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Congruences of Ankeny–Artin–Chowla type and
the p-adic class number formula revisited
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Frantǐsek Marko (Hazleton, PA)

1. Introduction. A simple form of the celebrated Ankeny–Artin–
Chowla congruence states the following. Let K be a real quadratic num-
ber field of prime discriminant p ≡ 1 (mod 4), h be the class number of K,
ε = (T + U

√
p)/2 > 1 be the fundamental unit of K, and B(p−1)/2 be the

((p− 1)/2)th Bernoulli number. Denote Q = U/T . Then

Qh ≡ B(p−1)/2 (mod p).

Jakubec and his collaborators generalized this result to congruences for
cyclic totally real fields modulo p, p2 and p3 in [6–9, 12, 13, 16]. The method
developed by Jakubec was purely elementary and algebraic; no analytic
techniques were used. The purpose of this paper is to formulate these con-
gruences in full generality and to prove them using the p-adic class number
formula.

The p-adic class number formula states the following. Let K be a number
field of degree n and discriminant d(K), h(K) be the class number of K,
Rp(K) be the p-adic regulator of K, χK be a character of K, and Lp(s, χK)
be the corresponding p-adic L-function. Then

2n−1h(K)Rp(K)√
d(K)

=
∏
χK 6=1

Lp(1, χK).

As a consequence of our work, it turns out that the work of Jakubec
et al. amounts to an elementary algebraic proof of the p-adic class number
formula modulo p3 and the method of Jakubec provides a framework for
analogous proofs modulo higher powers of p.

To explain our main result, we need to introduce some notation and
briefly outline the method of Jakubec. The reader is advised to consult
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the references to fill in the missing details. Let p be an odd prime, ζp =
cos(2π/p) + i sin(2π/p) be a primitive pth root of unity and η = ζp + ζ−1p ,
L = Q(η) be the maximal real subfield of Q(ζp) of degree m = (p− 1)/2
over Q, and K be a cyclic subfield of Q(ζp) of degree n over Q. Write
k = (p− 1)/n and denote by σ an automorphism that generates the Galois
group Gal(Q(ζp)/Q). Denote by Qp the p-adic completion of Q, by Kp the
p-adic completion of K, and by Qp(ζp) the p-adic completion of Q(ζp).

Let π be the unique element of Qp(ζp) which satisfies πp−1 = −p and
ζp− 1 ≡ π (mod π2), and let ω ∈ Qp be the (p− 1)th root of unity given by

σ(π) = ωπ. Then ζp =
∑p−2

i=0 aiπ
i, where ai ∈ Qp. Assign to η the polynomial

pL(X) =

m−1∑
i=0

2aiX
m−1−i.

Fix a unit δ ∈ K of index f coprime to p and write δ =
∑n−1

i=0 xiβ
σi

K , where
βK = TrQ(ζp)/K(ζp) is the Gauss period of the field K. Assign to δ the
polynomial

pK(X) =
n−1∑
i=0

aki(x0 + x1ω
ki + x2ω

2ki + · · ·+ xn−1ω
(n−1)ki)Xn−1−i.

The following statement is the main result of our paper.

Theorem 1.1. Let p ≡ 1 (mod 4). Choose a unit δ in K of index f
coprime to p and denote by Sr the sum of the rth powers of the roots of
pK(X) and by Tr the sum of the (rk/2)th powers of the roots of pL(X).
Then

h(K)

f

n−1∏
r=1

( ∞∑
j=0

(−1)jpj
Sr+jn
r + jn

)
= ±

n−1∏
r=1

( ∞∑
j=0

(−1)jpj
Tr+jn
r + jn

)
(1)

= ±
n−1∏
r=1

( ∞∑
s=0

r(r + n) · · · (r + (s− 1)n)

s!ns
Cs,r

)
,(2)

where

Cs,r = −
s∑
l=0

(−1)l
(
s

l

)
Brk+l(p−1)

rk + l(p− 1)
(1− prk+l(p−1)−1) ≡ 0 (mod ps),

h(K) is the class number of the field K, and B2j is the (2j)th Bernoulli
number.

