On q-orders in primitive modular groups

by
Jacek PomykaŁa (Warszawa)

Introduction. The aim of this paper is to investigate the large orders of integers $b \leq B$ in the group \mathbb{Z}_{p}^{*} in q-aspect, where p and q are prime numbers such that $q \mid p-1$. This problem is related to searching for the smallest value of b that is not the q th power in \mathbb{Z}_{p}^{*}. As already shown by the particular case $q=2$, the problem has no good solution from the computational point of view, since the best known lower bound obtained via the Burgess Bu] estimate for the least quadratic nonresidue modulo p is of order $p^{\theta+\epsilon}$ where $\theta=1 /(4 \sqrt{e})$ with any $\epsilon>0$.

However Ankeny's An well known result says that the least quadratic nonresidue modulo p is $\ll \log ^{2} p$ under the assumption of the Riemann Hypothesis for the zeros of L-functions $L(s, \chi)$ attached to Dirichlet characters χ modulo p. Under the same conjecture the analogous result holds true for all prime divisors $q \mid p-1$, namely the least b which is not a q th power modulo p is $\ll \log ^{2} p$.

In this paper we consider the related problem without the assumption of the Riemann Hypothesis. Namely we deal with primes p for which the interval $[1, B]$ includes no element of "large" q-order, where $q \mid p-1$. In this connection we consider the set of Dirichlet characters χ modulo p of order d, where $q|d| p-1$. The least character nonresidue b with $\chi(b) \notin\{0,1\}$ is related to the "exceptional" zero of the corresponding L-function $L(s, \chi)$ close to the vertical line $\operatorname{Re} s=1$. Applying for them the density estimates we will prove that if d is relatively large then the corresponding "exceptional" prime p does not exist.Therefore we conclude that there exists a relatively small $b \leq B$ with large (maximal) q-order for some $q \mid d$. The small values $b \leq B$ are significant in cryptography, where the efficient construction of a modular

[^0]subgroup generator of \mathbb{Z}_{p}^{*} is required. This is indicated more precisely in Remark 10 below.

Notation. Throughout the paper, $Q \geq 2$ is a positive integer and p is a prime number lying in the arithmetic progresion $p \equiv 1(\bmod Q)$.

For a positive number $B>1$ we will denote by $\langle B\rangle_{p}$ the subgroup of \mathbb{Z}_{p}^{*} generated by all numbers $b \leq B$ with $p \nmid b$.

Conventionally, we denote by $\nu_{q}(m)$ the highest exponent in which q divides m, while $\operatorname{ord}_{p} b$ stands for the order of b modulo p. By the q-order of b we mean the value $q^{\nu_{q}\left(\operatorname{ord}_{p} b\right)}$.

We use the standard notation $\omega(m)$ for the number of distinct prime divisors of m, and $P^{+}(m)$ for the largest prime divisor of m.

Throughout the paper, χ denotes a Dirichlet character modulo p, and $L(s, \chi)$ the L-function attached to χ. By the order of χ we mean the least positive integer k such that χ^{k} is a principal character.

The least character nonresidue n_{χ} is by definition the largest integer m_{0} such that $\chi(m)$ assumes only values in $\{0,1\}$ for $m<m_{0}$.

Let $\alpha \in[1 / 2,1]$ and $\beta>0$. We denote by $R(\alpha, \beta)$ the region in the complex plane \mathbb{C} defined by the inequalities

$$
1 \geq \operatorname{Re} s \geq 1-\alpha, \quad|\operatorname{Im} s| \leq \beta
$$

Conventionally, $N(\sigma, T, \chi)$ denotes the number of nontrivial zeros of $L(s, \chi)$ lying in the rectangle $R(1-\sigma, T)(\sigma \in[1 / 2,1])$.

Main result. Let d be a divisor of $p-1$ greater than or equal to 2 and $\zeta=\zeta_{d} \neq 1$ be a fixed complex d th root of unity.

