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On the dimension of additive sets

by

P. Candela (Budapest) and H. A. Helfgott (Paris)

1. Introduction. Let A be an additive set, that is, a finite subset of
an abelian group. A subset sum of A is a sum of the form

∑
a∈A′ a for some

set A′ ⊂ A. By a [−1, 1]-combination of A we mean a sum
∑

a∈A εaa with
coefficients εa lying in [−1, 1] = {−1, 0, 1}.

Definition 1.1. A subset D of an abelian group is said to be dissociated
if the subset sums of D are pairwise distinct; equivalently, the only [−1, 1]-
combination of D that equals 0 is the one with all coefficients equal to 0. We
say that D is a maximal dissociated subset of A if there is no dissociated
set D′ ⊂ A such that D′ ) D.

Dissociativity plays an important role in additive combinatorics and har-
monic analysis; see [7] and [10, §4.5]. In particular, it provides an analogue,
in the setting of general abelian groups, of the concept of linear independence
from linear algebra, and it is often used to define a notion of dimension for
an additive set. For a recent instance, in the work of Schoen and Shkredov
[9] the term ‘additive dimension of A’ is used for the maximal cardinality
of a dissociated subset of A. We shall call this quantity the dissociativity
dimension.

Definition 1.2. Let A be an additive set. We define the dissociativity
dimension of A as the number dd(A) := max{|D| : D⊂A, D is dissociated}.
We say that D is a maximal dissociated subset of A if |D| = dd(A). We also
define the lower dissociativity dimension of A to be the number d−d (A) :=
min{|D| : D ⊂ A,D is maximal dissociated}.

The variant d−d (A) is considered less often than dd(A) in the literature;

it appears for instance in [9, Section 8], where it is denoted by d̃(A).

In linear algebra, the concepts of linear independence and dimension
are linked to that of a linear span. The well-known basic result is that in
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a vector space the maximum cardinality of a linearly independent set, if
finite, is equal to the minimum cardinality of a spanning set, the resulting
number being by definition the dimension of the space. In the more general
context of additive sets, there is an analogue of the linear span, related to
dissociativity. We define it, and give a corresponding notion of dimension,
as follows.

Definition 1.3. Given a subset S of an abelian group G, the 1-span
of S, denoted 〈S〉, is the set of all [−1, 1]-combinations of S. Given a subset
A ⊂ G, we shall call a set S ⊂ G satisfying 〈S〉 ⊃ A a 1-spanning set for A.
We define the 1-span dimension of an additive set A to be the number
ds(A) := min{|S| : S ⊂ A, 〈S〉 ⊃ A}.

This quantity has also been considered in [9, Section 8], where it is
denoted simply d(A). A variant of this notion, which can be called the lower
1-span dimension of A, is the number d−s (A) := min{|S| : S ⊂ G, 〈S〉 ⊃ A};
here G is the ambient abelian group containing A and the sets S are allowed
to have elements in G\A. This variant also appears in [9], where it is denoted
d∗(A). It had already appeared in previous works, notably as the number
denoted `(A) in [8].

Given the basic result from linear algebra recalled above, it is natural to
compare the numbers dd(A), d−d (A) with ds(A), d−s (A). It follows promptly
from the definitions that if D is a maximal dissociated subset of A then
〈D〉 ⊃ A. We then deduce that

d−s (A) ≤ ds(A) ≤ d−d (A) ≤ dd(A).

In contrast to the linear-algebra setting, each of these inequalities can be a
strict one. In this paper we study the extent to which these quantities can
differ from each other.

Our first result is the following lower bound on the ratio d−s (A)/dd(A).

Theorem 1.4. Let A be an additive set. Then

(1.1)
d−s (A)

dd(A)
≥ 1

log4 dd(A)
(1 + o(1)dd(A)→∞).

We deduce this from an inequality relating the size of an arbitrary 1-
spanning set for A to the size of an arbitrary dissociated subset of A; see
Proposition 2.1. This inequality can be viewed as a refinement of an inequal-
ity of Lev and Yuster, namely formula (∗) in [5, proof of Theorem 2].

It is then natural to wonder whether there exist additive sets for which
the ratio d−s /dd reaches the lower bound given by (1.1), and more precisely
whether each of the ratios of consecutive dimensions, i.e. d−s /ds, ds/d

−
d , d

−
d /dd,

can reach this lower bound.
For every positive integer n, let Qn denote the discrete cube {0, 1}n

viewed as an additive set in Zn. It follows from known results that dd(Qn) =
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n log4 n · (1 + o(1)) as n→∞. This was established independently by Lind-
ström [6] and by Cantor and Mills [2]; the result is related to the coin
weighing problem, and similar results have been treated in other works (for
a recent treatment, providing several references, see [1]).