Next, we will explain the connection of this result to the work of Jakubec
and describe the content of our paper. For a fixed positive integer t, the
above result implies a congruence of Ankeny–Artin–Chowla type modulo pt,
analogous to congruences derived earlier by Jakubec et al.
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Choose an integer a that is a primitive root modulo pt such that the
automorphism σ is given by σ(ζp) = ζap and denote

g = ap
t−1
.

In [4], Jakubec introduced an element πK,1 ∈ K such that NK/Q(πK,1) =

(−1)np and σ(πK,1) ≡ gπK,1 (mod πn+1
K,1 ) and determined the expansion of a

Gauss period βK modulo πn+1
K,1 . Later, in [5], he observed that for any fixed

natural number t, it is possible to define πK,t ∈ K such that NK/Q(πK,t) =

(−1)np and σ(πK,t) ≡ gπK,t (mod πtn+1
K,t ). In Section 2, we will show that

instead of various elements πK,t of K corresponding to different values t it
is more natural to consider K embedded into its p-adic completion Kp, in
which case all elements πK,t are restrictions of a single element πK ∈ Kp

that satisfies πnK = −p. An explicit formula for πK is also given.

In [6] and [8], the elements πK,1 together with the existence of a certain
morphism were used to derive congruences of Ankeny–Artin–Chowla type
for cyclic totally real fields K modulo p. In [7], these congruences were
extended modulo p2 with the help of an obscure map Φ. The clarification of
the role of Φ for congruences modulo p2 was given in [12], modulo p3 in [16],
and the general case was settled in [17]. In [9], a connection of this approach
with expansion of ζp modulo π2p−1 was revealed. Motivated by this, the
expansion of ζp modulo π3p−2 was found in [10]. In our p-adic setting, this

expansion of ζp is given as ζp =
∑p−2

i=0 aiπ
i for ai ∈ Qp. Expansions of ζp

modulo pt can be derived explicitly by truncating the Dwork series Eπ(X) =
exp(πX − πXp). In Section 3, we show how the expansion of ζp modulo pt

follows from the Gross–Koblitz formula and illustrate it explicitly modulo p4.

In Section 4, we derive generalized Kummer congruences using p-adic
interpolation, and in Section 5 we identify one side of the congruences of
Ankeny–Artin–Chowla type derived by Jakubec as a product of the p-adic
L-functions corresponding to nontrivial characters χ of the field K consid-
ered modulo appropriate powers of p. The other side of these congruences
is identified in Section 6 with the p-adic regulator of K. This explains how
the p-adic class number formula is related to the method of Jakubec.

Under some simplifying assumptions, the method of Jakubec provides
a simple and purely elementary proof of (1). An elementary proof of (2)
modulo p2 was established in [9] and [12], and modulo p3 in [16] and [13].
Undoubtedly, an analogous elementary proof of (2) exists modulo higher
powers of p.

Finally, to illustrate the above results, an explicit formula for a quadratic
field K and an explicit congruence modulo p4 for a cubic field K are given
in Section 8.
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2. Elements πK . In this section only, assume that K is an arbitrary
subfield of Q(ζp). Recall that n = [K : Q] and kn = p − 1. The
prime p is totally ramified in Q(ζp) and factors as p = pp−1, where
p = (1− ζp). Thus p is totally ramified in K and p = pnK for a unique
divisor pK of K.

Recall the previous definition of g and denote gn = gk so that gnn ≡ 1
(mod pt) for each n dividing p− 1.

[4, Theorem] and [5, p. 106] show the existence of elements πK,t ∈ K,
unique modulo pnt+1

K , satisfying

(i) NK/Q(πK,t) = (−1)np,

(ii) σ(πK,t) ≡ gnπK,t (mod πtn+1
K,t ), and

(iii) βK ≡
∑n

i=0
k

(ki)!π
i
K,t (mod πn+1

K,t ).

[16, Lemma 1.1] asserts that additionally, if K1 and K2 are two subfields of
Q(ζp) of degrees n1 and n2 respectively such that K1 ⊂ K2 and πK1,t and
πK2,t satisfy (i)–(iii), then

πK1,t ≡ π
n2/n1

K2,t
(mod πtn2+1

K2,t
).

