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A Brun–Titchmarsh inequality for weighted sums
over prime numbers
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Jan Büthe (Bonn)

1. Introduction. In this paper we prove upper bounds for sums of the
form
(1.1)

∑
p∈I

p≡lmod k

f(p),

where I = [x, x + y] ⊂ [0,∞) is an interval, k and l are coprime integers,
and f is a slowly varying weight function on I. The results generalize the
well-known Brun–Titchmarsh inequality for the number of prime numbers
in arithmetic progressions [Tit30, Iwa82].

The work is motivated by the following problem. Functions as the Rie-
mann prime counting function π∗(x) or the Chebyshev function ψ(x) sat-
isfy certain explicit formulas involving sums over the zeros of the Riemann
zeta function [Rie59, vM95]. If one is interested in studying these functions
via their explicit formulas, one has to deal with the problem that these
sums converge only due to oscillation and are therefore difficult to handle.
A natural way to overcome this problem is to study continuous (or smooth)
approximations to the functions π∗(x) and ψ(x) [FK, Büt]. The problem of
estimating the approximation error then leads to sums of the form (1.1).
As far as the author knows, this has been carried out in [RS03] for the first
time, to obtain short effective intervals containing prime numbers, where
the Brun–Titchmarsh inequality is used to estimate such sums.

Apart from that, the results are likely to have other applications. One
further application might be to improve the estimates for the error term in
the asymptotic formula for the zero counting function of the Riemann zeta
function, where similar sums occur [CCM13].

The proofs of the results are elementary and use a simple notion of
weighted sieves.
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2. Notations. We use the notations of [MV06] in the context of number
theory, and those of [AF03] for function spaces and their norms. In (1.1) we
will consider functions f ∈W 1,1(I), the closure of C1(I) with respect to the
norm

‖f‖1,1,I = ‖f‖1,I + ‖f ′‖1,I =
�

I

|f(t)| dt+
�

I

|f ′(t)| dt,

which we regard as a subspace of C0(I) by the continuous embedding of
C1(I), equipped with the norm ‖·‖1,1,I , into C0(I).

Furthermore, we use the notations I = [x, x+y] ⊂ [0,∞),A = I∩(l+kZ),
Ad = {a ∈ A | d | a} and

P (z, k) =
∏
p≤z
p-k

p

throughout this paper.For explicit estimates,we also useTuring’sΘ-notation
and say f(x) = Θ(g(x)) for x ∈ A if |f(x)| ≤ g(x) for all x ∈ A.

3. Weighted sieves. The weighted sieves are based on the following
lemma.

Lemma 3.1. Let f ∈W 1,1(I) and let d, k ∈ N satisfy (d, k) = 1. Then∣∣∣∣ 1

kd

�

I

f(t) dt−
∑

n∈I∩(l+kZ)
d|n

f(n)

∣∣∣∣ ≤ ‖f‖∞,I + ‖f ′‖1,I .

Proof. This is essentially Gallagher’s proof of the large sieve inequality,
as noted by the referee. Let

(3.1) rd =
∑
n∈Ad

f(n)− 1

kd

�

I

f(t) dt.

We have to show |rd| ≤ ‖f‖∞,I+‖f ′‖1,I . By replacing k by kd and adjusting l
we may assume d = 1, and by replacing f by f(k · + l) and adjusting x and y
we may also assume k = 1.

Now let x′ = x+ [y], I ′ = [x, x′) and I ′′ = [x′, x+ y]. We define

r′ =
∑

a∈A∩I′
f(a)−

�

I′

f(t) dt, r′′ =
∑

a∈A∩I′′
f(a)−

�

I′′

f(t) dt.

Then we have r1 = r′ + r′′, since I is the disjoint union of I ′ and I ′′.

Let a < b and ξ ∈ [a, b]. Then, by choosing an approximating sequence
of C1(I)-functions, we can extend the well-known identity

b�

a

g(t) dt = (b− a)g(ξ) +

ξ�

a

g′(t)(a− t) dt+

b�

ξ

g′(t)(b− t) dt
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to all g ∈W 1,1((a, b)). We therefore obtain the bound

(3.2)

∣∣∣∣g(ξ)− 1

b− a

b�

a

g(t) dt

∣∣∣∣ ≤ b�

a

|g′(t)| dt.

The interval I ′ is the disjoint union of half-open intervals [x+n, x+n+1),
n = 0, 1, . . . , [y] − 1. Since each such interval contains exactly one element
of A, we can apply (3.2), which yields the bound

|r′| ≤
�

I′

|f ′(t)| dt.

