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Algebraic S-integers of fixed degree and bounded height
by

FABRIZIO BARROERO (Pisa)

1. Introduction. In this article we give asymptotic estimates for the
cardinality of certain subsets of Q" of bounded height. By height we mean
the multiplicative absolute Weil height H on the affine space Q", whose
definition will be recalled in Section 21

Let k be a number field of degree m over Q and let n and e be positive
integers. We fix an algebraic closure k of k and set

k(n,e) = {a € k" : [k(a) : k] = e},

where k() is the field obtained by adjoining all the coordinates of « to k. By
Northcott’s Theorem [12], subsets of k(n, e) of uniformly bounded height are
finite. Therefore, for any subset A of k(n,e) and H > 0, we may introduce
the following counting function:

N(AH) = [{a e A: H(a) < H)|.

Various results about this counting function appear in the literature. One
of the earliest is due to Schanuel [13], who gave an asymptotic formula
for N(k(n,1),H). Schmidt was the first to consider the case e > 1. In
[14], he found upper and lower bounds for N(k(n,e),H), while in [15], he
gave asymptotics for N(Q(n,2),#H). Shortly afterwards, Gao [§] found the
asymptotics for N(Q(n, e), H), provided n > e. Later Masser and Vaaler [11]
established an asymptotic estimate for N(k(1,e),H). Finally, Widmer [16]
proved an asymptotic formula for N(k(n,e),H), provided n > 5e/2 + 5
+ 2/me. However, for general n and e even the correct order of magnitude
for N(k(n,e),H) remains unknown.

In this article we are interested in counting algebraic S-integers. Let
S be a finite set of places of k containing the archimedean ones. As usual,
Oy denotes the ring of S-integers of k. Let S be the set of places of k that lie
above the places in S and let Og be the ring of S-integers of k. Alternatively,
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we could think of Og as the ring of those algebraic numbers having minimal
polynomial over k that is monic and has coefficients in Og.
Given n and e positive integers, we set

Os(n,e) = k(n,e) NOg ={a € OF : [k(a) : k] = e}.

Let So be the set of archimedean places of k. If we choose S = S, then
Og = Oy, is the ring of algebraic integers of k and we use the notation
Oy (n, e) with the obvious meaning. Besides the trivial cases Og(n, 1) = Z",
the first asymptotic result can probably be found in Lang’s book [9]. Lang
states, without proof,

N(Ok(1,1),H) = vH™ (log H)? + O(H™ (log H)?™ 1),

where m = [k : Q], ¢ is the rank of the unit group of O, and 74 and
the implicit constant in the error term are unspecified positive constants,
depending on k. More recently, Widmer [I7] established the asymptotic
formula

t
(1.1)  N(Og(n,e),H)=>_ DH™ (1og H™") 4O e.n(H™" (log H)"),
i=0

provided e = 1 or n > e + Cep, for some explicit Ce,, < 7. Here t =
e(¢ + 1) — 1, and the constants D; = D;(k,n,e) are explicitly given. Our
Theorem [1.1] generalizes Widmer’s result in the case e = 1 to asymptotics
for N(Og(n,1),H). However, we do not obtain a multiterm expansion as
in .

Chern and Vaaler [6] proved an asymptotic formula for the number of
monic polynomials in Z[X] of given degree and bounded Mahler measure.
Theorem 6 of [6] immediately implies the following estimate:

N(Og(1,e),H) = CcH® + O (HE )

for some explicit constant Ce. This was extended by the author in [I], where
an asymptotic estimate is given for N(Ok(1,e), H). Theorem [1.2| below gen-
eralizes this result and gives an asymptotic estimate for N(Og(1,e),H) for
any finite set of places S containing the archimedean ones.

We write Sg, for the set of non-archimedean places of S. Suppose that
Sgn = {v1,...,vr} and that v; corresponds to the prime ideal p; of Of. We
denote by 91(2) the norm from & to Q of the fractional ideal 2 and by 91(.5)
the L-tuple (9t(p1),...,M(pr)). Let r and s be, respectively, the number
of real embeddings and pairs of conjugate complex embeddings of k. More-
over, we denote by A the discriminant of k. Let n be a positive integer.
We set

) mrteTlosmplsi-t Lo !
U2 Bes = s Ta lHl<logm<m> (1 mm)n))
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M . n—2j M
_ 27 n
__on—M
Crn =2 <II<2j+1) )M!

Jj=1

and

with M = L”T_IJ (as usual, |z is the integer part of x € R), and

nn

Ccpn = W"W.
In this article, as usual, empty products are understood to be 1.
For non-negative real functions f(X),g(X),h(X) and Xy € R, we write
f(X) =g(X)+ O(h(X)) as X > X tends to infinity if there is Cy such
that | f(X) — g(X)| < Coh(X) for all X > X.

THEOREM 1.1. Let n be a positive integer and let k be a number field of

degree m over Q. Moreover, let S be a finite set of places of k containing
the archimedean ones. Then, as H > 2 tends to infinity,

N(Os(n, 1), 1) = (2'7*)" By §H"" (log 1) |51~
N {Ommnuogmls'—?) if 181> 1,
O(H™™ 1) if |S]=1.
The implicit constant in the error term depends on m, n and N(S).

THEOREM 1.2. Let e be a positive integer and let k be a number field of
degree m over Q. Moreover, let S be a finite set of places of k containing
the archimedean ones. Then, as H > 2 tends to infinity,

N(Os(1,¢),H) = el¥10g ,C8  BEH™ (log 1) /517

O(H™ (log H)!51-2) if |S] > 1,
O(Heme=1 ) if 1S =1,

where L = logH if (m,e) = (1,2) and L = 1 otherwise. The implicit con-
stant in the error term depends on m, e and J(S5).