Definition 1. A prime $p \equiv 1(\bmod d)$ is called (d, ζ, B)-exceptional if

$$
\begin{equation*}
\zeta \notin \chi([1, B]) \tag{1}
\end{equation*}
$$

for all Dirichlet characters χ modulo p of order d.
If condition (1) holds for any $\zeta_{d} \neq 1$, we call $p(d, 1, B)$-exceptional or briefly (d, B)-exceptional. Thus p is (d, B)-exceptional if and only if

$$
\chi([1, B]) \subseteq\{0,1\}
$$

for all Dirichlet characters of orders dividing d.
From now on we will focus on the primes $p \equiv 1(\bmod Q)$ that are $\left(d, \zeta^{i}, B\right)$-exceptional with d being a divisor of Q, for $i=0,1$. Let $S_{i}=$ $S_{i}\left(Q, d, \zeta^{i}, B, x\right)$ stand for the number of primes $p \leq x$ with $p \equiv 1(\bmod Q)$ that are $\left(d, \zeta^{i}, B\right)$-exceptional $(i=0,1)$. We will prove

TheOrem 2. There exists a positive absolute constant A such that for $i=0,1$ we have

$$
S_{i}=S_{i}\left(Q, d, \zeta^{i}, B, x\right) \ll \frac{\exp \left\{\frac{11}{2} \frac{\log x}{\log B} \log \left(d^{i} A \log x\right)+14 \log \log x\right\}}{d^{1-i}}
$$

provided the following conditions are satisfied:

$$
\begin{equation*}
(A \log x)^{5} \leq B \leq x \tag{2}
\end{equation*}
$$

for $i=0$,

$$
\begin{equation*}
\exp \left\{\frac{\log B}{\log (A \log x)}\right\} \leq Q \leq x \tag{3}
\end{equation*}
$$

and for $i=1$,

$$
\begin{align*}
& \max \left\{e^{5}, \exp \left((\log B)^{1 / 2}\right)\right\} \leq Q \leq x \tag{4}\\
& \frac{\exp \left\{\frac{\log B}{\log Q}\right\}}{A \log x}<d \leq \min \left(Q, \frac{B^{1 / 5}}{A \log x}\right) \tag{5}
\end{align*}
$$

The proof of Theorem 2 is based on the following four lemmas.
Lemma 3 (see [Mo1]). Let $1 \geq \sigma \geq 4 / 5, T>0$, and $x \geq 1$. Then

$$
\sum_{\substack{p \leq x \\ p \text { prime }}} \sum_{\chi \bmod p}^{*} N(\sigma, T, \chi) \ll\left(x^{2}(T+2)\right)^{2(1-\sigma) / \sigma}\left(\log x(T+2)^{14}\right)
$$

where the inner sum is over all nonprincipal Dirichlet characters modulo p.
Lemma 4 (see Mo2, Theorem 1, p. 164]). Let χ be a nonprincipal Dirichlet character modulo p. There exists an absolute constant $A>0$ such that if

$$
\chi([1, B]) \subseteq\{0,1\}
$$

then there exists a zero ρ of $L(s, \chi)$ such that $\rho \in R\left(\delta, \delta^{2} \log p\right)$, where δ with $1 / \log p \leq \delta \leq 1 / 5$ satisfies the equality

$$
(A \delta \log p)^{1 / \delta}=B
$$

Lemma 5 (see Mo2, Theorem 2, p. 167]). Let $\zeta \neq 1$ be any dth root of unity $(d>1)$ and assume that $\zeta \notin \chi([1, B])$ for any Dirichlet character modulo p of order d. Then there exists an absolute constant $A>0$ such that $L\left(\rho, \chi^{k}\right)=0$ for some $0<k<d$ and $\rho \in R\left(\delta, d \delta^{2} \log p\right)$ where δ satisfies the equality

$$
(d A \delta \log p)^{1 / \delta}=B
$$

Lemma 6. Let $d \mid p-1$ and ψ be any Dirichlet character modulo p of order $p-1$. Then

$$
\psi^{(p-1) / d}([1, B]) \subseteq\{0,1\} \quad \Leftrightarrow \quad \#\langle B\rangle_{p} \mid(p-1) / d
$$

Proof. Obviously it is sufficient to prove the above equivalence for the values $\psi^{(p-1) / d}(b)$ with $b \leq B, p \nmid b$. Since ψ has order $p-1$, the equality $\psi^{(p-1) / d}(b)=1$ is equivalent to the condition $b^{(p-1) / d}(\bmod p)=1$ for all $b \leq B$ with $p \nmid b$. The latter means that $\operatorname{ord}_{p} b \mid(p-1) / d$ for all $b \leq B$ with $p \nmid b$, hence $\#\langle B\rangle_{p} \mid(p-1) / d$, as required.

Proof of Theorem 2. Let

$$
\begin{equation*}
\delta=\delta_{i}=\delta_{i, A}\left(d^{i}, B, x\right)=\frac{\log \left(A d^{i} \log x\right)}{\log B} \tag{6}
\end{equation*}
$$

and consider the function $N(1-\delta, T, \chi)$ counting the zeros of the Dirichlet L-function $L(s, \chi)$ in the rectangle $R(\delta, T)$ with $T=T_{i}=d^{i} \delta_{i}^{2} \log x$.

