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1. Introduction and statement of results. We say that a k-tuple of
linear forms in Z[x], denoted by

H(x) = {gjx+ hj}kj=1,

is admissible if the associated polynomial fH(x) =
∏

1≤j≤k(gjx+hj) has no
fixed prime divisor, that is, if the inequality

#{n mod p : fH(n) ≡ 0 mod p} < p

holds for every prime number p. In this note we consider only k-tuples for
which

(1) g1, . . . , gk > 0 and
∏

1≤i<j≤k
(gihj − gjhi) 6= 0.

One form of the Prime k-Tuple Conjecture asserts that if H(x) is ad-
missible and satisfies (1), then H(n) = {gjn+ hj}kj=1 is a k-tuple of primes
for infinitely many n ∈ N. Recently, Maynard [5] and Tao have made great
strides towards proving this form of the Prime k-Tuple Conjecture, which
rests among the greatest unsolved problems in number theory. The follow-
ing formulation of their remarkable theorem has been given by Granville [3,
Theorem 6.2].

Theorem (Maynard–Tao). For any m ∈ N with m ≥ 2 there is a num-
ber km, depending only on m, such that the following holds for every integer
k ≥ km: If {gjx+ hj}kj=1 is admissible and satisfies (1), then {gjn+ hj}kj=1

contains m primes for infinitely many n ∈ N. In fact, one can take km to
be any number such that km log km > e8m+4.
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Zhang [10, Theorem 1] was the first to prove that lim infn→∞(pn+1−pn)
is bounded; he showed that for an admissible k-tuple H(x) = {x + bj}kj=1

there exist infinitely many integers n such that H(n) contains at least two
primes, provided that k ≥ 3.5 · 106. Zhang’s proof was subsequently refined
in a Polymath project [7, Theorem 2.3] to the point where one could take
k2 = 632 (at least in the case of monic linear forms). Maynard [5, Proposi-
tions 4.2, 4.3] has shown that one can take k2 = 105 and km = cm2e4m in the
Maynard–Tao theorem, where c is an absolute (and effective) constant. An-
other Polymath project [8, Theorem 3.2] has since refined Maynard’s work
so that one can take k2 = 50 and km = ce(4−28/157)m. (In [5, 8], only tuples of
monic linear forms are treated explicitly, although the results should extend
to general linear forms as considered in [3].)

The purpose of the present note is to explain some interesting conse-
quences of the Maynard–Tao theorem. We refer the reader to the expository
article [3] of Granville for the recent history and ideas leading up to this
breakthrough result, as well as a discussion of its potential impact. With-
out doubt, this result and its proof will have numerous applications, many
of which have already been given in [3]. We are grateful to Granville for
pointing out to us that Corollary 2 (below) can now be proved.

The following theorem establishes the existence of m-tuples that in-
finitely often represent strings of consecutive prime numbers.

Theorem 1. Let m, k ∈ N with m ≥ 2 and k ≥ km, where km is
as in the Maynard–Tao theorem. Let b1, . . . , bk be distinct integers such that
{x+bj}kj=1 is admissible, and let g be any positive integer coprime to b1 · · · bk.
Then, for some subset {h1, . . . , hm} ⊆ {b1, . . . , bk}, there are infinitely many
n ∈ N such that gn+ h1, . . . , gn+ hm are consecutive primes.

A special case of Theorem 1, with m = 2, g = 1 (and the weaker bound
k2 ≥ 3.5 ·106), has already been established in recent work of Pintz [6, Main
Theorem], which is based on Zhang’s method but uses a different argument
to the one presented here.

Theorem 1 (which is proved in §2) has various applications to the study of
gaps between consecutive primes. To state our results, let us call a sequence
(δj)

m
j=1 of positive integers a run of consecutive prime gaps if

δj = dr+j = pr+j+1 − pr+j (1 ≤ j ≤ m)

for some natural number r, where pn denotes the nth smallest prime. The
following corollary of Theorem 1 answers an old question of Erdős and Turán
[2] (see also Erdős [1] and Guy [4, A11]).