As mentioned before, if § = S, then Theorem reduces to ,
although with a larger error term, and Theorem to the result in [IJ.
However, for the case S, # S our results appear to be new.

As in [I], our proof relies on work of the author and Widmer [2] about
counting lattice points in definable sets in o-minimal structures. Our ap-
proach is similar to the one in [I], but in the case S = S the result is more
straightforward, because the embedding of O in R™ is a lattice. On the
other hand, if S 2 S, the embedding of Og is dense in R™, and a more
elaborate proof is needed.

Let us apply our theorems to a few simple examples. Fix a prime num-
ber p. One can see, as an easy exercise and as a special case of both theorems,
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that the number of elements of Z[1/p] of height at most # is
2

log p

Now, let d be a square-free positive integer with d = 3 mod 4. Consider

k = Q(+/d) and set S to consist of the place corresponding to the prime
ideal (2,14 v/d), in addition to the two archimedean places. Then

2n(2" —1
N(Os(n,1),H) = d”(/zlog2)

Let again k = QQ and suppose the non-archimedean places in S are associated
to the primes 2 and 3. Then

N(0s(1,2),H)

1
(1 - p)?—[log?—[ + Op(H).

H?"(log H)? + On(H*" log H).

32
"3 log2log 3
In [11], Masser and Vaaler observed that the limit as H — oo of
N(k(1,e), H'®)
N(k(e,1),H)
is a rational number. Moreover, they asked if this can be extended to some
sort, of reciprocity law, i.e., whether

1/e

I N(k(n,e), H'¢)

H%e N (k(e, n), HI/7)
Analogously we notice that

_ N(Os(1,e), H'*) Cre\ (Cce\’

lim =e - :
H—oo N(Og(e,1),H) 2¢ e

is a rational number depending only on e, » and s, as already pointed out

in [I] for the case S = So. As Masser and Vaaler did, one can ask again
whether

H(logH)* + O(H*log H).

€ Q.

. N(OS(nv 6), le/e)
lim
H—o0 N(Og(e,n), HY/™)

€ Q.

2. Preliminaries. Let k£ be a number field of degree m over QQ and let
M}, be the set of places of k. For v € My, we indicate by k, the completion
of k with respect to v. We write Q, for the completion of Q with respect to
the unique place of Q that lies below v. Moreover, we set d, = [k, : Q,] to
be the local degree of k at v.

Any v € M}, corresponds either to a non-zero prime ideal p, of Oy or
to an embedding of k£ into C. In the first case v is called a finite or non-
archimedean place and we write v 1 co. In the second case v is called an
infinite or archimedean place and we write v | co. We set, for v oo,

’a‘v = m(pv)_ordp’u (O()/dv
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for every a € k\ {0}, where ordy, (a) is the power of p, in the factoriza-
tion of the principal fractional ideal aOy. Furthermore, [0|, = 0. If v |00
corresponds to o, : k — C, we set

|y = [ow(a)]

for every o € k, where | - | is the usual absolute value on C. The absolute
multiplicative Weil height H : k™ — [1,00) is defined by
(2.1) H(ar,...,an) = [ max{1,laalo, ... |oml}*/™.

vE My,

Note that for @ € k\ {0}, |a], # 1 for finitely many v. Therefore, the
above product contains only finitely many terms different from 1. Moreover,
this definition is independent of the field containing the coordinates, and
therefore the height is defined on Q™. For properties of the Weil height we
refer to the first chapter of [4].

We conclude this section by introducing semialgebraic sets and stating
the Tarski—Seidenberg principle.

DEFINITION 2.1. Let N and M;, for i = 1,..., N, be positive integers.
A semialgebraic subset of R™ is a set of the form

N M;
U ﬂ{a} e R™: f; j(x) %, 0},
i=1j=1
where f; ; € R[X1,...,X,] and the *; ; are either < or =.
Let A C R™ be a semialgebraic set. A function f : A — R" is called
semialgebraic if its graph I'(f) is a semialgebraic set of R

If we identify C with R?, then the definitions of semialgebraic set and
function are extended to subsets of C™ and to functions of complex variables
in a natural way. We will need the following theorem, which is usually known
as the Tarski-Seidenberg principle.

THEOREM 2.2 ([3, Theorem 1.5]). Let A € R"™! be a semialgebraic set.
Then w(A) € R™ is semialgebraic, where © : R™1 — R™ is the projection
map on the first n coordinates.

3. A generalization. In this section we formulate a theorem which will
be used later to derive Theorems [[.1] and [[.2

In the following definition we consider functions whose domain is R
or C"1. We use the notation z to indicate a vector with entries in a
generic field, while & will be a vector with real coordinates. We are of-
ten going to identify a function f : C* — R with f : R?*” — R where if
x = (x1,...,20,) €R™, f(x) = f(x1 +iza,. .. ,Ton 1+ iTon).
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DEFINITION 3.1. Let n be a positive integer. A semialgebraic distance
function (of dimension n) is a continuous function N from R"*! or C**! to
the interval [0, c0) satisfying the following conditions:

(i) N(z) =0 if and only if 2z is the zero vector;
(ii) N(wz) = |w|N(z) for any scalar w in R or in C;
(iii) N is a semialgebraic function.

Let r and s be non-negative integers, not both zero. A system N of r real
and s complex semialgebraic distance functions (of dimension n) is called
an (r, s)-system (of dimension n).