It remains to estimate r′′. Since |I ′′| < 1, the intersection A∩I ′′ is either
empty or contains exactly one element a. In the first case we have

|r′′| ≤
�

I′′

f(t) dt ≤ ‖f‖∞,I′′ ,

and in the second case,

|r′′| ≤
∣∣∣ �
I′′

f(t) dt− |I ′′|f(a)
∣∣∣+ (1− |I ′′|)|f(a)|

≤ |I ′′|
�

I′′

|f ′(t)| dt+ (1− |I ′′|)|f(a)| ≤ ‖f ′‖1,I′′ + ‖f‖∞,I′′ .

So in both cases |r′′| ≤ ‖f ′‖1,I′′ + ‖f‖∞,I′′ . We thus get

|r1| ≤ |r′|+ |r′′| ≤ ‖f ′‖1,I′ + ‖f ′‖1,I′′ + ‖f‖∞,I′′ ≤ ‖f‖∞,I + ‖f ′‖1,I .

Proposition 3.2 (Weighted Selberg sieve). Let f ∈ W 1,1(I) be non-
negative and let z ≥ 1. Define

Sk(z) =
∑
n≤z

(n,k)=1

µ(n)2

ϕ(n)
and Hk(z) =

∑
n≤z

(n,k)=1

µ(n)2
σ(n)

ϕ(n)
.

Then ∑
n∈I∩(l+kZ)
(n,P (z,k))=1

f(n) ≤
‖f‖1,I
kSk(z)

+ (‖f‖∞,I + ‖f ′‖1,I)
Hk(z)

2

Sk(z)2
.

Proof. The proof is based on Selberg’s lambda squared method [Sel47].
Let rd be as in (3.1) and let

Nk = {n ∈ N | 1 ≤ n ≤ z, µ(n) 6= 0, (n, k) = 1}.
Let (λn)n∈Nk

be a sequence of real numbers satisfying λ1 = 1. Then

(3.3)
∑
a∈A

f(a)
(∑
n∈Nk
n|a

λn

)2
≥

∑
a∈A

(a,P (z,k))=1

f(a)
(∑
n∈Nk
n|a

λn

)2
=

∑
a∈A

(a,P (z,k))=1

f(a).
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By a simple calculation we get

(3.4)
∑
a∈A

f(a)
(∑
n∈Nk
n|a

λn

)2
=

∑
(n1,n2)∈N 2

k

λn1λn2

∑
a∈A[n1,n2]

f(a)

=
‖f‖1,I
k

∑
(n1,n2)∈N 2

k

λn1λn2

[n1, n2]
+

∑
(n1,n2)∈N 2

k

λn1λn2r[n1,n2].

Now (3.3), (3.4) and Lemma 3.1 together imply∑
n∈I∩(l+kZ)
(n,P (z,k))=1

f(n) ≤
‖f‖1,I
k

∑
(n1,n2)∈N 2

k

λn1λn2

[n1, n2]
+ (‖f‖∞,I + ‖f‖′1)

(∑
n∈Nk

|λn|
)2
.

Here we choose the well-known minimizing sequence

λn =
µ(n)n

Sk(z)

∑
m∈Nk
n|m

1

ϕ(n)

for the quadratic form in (3.4), which gives∑
(n1,n2)∈N 2

k

λn1λn2

[n1, n2]
=

1

Sk(z)
and

∑
n∈Nk

|λn| =
Hk(z)

Sk(z)

(see [vLR65]).

Proposition 3.3 (Weighted Eratosthenes sieve). Let f ∈ W 1,1(I) be
non-negative and let z ≥ 1. Then∑

n∈I∩(l+kZ)
(n,P (z,k))=1

f(n) ≤
‖f‖1,I
k

∏
p≤z
p-k

(
1− 1

p

)
+ (‖f‖∞,I + ‖f ′‖1,I) 2π(z).

Proof. We have∑
n∈I∩(l+kZ)
(n,P (z,k))=1

f(n) =
∑
a∈A

f(a)
∑

d|(a,P (z,k))

µ(d) =
∑

d|P (z,k)

µ(d)
∑
a∈Ad

f(a)

=
‖f‖1,I
k

∑
d|P (z,k)

µ(d)

d
+

∑
d|P (z,k)

µ(d)rd

≤
‖f‖1,I
k

∏
p|P (z,k)

(
1− 1

p

)
+ (‖f‖∞,I + ‖f ′‖1,I) 2π(z).