Let Dn be a dissociated subset of Qn of cardinality |Dn| = dd(Qn). Since
the standard basis is itself a maximal dissociated subset of Qn of minimum
size n, the set Qn shows that the ratio d−d (A)/dd(A) can be as small as
1/log4 dd(A) asymptotically as dd(A)→∞. Hence the lower bound in (1.1)
is asymptotically sharp. Moreover, this set Dn itself is an example showing
that d−s (A)/ds(A) can also be as small as 1/log4 dd(A), since for Dn we
have d−s (Dn) = n yet ds(Dn) = |Dn| = dd(Dn) (as Dn is dissociated). Our
second result completes the picture by showing that the remaining ratio
ds(A)/d−d (A) can also be this small.

Theorem 1.5. For each positive integer n there exists a set An⊂{0,1,2}n
satisfying dd(An) = n log4 n · (1 + o(1)n→∞) and such that

(1.2)
ds(An)

d−d (An)
≤ 1

log4 dd(An)
(1 + o(1)n→∞).

Theorems 1.4 and 1.5 are proved in Section 2.

In Section 3 we consider sets of integers to examine whether, for at least
some nice family of subsets A of Z, the dissociativity dimensions dd(A),
d−d (A) lie closer to the spanning dimensions ds(A), d−s (A) than is guaran-
teed by (1.1). The family of intervals [N ] = {1, . . . , N} is a natural one to
consider; let us recall for instance (see [3, p. 59]) that it is one of the oldest
problems of Erdős to prove that dd([N ]) = log2N +O(1). We do not pursue
that problem here, but we prove the following.

Theorem 1.6. For any positive integer N ,

ds([N ]) = d−d ([N ]) = blog3Nc+
⌈

log3 2N − blog3Nc
⌉
.

In the final section we briefly describe a relation between the dimension
ds and a result of Schoen on maximal densities of subsets of Zp avoiding
solutions to a linear equation with integer coefficients.

2. On general additive sets: Theorems 1.4 and 1.5. Given an
additive set A, a 1-spanning set S ⊂ A has size bounded below trivially by
log3 |A|, since |{−1, 0, 1}S | ≥ |A|. The argument leading to inequality (∗) in
[5, proof of Theorem 2] is easily adapted to yield the following lower bound
for |S|: we have |S| ≥ |D|/log2(2|D| + 1) for every dissociated set D ⊂ A.
This lower bound can be strengthened as follows.
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Proposition 2.1. Let A be a finite subset of an abelian group G, let
D ⊂ A be dissociated, and let S ⊂ G be a 1-spanning set for A. Then

(2.1)
|D|

log4 |D|
≤ |S|

(
1 +

4 + log2 log 4|S|
log2 |D|

)
.

Theorem 1.4 follows from this, since d−s (A) ≤ dd(A).

Proof of Proposition 2.1. Let m = |S|, n = |D|, and let us fix a labelling
of the elements of S and D, say, S = {s1, . . . , sm} and D = {d1, . . . , dn}.
Since 〈S〉 ⊃ A ⊃ D, for each j ∈ [n] we can fix a choice of a vector (ci,j)i∈[m]

in {−1, 0, 1}m such that dj =
∑

i∈[m] ci,jsi. Let C be the m×n matrix with

(i, j) entry ci,j .

The subset sums of D are the combinations
∑n

j=1 λjdj with λ = (λj) ∈
{0, 1}n. We have

(2.2) ∀λ ∈ {0, 1}n,
∑
j∈[n]

λjdj =
∑
i∈[m]

( ∑
j∈[n]

ci,jλj

)
si =

∑
i∈[m]

(Cλ)isi.

We shall prove that, for some intervals of integers Λ1, . . . , Λm, each
of width O(

√
|D| log |S|), for a large proportion of λ ∈ {0, 1}n we have

(Cλ)i ∈ Λi for every i ∈ [m]. To this end, fix any i ∈ [m], and consider the
terms λ1ci,1, . . . , λnci,n as independent random variables, the jth one taking
value ci,j with probability 1/2 and value 0 otherwise, for each j ∈ [n]. (Note
that we are thus using the uniform probability on {0, 1}n.) Then letting
µi = 1

2

∑
j∈[n] ci,j , by Hoeffding’s inequality [4, Chapter 3, Theorem 1.3] we

have

∀t > 0, P
(∣∣∣µi −∑

j∈[n]

λj ci,j

∣∣∣ > t
( ∑

j∈[n]

c2i,j

)1/2)
≤ 2 exp(−2t2).