Let us fix a number field & with [k : Q] = m. Let r and s be, respec-
tively, the number of real and pairs of conjugate complex embeddings of k.
These induce r + s archimedean places of k, with respective completions
R or C. Given an (r, s)-system N of dimension n, we can associate to ev-
ery archimedean place v a semialgebraic distance function N, on k7!, We
will mostly use the alternative notation Ni,..., N, for the r real distance
functions and Ny41,..., Ny4s for the s complex ones, and we set d; = 1 for
t=1,....,r;and d; = 2 for t = r 4+ 1,...,r + s. For the non-archimedean
places we set

Ny(z) = max{|z0|v;-- -, |2nlo}

for z = (20,...,2n) € k1. Now we can define, for a € k"' a height
function associated to N,

(@)™ = [ Muloul@)™.
veMj,

where o, is the embedding of k into k, corresponding to v, extended com-
ponentwise to k"1,

Now, let OY(H) be the set of a € OF with Hy(1,a) < H. We are
interested in obtaining an estimate for |04 (H)| as H — oco.

Let us introduce some notation and impose some conditions on the func-
tions N; in view of the application of this estimate. For i = 1,...,7+ s, we
set N;(z) = N;(1, z) and suppose that

(3.1) Ni(z) >1

for every z € R"™ or C". We define the sets

(3:2) Zi(T) ={z: Ni(z) < T},

and suppose that

(3.3) the Z;(T') have volume p;(T) for every T' > 1,

where p;(X) € R[X] is a polynomial of degree d;n and leading coefficient C;.
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Moreover, let

nr+37128nm|5|71 r+s L 1 1
(3.4) CN ks = ( Ci) ( <1— >>

(18] =DM/ 1Ak))™ g ,1;11 log M(p) N(py)"

THEOREM 3.2. Let N be an (r,s)-system of dimension n, satisfying the

above hypotheses (3.1) and (3.3). Moreover, suppose S is a finite set of
places of k containing the archimedean ones. Then, for every Ho > 1, there
ezists a positive Cy = Co(N,N(S), Ho) such that for every H > H,
CoH™ (log H)I¥1=2 if |S| > 1,
CoH™ ! if |1S] = 1.

1OX (1)] — O s H™ (log )19 | < {

4. Proofs of Theorems [1.1] and [1.2] In this section we apply Theo-
rem [3.2] to prove Theorems [I and [[.2] Let us start with the first one. We
choose our system N to COIlSlSt of the max norm

Ny(2) = |2|oc = max{[zo|, ..., |2al},

for every archimedean place v of k. These N, clearly satisfy the definition of
semialgebraic distance function. The sets Z;(T") defined in have volume
(2T)" for i = 1,...,7 and #"T?" for i = r +1,...,r + s, for every T > 1.
Therefore, the hypotheses of Theorem are satisfied.

Note that, for every a € k",

Hy(1,a) HN (1,00(a)) /™ = Hmax{l latly, - . ., |an]o }¥/™ = H(a).

Therefore Hys is the usual absolute Weil height defined in (2.1f). The claim
of Theorem [I.1] follows by applying Theorem [3.2] with Ho = 2.

Now let us prove Theorem We choose N to consist of the Mahler
measure function

NZ'(Z(),...,Z”) :M(ZoXn—i-Zanil-i-"‘"i‘Zn) = M(ZO,-..,Zn)

for every i = 1,...,7+s. Let us recall its definition. If f = 20 X%+ 2z X4 1 4+
-+ + 24 is a non-zero polynomial of degree d with complex coefficients and

roots a, ..., ag, the Mahler measure of f is defined to be
d
(4.1) M(f) = |zo| | ] max{L, |an|}.
h=1

Moreover, we set M (0) = 0.
In what follows we are going to consider the Mahler measure as a function
of the coefficients of a polynomial:

M : R or €L 5 [0,00),  (20,...,24) = M (20X 4+ 21X 4 4 2y).



74 F. Barroero

Mabhler [10, Lemma 1] proved that such an M is continuous and it is
easy to see that it satisfies conditions ({if) and of Definition We now
prove that it is a semialgebraic function.

LEMMA 4.1. The Mahler measure M, as a function of the coefficients of
a polynomial, is a semialgebraic function.

Proof. We start by proving the claim for the complex Mahler measure.
We need to show that, for every positive integer n, the function

M, : R*™1) 50, 00),
(o, .-y Tont1) = M((xo +iz1) X" + -+ + (z2n + iT2n+41)),
is semialgebraic, i.e., its graph
I(My) = {(x0, ..., 22p41,t) € RETUFL M (g, 2o 11) = ¢}
is a semialgebraic set.
We prove this by induction on n. For n =1,
I(My) = {(z0, 21, 22, 3, 1) € R® : max{af + 2,23 + 23} = >, t > 0}
is clearly semialgebraic. Now suppose n > 1. Let I'(M,,) = AU B, where
A= {(xo,...,Tom11,t) € (M) : 23 + 2% # 0},
B = {(xo,...,xon41,t) € ['(My,) : z9p = 1 = 0}.
By the inductive hypothesis, B is a semialgebraic set since B = {(0,0)} x
I'(M,,—1). Now let A’ be the set of points
(Toy -y Tont1,t, 1, B, oy, Br) € R2(nH1)+142n

such that 22 + 23 # 0, ap + B, for h = 1,...,n are the roots of
(xo 4+ iz1)X™ + - -+ + (x2n + iT2n41), and

n
(4.2) w0 + iy | [ [ max{L, o, +iBnl} = t.
h=1

This set A’ is defined by the symmetric functions that link the coefficients
of a polynomial with its roots and by . It is therefore semialgebraic.
Since A is the projection of A’ on the first 2(n+ 1) + 1 coordinates, it is also
semialgebraic by the Tarski-Seidenberg principle (Theorem . We have
the claim for the complex Mahler measure.