If p is $\left(d, \zeta^{i}, B\right)$-exceptional then $\zeta \notin \chi([1, B])$ when $i=1$, and $\chi([1, B]) \subseteq$ $\{0,1\}$ when $i=0$. In the first case we apply we use Lemma 5 , while in the second we use Lemma 4 above with

$$
\begin{equation*}
B=B(i)=\left(A d^{i} \log x\right)^{1 / \delta_{i}}, \quad i=0,1 \tag{7}
\end{equation*}
$$

In case $i=1$ we have $\chi(b) \neq \zeta$ for all $b \leq B=B(1)$, hence also for $b \leq(A d \delta \log x)^{1 / \delta}\left(\delta=\delta_{1} \leq 1\right)$. This implies that there exists a zero ρ of $L(s, \chi)$ with some $\chi(\bmod p)$ of order d, contained in the rectangle $R=R\left(\delta, \delta^{2} d \log x\right)$, where $\delta=\delta_{1}$ is defined by (6).

Concluding, there exists at least one character χ of order d with the corresponding zero of $L(s, \chi)$ contributing nontrivially to $N\left(\delta, \delta^{2} d \log x, \chi\right)$.

We still have to check that δ is chosen properly, i.e.

$$
\frac{1}{\log p} \leq \delta \leq \frac{1}{5}
$$

The right-hand inequality follows from the right-hand inequality of (5), while the left-hand one follows from the observation that the assumption $p \equiv 1(\bmod Q)$ implies that $p>Q$, hence

$$
\frac{1}{\log p} \leq \frac{1}{\log Q} \leq \frac{\log (A d \log x)}{\log B}=\delta
$$

by the left-hand inequality of (5). Moreover the left-hand inequality of (4) is consistent with the conditions (2) and (5).

In case $i=0$ we apply Lemma 4 to see that for p which is $(d, 1, B)$ exceptional we have $\chi(b)=\{1\}$ for all $b \leq B=B(0)$ with $p \nmid b$ and all characters $\chi^{k}=\left(\psi^{(p-1) / d}\right)^{k}$ with $1 \leq k \leq d-1$. By Lemma 4 each of the L-functions $L\left(s, \chi^{k}\right)$ has a zero $\rho \in R\left(\delta_{0}, \delta_{0}^{2} d^{0} \log x\right)=R\left(\delta_{0}, \delta_{0}^{2} \log x\right)$, thus contributing nontrivially to $N\left(1-\delta_{0}, \delta_{0}^{2} \log x, \chi\right)$. Here the required inequality for δ_{0} follows from (2) and the left-hand inequality of (3).

Let us now consider the following sums $\sum_{i}(i=0,1)$ related to the $\left(d, \zeta^{i}, B\right)$-exceptional numbers:

$$
\sum_{i}=\sum_{\substack{p \leq x, p \equiv 1(\bmod Q) \\\left(d, \zeta^{i}, B\right) \text {-exceptional }}} \sum_{\chi \bmod p}^{*} N\left(1-\delta_{i}, \delta_{i}^{2} d^{i} \log x, \chi\right)
$$

In view of the above discussion we have

$$
\sum_{1} \geq \sum_{\substack{p \leq x, p \equiv 1(\bmod Q) \\(d, \zeta, B) \text {-exceptional }}} N\left(1-\delta_{1}, \delta_{1}^{2} d \log x, \chi\right) \geq S_{1}(Q, d, \zeta, B, x)
$$

and similarly

$$
\sum_{0} \geq \sum_{\substack{p \leq x, p \equiv 1(\bmod Q) \\(d, 1, B) \text { exceptional }}}(d-1) N\left(1-\delta_{0}, \delta_{0}^{2} \log x, \chi\right) \geq(d-1) S_{0}(Q, d, 1, B, x)
$$

Now we apply Lemma 3 to get an upper bound for $\sum_{i}(i=0,1)$. We have

$$
\begin{aligned}
\sum_{i} & =\sum_{p \leq x} \sum_{\bmod p}^{*} N\left(1-\delta_{i}, T_{i}, \chi\right)=\sum_{p \leq x} \sum_{\bmod p}^{*} N\left(1-\delta_{i}, \delta_{i}^{2} d^{i} \log x, \chi\right) \\
& \ll\left(x^{2}\left(T_{i}+2\right)\right)^{2 \delta_{i} /\left(1-\delta_{i}\right)}\left(\log x\left(T_{i}+2\right)\right)^{14} \\
& \ll\left(x^{2} x^{1 / 5}\right)^{5 \delta_{i} / 2}\left(\log x^{6 / 5}\right)^{14} \ll x^{11 \delta_{i} / 2}(\log x)^{14} \\
& \ll \exp \left(\frac{11}{2} \frac{\log x}{\log B} \log \left(A d^{i} \log x\right)+14 \log \log x\right)
\end{aligned}
$$

Applying the lower bounds for \sum_{0} and \sum_{1} we obtain the required bounds for $S_{i}\left(Q, d, \zeta^{i}, B, x\right), i=0,1$.

