
j

l

)
a−jbj−l +

∑
q−j−l=0, q+1

(
q − 3

j

)(
j

l

)
a−2−jb2+j−l

+
∑

q+2−j−l=0, q+1

(
q − 3

j

)(
j

l

)
a−2−jbj−l

=
∑

q−2−j−l=0

(
q − 3

j

)(
j

l

)
a−jbj−l +

∑
q−j−l=0

(
q − 3

j

)(
j

l

)
a−2−jb2+j−l

+
∑

q+2−j−l=0

(
q − 3

j

)(
j

l

)
a−2−jbj−l +

∑
j+l=1

(
q − 3

j

)(
j

l

)
a−2−jbj−l
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=
∑

1≤l≤q/2−1

(
q − 3

q − 2− l

)(
q − 2− l

l

)
a−(q−2−l)bq−2−2l

+
∑

3≤l≤q/2

(
q − 3

q − l

)(
q − l
l

)
a−2−(q−l)b2+q−2l

+
∑

5≤l≤q/2+1

(
q − 3

q + 2− l

)(
q + 2− l

l

)
a−2−(q+2−l)bq+2−2l + a−3b.

Since
(−3
k

)
= (−1)k

(
k+2
2

)
for all integers k ≥ 0, the above computation

continues as∑
x∈Fq2

f(x)2+(q−3)q

=
∑

1≤l≤q/2−1

(
q − l

2

)(
−2− l
l

)
a1+lb−1−2l

+
∑

3≤l≤q/2

(
q − l + 2

2

)(
−l
l

)
a−3+lb3−2l

+
∑

5≤l≤q/2+1

(
q + 4− l

2

)(
2− l
l

)
a−5+lb3−2l + a−3b

=
a

b

∑
1≤l≤q/2−1

(
−l
2

)(
−l − 2

l

)
zl +

b3

a3

∑
3≤l≤q/2

(
−l + 2

2

)(
−l
l

)
zl

+
b3

a5

∑
5≤l≤q/2+1

(
−l + 4

2

)(
−l + 2

l

)
zl +

b

a3
.

Note that in the first sum on the right,(
−l − 2

l

)
= −

(
−l − 1

l + 1

)
,

and in the third sum,(
−l + 4

2

)(
−l + 2

l

)
=

(l − 4)(l − 3)

2

(
−l+2

l

)
≡ (l − 3)l

2

(
−l + 2

l

)
(mod 2)

=
(l − 3)(−l + 2)

2

(
−l + 1

l − 1

)
.
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Therefore we have∑
x∈Fq2

f(x)2+(q−3)q

=
a

b

∑
1≤l≤q/2−1

(
−l
2

)(
−l − 1

l + 1

)
zl +

b3

a3

∑
3≤l≤q/2

(
−l + 2

2

)(
−l
l

)
zl

+
b3

a5

∑
5≤l≤q/2+1

(l − 3)(l − 2)

2

(
−l + 1

l − 1

)
zl +

b

a3

=
a

b

∑
0≤l≤q/2

(
−l + 1

2

)(
−l
l

)
zl−1

+
b3

a3

[ ∑
0≤l≤q/2

(
−l + 2

2

)(
−l
l

)
zl + 1

]

+
b3

a5

[ ∑
0≤l≤q/2

(l − 2)(l − 1)

2

(
−l
l

)
zl+1 + z

]
+

b

a3

=
∑

0≤l≤q/2

(
−l
l

)
zl
[
b

(
−l + 1

2

)
+
b3

a3

(
−l + 2

2

)
+

b

a4
· (l − 2)(l − 1)

2

]

+
b3

a3
+

b

a4
+

b

a3

=
∑

0≤l≤q/2

(
−l
l

)
zl
[(
b+

b3

a3
+

b

a4

)(
l + 2

2

)

+

(
b3

a3
+

b

a4

)
(l + 1) +

(
b+

b3

a3
+

b

a4

)]
+
b3

a3
+

b

a4
+

b

a3
.