Corollary 2. For every m ≥ 2 there are infinitely many runs (δj)
m
j=1

of consecutive prime gaps with δ1 < · · · < δm, and infinitely many runs with
δ1 > · · · > δm.
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Moreover, in the proof (see §2) we construct infinitely many runs (δj)
m
j=1

of consecutive prime gaps with

δ1 + · · ·+ δj−1 < δj (2 ≤ j ≤ m),

and infinitely many runs with

δj > δj+1 + · · ·+ δm (1 ≤ j ≤ m− 1).

Using a similar argument, we can impose a divisibility requirement
amongst gaps between consecutive primes as well.

Corollary 3. For every m ≥ 2 there are infinitely many runs (δj)
m
j=1

of consecutive prime gaps such that δj−1 | δj for 2 ≤ j ≤ m, and infinitely
many runs such that δj+1 | δj for 1 ≤ j ≤ m− 1.

In the proof (see §2) we construct infinitely many runs (δj)
m
j=1 of con-

secutive prime gaps with δ1 · · · δj−1 | δj for 2 ≤ j ≤ m, and infinitely many
runs with δmδm−1 · · · δj+1 | δj for 1 ≤ j ≤ m− 1.

As another application of Theorem 1, in §2 we prove the following ex-
tension of a result of Shiu [9] on consecutive primes in a given congruence
class.

Corollary 4. Let a and D ≥ 3 be coprime integers. For every m ≥ 2,
there are infinitely many r ∈ N such that pr+1 ≡ · · · ≡ pr+m ≡ a mod D
and pr+m − pr+1 ≤ DCm, where Cm is a constant depending only on m.

Shiu [9] attributes to Chowla the conjecture that there are infinitely
many pairs of consecutive primes pr, pr+1 with pr ≡ pr+1 ≡ a mod D (see
also [4, A4]), and proved the above result without the constraint pr+m − pr+1

≤ DCm.

2. Proofs

Proof of Theorem 1. Replacing each bj with bj + gN for a suitable inte-
ger N , we can assume without loss of generality that

1 < b1 < · · · < bk.

Let S be the set of integers t such that 1 ≤ t ≤ bk, t 6∈ {b1, . . . , bk}. Let
{qt : t ∈ S} be distinct primes coprime to g such that t 6≡ bj mod qt for
all t ∈ S, 1 ≤ j ≤ k. By the Chinese remainder theorem we can find an
integer a such that

(2) ga+ t ≡ 0 mod qt (t ∈ S),

and therefore

(3) ga+ bj 6≡ 0 mod qt (t ∈ S, 1 ≤ j ≤ k).
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Consider the k-tuple

A(x) = {gQx+ ga+ bj}kj=1 where Q =
∏
t∈S qt.

In view of (3) and the equality gcd(g, b1 · · · bk) = 1, we have gcd(gQ, ga+ bj)
= 1 for each j, and since {x + bj}kj=1 is admissible, it follows that the k-
tuple A(x) is also admissible. Moreover, A(x) satisfies (1) (with gj = gQ
and hj = ga+ bj) as the integers b1, . . . , bk are distinct and gQ ≥ 1.

For every N ∈ N, the congruences (2) and our choices of Q and a imply
that

g(QN + a) + t ≡ 0 mod qt (t ∈ S).

Hence, any prime number in the interval [g(QN + a) + b1, g(QN + a) + bk]
must lie in A(n). Let m′ be the largest integer for which there exists a subset
{h1, . . . , hm′} ⊆ {b1, . . . , bk} with the property that the numbers

(4) g(QN + a) + hi (1 ≤ i ≤ m′)

are simultaneously prime for infinitely many N ∈ N. Since k ≥ km, we can
apply the Maynard–Tao theorem with A(x) to deduce that m′ ≥ m.

By the maximal property ofm′, it must be the case that for all sufficiently
large N ∈ N, if the numbers in (4) are all prime, then g(QN + a) + bj is
composite for every bj ∈ {b1, . . . , bk} \ {h1, . . . , hm′}. Hence, for infinitely
many N ∈ N, the interval [g(QN+a)+b1, g(QN+a)+bk] contains precisely
m′ primes, namely, the numbers {gn+ hi}m

′
i=1 with n = QN + a.