4. The weighted Brun–Titchmarsh inequality. We first prove a
general version of the weighted Brun–Titchmarsh inequality based on the
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considerations in [vLR65]. We then give a stronger result for the case k = 1,
which is of special interest for the prime counting function. The first result
implies the Brun–Titchmarsh inequality as stated in [vLR65], and the second
result implies the stronger version in [MV73].

Definition 4.1. We define the functional ρI : W 1,1(I)→ [0,∞) by

ρI(f) =
‖f‖1,I

‖f‖∞,I + ‖f ′‖1,I
for f ∈W 1,1(I) \ {0} and ρI(0) = 0.

Theorem 4.2. Let I = [x, x + y] ⊂ [0,∞), and let l, k ∈ N be coprime
numbers. Then for all non-negative f ∈W 1,1(I) satisfying ρI(f) > k,∑

p∈I
p≡lmod k

f(p) < 2
‖f‖1,I

ϕ(k) log(ρI(f)/k)

(
1 +

8

log(ρI(f)/k)

)
,

∑
p∈I

p≡lmod k

f(p) < 3
‖f‖1,I

ϕ(k) log(ρI(f)/k)
.

Proof. We reduce the proof to a situation in the proof of the ordinary
Brun–Titchmarsh inequality in [vLR65].

Let g = f/(‖f‖∞,I + ‖f ′‖1,I). Then ρI(g) = ρI(f) and ‖g‖1,I = ρI(f).
We define Y = ρI(f). It suffices to prove the inequalities∑

p∈I
p≡lmod k

g(p) < 2
Y

ϕ(k) log(Y/k)

(
1 +

8

log(Y/k)

)
,(4.1)

∑
p∈I

p≡l mod k

g(p) < 3
Y

ϕ(k) log(Y/k)
.(4.2)

Let k1 = [k, 2] and let l1 be a representative of the odd pre-image (i.e.
the pre-image containing only odd representatives) of the residue class of l
under the projection Z/k1Z→ Z/kZ. Then, since ‖g‖∞,I ≤ 1, we have∑

p∈I
p≡lmod k

g(p) ≤
∑
p∈I

p≡l1 mod k1

g(p) + 1.

Now Proposition 3.2 gives the bound

(4.3)
∑
p∈I

p≡lmod k

g(p) ≤ Y

ϕ(k)S1(z)
+
H2
k1

(z)

S2
k1

(z)
+ π(z, k1, l1) + 1.
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We are now in the situation where we have to show that the right hand side
of (4.3) is bounded by either (4.1) or (4.2) for a suitable choice of z. But
this is carried out in [vLR65].

From Theorem 4.2 one recovers the ordinary Brun–Titchmarsh inequal-
ity in the form

π(x+ y; k, l)− π(x; k, l) <
2y

ϕ(k) log(y/k)

(
1 +

8

log(y/k)

)
by taking f ≡ 1 on [x, x + y] ⊂ [0,∞), which is slightly weaker than the
strongest version proved in [MV73].

Theorem 4.3. Let I = [x, x+ y] ⊂ [0,∞). Then∑
p∈I

f(p) < 2
‖f‖1,I

log(ρI(f))

for all non-negative f ∈W 1,1(I) satisfying ρI(f) > 1.

The proof is based on sharper estimates for H1 and S1, provided by the
following two lemmas. The second lemma is an explicit version of a result
of Ward [War27].

Lemma 4.4. We have

H1(z) =
15

π2
z +Θ(47

√
z) for all z ≥ 1.

Proof. We will be needing the following well-known identities for the
Riemann zeta function (see e.g. [Tit51]):

ζ(2) =
π2

6
, ζ(4) =

π4

90
,

ζ(s)

ζ(2s)
=
∏
p

(1 + p−s) =
∑
n

µ(n)2

ns
,

(4.4) ∑
n

2ω(n)

ns
=
ζ(s)2

ζ(2s)
,

1

ζ(s)
=
∑
n

µ(n)

ns
.

We define

h(s) =
∏
p

(
1 +

2

(1 + ps)(p− 1)

)
, h̃(s) =

∏
p

(
1 +

2

(ps − 1)(p− 1)

)
.