Using the formulas∑
0≤l≤q/2

(
−l
l

)
zl = 1 (Lemma 3.1),

∑
0≤l≤q/2

(l + 1)

(
−l
l

)
zl = 1 + z (Lemma 3.2),

∑
0≤l≤q/2

(
l + 2

2

)(
−l
l

)
zl = 1 + z2 (Lemma 4.2, to be proved),(4.6)
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we have∑
x∈Fq2

f(x)2+(q−3)q =

(
b+

b3

a3
+

b

a4

)
(1 + z2) +

(
b3

a3
+

b

a4

)
(1 + z)

+ b+
b3

a3
+

b

a4
+
b3

a3
+

b

a4
+

b

a3

=

(
b+

b3

a3
+

b

a4

)
a2

b4
+

(
a3

b3
+

b

a4

)
a

b2
+

b

a3

=
(a+ 1)(a+ b+ 1)2(a2 + b2 + a)

a3b3
.

Since f is a PP of Fq2 , the above expression equals 0. Since a + b + 1 6= 0
(f(x) = (a+ b+ 1)x for all x ∈ Fq), we must have b2 = a2 + a.

To complete the proof of the necessity part of Theorem B under the
assumption a(a − 1)b 6= 0, we only need to establish (4.6). The following
lemma, which gives (4.6), holds in all characteristics.

Lemma 4.2. Let Fq be any finite field. Let z ∈ F∗q be such that x2 +x− z
has two distinct roots in Fq. Then

(4.7)
∑

0≤l≤q/2

(
l + 2

2

)(
−l
l

)
zl =


1 + z if q = 2,

1 + 6z + 11z2

(1 + 4z)2
if q > 2.

Proof. When q = 2, (4.7) is easily verified. Assume q > 2. Recall that
ct( ) denotes the constant term of a Laurent series in x. We have

S :=
∑

0≤l≤q/2

(
l + 2

2

)(
−l
l

)
zl =

∑
0≤l≤q−3

(
l + 2

2

)(
−l
l

)
zl

=
∑

0≤l≤q−3

(
l + 2

2

)
· ct

(
1

xl(1 + x)l

)
· zl

= ct

[ ∑
0≤l≤q−3

(
l + 2

2

)(
z

x(1 + x)

)l ]
.

Let ∂2 denote the second order Hasse derivative with respect to y [Ha]. Since

∑
2≤l≤q−1

(
l

2

)
yl−2 = ∂2

∑
0≤l≤q−1

yk = ∂2[(1− yq)(1− y)−1] =
1− yq

(1− y)3
,
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we have

∑
0≤l≤q−3

(
l + 2

2

)(
z

x(1 + x)

)l
=

1−
(

z
x(1+x)

)q(
1− z

x(1+x)

)3
=

(
x(1 + x)

x2 + x− z

)3(
1− z

xq
+

z

(1 + x)q

)
.

Thus

S = ct

[(
x(1 + x)

x2 + x− z

)3(
1− z

xq
+

z

(1 + x)q

)]
(4.8)

= ct

[
− z

xq

(
x(1 + x)

x2 + x− z

)3]
= −z · ct

[
x−q
(

1 +
z

x2 + x− z

)3]
.

Write x2 + x− z = (x− r1)(x− r2). Using the substitution

1

(x− r1)(x− r2)
=

1

r1 − r2

(
1

x− r1
− 1

x− r2

)
repeatedly, we find that

(4.9)

(
1 +

z

(x− r1)(x− r2)

)3

= 1 + (3zc− 6z2c3 + 6z3c5)

(
1

x− r1
− 1

x− r2

)
+ (3z2c2 − 3z3c4)

(
1

(x− r1)2
− 1

(x− r2)2

)
+ z3c3

(
1

(x− r1)3
− 1

(x− r2)3

)
,

where c = 1/(r1 − r2). Note that for r 6= 0 (in any field) and integer k, we
have

(4.10) (x− r)k = (−r)k
(

1− x

r

)k
= (−r)k

∑
l≥0

(
k

l

)
(−r)−lxl.
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Combining (4.8)–(4.10) gives

