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1. Introduction. Let F (X1, . . . , Xs) ∈ Z[X1, . . . , Xs]. If F (x1, . . . , xs)
= 0 for some x ∈ Zs, then trivially the equation F (x1, . . . , xs) = 0 also
has solutions over R and over all local rings Zp. If the opposite is true as
well, then we say that F satisfies the Hasse principle. For homogeneous
polynomials F , always F (0, . . . , 0) = 0, so one then naturally asks for non-
trivial solutions. The Hasse principle for example holds true for quadratic
forms, but fails for cubic forms: one famous counterexample (see [17]) is
given by the cubic form

(1) F (X1, X2, X3) = 3X3
1 + 4X3

2 + 5X3
3 .

In recent years questions about the frequency of such failures of the Hasse
principle were addressed for different classes of Diophantine equations (see
for example [1], [2], [3], [5], [6], [16]). For hyperelliptic curves, Bhargava [1]
has recently shown that asymptotically, as their genus tends to infinity, their
probability to satisfy the Hasse principle, given that there are local solutions,
tends to zero.

In this note we focus on curves as well, namely those that are given by
Fermat equations such as (1), or given by Thue equations. This way we
provide families of curves which satisfy the Hasse principle with probability
zero, and already for fixed small degree rather than asymptotically for the
degree tending to infinity, but on the other hand our results, like those in
a related earlier paper [8], are conditional on the abc-conjecture (see [14]),
which we briefly recall: if a+b = c with a, b, c ∈ Z where abc 6= 0, (a, b, c) = 1,
and

P =
∏
p|abc

p,
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the product being taken over all primes p dividing abc, then

max{|a|, |b|, |c|} �ε P
1+ε.

Assuming the abc-conjecture, we are able to show that a ‘random’ Thue
equation of degree at least three has an integer solution with probability 0,
even if it is locally soluble everywhere.

To be more precise, let

Nk,loc(H) = #{a, b ∈ Z : 0 < |a|, |b| ≤ H and axk + byk = 1

has solutions over all local rings Zp and over R}
and

Nk,glob(H) = #{a, b ∈ Z : 0 < |a|, |b| ≤ H and axk + byk = 1

has a solution (x, y) ∈ Z2}.
We can now state our main result on random Thue equations.

Theorem 1. Let k ≥ 3, and assume the truth of the abc-conjecture.
Then

Nk,glob(H)

Nk,loc(H)
→ 0 (H →∞).

In particular, assuming the abc-conjecture, for any fixed degree at least
three there are infinitely many Thue equations violating the Hasse princi-
ple, and a ‘random’ Thue equation of degree at least three that is locally
soluble everywhere has an integer solution with probability 0. Theorem 1
follows immediately from Lemmas 4 and 6, whose proofs will be given in
Sections 2 and 3, respectively. Our strategy roughly follows that laid out
in [6], reversing the roles of linear variables and kth powers when dealing
with equations on average, though the details are simpler here. With a little
bit more work also more general Thue equations of the form axk + byk = c
should be doable, though we refrained from treating them and concentrated
on the special case c = 1 in order to keep the exposition simple.

In a similar way one can establish results for homogenized Thue equa-
tions, i.e. Fermat equations. Let

Mk,loc(H) = #{a, b, c ∈ Z : 0 < |a|, |b|, |c| ≤ H and axk + byk + czk = 0

has non-trivial solutions over all local rings Zp and over R}
and

Mk,glob(H) = #{a, b, c ∈ Z : 0 < |a|, |b|, |c| ≤ H and axk + byk + czk = 0

has a solution (x, y, z) ∈ Z3 \ {0}}.
The following result is a homogeneous analogue of Theorem 1.
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Theorem 2. Let k ≥ 6, and assume the truth of the abc-conjecture.
Then

Mk,glob(H)

Mk,loc(H)
→ 0 (H →∞).

Again, Theorem 2 follows immediately from Lemmas 5 and 7, to be
proved in Sections 2 and 3, respectively.

