Consecutive primes in tuples

by
William D. Banks (Columbia, MO), Tristan Freiberg (Columbia, MO) and Caroline L. Turnage-Butterbaugh (University, MS)

1. Introduction and statement of results. We say that a k-tuple of linear forms in $\mathbb{Z}[x]$, denoted by

$$
\mathcal{H}(x)=\left\{g_{j} x+h_{j}\right\}_{j=1}^{k},
$$

is admissible if the associated polynomial $f_{\mathcal{H}}(x)=\prod_{1 \leq j \leq k}\left(g_{j} x+h_{j}\right)$ has no fixed prime divisor, that is, if the inequality

$$
\#\left\{n \bmod p: f_{\mathcal{H}}(n) \equiv 0 \bmod p\right\}<p
$$

holds for every prime number p. In this note we consider only k-tuples for which

$$
\begin{equation*}
g_{1}, \ldots, g_{k}>0 \quad \text { and } \prod_{1 \leq i<j \leq k}\left(g_{i} h_{j}-g_{j} h_{i}\right) \neq 0 . \tag{1}
\end{equation*}
$$

One form of the Prime k-Tuple Conjecture asserts that if $\mathcal{H}(x)$ is admissible and satisfies (11), then $\mathcal{H}(n)=\left\{g_{j} n+h_{j}\right\}_{j=1}^{k}$ is a k-tuple of primes for infinitely many $n \in \mathbb{N}$. Recently, Maynard [5] and Tao have made great strides towards proving this form of the Prime k-Tuple Conjecture, which rests among the greatest unsolved problems in number theory. The following formulation of their remarkable theorem has been given by Granville [3, Theorem 6.2].

Theorem (Maynard-Tao). For any $m \in \mathbb{N}$ with $m \geq 2$ there is a number k_{m}, depending only on m, such that the following holds for every integer $k \geq k_{m}$: If $\left\{g_{j} x+h_{j}\right\}_{j=1}^{k}$ is admissible and satisfies (11), then $\left\{g_{j} n+h_{j}\right\}_{j=1}^{k}$ contains m primes for infinitely many $n \in \mathbb{N}$. In fact, one can take k_{m} to be any number such that $k_{m} \log k_{m}>e^{8 m+4}$.

[^0]Zhang [10, Theorem 1] was the first to prove that $\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$ is bounded; he showed that for an admissible k-tuple $\mathcal{H}(x)=\left\{x+b_{j}\right\}_{j=1}^{k}$ there exist infinitely many integers n such that $\mathcal{H}(n)$ contains at least two primes, provided that $k \geq 3.5 \cdot 10^{6}$. Zhang's proof was subsequently refined in a Polymath project [7, Theorem 2.3] to the point where one could take $k_{2}=632$ (at least in the case of monic linear forms). Maynard [5, Propositions 4.2, 4.3] has shown that one can take $k_{2}=105$ and $k_{m}=\mathrm{cm}^{2} e^{4 m}$ in the Maynard-Tao theorem, where c is an absolute (and effective) constant. Another Polymath project [8, Theorem 3.2] has since refined Maynard's work so that one can take $k_{2}=50$ and $k_{m}=c e^{(4-28 / 157) m}$. (In [5, 8], only tuples of monic linear forms are treated explicitly, although the results should extend to general linear forms as considered in [3].)

The purpose of the present note is to explain some interesting consequences of the Maynard-Tao theorem. We refer the reader to the expository article [3] of Granville for the recent history and ideas leading up to this breakthrough result, as well as a discussion of its potential impact. Without doubt, this result and its proof will have numerous applications, many of which have already been given in [3]. We are grateful to Granville for pointing out to us that Corollary 2 (below) can now be proved.

The following theorem establishes the existence of m-tuples that infinitely often represent strings of consecutive prime numbers.

ThEOREM 1. Let $m, k \in \mathbb{N}$ with $m \geq 2$ and $k \geq k_{m}$, where k_{m} is as in the Maynard-Tao theorem. Let b_{1}, \ldots, b_{k} be distinct integers such that $\left\{x+b_{j}\right\}_{j=1}^{k}$ is admissible, and let g be any positive integer coprime to $b_{1} \cdots b_{k}$. Then, for some subset $\left\{h_{1}, \ldots, h_{m}\right\} \subseteq\left\{b_{1}, \ldots, b_{k}\right\}$, there are infinitely many $n \in \mathbb{N}$ such that $g n+h_{1}, \ldots, g n+h_{m}$ are consecutive primes.

A special case of Theorem 1, with $m=2, g=1$ (and the weaker bound $k_{2} \geq 3.5 \cdot 10^{6}$), has already been established in recent work of Pintz [6, Main Theorem], which is based on Zhang's method but uses a different argument to the one presented here.