Since (
∑

j∈[n] c
2
i,j)

1/2 ≤ |D|1/2, letting t =
√

log(2r|S|)/2 for r > 0, we
deduce that

P
(∣∣∣µi −∑

j

λj ci,j

∣∣∣ > |D|1/2√log(2r|S|)/2
)
≤ (r|S|)−1.

By the union bound, the probability that the latter event holds for some
i ∈ [m] is thus at most r−1. Hence

(2.3) P
(
|µi − (Cλ)i| ≤

√
|D| log(2r|S|)/2 for all i ∈ [m]

)
≥ 1− r−1.

Now let Λi =
[
µi −

√
|D| log(2r|S|)/2, µi +

√
|D| log(2r|S|)/2

]
. Com-

bining (2.2) and (2.3), we deduce that for at least (1 − r−1)2n values of
λ ∈ {0, 1}n, the subset sum

∑
j∈[n] λjdj is an integer linear combination of

the elements s1, . . . , sm, with ith coefficient (Cλ)i ∈ Λi for each i ∈ [m].
Since these subset sums are pairwise distinct (by dissociativity of D), we
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conclude that

(1− r−1)2|D| ≤
∏
j∈[m]

|Λj | ≤
(
2|D| log(2r|S|)

)|S|/2
.

Choosing r = 2, taking log2 of both sides and rearranging, we get (2.1).

We now turn to comparing ds and d−d , towards Theorem 1.5.
We shall call a subset S of an additive set A satisfying 〈S〉 ⊃ A and

|S| = ds(A) a minimum 1-spanning subset of A.
The following small example shows that the dimensions ds and d−d can

indeed differ.

Example 2.2. Let {x1, x2} be the standard basis in R2, and let

A = {x1, x2, x1 + x2, 2x1, 2x2}.
This set has (unique) minimum 1-spanning subset {x1, x2, x1 + x2}, while
any maximal dissociated subset of A has size 4.

The claims in this example are easily checked by inspection. In fact, this
example is the simplest case of the following general construction, which is
our main ingredient in our proof of Theorem 1.5. We denote by 2 ·D the set
{2x : x ∈ D} ⊂ {0, 2}n.

Proposition 2.3. Let Bn = {x1, . . . , xn} be the standard basis of Rn,
let sn =

∑
i∈[n] xi, and let D be a dissociated non-empty subset of {0, 1}n.

Then the set
An = Bn ∪ {sn} ∪ (2 ·D)

satisfies ds(An) = n+ 1 and d−d (An) = dd(An) = n+ |D|.
Proof. To begin with, we claim that a 1-spanning subset S ⊂ An must

have at least n+ 1 elements. To show this, we distinguish two cases.

Case 1: S does not contain sn. Then, in order to be 1-spanning, S must
contain all other elements of An. Indeed, firstly, an element xi ∈ Bn must
lie in S, for otherwise it cannot be in the 1-span of S, since every element of
An \ {sn, xi}, modulo 2, has a zero xi-component. An element of 2 ·D must
also lie in S, for it cannot be in the 1-span of other elements of 2 ·D (since D
is dissociated), nor can it lie in 2 ·D+ε1x1 + · · ·+εnxn with εi ∈ [−1, 1] not
all zero, as it is congruent to 0 modulo 2. We have thus shown that S must
indeed contain An \ {sn}, so our claim holds in this case, i.e. |S| ≥ n+ 1.

Case 2: S contains sn and does not contain some xj . (If it contained sn
and every xj , then our claim would hold already.) In this case, in order to
1-span xj using sn, the set S must contain every xi with i 6= j. Moreover,
S must then also contain every element of 2 ·D. Indeed, an element of 2 ·D
equals either 2xj or some combination y involving some 2xi with i 6= j.
Now 2xj must lie in S in order to be 1-spanned by S, since S does not



96 P. Candela and H. A. Helfgott

contain xj and D is dissociated. We claim that S must also contain any other
y ∈ 2 ·D. Indeed, suppose that y were not in S, and suppose that we had
a [−1, 1]-combination of elements of S equal to y. This combination would
then have to involve sn, because otherwise it could only involve elements of
2 ·D different from y, contradicting that 2 ·D is dissociated. By involving sn,
this combination involves xj . But the latter can then be neither cancelled
nor increased to 2xj , since S misses xj , whence this combination could not
equal y, a contradiction. We conclude that S must be An \ {xj}, so we have
|S| = n+ |D| ≥ n+ 1 in this case.