2. Local considerations. To get a better understanding of Nk,loc we
need the following two well known results, which we state for the convenience
of the reader.

Lemma 1. Let k ∈ N, let p be a rational prime exceeding k2(k+1)2, and
let a1, a2, a3 ∈ Z be coprime to p. Then the congruence

a1x
k
1 + a2x

k
2 + a3 ≡ 0 (mod p)

has at least one solution.

Proof. See [15, formula (1.17)].

Lemma 2. Let f(X1, . . . , Xs) ∈ Z[X1, . . . , Xs] and let p be a rational
prime. Suppose that for some x1, . . . , xs ∈ Z and some non-negative integer
n we have

f(x1, . . . , xs) ≡ 0 (mod p2n+1) and pn‖∇f(x1, . . . , xs).

Then there exist y1, . . . , yn ∈ Zp such that

yi ≡ xi (mod pn+1) (1 ≤ i ≤ s)

and f(y1, . . . , ys) = 0.

Proof. This is a version of Hensel’s lemma (see for example [9, p. 64]).

Lemma 3. Let p be an odd prime and a ∈ Z with (a/p) = 1. Further, let
k ∈ N be such that p ≡ −1 (mod k). Then the congruence xk ≡ a (mod p)
has a solution.

Proof. LetG be the multiplicative group of non-zero residue classes mod-
ulo p, and let ϕ : G → G be the map given by ϕ(x) = xk for x ∈ G. If k
is odd, then p ≡ −1 (mod k) implies that (p − 1, k) = 1, so ϕ is surjective
and the conclusion immediately follows. If k is even, then (p− 1, k) = 2 by
p ≡ −1 (mod k), so ϕ(G) is a subgroup of G of index 2. Since G is cyclic,
the only such subgroup is the group of quadratic residues modulo p, and as
(a/p) = 1, the conclusion follows again.

We are now in a position to derive a lower bound for Nk,loc. Note that
in the following all the implied O-constants are allowed to depend on k.
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Lemma 4. We have

Nk,loc(H)�
(

H

logH

)2

.

Proof. For each rational prime p, define αp by pαp ‖ k, and let

(2) m =
∏

p≤k2(k+1)2

p2αp+2.

By the Siegel–Walfisz Theorem (see for example [13, Corollary 5.29]), there
are

�k

(
H

logH

)2

pairs of primes q, r such that k2(k + 1)2 < q, r ≤ H, q 6= r and q ≡ r ≡ −1
(mod m). In particular, we then have q ≡ r ≡ −1 (mod k) and q ≡ r ≡ 3
(mod 4), so by the law of quadratic reciprocity, for each such pair (q, r),

(3) either

(
q

r

)
= 1 = −

(
r

q

)
or

(
r

q

)
= 1 = −

(
q

r

)
.

By interchanging the roles of q and r if necessary, we may assume without
loss of generality that there are � (H/logH)2 such pairs (q, r) as above for
which the first alternative in (3) holds true. It is then enough to show that
for each such fixed pair (q, r) the Thue equation

(4) qxk − ryk = 1

has local solutions everywhere.
Since q, r > 0, there clearly are real solutions, so let us focus on p-adic

solubility for any given rational prime p. Let us first discuss the case that
p ≤ k2(k + 1)2. In particular, p is then coprime to r. So in order to find
a solution of (4) in Zp, by Lemma 2 it suffices to find a solution of the
congruence

(5) qxk − ryk ≡ 1 (mod p2αp+1)

with p not dividing y. As r ≡ −1 (mod m), by (2) also r ≡ −1 (mod p2αp+1),
hence x = 0, y = 1 is such a solution. Next, let us assume that p > k2(k+1)2.
Then (p, k) = 1, so αp = 0. If p is different from q and r, then Lemma 1
provides a non-singular solution of (5), which again, by Lemma 2, can be
lifted to a solution of (4) over Zp. Finally, it remains to discuss the two cases
p = q and p = r. In both cases, αp = 0. For p = q, as above we need to find
a solution of the congruence

(6) −ryk ≡ 1 (mod q).