Theorem1 (which is proved in $\$ 2$) has various applications to the study of gaps between consecutive primes. To state our results, let us call a sequence $\left(\delta_{j}\right)_{j=1}^{m}$ of positive integers a run of consecutive prime gaps if

$$
\delta_{j}=d_{r+j}=p_{r+j+1}-p_{r+j} \quad(1 \leq j \leq m)
$$

for some natural number r, where p_{n} denotes the nth smallest prime. The following corollary of Theorem 1 answers an old question of Erdős and Turán [2] (see also Erdős [1] and Guy [4, A11]).

Corollary 2. For every $m \geq 2$ there are infinitely many runs $\left(\delta_{j}\right)_{j=1}^{m}$ of consecutive prime gaps with $\delta_{1}<\cdots<\delta_{m}$, and infinitely many runs with $\delta_{1}>\cdots>\delta_{m}$.

Moreover, in the proof (see $\delta 2$ we construct infinitely many runs $\left(\delta_{j}\right)_{j=1}^{m}$ of consecutive prime gaps with

$$
\delta_{1}+\cdots+\delta_{j-1}<\delta_{j} \quad(2 \leq j \leq m)
$$

and infinitely many runs with

$$
\delta_{j}>\delta_{j+1}+\cdots+\delta_{m} \quad(1 \leq j \leq m-1)
$$

Using a similar argument, we can impose a divisibility requirement amongst gaps between consecutive primes as well.

Corollary 3. For every $m \geq 2$ there are infinitely many runs $\left(\delta_{j}\right)_{j=1}^{m}$ of consecutive prime gaps such that $\delta_{j-1} \mid \delta_{j}$ for $2 \leq j \leq m$, and infinitely many runs such that $\delta_{j+1} \mid \delta_{j}$ for $1 \leq j \leq m-1$.

In the proof (see $\$ 2$) we construct infinitely many runs $\left(\delta_{j}\right)_{j=1}^{m}$ of consecutive prime gaps with $\delta_{1} \cdots \delta_{j-1} \mid \delta_{j}$ for $2 \leq j \leq m$, and infinitely many runs with $\delta_{m} \delta_{m-1} \cdots \delta_{j+1} \mid \delta_{j}$ for $1 \leq j \leq m-1$.

As another application of Theorem 1, in $\$ 2$ we prove the following extension of a result of Shiu [9] on consecutive primes in a given congruence class.

Corollary 4. Let a and $D \geq 3$ be coprime integers. For every $m \geq 2$, there are infinitely many $r \in \mathbb{N}$ such that $p_{r+1} \equiv \cdots \equiv p_{r+m} \equiv a \bmod D$ and $p_{r+m}-p_{r+1} \leq D C_{m}$, where C_{m} is a constant depending only on m.

Shiu [9] attributes to Chowla the conjecture that there are infinitely many pairs of consecutive primes p_{r}, p_{r+1} with $p_{r} \equiv p_{r+1} \equiv a \bmod D($ see also [4, A4]), and proved the above result without the constraint $p_{r+m}-p_{r+1}$ $\leq D C_{m}$.

2. Proofs

Proof of Theorem 11. Replacing each b_{j} with $b_{j}+g N$ for a suitable integer N, we can assume without loss of generality that

$$
1<b_{1}<\cdots<b_{k}
$$

Let \mathcal{S} be the set of integers t such that $1 \leq t \leq b_{k}, t \notin\left\{b_{1}, \ldots, b_{k}\right\}$. Let $\left\{q_{t}: t \in \mathcal{S}\right\}$ be distinct primes coprime to g such that $t \not \equiv b_{j} \bmod q_{t}$ for all $t \in \mathcal{S}, 1 \leq j \leq k$. By the Chinese remainder theorem we can find an integer a such that

$$
\begin{equation*}
g a+t \equiv 0 \bmod q_{t} \quad(t \in \mathcal{S}) \tag{2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
g a+b_{j} \not \equiv 0 \bmod q_{t} \quad(t \in \mathcal{S}, 1 \leq j \leq k) \tag{3}
\end{equation*}
$$

Consider the k-tuple

$$
\mathcal{A}(x)=\left\{g Q x+g a+b_{j}\right\}_{j=1}^{k} \quad \text { where } Q=\prod_{t \in \mathcal{S}} q_{t} .
$$

In view of (3) and the equality $\operatorname{gcd}\left(g, b_{1} \cdots b_{k}\right)=1$, we have $\operatorname{gcd}\left(g Q, g a+b_{j}\right)$ $=1$ for each j, and since $\left\{x+b_{j}\right\}_{j=1}^{k}$ is admissible, it follows that the k tuple $\mathcal{A}(x)$ is also admissible. Moreover, $\mathcal{A}(x)$ satisfies (1) (with $g_{j}=g Q$ and $\left.h_{j}=g a+b_{j}\right)$ as the integers b_{1}, \ldots, b_{k} are distinct and $g Q \geq 1$.