For the real one it is sufficient to note that its graph is nothing but the
projection that forgets the coordinates x1,x3,...,Zon—1, Tont1 Of

I'(My) N {(zo,...,xom41,t) t X241 =0for j=0,...,n}. =

Since M satisfies the three conditions of Definition [3.1] it is a semialge-
braic distance function. Moreover, in [6], Chern and Vaaler calculated the
volume of the sets of the form (3.2)) for the real and the complex monic
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Mahler measure. By (1.16) and (1.17) of [6], for every 7" > 1 the volumes of
the sets

{(z1,--.y2n) ER": M(1,21,...,2,) < T},

{(z1,. . y2n) €C": M(1,21,...,2,) <T}
are, respectively, polynomials pr(7T") and pc(7T) of degree n and 2n and
leading coefficients

M . n—=27 M
on—M 2] Ny
Cron =2 <||<2j+1 2 10)

J=1

Cep=m" COER

We have just shown that N satisfies the hypothesis of Theorem [3.2]

therefore for every Hp > 1 there exists a positive Cp = Co(m, n, N(S), Ho),
such that for every H > H,,

(4.3)  [|OY (#)| - CF,,C8, BAH™ (log 1) IS
L CyH™ ! if |S] =1,

where B,E:ng is the constant defined in |i

Let us reformulate these considerations in terms of polynomials. We pro-
ceed in a similar way to [I, Section 2]. For any positive integer n we fix the
system N, of dimension n to consist of Mahler measure distance functions
and we define

MFE[X] = [0,00), aoX"4+ a1 X" '+ +a,— Hy,(ag,aq,...,a).
Therefore we can write

Mk(ao, ceeyQp)
r+s d
- (H M(U,-(ao)X” + -+ Uz’(an)> i/m> H max{|aoly, . - -, |an‘v}dv/m~
=1

= vfoo
Let My, g(n,H) be the set of monic polynomials f € Og[X] of degree n
with M*(f) < H. Clearly |O% (H)| = [My.s(n, H)| and is an estimate
for such cardinality. Fixing m, n, |S| and an |S|-tuple of prime powers, and
letting £ vary among all number fields of degree m and S among the sets
of places of the chosen number field with the prescribed set of norms of the

non-archimedean places, the constants Cy, ., CZ ,, and B,(Cnb)w are bounded and
(/]’L) b bl k)

therefore there exists a constant Gm 0

(5)’ depending on n, m and 91(.5), such

(*) There is a misprint in (1.16) of [6]: 27 should read 27*.
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that
(4.4) (Mis(n, H)| < G o H™™ (log H + 1) 1517
for every H > 1.
Note that, for every o € k,
(4.5) MHNX —a) = J] max{1,|al,}*/™ = H(a).
vEM}

It is clear from the definition of Mahler measure (4.1) that

M(fg) = M(f)M(g),
and therefore, by [4, Lemma 1.6.3], one can see that

M*(fg) = M*(f)M*(g)
for every f,g € k[X].

Now we want to restrict to monic f irreducible over k. Let /f\/lvhg(n, H)
be the set of monic irreducible polynomials f € Og[X] of degree n with
MF*(f) <H, i.e., the polynomials in M, s(n,H) that are irreducible over .

COROLLARY 4.2. For every Ho > 1 there exists a positive Dy, depending
onn, m, N(S) and Ho, such that for every H > Hy we have

[[Mis(n, H)| = Gy G BgH™ (log H)1*1~|

- {Do’Hm”(log’H)S_2 if |1S] > 1,
“ { DyH™ L if |1S| =1,
where L =logH if (m,n) = (1,2) and L =1 otherwise.

Proof. For n = 1, there is nothing to prove. Suppose n > 1. We show
that, up to a constant, the number of all monic reducible f € Og[X] of
degree n with M*(f) < H is not larger than the right hand side of (4.3),
except for the case [S| =1 and (m,n) = (1,2).

Consider all f = gh € My, s(n,H) with g,h € Og[X] monic of degree
a and b respectively, with 0 < a < b < n and a+b = n. We have 1 <

M*(g), M*(h) < H because g and h are monic. Thus, there exists a positive
integer d such that 2= < M*(g) < 2%. Note that d must satisfy

log H

4. 1<d<
(4.6) - 7 log?2

+1<2logH +1.
Since M¥* is multiplicative,

_ MA(f) -
MF(h) = () < 21-dy.

Using (4.4) and noting that 2% < 2H, we can see that there are at most
Gy (2" (log 27+ DI < G o) (2™ (log H +2) 91
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possibilities for g and

b —dam _ _ b —dam _
G s 24 H) ™ (log (2 ~) +1)S171 < GO o (217 H) ™ (log H4-2) 51!
possibilities for h. Therefore, we have at most

(47) Hr(:,?)’t(S)Hmemd(a_b) (long + 2)2(|S|—1)

possibilities for gh with M¥(gh) < H and 2971 < M*(g) < 29, where
ngzﬂ(s) is a real constant depending on n, m and J(5).
If a =b=mn/2, then is

( ) s )’Hmn/z(log?{—i-Q) (I51=1)

Summing over all d, 1 < d < [2logH]|+1 (recall (4.6))), gives an extra factor
2logH + 1. Therefore, when a = b, there are at most

H{"y sy H™ 2 (210g H + 2) 1511

possibilities for f = gh, with M*(f) < H.If |S| > 1 or (m,n) # (1,2),
this has smaller order than the right hand side of , since mn > 2
implies mn/2 < mn — 1. In the case |[S| = 1 and (m,n) = (1,2), we get
Hé?&( S)H(2 logH + 2) and we need an additional logarithm factor.

For a < b, summing 274%=b) gver all d, 1 < d < |2logH]| +1=: D, we

get
D

> (memthyd < 22 —4 <.
d=1
Thus, recalling b < n — 1, if a < b there are at most

H;’l’zn(s)r}_[m(n—l) (IOgH + 2)2(|S|—1)
possibilities for f = gh with M*(f) < H. This is again not larger than the
right hand side of (4.3). =

The last step of the proof links such irreducible polynomials with their
roots, and M k with the height of these roots. Recall that S is the set of
places of k that lie above the places in S.