Now q ≡ −1 (mod k), so by Lemma 3 this can be done provided that
(−r/q) = 1, and the latter condition follows from q ≡ 3 (mod 4) and (3).
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For p = r, we need to solve

qxk ≡ 1 (mod r).

Again, r ≡ −1 (mod k), equation (3) and Lemma 3 provide a solution of
the latter congruence. This finishes the proof of Lemma 4.

Lemma 5. We have

Mk,loc(H)�
(

H

logH

)3

.

Proof. The proof is similar to that of Lemma 4. We call a triple (p1, p2, p3)
of distinct primes pi with pi ≡ 3 (mod 4) (1 ≤ i ≤ 3) good if there exists
i ∈ {1, 2, 3} such that (

pi
pj

)
=

(
pi
pk

)
,

where {i, j, k} = {1, 2, 3}. Clearly, for any given quadruple (p1, p2, p3, p4)
of distinct primes pi with pi ≡ 3 (mod 4) (1 ≤ i ≤ 4), we can find three
amongst them, say p1, p2, p3, such that (p1, p2, p3) is a good triple. Now
define m by (2). Then by the Siegel–Walfisz Theorem, and the observation
above, we can find

�k

(
H

logH

)3

triples of distinct primes q, r, s such that k2(k + 1)2 < q, r, s ≤ H, q ≡ r ≡
s ≡ −1 (mod m) and

(7)

(
s

q

)
=

(
s

r

)
.

Note that automatically q ≡ r ≡ s ≡ −1 (mod k) and q ≡ r ≡ s ≡ 3
(mod 4). Now fix any such triple (q, r, s). Using (7), q ≡ r ≡ s ≡ 3 (mod 4)
and the law of quadratic reciprocity, we find that either

(8)

(
−rs
q

)
=

(
qs

r

)
= 1

or

(9)

(
−rs
q

)
=

(
qs

r

)
= −1.

In the first case, let us consider the equation

(10) qxk − ryk − szk = 0.

There clearly are non-trivial real solutions, and for p ≤ k2(k + 1)2 we can
follow the argument from the proof of Lemma 4 to show that there are
non-trivial p-adic zeros: As q ≡ r (mod m), also q ≡ r (mod p2αp+1), so
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(x, y, z) = (1, 1, 0) is a solution of

(11) qxk − ryk − szk ≡ 0 (mod p2αp+1),

which by Lemma 2 can be lifted to a non-trivial solution of (10) over Zp. If
p > k2(k + 1)2, then αp = 0. If in addition p is different from q, r, s, then
we can set z = 1 and use Lemma 1 to find a non-singular solution of (11),
which again by Lemma 2 lifts to a non-trivial solution of (10) over Zp, so
it remains to discuss the case p ∈ {q, r, s}. Then αp = 0, so by Lemma 2 it
suffices to find a non-singular solution of

qxk − ryk − szk ≡ 0 (mod p).

If k is odd, this is easy, since the map x 7→ xk is surjective modulo p, as
q ≡ r ≡ s ≡ −1 (mod k). For even k, by Lemma 3, it is enough to show
that there exists a non-singular solution of

(12) qx2 − ry2 − sz2 ≡ 0 (mod p).

For p ∈ {q, r} this immediately follows from (8). For p = s, note that (7)
and q ≡ r ≡ s ≡ 3 (mod 4) imply that(

qr

s

)
= 1,

again showing that (12) has a non-singular solution. (In fact, by the Hasse
principle for ternary quadratic forms (see for example [18, Corollary 3,
p. 43]), as we had already shown non-trivial local solubility of qx2 − ry2 −
sz2 = 0 over R and all local fields except possibly Qs, the existence of
a non-trivial solution over Qs would have followed automatically, but we
preferred to show it directly.)

Let us briefly discuss the second case (9). Instead of (10), we now consider
the equation

qxk − ryk + szk = 0.