Proof of Corollary 2. Let m ≥ 2 and k ≥ km+1. Let A(x) = {x+2j}kj=1,
which is easily seen to be admissible. By Theorem 1, there exists an (m+1)-
tuple

B(x) = {x+ 2νj}m+1
j=1 ⊆ A(x)

such that B(n) is an (m+1)-tuple of consecutive primes for infinitely many n.
Here, 1 ≤ ν1 < · · · < νm+1 ≤ k. For such n, writing

B(n) = {n+ 2νj}m+1
j=1 = {pr+1, . . . , pr+m+1}

with some integer r, we have

δj = dr+j = pr+j+1 − pr+j = 2νj+1 − 2νj (1 ≤ j ≤ m).

Then
j−1∑
i=1

δi =

j−1∑
i=1

(2νi+1 − 2νi) = 2νj − 2ν1 < 2νj+1 − 2νj = δj (2 ≤ j ≤ m).

Hence, δj−1 ≤ δ1+· · ·+δj−1 < δj for each j, which proves the first statement.
To obtain runs of consecutive prime gaps with δj > δj+1 + · · ·+ δm ≥ δj+1,

consider instead the admissible k-tuple {x− 2j}kj=1.
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Proof of Corollary 3. Let m ≥ 2, and let k ≥ km+1. Put Q =
∏
p≤k p,

and define the sequence b1, . . . , bk inductively as follows. Let

b1 = 0, b2 = Q, b3 = 2Q,

and for any j ≥ 3 let

bj = bj−1 +
∏

1≤s<t≤j−1
(bt − bs).

Note that

(5) (bu+1 − bu) | (bv+1 − bv) (v ≥ u ≥ 1).

Now put A(x) = {x+ bj}kj=1, and observe that A(x) is admissible since
Q divides each integer bj . By Theorem 1, there exists an (m+ 1)-tuple

B(x) = {x+ bνj}m+1
j=1 ⊆ A(x)

such that B(n) is an (m+1)-tuple of consecutive primes for infinitely many n.
Here, 1 ≤ ν1 < · · · < νm+1 ≤ k. For any such n, writing

B(n) = {n+ bνj}m+1
j=1 = {pr+1, . . . , pr+m+1}

with some integer r, we have

δj = dr+j = pr+j+1 − pr+j = bνj+1 − bνj (1 ≤ j ≤ m).

Then
j−1∏
i=1

δi =

j−1∏
i=1

(bνi+1 − bνi)
∣∣∣ ∏
1≤s<t≤νj

(bt − bs) = bνj+1 − bνj

if 2 ≤ j ≤ m. On the other hand, using (5) we see that

(bνj+1 − bνj )
∣∣∣ νj+1−1∑

i=νj

(bi+1 − bi) = bνj+1 − bνj = δj .

Hence, δ1 · · · δj−1 | δj for 2 ≤ j ≤ m, which proves the first statement. To
obtain runs of consecutive prime gaps with δmδm−1 · · · δj+1 | δj for 1 ≤ j ≤
m− 1, consider instead the admissible k-tuple {x− bj}kj=1.

Proof of Corollary 4. Let m ≥ 2, and let k ≥ km. Let {x+aj}kj=1 be any
admissible k-tuple with a1 < · · · < ak, and put bj = Daj + a for 1 ≤ j ≤ k;
then {x + bj}kj=1 is also admissible. Since gcd(D, bj) = gcd(D, a) = 1 for
each j, we can apply Theorem 1 with g = D to conclude that there is
a subset {h1, . . . , hm} ⊆ {b1, . . . , bk} such that Dn + h1, . . . , Dn + hm are
consecutive primes for infinitely many n ∈ N; as such primes lie in the
arithmetic progression a mod D and are contained in an interval of length
bk − b1 = D(ak − a1), the corollary follows.
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