In <(s) > 0 these products converge normally and we have

h(s) =
∑
n

cnn
−s and h̃(s) =

∑
n

|cn|n−s
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for suitable cn. From (4.4) we get

ζ(s)

ζ(2s)
h(s) =

∏
p

(1 + p−s)
∏
p

(
1 +

2

(1 + ps)(p− 1)

)

=
∏
p

(
1 + p−s

p+ 1

p− 1

)
=
∑
n

µ(n)2σ(n)

ϕ(n)
n−s,

which gives

(4.5)
∑
n≤z

µ(n)2σ(n)

ϕ(n)
=
∑
d≤z

cd
∑

m≤z/d

µ(m)2.

Combining [CDEM07, Theorem 3] with a short computer calculation,
we obtain the bound

(4.6) Q(z) :=
∑
n≤z

µ(n)2 =
6

π2
z +Θ(0.68

√
z)

for z ≥ 1. This and (4.5) together imply

H1(z) =
∑
d≤z

cd

(
6z

π2d
+Θ

(
0.68

√
z

d

))
(4.7)

=
6z

π2

∑
d

cd
d

+Θ

(
0.68
√
z
∑
d

|cd|√
d

+
6z

π2

∑
d>z

|cd|
d

)
=

6

π2
h(1)z +Θ(1.3h̃(1/2)

√
z).

The value h(1) is given by

h(1) =
∏
p

(
1 +

2

p2 − 1

)
=
∑
n

2ω(n)

n2
=
ζ(2)2

ζ(4)
=

5

2
.

Next we estimate h̃(1/2). For t ≥ 16 we have (
√
t−1)(t−1) ≥ 2

3 t
3/2 and

therefore

(4.8) h̃(1/2) ≤
( ∏
p<10000

1 + 2(
√
p− 1)−1(p− 1)−1

(1 + p−3/2)3

)
ζ(3/2)3

ζ(3)3
.

Here, the product on the right hand side is bounded by 3.5 and ζ(3/2)3/ζ(3)3

≤ 10.27. Therefore, h̃(1/2) ≤ 36. Inserting this bound in (4.7) yields the
assertion.

Lemma 4.5. Let z ≥ 109. Then

(4.9) S1(z) = log(z) + C0 +
∑
p

log(p)

p(p− 1)
+Θ

(
58√
z

)
.

Here, C0 = 0.5772156 . . . denotes the Euler–Mascheroni constant.
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Proof. The proof is similar to that of Lemma 4.4. Let Q(z) be as in (4.6)
and let R(z) = Q(z)− 6

π2 z. Then partial summation yields

(4.10)
∑
n≤z

µ(n)2

n
=

6

π2
log(z) +

Q(z)

z
+

∞�

1

R(t)

t2
dt−

∞�

z

R(t)

t2
dt.

Consequently,

(4.11)
∑
n≤z

µ(n)2

n
=

log(z)

ζ(2)
+A+Θ

(
2.04√
z

)
,

where the constant is given by

A =
C0

ζ(2)
− 2

∑
d

µ(d) log(d)

d2
=

C0

ζ(2)
− 2

ζ ′(2)

ζ(2)2

(see e.g. [Brü95, Lemma 5.4.2]).

Now let

h(s) =
∏
p

(
1 +

1

(1 + ps)(p− 1)

)
, h̃(s) =

∏
p

(
1 +

1

(ps − 1)(p− 1)

)
.

Then we have

(4.12)
ζ(s)

ζ(2s)
h(s) =

∑
n

nµ(n)2

ϕ(n)
n−s

and there are cn such that

h(s) =
∑
n

cnn
−s and h̃(s) =

∑
n

|cn|n−s

in <(s) > 0. Combining (4.12) and (4.11) we now get∑
n≤z

µ(n)2

ϕ(n)
=
∑
d≤z

cd
d

∑
m≤z/d

µ(m)2

m
(4.13)

=
∑
d≤z

(
log(z/d)

ζ(2)
+A

)
cd
d

+Θ

(
h̃

(
1

2

)
2.04√
z

)
.

Since

h(1) =
∏
p

(
1 + p−2

1

1− p−2

)
= ζ(2),

we have

(4.14)
∑
d≤z

(
log(z/d)

ζ(2)
+A

)
cd
d

= log(z)+B+Θ

(∑
d>z

|cd|
d

(
log(dz)

ζ(2)
+ |A|

))
for a suitable constant B.
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To estimate the Θ-term we note that log(z) ≤ 1.56z1/8 for z ≥ 109 and
therefore

(4.15)
∑
d>z

|cd|
d

(
log(z) + log(d)

ζ(2)
+|A|

)
≤ 1√

z

(
2 · 1.56

ζ(2)
+10−9/8|A|

)
h̃

(
3

8

)
for such z.