The only slight difference then is the argument for p ∈ {q, r, s} and even k.
Again, we need to make sure that

qx2 − ry2 + sz2 ≡ 0 (mod p)

has a non-singular solution, which reduces to checking that(
rs

q

)
=

(
−qs
r

)
=

(
qr

s

)
= 1,

and again these properties follow from q ≡ r ≡ s ≡ 3 (mod 4), (7) and (9).
This finishes the proof of Lemma 5.

Regarding upper bounds, note that an application of the large sieve gives

Mk,loc(H)� H3

(logH)Ψ(k)
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where

Ψ(k) =
3

φ(k)

(
1− 1

k

)
and φ denotes Euler’s totient function (see [5, Theorem 1.1]; for composite k,
the bound could be improved somewhat). It would be interesting to decide
what is the true order of magnitude for this quantity. In this direction, for
k = 2, Hooley [12] and independently Guo [10] obtained the sharp bound
M2,loc(H)� H3/(logH)3/2.

3. The density of soluble Thue equations. To prove Theorem 1, it
remains to bound the quantity Nk,glob(H) from above, assuming the truth
of the abc-conjecture. To this end, in the case k = 3, we shall use the results
of [7], whereas for larger k, an elementary argument will suffice. We shall
prove the following result.

Lemma 6. Assume the truth of the abc-conjecture. Then

Nk,glob(H)�
{
H47/27+ε for k = 3,

H1+ε for k ≥ 4.

Proof. We begin with the following observation: let a, b, x, y ∈ Z where
0 < max{|a|, |b|} ≤ H. Suppose that

axk + byk = 1.

There are only O(H) such equations where xy = 0 is possible, so in the
following we may assume that xy 6= 0. If the abc-conjecture holds true, then

(13) max{|axk|, |byk|} �
( ∏
p|abxkyk

p

)1+ε

� |abxy|1+ε.

By symmetry, without loss of generality, we can assume that |y| ≥ |x|. Then

|yk| � H1+ε|x|1+ε|y|1+ε � H1+ε|y|2+ε,
so

(14) |y| � H1/(k−2)+ε, whence also |x| � H1/(k−2)+ε.

Next, let us recall the result from [7] that we will use. Let N(X,Y, Z) be
the number of quadruples (a, b, x, y) ∈ N4 satisfying

(15)
axk − byk = 1,

X < x ≤ 2X, Y < y ≤ 2Y and Z < byk ≤ 2Z.

The following proposition summarizes the main technical result in [7]. Its
proof relies on a recent version of the approximate determinant method by
Heath-Brown (see [11]).
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Proposition 1. Suppose that X ≤ Y � Z1/k � XY . Let M be a
natural number satisfying

(16) logZ ≥ logM ≥ max

{
9

2
(1 + δ)

log(ZX−k) log Y

logZ
, log Y

}
for a given δ > 0. Then we have the estimate

(17) N(X,Y, Z)�δ,ε Z
ε(XM1/2 + Y ).

If instead X ≥ Y , then the same holds with the roles of X and Y inter-
changed in (16) and (17).

Proposition 1 is valid for all k ≥ 3, but in fact we shall only need it for
k = 3. Indeed, if k ≥ 4, then by (14) we immediately have

Nk,glob(H)

≤ #{a, b, x, y ∈ Z : 0 < |a|, |b| ≤ H, |x|, |y| � H1/2+ε, axk + byk = 1}

=
∑

|x|,|y|�H1/2+ε

(x,y)=1

#{a, b ∈ Z : 0 < |a|, |b| ≤ H, axk + byk = 1}

�
∑

|x|,|y|�H1/2+ε

(
1 +

H

max{|x|k, |y|k}

)
� H1+ε,

as asserted in Lemma 6.

We continue the proof of the lemma. In view of Proposition 1, it will
now be more convenient to study the quantity

N+
k,glob(H) = #{a, b ∈ N : a, b ≤ H and axk − byk = 1

has a solution (x, y) ∈ N2}.