(4.11) S = −z
[
(3zc− 6z2c3 + 6z3c5)

(
(−r1)−1−q − (−r2)−1−q

)(−1

q

)
+ (3z2c2 − 3z3c4

(
(−r1)−2−q + (−r2)−2−q

)(−2

q

)
+ z3c3

(
(−r1)−3−q − (−r2)−3−q

)(−3

q

)]
= −z

[
(3z − 6z2c2 + 6z3c4) · c · (−r−21 + r−22 )

+ (3z2c2 − 3z3c4)(r−31 + r−32 ) + z3c2 · c · (−r−41 + r−42 )
]
.

In the above

c2 =
1

(r1 − r2)2
=

1

(r1 + r2)2 − 4r1r2
=

1

1 + 4z
,

c(−r−21 + r−22 ) =
1

r1 − r2
· r

2
1 − r22

(r1r2)2
=
r1 + r2
z2

= − 1

z2
,

r−31 + r−32 =
r31 + r32
(r1r2)3

=
(r1 + r2)

3 − 3r1r2(r1 + r2)

−z3

=
−1− 3z

−z3
=

1 + 3z

z3
,

c(−r−41 + r−42 ) =
1

r1 − r2
· r

4
1 − r42

(r1r2)4
=

(r1 + r2)(r
2
1 + r22)

z4
=
−(1 + 2z)

z4
.

Making the above substitutions in (4.11), we get

S =
1 + 6z + 11z2

(1 + 4z)2
.

5. The polynomial gn,q. The trinomial ax+bxq+x2q−1 owes its origin
to a class of seemingly unrelated polynomials.

It is known [Ca, HHM] that

(5.1)
∑
c∈Fq

1

x + c
=

1

x− xq
.

We have∑
n≥0

∑
c∈Fq

(x + c)ntn =
∑
c∈Fq

1

1− (x + c)t
=

1

t

∑
c∈Fq

1
1
t
− x− c

=
1

t

1

(1/t− x)− (1/t− x)q
(by (5.1))

=
−tq−1

1− tq−1 − (xq − x)tq
=
∑
n≥0

gn,q(x
q − x)tn,
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where gn,q ∈ Fp[x] (with p = charFq) is the polynomial defined by

−tq−1

1− tq−1 − xtq
=
∑
n≥0

gn,qt
n.

Thus ∑
c∈Fq

(x + c)n = gn,q(x
q − x),

which can also be viewed as the definition of the polynomial gn,q. Recent
studies show that the class gn,q contains many new and interesting PPs
[FHL, Ho1, Ho2, Ho3, Ho4]. When gn,q is a PP of Fqe , we call the triple
(n, e; q) desirable. All desirable triples with e = 1 are known [FHL, Theo-
rem 2.1]. The complete determination of all desirable triples is a challenging
unsolved problem. One of the mysterious phenomena observed in the study
of the polynomial gn,q is that among the known desirable triples (n, e; q),
n frequently appears in the form qα−qβ−1. Here is a summary of the previ-
ous state of knowledge of the desirable triples (n, e; q) with n = qα− qβ − 1.

Assume that e ≥ 2, n > 0, and n ≡ qα − qβ − 1 (mod qpe − 1), where
0 ≤ α, β < pe. (By [Ho2, Proposition 2.4], it suffices to consider n modulo
qpe − 1, hence it suffices to consider 0 ≤ α, β < pe.)

(1) If α < β, then (n, e; q) is desirable if and only if (n′, e; q) is desirable,
where n′ = qα

′ − qβ′ − 1, α′ = pe− α− β, β′ = pe− β. (So we may
assume β ≤ α.) [FHL, §5]

(2) If β = α, then (n, e; q) is desirable if and only if q > 2. [FHL, §5]
(3) If 0 = β < α and q is even, then (n, e; q) is desirable if and only if