Next we estimate h̃(σ). For σ ≥ 1/4 and t ≥ 20 we observe that

t1+σ − tσ − t+ 1 ≥ t1+σ/2,
hence

(4.16) h̃(σ) ≤
( ∏
p<10000

1 + (pσ − 1)−1(p− 1)−1

(1 + p−1−σ)2

)
ζ(1 + σ)2

ζ(2 + 2σ)2

for σ ≥ 1/4. This gives the bounds h̃(3/8) ≤ 19 and h̃(1/2) ≤ 9.4. For |A|
we use the bound

|A| ≤ C0

ζ(2)
+ 2

∣∣∣∣ ∑
d≤100

µ(d) log(d)

d2

∣∣∣∣+ 2

∞�

100

log(t)

t2
dt ≤ 1.8.

The error term in (4.14) is thus bounded by (1.9 + 0.14) · 19/
√
z ≤ 38.8/

√
z

for z ≥ 109. If we use this in (4.13), we arrive at∑
n≤z

µ(n)2

ϕ(n)
= log(z) +B +Θ

(
58√
z

)
.

For a proof that B coincides with the constant in (4.9) see e.g. [Brü95,
Lemma 5.4.2].

Proof of Theorem 4.3. Let g and Y be as in the proof of Theorem 4.2.
First, we consider the case Y > 4 · 1018. From Proposition 3.2 we get∑

p∈I
g(p) ≤ Y

S1(z)
+
H2

1 (z)

S2
1(z)

+ π(z)

for every z ≥ 1. Here we choose z =
√
Y /2. Then z > 109 and Lemma 4.5

gives

S1(z) ≥ log(z) + C0 +
∑

p<1000

log(p)

p(p− 1)
− 0.002

≥ log(z) + 1.32 ≥ 1
2(log(Y ) + 1.25).

From Lemma 4.4 we get

H1(z) ≤
(

15

π2
+

47√
109

)
z ≤ 1.53z,

hence
Y

S1(z)
≤ 2

Y

log(Y ) + 1.25
= 2

Y

log(Y )
− 2.5

Y

log(Y )(log(Y ) + 1.25)
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and
H2

1 (z)

S2
1(z)

≤ 2.4
Y

(log(Y ) + 1.25)2
.

Using the trivial bound π(z) ≤ z we thus arrive at

Y

S1(z)
+
H2

1 (z)

S2
1(z)

+ π(z) ≤ 2
Y

log(Y )
+

√
Y

2
− 0.1Y

log(Y )(log(Y ) + 1.25)

< 2
Y

log(Y )
.

Next, we consider the case 1 < Y < 20000. From Proposition 3.3 we
obtain the bound∑

p∈I
g(p) ≤ Y

∏
p≤z

(
1− 1

p

)
+ 2π(z) + π(z).

It thus suffices to show that for any such Y there exists a number z with

Y
∏
p≤z

(
1− 1

p

)
+ 2π(z) + π(z) < 2

Y

log(Y )
;

but this is carried out in [MV73, p. 130].

It remains to treat the case 20000 ≤ Y ≤ 4 · 1018. This can be done
numerically: the function t 7→ t/log(t) is concave for t > e2. So if, for fixed z,

(4.17)
Y

S1(z)
+
H2

1 (z)

S2
1(z)

+ π(z) < 2
Y

log(Y )

holds for Y ∈ {Y0, Y1}, it holds for all Y ∈ [Y0, Y1]. The inequality (4.17)
was verified with a simple C-routine for all z ∈ [50, 2 · 109) ∩ Z and Y ∈{

4z2, 4(z + 1)2
}

. Therefore, (4.17) is true for every Y ∈ [4 · 502, 1.6 · 1019]

with z =
√
Y /2.

5. Improvements. The results in Theorem 4.2 can be improved by
sharpening the estimates for Sk and Hk, as pointed out in [vLR65]. It can
also be seen that the equivalent of the stronger result in [MV73],∑

p∈I
p≡lmod k

f(p) <
2

ϕ(k)

‖f‖1,I
log(ρI(f)/k)

,

holds at least for ρI(f) �ε k
1+ε and every ε > 0. However, it is not clear

whether it can be shown for ρI(f) > k.
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