LEMMA 4.3. An algebraic number 3 € Og has degree e over k and
H(B) < H if and only if it is a oot of a monic irreducible polynomial
f € Og[X] of degree e with M*(f) < He.

Proof. 1f an algebraic number 8 € Og has degree e over k, then it is
clearly a root of a monic irreducible polynomial f € Og[X] of degree e, and
vice versa. We claim that

H(B)" = M"(f).
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The function M* is independent of the choice of k since it is possible
to define an absolute M@ over Q[X] that, restricted to any k[X], coincides
with M*. To see this one can simply imitate the proof of the fact that
the Weil height is independent of the field containing the coordinates (see
[4, Lemma 1.5.2]).

Suppose f = (X —a1) -+ (X — ac). By (4.5) we have
M) (X — o) = H(w),

and the «; have the same height because they are conjugate (see [4, Propo-
sition 1.5.17]). Finally, by the multiplicativity of M* we can see that

ME(F) = MO(f) = [] MUX - o) = H(ay)*
=1

for any o; root of f. m

This implies that |[N(Og(1,¢e),H)| = e\//\/lvk75(e,7-[e)| because there are e
different 3 € Og with the same minimal polynomial over k. For every Ho > 1,
there exists a positive Ey = Ey(m, e, M(S), Ho) such that, for every H > H,,

[N(Os(1,6), 1) — el¥IC} Ot BIAH™ (log 1)/
EoH™ (log H)IS1=2if |§] > 1,
EOHe(mefl)E if |S| _ 17

where £ = logH if (m,e) = (1,2) and £ = 1 otherwise. We obtain Theo-
rem [1.2] by choosing Ho = 2.

<

5. Counting lattice points. We start this section by introducing the
counting theorem that will be used to prove Theorem The principle
goes back to Davenport [7] and was developed by several authors. In a
previous work [2], the author and Widmer formulated a counting theorem
that relies on Davenport’s Theorem and uses o-minimal structures. We do
not need Theorem 1.3 of [2] in its full generality as we count lattice points
in semialgebraic sets.

For a semialgebraic set Z C R™"  we call Z; = {x € R" : (,t) € Z}
the fiber of Z lying above t € R" and Z a semialgebraic family. It is clear
that the fibers Z; are semialgebraic subsets of R™. Let A be a lattice of R™
with determinant det A and let \; = \;(A), fori = 1,...,n, be the successive
minima of A with respect to the unit ball By(1), i.e.,

Ai = inf{\ : Bp(A) N A contains ¢ linearly independent vectors}.
The following theorem is a special case of [2, Theorem 1.3].

THEOREM 5.1. Let Z C R™ pe q semialgebraic family and suppose
the fibers Zy are bounded. Then there exists a constant cz € R, depending
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only on the family, such that

n—1

ZM

where Vi(Zy) for j > 0 is the sum of the j-dimensional volumes of the or-
thogonal projections of Zy on every j-dimensional coordinate subspace of R™,
and Vo(Zy) = 1.

Let us introduce the family we want to apply Theorem to. We fix
an (r, s)-system A of dimension n consisting of r real and s complex semi-
algebraic distance functions. Recall that we have defined Nj(z) = N;(1, z).
Moreover, we see the complex ]\72 as functions from R?", i.e.,

Vol Zt

Z:N A
|Zg N Al — et A

Ni(l'l,l'Q, ey l’gn_l,xgn) = Ni(zl, ey Zn)
for (z1, o, ..., xon—1,%2,) = (R(21),S(21),-- -, R(zn), S(zn))-
Recall that d; =1 for i = 1,...,r, and dZ =2fori=r4+1,....,7r+s,

and m = r + 2s. Let
r+s

(5.1) Z= {(ml, ey Trps, 1) € RMCE2ITLTT Ny < t},

where x; € R%™,
We need to show that Z is a semialgebraic family and that the fibers Z;
are bounded for every ¢t € R.

LEMMA 5.2. The set Z defined in (5.1)) is semialgebraic.

_ Proof. First note that, since the N; are semialgebraic functions, also the
N; are semialgebraic. Indeed, one can get I'(N;) by intersecting I’ (NZ) with
an appropriate affine subspace. Define

S(l) = {(:1317 ceoy Lypts, tu t17 .. T+8) ]Rmn R1+T+S : N’L(ml) = tl}

fori=1,...,7+s, and

r+s
A= {(wl,...,$r+s,t7tl,... T+S) Rmn R1+T+S Ht <t}
=1
All these sets are clearly semialgebraic. Let m be the projection map of
R4S {6 the first mn + 1 coordinates. By the Tarski-Seidenberg prin-
ciple (Theorem [2.2)) the set

B = w(ﬂs@ ﬂA)

is semialgebraic. A point (@1, ...,®,ts,t) belongs to B if and only if there
are t1,...,t,+s such that N;(x;) = t; for every i and H:"‘f f’ < t, ie.,

| Ni(x;)% < t. Therefore B = Z, and we have proved the claim. u
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Since the N; are bounded distance functions, there exist positive real
constants d; such that

0ilzloe < Ni(2)
for every z in R"*! or C"*! (see [5, Lemma 2, p. 108)]. We define v; =
max{d; : 4;|z]oc < N;i(2)} and N/(z) = 7i|z|ec- As before, we use the nota-
tion N/(z) for N/(1,z).
Let N’ be the (r, s)-system consisting of N/(z) = 7;|z|s for every i =
L,...,7 + s. Bach (21,...,2.1s,t) such that [[}*} Ni(z;)% < t satisfies
1725 Ni/(a;)% < t. Therefore, if

r+s
Z/ - {(:1317 s ’$T+S’t) € Rmn+1 : H Nz/(wz)dl < t}a
=1
then Z C Z'. For every € R%™ we have, by definition, Nz’(m) > ~; and
therefore, for every (z1,...,2,1s) € Z],
~ : t
Iz v
This implies
i t
3|58 < 7
Hj 7

forevery i = 1,...,r+s. We have just shown that the fibers Z], and therefore
Zy, are bounded.