For every $N \in \mathbb{N}$, the congruences (2) and our choices of Q and a imply that

$$
g(Q N+a)+t \equiv 0 \bmod q_{t} \quad(t \in \mathcal{S}) .
$$

Hence, any prime number in the interval $\left[g(Q N+a)+b_{1}, g(Q N+a)+b_{k}\right]$ must lie in $\mathcal{A}(n)$. Let m^{\prime} be the largest integer for which there exists a subset $\left\{h_{1}, \ldots, h_{m^{\prime}}\right\} \subseteq\left\{b_{1}, \ldots, b_{k}\right\}$ with the property that the numbers

$$
\begin{equation*}
g(Q N+a)+h_{i} \quad\left(1 \leq i \leq m^{\prime}\right) \tag{4}
\end{equation*}
$$

are simultaneously prime for infinitely many $N \in \mathbb{N}$. Since $k \geq k_{m}$, we can apply the Maynard-Tao theorem with $\mathcal{A}(x)$ to deduce that $m^{\prime} \geq m$.

By the maximal property of m^{\prime}, it must be the case that for all sufficiently large $N \in \mathbb{N}$, if the numbers in (4) are all prime, then $g(Q N+a)+b_{j}$ is composite for every $b_{j} \in\left\{b_{1}, \ldots, b_{k}\right\} \backslash\left\{h_{1}, \ldots, h_{m^{\prime}}\right\}$. Hence, for infinitely many $N \in \mathbb{N}$, the interval $\left[g(Q N+a)+b_{1}, g(Q N+a)+b_{k}\right]$ contains precisely m^{\prime} primes, namely, the numbers $\left\{g n+h_{i}\right\}_{i=1}^{m^{\prime}}$ with $n=Q N+a$.

Proof of Corollary 2. Let $m \geq 2$ and $k \geq k_{m+1}$. Let $\mathcal{A}(x)=\left\{x+2^{j}\right\}_{j=1}^{k}$, which is easily seen to be admissible. By Theorem 1, there exists an $(m+1)$ tuple

$$
\mathcal{B}(x)=\left\{x+2^{\nu_{j}}\right\}_{j=1}^{m+1} \subseteq \mathcal{A}(x)
$$

such that $\mathcal{B}(n)$ is an $(m+1)$-tuple of consecutive primes for infinitely many n. Here, $1 \leq \nu_{1}<\cdots<\nu_{m+1} \leq k$. For such n, writing

$$
\mathcal{B}(n)=\left\{n+2^{\nu_{j}}\right\}_{j=1}^{m+1}=\left\{p_{r+1}, \ldots, p_{r+m+1}\right\}
$$

with some integer r, we have

$$
\delta_{j}=d_{r+j}=p_{r+j+1}-p_{r+j}=2^{\nu_{j+1}}-2^{\nu_{j}} \quad(1 \leq j \leq m) .
$$

Then

$$
\sum_{i=1}^{j-1} \delta_{i}=\sum_{i=1}^{j-1}\left(2^{\nu_{i+1}}-2^{\nu_{i}}\right)=2^{\nu_{j}}-2^{\nu_{1}}<2^{\nu_{j+1}}-2^{\nu_{j}}=\delta_{j} \quad(2 \leq j \leq m)
$$

Hence, $\delta_{j-1} \leq \delta_{1}+\cdots+\delta_{j-1}<\delta_{j}$ for each j, which proves the first statement. To obtain runs of consecutive prime gaps with $\delta_{j}>\delta_{j+1}+\cdots+\delta_{m} \geq \delta_{j+1}$, consider instead the admissible k-tuple $\left\{x-2^{j}\right\}_{j=1}^{k}$.

Proof of Corollary 3. Let $m \geq 2$, and let $k \geq k_{m+1}$. Put $Q=\prod_{p \leq k} p$, and define the sequence b_{1}, \ldots, b_{k} inductively as follows. Let

$$
b_{1}=0, \quad b_{2}=Q, \quad b_{3}=2 Q
$$

and for any $j \geq 3$ let

$$
b_{j}=b_{j-1}+\prod_{1 \leq s<t \leq j-1}\left(b_{t}-b_{s}\right)
$$

Note that

$$
\begin{equation*}
\left(b_{u+1}-b_{u}\right) \mid\left(b_{v+1}-b_{v}\right) \quad(v \geq u \geq 1) \tag{5}
\end{equation*}
$$