α = 3 and q = 2, or α = 2 and gcd(q − 2, qe − 1) = 1. [FHL, §5]
(4) Assume 0 = β < α and q is odd. If α ≤ 2, (n, e; q) is desirable if and

only if α = 2 and gcd(q−2, qe−1) = 1; if α > 2, it was conjectured
that (n, e; q) is not desirable. [FHL, §5]

(5) If (β, α) = (1, 2), then (n, e; q) is desirable if and only if gcd(q − 2,
qe − 1) = 1. [FHL, Corollary 5.2]

(6) If 0 < β < α and α ≡ β ≡ 0 (mod e), then (n, e; q) is desirable.
[FHL, Theorem 5.3]

(7) Assume e ≥ 3 and 0 < β < α. It was conjectured that the only
desirable triples are those in (5) and (6). [FHL, Conjecture 5.5]

(8) Assume that e = 2, 0 < β < α, and β is even. Then (n, 2; q) is
desirable if and only if α is even. [FHL, Remark 5.4]

(9) Assume that e = 2, q is odd, and β = p. If α = p + 2i, 0 < i ≤
1
2(p− 1), then (n, 2; q) is desirable if and only if 4i 6≡ 1 (mod p); if

α = p + 2i − 1, 0 < i ≤ 1
2(p − 1), then (n, 2; q) is desirable if and

only if 4i 6≡ 3 (mod p). [FHL, Theorems 5.6, 5.7]
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(10) If e = 2, q is even, and (β, α) = (1, 3), then (n, 2; q) is desirable if
and only q ≡ 1 (mod 3). [FHL, Theorem 5.9]

(11) Assume that e = 2, q > 2, (β, α) = (1, 2i), i > 0. Then (n, 2; q) is
desirable if and only if one of the following holds.

(i) 2i ≡ 1 (mod p) and q ≡ 1 (mod 4);
(ii) 2i ≡ −1 (mod p) and q ≡ ±1 (mod 12);
(iii) 4i ≡ 1 (mod p) and q ≡ −1 (mod 6).

[Ho3, Theorem 4.1]
(12) Assume that e = 2, q is odd, (β, α) = (1, 2i + 1), i > 0. Then

(n, e; q) is desirable if and only p ≡ 1 or 3 (mod 8), q ≡ 1 (mod 8),
and i2 = −1/2. [Ho4, Corollary 6.1]

For e ≥ 3, there was little activity as indicated by statement (7). For
e = 2, the situation appeared to be chaotic. In fact, our computer search
produced many desirable triples with e = 2 (and n = qα−qβ−1) that are not
covered by the above results; see [FHL, Table 1]. The case (qα−qβ−1, 2; q),
which seemed hopeless till now, will be completely resolved in the next
section. When n = qα − qβ − 1, 0 ≤ β < α, the polynomial function gn,q(x)
on Fq2 can be transformed into the form Ax + Bxq + Cx2q−1 through an
invertible change of variable. Thus Theorems A and B allow us to determine
all desirable triples of the form (qα − qβ − 1, 2; q), 0 ≤ β < α. We note that
for even q, all desirable triples (qα−qβ−1, 2; q) are already determined by a
combination of some of the above statements, so Theorem B is not necessary
for this purpose.

6. Theorems C and D

Lemma 6.1. Assume q > 2. Let n = qα− qβ − 1, where 0 < β < α < 2p,
β is odd, and β 6= p. Write α− β = a0 + 2a1, 0 ≤ a0 ≤ 1, and β = 1 + 2b1.
Then

(6.1) gn,q(x) = Aφ(x) +Bφ(x)q + Cφ(x)2q−1 for all x ∈ Fq2 ,

where φ is a permutation of Fq2 and

(6.2)



A =
1

β
(−a0b1 + b1 + a1),

B = a0 −
b1 + 1

β
,

C = − 1

β
(a0b1 + a0 + a1).
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Proof. For every integer a ≥ 0, define Sa = x + xq + · · ·+ xq
a−1 ∈ Fp[x].