From now on we use the notation Z(7T') for Zp. Recall that V;(Z(T)) is
the sum of the j-dimensional volumes of the orthogonal projections of Z(T")
on every j-dimensional coordinate subspace of R™ and Vp(Z(T)) = 1.

Since Z C Z', we have V;(Z(T)) < V;(Z'(T)). By Theorem [5.1] there
exists a constant cz, depending only on Z, such that

2 Z(T)N Al —
(5.2) 2y nal- 20 Ny

j=0

for every T € R.
We have to calculate Vol(Z(T')) and we need upper bounds for V;(Z'(T')).
Recall we have supposed that, for every i = 1,...,r + s, Nz(w) > 1 and

the volume of the set Z;(T') defined in (3.2)) is p;(T") for every T > 1, where
p; is a polynomial of degree d;n and leading coefficient Cj;.

LEMMA 5.3. Let ¢ =r+s— 1. Under the hypotheses above we have, for
every T > 1,
Vol(Z(T)) = Q(T"/?,log T),
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where Q(X,Y) € R[X,Y], degy @ = 2n, degy Q = q and the coefficient of
X2y gs (nd/q!) Hq+l C;.

Proof. This is a special case of [I, Lemma 5.2]. u

The V;(Z'(T)) were already computed in [IJ.

LEMMA 5.4. For each j = 1,...,mn — 1, there exists a polynomial
P;(X,Y) in R[X,Y], with degy P; < 2n, degy Pj < q and the coefficient of
X?27Y4q being 0, such that, for every T > 1, we have

Vi(Z/(T)) = P(T"/?,10g T).

Proof. See [, Lemma 5.4]. m

For an integer u, we will use the notation

() _ X% foru >0,
1 for u <0,

in order to avoid possible appearances of 0°, for instance in the following
proposition, where we must consider (log7)? for 7" > 1 and ¢ can be 0.
Moreover, for A a lattice, we define

mn—1

Q( det/l Z Al

PROPOSITION 5.5. Let N be an (r, 5)—sy3tem of dimension n that sat-
isfies the above hypotheses on the volumes of the sets Z;(T) and let A be
a lattice. There exist two positive real constants E and E', depending only
on N, such that, for every T > 1,

nd Hqul

|Z(T)N A — gl det A4

T”aog73<>

{ (A)(ET(1ogT)TV + E') if ¢>1,
D(A)ET /™ if q=0.
Moreover, if T <1, then Z(T) = 0.

Proof. For T < 1, Z(T) = ) since we have supposed N;(z) > 1 for
every x. Suppose T > 1.

We start with the case ¢ = 0. In this case, our system A consists only
of one function N; that can be either real (dj = m = 1) or complex
(di =m =2). In any case, the volume of the set Z(T) C R™" equals
p1(TY/™) for every T > 1, where p; has degree mn and leading coefficient C.

Fix a j, 1 < j < mn — 1. Any projection of Z'(T) to a j-dimensional
coordinate subspace has volume at most FjTj/ ™ for some positive real con-
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stant Fj. Therefore, there exists an E” such that
V7(Z/(T>) S E//Tn—l/m
for every T'> 1, and by (b.2)) we have the claim if ¢ = 0.
Suppose ¢ > 0. By (5.2)) and Lemmas and we have the following
inequality, for every T > 1:

n? [ ¢;
Z(T) N A| — ==L (1og TYD| < D(A)P(TY? log T
12(1) 01 A= "L LT (05 T) D | < D(A)P(T log T)
for some polynomial P(X,Y) € R[X,Y] with degy P < 2n, degy P < ¢,
whose coefficients depend on A and the coefficient of X?"Y9 is 0. Since P
satisfies such conditions, there exists a positive E such that

P(T'? 1ogT) < ET"(log T)@~V

for every T' > 3. For T € [1, 3], the function of T given by P(T"/2 logT) is
bounded, say by E’. Then

P(T'? logT) < ET"(logT)" Y + E'

for every T' > 1. Clearly, E and E’ depend only on the coefficients of P and
therefore only on N. m

6. Proof of Theorem [3.2l Recall that we have fixed a number field
k of degree m over Q. Let o1,...,0, be the real embeddings of k and
Or41,---,0r+2s De the complex ones, indexed in such a way that o; = o455
for every i = r+1,...,r + s. For a = (a1,...,a,) € k", we set o;(a) =
(oi(ar),...,0i(ap)) € R" fori=1,...,r, and o;(a) = (R(oi(a1)), S(oi(a1)),
o R(oian)), S(oi(ay))) ERM fori=r+1,...,7 +s.

Let 2 be a non-zero fractional ideal of k. The image of 2l via the embed-
ding o : a — (o1(a),...,0r4s(a)) is a lattice in R™. If we set Ay = 7(A"),
where 7(a) = (01(a),...,0r4s(a)) for @ € k™, then Ay is a lattice in R™".
Recall that 91(2() denotes the norm of 2 and Ay the discriminant of k.

LEMMA 6.1. We have

det Ay = (27N (A) /| Ax])",
and the first successive minimum of Ay with respect to the Fuclidean distance

is Ay > N(A)Y™,

Proof. In [I1] this lemma is stated for integral ideals [11, Lemma 5]. The
same arguments work also for non-zero fractional ideals. m

To prove Theorem We need an estimate for the cardinality of (’)’S\[ (H),
i.e., the set of points @ € O%¢ such that Hy(1,a) < H.