Now put $\mathcal{A}(x)=\left\{x+b_{j}\right\}_{j=1}^{k}$, and observe that $\mathcal{A}(x)$ is admissible since Q divides each integer b_{j}. By Theorem 1, there exists an $(m+1)$-tuple

$$
\mathcal{B}(x)=\left\{x+b_{\nu_{j}}\right\}_{j=1}^{m+1} \subseteq \mathcal{A}(x)
$$

such that $\mathcal{B}(n)$ is an $(m+1)$-tuple of consecutive primes for infinitely many n. Here, $1 \leq \nu_{1}<\cdots<\nu_{m+1} \leq k$. For any such n, writing

$$
\mathcal{B}(n)=\left\{n+b_{\nu_{j}}\right\}_{j=1}^{m+1}=\left\{p_{r+1}, \ldots, p_{r+m+1}\right\}
$$

with some integer r, we have

$$
\delta_{j}=d_{r+j}=p_{r+j+1}-p_{r+j}=b_{\nu_{j+1}}-b_{\nu_{j}} \quad(1 \leq j \leq m)
$$

Then

$$
\prod_{i=1}^{j-1} \delta_{i}=\prod_{i=1}^{j-1}\left(b_{\nu_{i+1}}-b_{\nu_{i}}\right) \mid \prod_{1 \leq s<t \leq \nu_{j}}\left(b_{t}-b_{s}\right)=b_{\nu_{j}+1}-b_{\nu_{j}}
$$

if $2 \leq j \leq m$. On the other hand, using (5) we see that

$$
\left(b_{\nu_{j}+1}-b_{\nu_{j}}\right) \mid \sum_{i=\nu_{j}}^{\nu_{j+1}-1}\left(b_{i+1}-b_{i}\right)=b_{\nu_{j+1}}-b_{\nu_{j}}=\delta_{j} .
$$

Hence, $\delta_{1} \cdots \delta_{j-1} \mid \delta_{j}$ for $2 \leq j \leq m$, which proves the first statement. To obtain runs of consecutive prime gaps with $\delta_{m} \delta_{m-1} \cdots \delta_{j+1} \mid \delta_{j}$ for $1 \leq j \leq$ $m-1$, consider instead the admissible k-tuple $\left\{x-b_{j}\right\}_{j=1}^{k}$.

Proof of Corollary 4. Let $m \geq 2$, and let $k \geq k_{m}$. Let $\left\{x+a_{j}\right\}_{j=1}^{k}$ be any admissible k-tuple with $a_{1}<\cdots<a_{k}$, and put $b_{j}=D a_{j}+a$ for $1 \leq j \leq k$; then $\left\{x+b_{j}\right\}_{j=1}^{k}$ is also admissible. Since $\operatorname{gcd}\left(D, b_{j}\right)=\operatorname{gcd}(D, a)=1$ for each j, we can apply Theorem 1 with $g=D$ to conclude that there is a subset $\left\{h_{1}, \ldots, h_{m}\right\} \subseteq\left\{b_{1}, \ldots, b_{k}\right\}$ such that $D n+h_{1}, \ldots, D n+h_{m}$ are consecutive primes for infinitely many $n \in \mathbb{N}$; as such primes lie in the arithmetic progression $a \bmod D$ and are contained in an interval of length $b_{k}-b_{1}=D\left(a_{k}-a_{1}\right)$, the corollary follows.

Acknowledgements. CLT-B is supported by a GAANN fellowship (grant no. P200A90092). In the first draft of this manuscript, we proved Theorem 1 under the assumption that $k \geq \exp \left(e^{12 m}\right)$. We thank Andrew Granville for showing that k need not be larger than the number k_{m} in the Maynard-Tao theorem and for simplifying our original proof of Theorem 1. We also thank Gergely Harcos, James Maynard, and the referee for providing helpful comments on our earlier drafts.

References

[1] P. Erdős, On the difference of consecutive primes, Bull. Amer. Math. Soc. 54 (1948), 885-889.
[2] P. Erdős and P. Turán, On some new questions on the distribution of prime numbers, Bull. Amer. Math. Soc. 54 (1948), 371-378.
[3] A. Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc., to appear.
[4] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Intuitive Math., Springer, New York, 2004.
[5] J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), 383-413.
[6] J. Pintz, Polignac numbers, conjectures of Erdős on gaps between primes, arithmetic progressions in primes, and the Bounded Gap Conjecture, arXiv:1305.6289 (2013), 14 pp.
[7] D. H. J. Polymath, New equidistribution estimates of Zhang type, and bounded gaps between primes, arXiv:1402.0811v2 (2014), 165 pp.
[8] D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, arXiv:1407.4897 (2014), 79 pp.
[9] D. K. L. Shiu, Strings of congruent primes, J. London Math. Soc. (2) 61 (2000), 359-373.
[10] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), 1121-1174.

William D. Banks, Tristan Freiberg
Department of Mathematics
University of Missouri
Columbia, MO 65211, U.S.A.
E-mail: bankswd@missouri.edu freibergt@missouri.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11N36; Secondary 11A41.
 Key words and phrases: consecutive primes in tuples, bounded gaps between primes, Maynard-Tao theorem.