Let x ∈ F∗q2 . By [FHL, (5.3)],

gn,q(x) = −xq2−2 − xq2−q−2(a1S2(x) + Sa0(x)q)((b1S2(x) + S1(x))q−1 − 1)

= −x−1 − x−q−1
(
a1x+ (a0 + a1)x

q
)
[((b1 + 1)x+ b1x

q)q−1 − 1]

= −y − (a1y
q + (a0 + a1)y)[((b1 + 1)yq + b1y)q−1 − 1],

where y = x−1. Note that (b1 + 1)xq + b1x is a PP of Fq2 whose inverse

on Fq2 is given by 1
β ((b1 + 1)xq − b1x).

Let z = (b1 + 1)yq + b1y. Then y = 1
β ((b1 + 1)zq − b1z). We have

gn,q(x) = − 1

β
((b1 + 1)zq − b1z)

= −
[
a1

1

β
((b1 + 1)z− b1zq)+(a0 + a1)

1

β
((b1 + 1)zq− b1z)

]
(zq−1−1)

= Az +Bzq + Cz2q−1.

Extend the mapping x 7→ z to a bijection φ : Fq2 → Fq2 by setting φ(0) = 0.
Then (6.1) holds.

Theorem C. Let q be even and n = qα−qβ−1, where 0 ≤ β < α < 2·2.
Then (n, 2; q) is desirable if and only if one of the following occurs:

(i) q ≡ 1 (mod 3), (β, α) = (0, 2), (1, 2), (1, 3).
(ii) q = 2, (β, α) = (0, 3).

Proof. The conclusion follows from statements (3), (5), (8), (10) in Sec-
tion 5.

Theorem D. Let q be odd and n = qα− qβ − 1, where 0 ≤ β < α < 2p.
Then (n, 2; q) is desirable if and only if one of the following occurs:

(i) q ≡ 1 (mod 3), (β, α) = (0, 2).
(ii) β > 0, β ≡ α ≡ 0 (mod 2).

(iii) (β, α) = (p, p+ i), 0 < i < p, 2i 6≡ (−1)i (mod p).
(iv) β 6= p, β = 1 + 2b1, α − β = a0 + 2a1, a0, a1, b1 ∈ N, 0 ≤ a0 ≤ 1,

and one of the following is satisfied.

(iv.1) (a1 + b1)(2a1 + b1) +a0(a1− 2a1b1− b21) is a square in F∗q and

1+2b1+2a21+a1b1+a0
(
−1−2b1+b21+a1(3+2b1)

)
≡ 0 (mod p).

(iv.2)


a0 + 2a1 + b1 ≡ 0 (mod p),

(1 + b1)
2 − 4a21 − a0

(
5 + 10b1 + 4b21 + 8a1(1 + b1)

)
≡ 0 (mod p).
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(iv.3)


a0 = 1, b1 = 0,

4a1 + 3 ≡ 0 (mod p),

q ≡ −1 (mod 6).

(iv.4)

{
a0 = 1, a1 = 0, b1 = 0,

q ≡ 1, 3 (mod 6).

Proof. Case 1. Assume β = 0. We show that (n, 2; q) is desirable if and
only if α = 2 and q ≡ 1 (mod 3). The “if” part follows from statement (4)
in Section 5. To prove the “only if” part, by the same statement, it suffices
to show that (n, 2; q) is not desirable for α > 2.

Write α = a0 + 2a1, a0, a1 ∈ N, 0 ≤ a0 ≤ 1. By [FHL, (5.1)], for all
x ∈ Fq2 we have

gn,q(x) = xq−2 + xq
2−2 + · · ·+ xq

α−1−2

= a1(x
q−2 + xq

2−2) + (a0 − 1)xq
2−2

= a1x
q−2 + (a0 + a1 − 1)xq

2−2

= (a0 + a1 − 1)yq + a1y
2q−1,

where yq = xq
2−2. Note that 0 < a1 < p and 0 < a0 + a1 − 1 < p, so a1 6≡ 0

(mod p) and a0+a1−1 6≡ 0 (mod p). By Theorem A, (a0+a1−1)xq+a1x
2q−1

is not a PP of Fq2 . So gn,q is not a PP of Fq2 either.