Recall that we set d; = 1 fori =1,...,r, and d; = 2 for i = r + 1,
..., +s. As in Section [I, Sg, is the set of non-archimedean places in S.
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First suppose Sgn = 0; then Og = Oy and |S| = ¢+ 1 = r + s. Note
that, if a is a vector with integer coordinates, its non-archimedean absolute
values are smaller than or equal to 1. Then

r+s .
Hy(l,a) = [ No(1,00(a))®/™ =] Ni(oi(a))®/™
vE My, =1
for every @ € O}. Therefore, the number of a € O} such that Hyr(1,a) < H
is the number of lattice points of Ap, = 7(O}) in Z(H™). By Lemma
det Ap, = (27°/|Ax|)" and A\ > 1. Thus, D(Ap,) < mn + 2°". Moreover,
for every Ho > 1 there exists a Cy = Cy(N, Hp) such that, if ¢ > 1,

(mn + 2°")(EH™ (log ™)~ + E') < CoH™ (log H)@~V

for every H > Hp and, in case ¢ = 0, (mn + 2°")E < Cj. The claim of
Theorem follows by applying Proposition [5.5)

From now on, to avoid confusion between Cartesian powers and powers
of an ideal with respect to ideal multiplication, we denote the latter by 2*(4)
for a non-zero fractional ideal 2 and an integer d.

Now, suppose Sg, = {v1,...,vr}, with L > 0. In this case we cannot
apply Proposition to 7(0%) directly because it is dense in R,

Recall that v; corresponds to the prime ideal p; of Of. Let Zg be the set
of non-zero integral ideals 2 in O which are products of the prime ideals

we fixed, i.e., A = pi(gl) .. .pz(gL) for some non-negative integers g1, ..., gr.
An a € k™ is in OF if and only if there exists an ideal 2l € Zg such that
ay € WD foreveryu=1,...,n,ie, 7(a) = (o1(a),...,0r1s(a)) € Agu-1y,

which is a lattice in R™". We will therefore apply Proposition [5.5] to lattices
of this form and then combine the estimates obtained.

We set

ndosn qtl

VikN = ————— C;.
vz

For a non-zero integral ideal 2l and T > 0, let Z(2A,T) denote the set of
a € k" such that 7(a) € Ay(—1y N Z(T™).

LEMMA 6.2. There exist positive constants F and F’', depending only
on N, such that, for T > 1 and every non-zero integral ideal 2, we have

1Z(2,T)| — Vi ()" T (log T™) )|
< {m(m)n(FTmn(log T @Y 4 F) if ¢ > 1,
N Frm-1 if q=0.
Moreover, if T < 1, then Z(A,T) = 0.
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Proof. Note that, by Lemma the first successive minimum of Ag.(-1)
is greater than or equal to 9T(A)~/™. Since M(A) is a positive integer, we
have

J
H )\z > m(m)—j/m > m(m)—(mn—l)/m _ m(m)—n—kl/m > gﬁ(m)—n
i=1

for every j = 1,...,mn — 1. Moreover, |Ag| > 1. The claim follows from
Proposition [5.5| and Lemma [6.1] after noting that

(V1A —

We fix a T' > 1. For a non-zero integral ideal 2, let Z* (2, T") be the sub-
set of Z(A,T') consisting of the points a such that, for every 9B strictly
dividing 2, there is a uw € {1,...,n} such that a, ¢ B*(-1_ In other
words, a corresponds to a lattice point of Ay.-1) that is not contained
in any sublattice of the form Ag.(-1) where B is a strict divisor of 2. We
have

@(Am*(—l)) < mn‘ﬁ(Ql)" +

1Z(A,T)| = 12°(B,T)].
BIA

If uy is the Mobius function for the non-zero ideals of Oy, the Mdbius in-
version formula implies that

127 (U, T)| = jue(B)| Z(AB* D, 1),
PBA

Lemma [6.2] gives us an estimate for |Z*(,T")|, for every T' > 1:

(6.1) ]yz*(m, )|~ Viar Y u(B)RE@AB* D) T (log T7) @

B2
= Zogja e (B)RAB D) (FT™ (log T™) @~ 4 F') - if > 1,
T F X |1 (3B) DY (ABH L) ynmn—1 if =0,

and Z*(A,T) =0 if T < 1.
Recall that O4 (H) is the set of points a € O% with Hy(1,a) < H.

LEMMA 6.3. For every H > 1 we have

(6.2) O¥ )= > 17T H)

ALy,
NER)TIH™>1
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Proof. Let 2 = p;(gl) pL(gL) and recall d,,, = [ky, : Qy,] is the local de-

. dy,
gree of k at v;. Every point a € Z*(2, T) is such that max,cq1, . n} [auly,' =

N(py)9 for every I =1,..., L, and max, ey, pn} |auly <1 for all v & S. This
means that every a € Z*(2, T) satisfies

11 max{1, a1 = MN(A),

vfoo

and thus
r4s

Hx(1, 1/mHN oi(a)/m™ < )t/

Therefore, a € ng (H) if and only if there exists an 20 € Zg such that
a € Z*(A,MA)"™H). Since such an A is unique and recalling that, if
T < 1, then Z*(,T) is empty, we obtain the claim. =

Let Zs(T') be the set of ideals in Zg with norm not exceeding 7" and recall
that the norm is multiplicative. Combining (6.2]) with (6.1)), we see that

R )

AETs(H™) %m

is smaller than or equal to

> S (s <>>>

AETs(H™) B

if ¢g > 1, and
F Z Z ’Mk l/mHmn—l
ACLg(H™) B|A

if ¢ =0, for every H > 1.