Lemma 7 (see [PK]). Let $x \geq 4$ and $2 \leq y \leq x$. Then

$$
\#\left\{m \leq x: P^{+}(m) \leq y\right\}>x^{1-\frac{\log \log x}{\log y}}
$$

A prime $p \equiv 1(\bmod d)$ is called (d, B)-admissible if it is not (d, B) exceptional. By Lemma 6 the prime p is (d, B)-admissible provided

$$
\begin{equation*}
\nu_{q}\left(\#\langle B\rangle_{p}\right)>\nu_{q}(p-1)-\nu_{q}(d) \tag{8}
\end{equation*}
$$

for some prime number $q \mid d$. Let us define

$$
\begin{equation*}
\mathfrak{z}_{A}(x, B):=\exp \left(\frac{11}{2} \frac{\log x}{\log B} \log (A \log x)+14 \log \log x\right) \tag{9}
\end{equation*}
$$

Applying Theorem 2 for $i=0$ we obtain

Corollary 8. There exist absolute positive constants A, c such that if

$$
\begin{align*}
& (A \log x)^{5} \leq B \leq x \tag{10}\\
& \max \left\{\mathfrak{z}_{A}(x, B), \exp \left(\frac{\log B}{\log (A \log x)}\right)\right\} \leq Q \leq x \tag{11}\\
& d>c \mathfrak{z}_{A}(x, B), \quad d \mid Q \tag{12}
\end{align*}
$$

then every prime $p \leq x$ with $p \equiv 1(\bmod Q)$ is (d, B)-admissible.
Proof. Note that the conditions (10)-(11) imply the inequalities (2)-(3) of Theorem 2 and therefore by (12) we conclude that $S_{0}(Q, d, 1, B, x)=0$, as required.

In particular letting $d=Q$ we deduce that for B and d satisfying

$$
\begin{align*}
& (A \log x)^{5} \leq B \leq \exp \left(\frac{11}{2}(\log x)^{1 / 2} \log (A \log x)\right) \tag{13}\\
& d>\mathfrak{z}_{A}(x, B) \tag{14}
\end{align*}
$$

any prime $p \leq x$ such that $p \equiv 1(\bmod d)$ is (d, B)-admissible.
The inequality (8) is tight if d itself is a prime power. On the other hand, if $Q / \mathfrak{z}_{A}(x, B)$ is relatively large one observes that the number of distinct q dividing d that satisfy (8) is at least as large as the number of pairwise coprime integers $d^{\prime} \geq c_{\mathfrak{z}} A(x, B)$ dividing d. However, if $Q / \mathfrak{z}_{A}(x, B)$ is relatively small and $\omega(d)$ is relatively large, then the number of suitable prime q satisfying (8) can be estimated nontrivially with the aid of Lemma 7. Namely, let us denote by m_{l} the divisor of m composed of all l th powers of primes. We have the following

Proposition 9. Let $l \geq 1$ be an integer. There exist absolute positive constants A, c, c^{\prime} such that if B and d_{l} satisfy

$$
\begin{align*}
& (A \log x)^{5} \leq B \leq \exp \left(\frac{11}{2}(\log x)^{1 / 2} \log (A \log x)\right) \tag{15}\\
& d_{l}>c \mathfrak{z}_{A}(x, B) \tag{16}
\end{align*}
$$

then for every prime $p \leq x$ with $p \equiv 1\left(\bmod d_{l}\right)$, the number of primes q dividing d_{l} such that

$$
\nu_{q}\left(\#\langle B\rangle_{p}\right)>\nu_{q}(p-1)-l
$$

is at least

$$
\max \left(1, \omega\left(d_{l}\right)-c^{\prime} \frac{\log x}{l \log B}\right)
$$

provided $x \geq x_{0}(A, l)$ is sufficiently large.
Proof. By the upper bound for $S_{0}\left(Q, d_{l}, 1, B, x\right)$ in Theorem 2 with $d=$ $d_{l}=Q$, there exists an absolute constant $c>0$ such that if