We certainly have Nk,glob(H) � N+
k,glob(H). From now on, we let k = 3.

Again, by (14) we have

N+
3,glob(H) ≤ #{a, b, x, y ∈ N : a, b ≤ H, x, y � H1+ε, ax3 − by3 = 1}

=
∑

x,y�H1+ε

#{a, b ∈ N : a, b ≤ H, ax3 − by3 = 1}.

For a parameter Q to be specified at a later stage, we shall estimate sepa-
rately the contributions to N+

3,glob(H) from terms with xy ≤ Q and terms
with xy > Q. The contribution from the first range is

(18) �
∑
xy≤Q

(
1 +

H

max{x3, y3}

)
� Q logQ+H.
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For the remaining range, we shall use Proposition 1. Indeed, partitioning
the ranges for x, y and byk into dyadic intervals, we obtain∑

x,y�H1+ε

#{a, b ∈ N : a, b ≤ H, ax3 − by3 = 1} � Hε max
X,Y,Z

N(X,Y, Z),

where the maximum is taken over X,Y, Z satisfying the conditions

Z � H4+ε, X, Y � H1+ε, XY � Q.

Thus, let X,Y, Z as above be fixed such that N(X,Y, Z) is maximal. With-
out loss of generality, we may assume that X ≤ Y � Z1/3, so if we require
Q� H4/3+ε, then Proposition 1 is applicable. Let us write Z = Hτ , where
τ ≤ 4 + ε. If Q = Hγ , then we may further write X ≈ Zα and Y ≈ Zβ,
where

(19) α ≤ β ≤ min{1/3, 1/τ}, α+ β ≥ γ/τ.
In view of (16), we choose δ, depending on ε, such that

9

2
δ(1− 3α)β ≤ ε,

and we take M ∈ N to satisfy

(20) max{Z9(1+δ)(1−3α)β/2, Zβ} ≤M � max{Z9(1+δ)(1−3α)β/2, Zβ}.
Provided that M ≤ Z, the estimate (17) then yields

N(X,Y, Z)� Zε(Zα+9(1−3α)β/4 + Zα+β/2 + Zβ)

� Hε(Hu+9(1−3u/4)v/4 +Hu+v/2 +Hv),

where we have put u = τα and v = τβ and used τ ≤ 4 + ε. For u and v, we
have the restrictions

(21) u ≤ v ≤ 1, u+ v ≥ γ.
The two terms Hu+v/2 and Hv now obviously give negligible contribu-

tions to N+
3,glob(H). Moreover, for u, v satisfying the inequalities (21), the

function

Ψ(u, v) = u+
9

4

(
1− 3

4
u

)
v

appearing in the exponent of the remaining term satisfies

Ψ(u, v) ≤ Ψ(u, 1) =
9

4
− 11

16
u ≤ 9

4
− 11

16
(γ − 1) =

47− 11γ

16
.

In view of the estimate (18), we optimize by equating the rightmost ex-
pression to γ, taking γ = 47/27. To establish the estimate N3,glob(H) �
H47/27+ε, it only remains to justify the assumption M ≤ Z. To this end, we
analyze the quantity

Φ(α, β) =
9

2
(1− 3α)β
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appearing in (20). Note that the assumptions (19) imply α ≥ (γ − 1)/τ =
20/(27τ), so that

Φ(α, β) ≤ 9

2τ
(1− 3α) ≤ 9

2τ

(
1− 20

9τ

)
= g

(
1

τ

)
,

say, where g(t) = 9
2 t
(
1− 20

9 t
)
. As the quadratic function g is decreasing for

t ≥ 9/40, we have

Φ(α, β) ≤ g(1/(4 + ε)) ≤ g(9/40) = 81/160 < 1,

so we may certainly ensure that M ≤ Z by choosing δ small enough. This
finishes the proof of Lemma 6.

4. The density of soluble Fermat equations. As in Section 3, to
prove Theorem 2, it remains to establish an upper bound for Mk,glob(H) as
given in the following result.