Now, let
1 Mk(‘B) (2 \Mk
W@l)—%lmm(%)n w0 =3 e
Then
63)  |ON () - Viarm 0 VN
9 Jerooi-vin 5 e (o) )

AELg(H™)
H™ (¢—1)
> @) FH(log —— + F'NER)™ ) ifg>1,
< N(A)
S § AeZg(H™)
Fymn—1 EQ[EIS(H”L) w(2) (Ql)m(%[)l/m if g =0.
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Let K be a non-negative integer. We set

LY M K) = > wh)(m)(log(;;(;))(m

A€Lg(H™)

for h = 1,2. Recall that we have defined M(S) = (M(p1),...,MN(pr)), and

let
(h) _ P ()

L logN(py)
In the next lemma we allow Sg, to be empty as the base step of induction.

LEMMA 6.4. For every non-negative integer K, there exists a positive
constant Uk m(s), depending only on K and N(S), such that for h = 1,2
and for every H > 1,

K+L

h) (H, K) (HF h)>< H 1>(log%m)(K+L)

i=K+1

< Ug s (log H™ + 1) EHE=D,

Proof. We proceed by induction on the cardinality of Sg,. Clearly, we
can define £ (#, K) and T for S’ = S\ {vL}.

If Sgy is empty, ie. L = 0, then Zs(H™) = {O4} and LI (H, K) =
(log H™)¥) for every H > 1.

Now suppose Sgy, has cardinality L > 0. The sum over all 21 € Zg(H™)
can be viewed as consisting of two sums: the first over all B € Zg/(H"™), and
the second over all non-negative integers gy, with ‘ﬁ(pz(gL)) < H™N(B) !
For typographical convenience we set

| log(H™n(B)*
A(%)_{ log N(pr)

>J and R =Zg(H™).

We have

=D Z ") (Bp; o)) (108;(9?((;)) — 9L 10gm(PL)>(K)

BeR gr,=0

_ Z Z [g,(h *(gL )

BeR gr=1

X Z ( ) (log M(pr))igh <1og<0?({;>>(l“)] + LW, K).

Using the definitions of ("), it is easy to see that 1/2 < #(")(p;) < 3/2 for
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every [ and, if g;, > 1,

(6.4) oM (Bprr)y = g (p ) = M (BT M (p,) > 0.
Therefore,
K
65) L3 K) = v(py) Z[ () ey
Hm (K—i) A(B) )
BER gr=1

By Faulhaber’s formula, for every i =0, ..., K, we have

"% ;1 Vogmmm(%)—w J* o ( rogmmm(%rl) J)

AT Tog M) L TogM(pr) ’

where Q; is a polynomial of degree i (except Qo9 = 0) whose coefficients
depend only on ¢. Then

Fi () <o )

where @) is a polynomial of degree at most i whose coefficients depend on
i and N(pr). Finally, after noting that

i(_l)i<[i{>iil B K1+1

1=0

by (6.5]), we can derive the following inequality:
F

A%Wh)(%)(log(%))mﬂ)
< LY K)+ Y v (8)Q <1°g<9§:®)>’

BER

LM, K) -

where @) is a polynomial of degree at most K whose coefficients depend only
on K and M(pr). Therefore, we have

(h)
F
Egh)(H,K)—ﬁﬁ( (H, K +1 ‘ Zb/;s, (H,4)

where the b; are real coefficients again depending on K and M(py). Now, by
the inductive hypothesis, there exist U1 m(s/) and U! (s fori=0,..., K,
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such that

L—1 K+L

LW K +1) - (H F}h)) ( I1 1) (log H™)(H+L)
I=1 i=K+2
< Ug1m(sr)(log H™ + 1) EFE=D
and
L0 (H,0) < ULy g (log H™ + 1)+

for every i =0, ..., K. The claim follows easily. =

LEMMA 6.5. There exists a real constant Vi, ;(s), depending only on m
and N(S), such that
> F@ONEA)Y™ <V sy Hog H + 1)
A€Ls(H™)
for every H > 1.

Proof. We proceed by induction on the cardinality of Sg,, as before. If
Shn is empty, then Zmezs(wn)u—/@) (ROMN(A)/™ = 1 and the claim holds.
Now suppose Sgn, = {v1,...,vr} with L > 0, and again py,...,pr are the
prime ideals associated to the places in Sg,. Let S” = S\ {v;} and again

B log(H™N(B)~1)
A(%)_{ log N(pr,) J

Note that ¥(?)(pz) < 2 and then, by 1' W(Q)(‘sz(gL)) < 202 (8). Hence

A(B)
S w@@m@otm < ST 2@ @)nB)m Y N(p)e/m
AE€Ls(H™) BELgr (H™) g.=0
N(pp ) AB+D/m _

N(pr)l/m —1

=2 Y @ @)m®)m
BELgr (H™)

om p 1/m m M 1/m
S ) () )

<
BeTy (H™)

20N(p)1/™ 2) 1 Hm O\
_ L) o (Bym(B)
1/m __ Z
Rpo)/m =1, 2 N(B)

200(pr) /™
= N(pg)/m—1
The claim follows by applying Lemma .
Now we are ready to prove Theorem

1L (H,0).
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We already dealt with the case Sg, = (0. Suppose Sgn # (0. By (6.3) we
have

105 ()| = Ven '™ £ (M, q)|
. {Fﬂmnﬁ(ﬁ) (H,q—1) + FH™ LD (1,0) if ¢ > 1,
FH™ Y ez aemy T@ Q)M if g =0.
Note that L < |S|—1, and if ¢ > 1, then L < |S| — 2. Moreover,
o Ok 1 (1 1 >
log M(p;)  log N(p:) N(po)"

We apply Lemmas [6.4) and [6.5] to conclude that there exists a positive G =
G(N,M(S)) such that

|O5(H)| = O sH™ (log M) 11| < GH™ (log H + 1)15172

for every H > 1, where Cyr i s was defined in (3.4).
Now, for every Hg > 1, there exists a positive Cp, clearly depending
on N, M(S) and Hy, such that

GH™ (logH + 115172 < CuH™ (log 1) 15172,

and we have the claim of Theorem 3.2
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