$$
d_{l}>c z_{A}(x, B)
$$

then the set of $\left(d_{l}, B\right)$-exceptional primes $p \leq x$ with $p \equiv 1\left(\bmod d_{l}\right)$ is empty. Hence such a prime p is $\left(d_{l}, B\right)$-admissible, i.e. there exists a prime $q \mid d_{l}$ such that

$$
\nu_{q}\left(\#\langle B\rangle_{p}\right)>\nu_{q}(p-1)-l
$$

which justifies the first term of the maximum above.
To improve the estimate for large values of $\omega\left(d_{l}\right)$ let us write

$$
d_{l}=\prod_{i \leq s} q_{i}^{\nu_{i}} \prod_{i=s+1}^{r} q_{i}^{\nu_{i}}=d^{\prime} d^{\prime \prime}
$$

say, where $\nu_{q}\left(\#\langle B\rangle_{p}\right) \leq \nu_{q}(p-1)-l$ for $q \mid d^{\prime}$, while $\nu_{q}\left(\#\langle B\rangle_{p}\right)>\nu_{q}(p-1)-l$ for $q \mid d^{\prime \prime}$. Then

$$
\left(q_{1} \ldots q_{s}\right)^{l} \left\lvert\, \frac{p-1}{\#\langle B\rangle_{p}}\right.
$$

Furthermore, $q_{1} \ldots q_{s}$ is no smaller than the product of the first s consecutive primes, which is $\gg s^{s}$ in view of the prime number theorem. Now applying the lower bound of Lemma 7 and equality (9) we see that for sufficiently large $x \geq x_{0}(A, l)$,

$$
\#\langle B\rangle_{p} \geq \#\left\{m<p: P^{+}(m) \leq B\right\}>p^{1-\frac{\log \log p}{\log B}}>(p-1) / p^{\frac{\log \log p}{\log B}}
$$

Therefore

$$
s^{l s} \ll\left(q_{1} \ldots q_{s}\right)^{l} \leq \frac{p-1}{\#\langle B\rangle_{p}} \leq p^{\frac{\log \log p}{\log B}} \leq x^{\frac{\log \log x}{\log B}},
$$

and taking the logarithms of both sides we obtain

$$
l s \log s \ll \frac{\log x}{\log B} \log \log x
$$

hence

$$
s \ll \frac{1}{l} \frac{\log x}{\log B}
$$

for sufficiently large $x \geq x_{0}(A, l)$.
Thus the number of q 's dividing d such that $\nu_{q}\left(\#\langle B\rangle_{p}\right)>\nu_{q}(p-1)-l$ is at least

$$
r-s \geq \max \left(1, \omega\left(d_{l}\right)-c^{\prime} \frac{\log x}{l \log B}\right)
$$

for some $c^{\prime}>0$, provided $x \geq x_{0}(A, l)$ is sufficiently large. This completes the proof of Proposition 9.

REMARK 10. Let m be the smallest integer with $q^{m}>d>c \mathfrak{z} A(x, B)$, where $1 \leq m \leq l$. We have two interesting special cases: $m=1$ and $m=$ $l=\nu_{q}(p-1)$. If $m=1$ then there exists $b \leq B$ such that the q-order of b modulo p is maximal, i.e. $q^{\nu_{q}(p-1)} \mid \operatorname{ord}_{p} b$. If $m=l=\nu_{q}(p-1)$ then $q \mid \operatorname{ord}_{p} b$. Given q and B an interesting computational problem is to deterministically
find p and $b \leq B$ such that $p \equiv 1(\bmod q)$ and $q \mid \operatorname{ord}_{q} b$. This is a common challenge in the efficient generation of cryptographic system parameters (cf. e.g. ElGamal's cryptosystem [ElG]).

Acknowledgements. The author is grateful to the anonymous referee for the valuable remarks that helped to improve the presentation of the paper.

References

[An] N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65-72.
[Bu] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106-112.
[ElG] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in: Advances in Cryptology (Santa Barbara, CA, 1984), Lecture Notes in Comput. Sci. 196, Springer, 1985, 10-18.
[Mo1] H. L. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), 346-354.
[Mo2] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, Amer. Math. Soc., 1994.
[PK] C. Pomerance and S. Konyagin, On primes recognizable in deterministic polynomial time, in: The Mathematics of Paul Erdős, R. L. Graham and J. Nešetřil (eds.), Springer, 1997, 176-198.

Jacek Pomykała
Institute of Mathematics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: pomykala@mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification: 11R45, 11M41, 11M06, 11Z05.
 Key words and phrases: Dirichlet characters, L-functions, least chacter nonresidues, Riemann hypothesis, modular groups, orders, complex roots of unity, deterministic algorithms in cryptography.