The set Sn := Bn ∪ {sn}, of size n+ 1, is 1-spanning for An (and is not
dissociated). We have thus shown that ds(An) = n+ 1.

Now suppose that S is a maximal dissociated subset of An. Then S
cannot contain Sn, so there exists s ∈ Sn \ (S ∩Sn). Note also that S, being
maximal dissociated, must be 1-spanning for An. We can then distinguish
the same two cases as above.

In the first case, we have s = sn. Then, as in Case 1 above, we must have
S = An \ {sn}, which is dissociated (as can be seen from the fact that Bn

and 2 ·D both are), clearly maximal, and of size n+ |D|.
In the second case, we have s = xj for some j ∈ [n]. Then S must

contain sn (it cannot 1-span it otherwise) and so we are in Case 2 above,
in which S must be An \ {xj}. Thus in this second case, either we get a
contradiction (if An \{xj} is not dissociated), or S = An \{xj} is a maximal
dissociated set of size n+ |D|.

We now combine Proposition 2.3 with [5, Theorem 1].

Proof of Theorem 1.5. As mentioned in the Introduction, there exists
a dissociated set Dn ⊂ {0, 1}n of cardinality |Dn| = n log4 n · (1 + o(1))
as n → ∞. Applying Proposition 2.3 with this set Dn, we obtain a set
An ⊂ {0, 1, 2}n satisfying ds(An) = n+ 1 and d−d (An) = dd(An) = n log4 n ·
(1 + o(1)n→∞), whence (1.2) follows.

3. Focusing on some sets of integers: Theorem 1.6. So far, the
examples that we have discussed of additive sets with small dimension-ratios
have all been given by subsets of Zn for large n. Note that by applying an
appropriate Freiman isomorphism of sufficiently high order to such a set,
we can obtain a subset of Z satisfying the same dimensional properties. For
example, if for each n we choose a Freiman isomorphism φn : {0, 1, 2}n → Z
of order n2 (say) and satisfying (1) φn(0) = 0, then applying φn to the set An

from Theorem 1.5 for each n we obtain a family of sets φn(An) ⊂ Z satisfying

(1) The existence of such Freiman isomorphisms is a standard result; see for instance
[10, Lemma 5.25].
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(1.2). One may wonder whether for some natural families of subsets of Z
the dimensions d−s , ds, d

−
d , dd lie closer to each other. In this section we show

that this is the case for the family of intervals [N ], in the sense of Theorem
1.6; thus we have ds([N ]) = d−d ([N ]) for any positive integer N .

To prove Theorem 1.6, we shall construct a maximal dissociated subset
of [N ] of size ds([N ]), using the following simple fact concerning the powers
of 3.

Lemma 3.1. The set P3(k) = {1, 3, . . . , 3k−1} satisfies

〈P3(k)〉 =

[
−3k − 1

2
,
3k − 1

2

]
.

Proof. The claim holds for k = 1. For k > 1, we may suppose by induc-

tion that the claim holds for k − 1, thus 〈P3(k − 1)〉 ⊃
[
−3k−1−1

2 , 3
k−1−1

2

]
.

Then

〈P3(k)〉 = {−3k−1, 0, 3k−1}+ 〈P3(k − 1)〉

= {−3k−1, 0, 3k−1}+

[
−3k−1 +1

2
,
3k−1−1

2

]
=

[
−3k−1

2
,
3k−1

2

]
.

We shall also use the following.

Lemma 3.2. Let A be an additive set, and let S ⊂ A be dissociated and
satisfy 〈S〉 ⊃ A. Then S is maximal dissociated.

Proof. If there existed a ∈ A \ S such that S ∪ {a} is dissociated, then
a could not lie in the 1-span of S, contradicting that 〈S〉 ⊃ A.

To establish Theorem 1.6 we distinguish two cases, according to whether
the fractional part {log3N} := log3N − blog3Nc satisfies {log3N} < 1 −
log3 2 or {log3N} > 1− log3 2.

Proposition 3.3. Let N be a positive integer. The following statements
are equivalent:

(1) {log3N} < 1− log3 2.
(2) The set S1 := {1, 3, 32, . . . , 3blog3 Nc} is a minimum 1-spanning max-

imal dissociated subset of [N ]. In particular ds([N ]) = d−d ([N ]) =
blog3Nc+ 1.

Proof. It follows from Lemma 3.1 that

〈S1〉 = 〈P3(blog3Nc+ 1)〉 =

[
−3blog3 Nc+1 − 1

2
,
3blog3 Nc+1 − 1

2

]
.