Case 2. Assume β > 0 and β ≡ 0 (mod 2). By statement (8) in Sec-
tion 5, (n, 2; q) is desirable if and only if (ii) holds.

Case 3. Assume β = p. By statement (9) in Section 5, (n, 2; q) is desir-
able if and only if (iii) holds.

Case 4. Assume β 6≡ 0 (mod 2) and β 6= p. Write β = 1 + 2b1 and
α − β = a0 + 2a1, a0, a1, b1 ∈ N, 0 ≤ a0 ≤ 1. By Lemma 6.1, (n, 2; q) is
desirable if and only if Ax+Bxq +Cx2q−1 is a PP of Fq2 , where A,B,C are
given by (6.2). We claim that C 6= 0 in Fp, i.e., a0b1 + a0 + a1 6≡ 0 (mod p).
In fact,

0 < a0b1+a0+a1 ≤ a1+b1+1 = 1
2(1+2a1+1+2b1) ≤ 1

2(α−β+β) = 1
2α < p.

Thus (n, 2; q) is desirable if and only if (A/C)x + (B/C)xq + x2q−1 is a PP
of Fq2 , which happens if and only if one of the conditions in Theorem A
holds with a = A/C and b = B/C. Let

a =
A

C
=
a0b1 − b1 − a1
a0b1 + a0 + a1

, b =
B

C
=
−2a0b1 − a0 + b1 + 1

a0b1 + a0 + a1

in Theorem A; then conditions (i)–(iv) in Theorem A become (iv.1)–(iv.4)
in Theorem D.
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7. A final remark. Let f = ax + bxq + x2q−1 ∈ Fq[x], ab 6= 0. For
0 ≤ s < q2−1, we saw in Section 3.3 that

∑
x∈Fq2

f(x)s = 0 unless s = α+βq,

0 ≤ α, β ≤ q − 1, α+ β = q − 1.
Let z = −a/b2 and assume that x2 + x− z has two distinct roots in Fq.

By (3.18) and (3.19), which hold for both odd and even q, we have∑
x∈Fq2

f(x)0+(q−1)q = 0,(7.1)

∑
x∈Fq2

f(x)1+(q−2)q =
2(1− a)(b2 − a2 − 3a)

a2(b2 − 4a)
.(7.2)

The sum
∑

x∈Fq2
f(x)2+(q−3)q was computed in Section 4.3 for even q ≥ 4.

That computation can be adapted for an arbitrary q resulting in the follow-
ing formula:

(7.3)
∑
x∈Fq2

f(x)2+(q−3)q

=
3b(1− a)(b2 − a2 − 3a)(9a− 6a2 + a3 − 2b2 + ab2)

a4(b2 − 4a)2
, q ≥ 3.

(The computation of (7.3), which is quite lengthy and tedious, is given in the
appendix of [Ho5].) Note that the sums (7.1)–(7.3) are rational functions in
a, b, independent of q, with coefficients in Z. Moreover, the factor b2−a2−3a
appears in the numerator of each these three rational functions. In fact, this
is true in general. Following the idea behind the computations in Sections 3.3
and 4.3, it is not difficult to be convinced that for every 0 ≤ α ≤ q − 1,
the sum

∑
x∈Fq2

f(x)α+(q−1−α)q should be a rational function Rα(a, b) in

a, b, independent of q, with coefficients in Z, although we do not know the
explicit expression of Rα(a, b) for a general α. Since we already assumed
that x2 + x − z has two distinct roots in Fq, by Theorems A and B, the
condition b2 − a2 − 3a = 0 implies that f is a PP of Fq2 , which further
implies that Rα(a, b) = 0 for all 0 ≤ α ≤ q−1. Hence b2−a2−3a is a factor
of the numerator of the reduced form of Rα(a, b). Two questions arise: Is
it possible to compute Rα(a, b) explicitly for all 0 ≤ α ≤ q − 1? If Rα(a, b)
is too complicated to compute, is there any more direct explanation why
b2 − a2 − 3a always appears in the numerator of Rα(a, b)?
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