Lemma 7. Let k ≥ 6, and assume the truth of the abc-conjecture. Then

Mk,glob(H)� H2+ε.

Proof. For technical reasons, it is easier to first deal with the quantity

Mk,glob,prim(H) = #{a, b, c ∈ Z : (a, b, c) = 1, 0 < |a|, |b|, |c| ≤ H and

axk + byk + czk = 0 has a solution (x, y, z) ∈ Z3 \ {0}}

focusing on Fermat equations axk + byk + czk = 0 with primitive coefficient
vector (a, b, c). Under the assumptions of Lemma 7, we will show that

(22) Mk,glob,prim(H)� H2+ε.

Now the equation axk + byk + czk = 0 has a non-trivial integer solution
(x, y, z) if and only if the equation

a

γ
xk +

b

γ
yk +

c

γ
zk = 0

has one, where γ = (a, b, c). Therefore, it is easy to deduce Lemma 7 from
(22) via

Mk,glob(H) ≤
∑
γ≤H

Mk,glob,prim

(
H

γ

)
�
∑
γ≤H

(
H

γ

)2+ε

� H2+ε.

Thus it remains to prove (22), so suppose that axk + byk + czk = 0
has a solution (x, y, z) ∈ Z3 \ {0}. Since the equation is homogeneous, we
can assume without loss of generality that (x, y, z) = 1. If xyz = 0, then
max{|x|, |y|, |z|} � H1/k, otherwise put u = axk, v = byk, w = czk, and
let γ be the greatest common divisor of u, v, w. Now if pg‖γ for some prime
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power pg, then pg must divide one of a, b, c, because (x, y, z) = 1. Therefore,
γ divides abc, so ∏

p|u/γ·v/γ·w/γ

p ≤
∏

p|abc/γ

p ·
∏

p|xkykzk
p ≤ |abcxyz|

γ
.

Let us now assume without loss of generality that |x| ≥ |y| and |x| ≥ |z|. As
u/γ + v/γ + w/γ = 0, by the abc-conjecture we obtain

|u|
γ
�
(
|abcxyz|

γ

)1+ε

,

so

max{|x|, |y|, |z|} � H2/(k−3)+ε.

Consequently,

Mk,glob,prim(H) ≤ #{a, b, c, x, y, z ∈ Z : (a, b, c) = (x, y, z) = 1,

|a|, |b|, |c| ≤ H, |x|, |y|, |z| � H2/(k−3)+ε, and axk + byk + czk = 0}.
Now for fixed x, y, z with (x, y, z) = 1, the integer solutions (a, b, c) of

the equation axk + byk + czk = 0 lie on a two-dimensional lattice Γ of
determinant

(23) ∆x,y,z � max{|x|k, |y|k, |z|k}
(see [4, Lemma 4.4]), and by [4, Lemma 4.5], the number of such primitive
solutions (a, b, c) with |a|, |b|, |c| ≤ H is at most of the order of magnitude

(24) 1 +H2/∆x,y,z.

Hence the contribution to Mk,glob,prim(H) coming from those x, y, z giving

∆x,y,z ≥ H2 is at most the order of magnitude O(H6/(k−3)+ε) of all permissi-
ble (x, y, z) stemming from the bound |x|, |y|, |z| ≤ H2/(k−3)+ε. Since k ≥ 6,
this is compatible with (22). Let us now bound the contribution from smaller
∆x,y,z. To this end, fix A ∈ [1, H2]. By (23), the number of x, y, z ∈ Z such
that A ≤ ∆x,y,z ≤ 2A is at most O(A3/k), and for such fixed x, y, z, by (24),
there are at most O(H2/A) corresponding (a, b, c). The total contribution
from A ≤ ∆ ≤ 2A is therefore O(H2A3/k−1). A dyadic summation over the
range of A, keeping in mind that k ≥ 6, therefore again gives the bound
O(H2+ε) as claimed in (22). This finishes the proof of Lemma 7.
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