So S1 is a 1-spanning subset of [N ] if and only if (3blog3 Nc+1 − 1)/2 ≥ N ,
that is, if and only if {log3N} < 1− log3 2. In particular, (ii) implies (i).

Now if (i) holds, then we claim that S1 is in fact minimum 1-span-
ning for [N ]. Indeed, any 1-spanning subset S of [N ] must satisfy N ≤
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(3|S| − 1)/2, since to cover [N ] with [−1, 1]-combinations of S we only use
the combinations with positive value. Hence |S| ≥ log3(2N + 1) > log3N ≥
blog3Nc, so indeed |S| ≥ blog3Nc + 1 = |S1|. Finally, note that S1 is
dissociated, so by Lemma 3.2 it is maximal dissociated in [N ]. We have thus
shown that (ii) holds.

We now treat the second case.

Proposition 3.4. Let N be a positive integer, and let

t = 1 +

blog3 Nc∑
i=0

3i =
3blog3 Nc+1 + 1

2
.

The following statements are equivalent:

(1) {log3N} > 1− log3 2.
(2) The set S2 := {1, 3, 32, . . . , 3blog3 Nc} ∪ {t} is a minimum 1-spanning

maximal dissociated subset of [N ]. In particular ds([N ]) = d−d ([N ])
= blog3Nc+ 2.

Proof. By Lemma 3.1,

〈S2〉 = 〈P3(blog3Nc+ 1)〉+ {−t, 0, t} = [−3blog3 Nc+1, 3blog3 Nc+1].

Thus S2 is a 1-spanning set for [N ] which is dissociated. We have S2 ⊂ [N ] if
and only if t ≤ N , that is, {log3N} > 1−log3 2. In particular, (ii) implies (i).

If (i) holds, then we claim that S2 is minimum 1-spanning. Indeed, as
shown at the end of the previous proof, if S is 1-spanning for [N ] then
we must have |S| ≥ log3(2N + 1). If |S| were less than |S2|, i.e. if |S| ≤
blog3Nc + 1, then we would have blog3Nc + 1 ≥ log3(2N + 1) > log3 2 +
log3N , that is, {log3N} < 1− log3 2, which contradicts (i), so we must have
|S| ≥ blog3Nc + 2 = |S2|. Note also that S2 is dissociated, and therefore
maximal dissociated in [N ] (by Lemma 3.2 again). We have thus shown that
(ii) holds.

This completes the proof of Theorem 1.6.

4. Final remarks. In [8], Schoen gave an interesting argument, using
Chang’s theorem, yielding an upper bound for the maximum density of a
subset A of Zp (p prime) such that the Cartesian power Ak contains no ele-
ment x solving a given integer linear equation L(x) = c1x1 + · · ·+ ckxk = 0.
We call such a set A an L-free set. Schoen’s upper bound involves the di-
mension d−s (C), where C = {c1, . . . , ck} is the set of coefficients of L (in [8]
this dimension is denoted `(C)). It is a straightforward task to check that
in Schoen’s argument one can use ds(C) instead of d−s (C). Thus one obtains
the following version of Schoen’s result.
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Theorem 4.1. Let L(x) = c1x1 + · · · + ckxk be a linear form with co-
efficients ci ∈ Z, and let mL(Zp) = max{|A|/p : A ⊂ Zp, A is L-free}.
Then

(4.1) mL(Zp) ≤ e−ds(C)/12,

where C = {c1, . . . , ck}.

As recalled in the introduction, there exists a dissociated set D ⊂ {0, 1}n
of size ∼ n log4 n, and this has dimension ds(D) = |D|, which is roughly
log4 n times d−s (D) = n. Applying an appropriate Freiman isomorphism
φ : {0, 1}n → Z, as in the previous section, we obtain a set C = φ(D) ⊂ Z
with the same properties (note that d−s (C) ≤ d−s (D) and ds(C) = ds(D)).
For a linear form L with coefficient set C, the bound (4.1) is thus stronger
than the version with d−s (C). It would be interesting to strengthen the upper
bound on mL(Zp) further.
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13-15 Reáltanoda u.
1053 Budapest, Hungary
E-mail: candelap@renyi.hu

H. A. Helfgott
IMJ-PRG, UMR 7586

Bâtiment S. Germain, case 7012
58 avenue de France
75013 Paris, France

E-mail: helfgott@math.univ-paris-diderot.fr

Received on 25.7.2014
and in revised form on 24.11.2014 (7876)


	1 Introduction
	2 On general additive sets: Theorems 1.4 and 1.5
	3 Focusing on some sets of integers: Theorem 1.6
	4 Final remarks
	References