Observe that Qp contains all roots of unity of order n because n divides
p− 1.

Lemma 2.1. There is a unique element πK ∈ Kp satisfying πnK = −p and

βK ≡
∑n−1

i=0
k

(ki)!π
i
K (mod p). Moreover, NKp/Qp

(πK) = (−1)np, σ(πK) =

ωkπK and πK1 = π
n2/n1

K2
for subfields K2 ⊂ K1 ⊂ Q(ζp) of degrees n2 and n1,

respectively.

Proof. First we show the existence of a unique π ∈ Qp(ζp) that satisfies

πp−1 = −p and ζp− 1 ≡ π (mod π2). By [1, p. 158], we have p
(1−ζp)p−1 ≡ −1

(mod p). Applying [18, Lemma 5.30] with m = p − 1, a = p, b = 1 − ζp,
η = −1 and c = −p we obtain the existence of Π ∈ Qp(ζp) satisfying
Πp−1 = −p. There are p − 1 elements Π satisfying Πp−1 = −p; they dif-
fer by scalar factors that are (p − 1)th roots of unity (belonging to Qp),
and they are permuted by the automorphism σ. The element π is then
uniquely determined by the requirements that πp−1 = −p and ζp − 1 ≡ π
(mod π2).

Set πK = πk. Then πK is a root of the polynomial Xn + p that
splits completely over Qp(πK) because Qp contains all roots of unity of
order n (since n divides p − 1). Since [Qp(πK) : Qp] = n, we obtain
Kp = Qp(πK) and πK ∈ Kp. Moreover, πK generates the local ideal pKp

of Kp.
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Define a character θ by θ(g) = σ(π)/π = ω, ωp−1 = 1, and the corre-

sponding Gauss sums by τ(θi) =
∑p−2

j=0 θ
i(j)ζ jp . Write ζp =

∑p−2
i=0 aiπ

i and
compute the trace of the expression

1

πi
(ζp − a0 − a1π − · · · − ai−1πi−1) = ai + ai+1π + · · ·+ ap−2π

p−2.

Using TrQp(ζp)/Qp
(πi) = 0 for i = 1, . . . , p − 2 we find that (p − 1)ai =

τ(θ−i)/πi. Then [2, Theorem 11.2.10] (a p-adic version of Stickelberger’s

congruence) implies ζp ≡
∑p−2

i=0
1
i!π

i (mod p). Finally, taking the trace of the

last expression we conclude that βK ≡
∑n−1

i=0
k

(ki)!π
i
K (mod p). The remaining

assertions are immediate.

The previous lemma shows that the main result of [4] is essentially a
“disguised” Stickelberger’s congruence. It also implies that NQ(ζp)/K(π) =

(−1)k+1πk.

The connection between the elements πK,t, [16, Lemma 1.1] and Lem-
ma 2.1, which is the p-adic version of [16, Lemma 1.1], is explained in the
next lemma.

The number E = (ζp − 1)p−1/p is a unit of the field Q(ζp) such that

E ≡ 1 (mod (ζp − 1)) and Ep
i ≡ 1 (mod pi) for each natural number i.

Lemma 2.2. We have πK,t = (−1)k+1NQ(ζp)/K((ζp − 1)Ep
t−1+···+p+1)

and limt→∞ πK,t = πK with respect to the p-adic metric.

Proof. Using [11, Lemma 1] we verify that πt = (ζp − 1)Ep
t−1+···+p+1

satisfies conditions (i)–(iii) for the field Q(ζp) and πp−1t ≡ −p (mod pt).

Moreover, the congruences Ep
i ≡ 1 (mod pi) imply that πt1 ≡ πt2 (mod pt1)

for t2 > t1, showing the existence of the p-adic limit limt→∞ πt = Π ∈ Qp(ζp)
for which Πp−1 = −p and ζp ≡ 1 + Π (mod Π2); this proves the claim in
the case K = Q(ζp). In the general case, πK,t = (−1)k+1NQ(ζp)/K(πt) and

πK,t ≡ πkt (mod pt) by [16, proof of Lemma 1.1]. This implies limt→∞ πK,t =
πk = πK .

For this reason, it is more natural to work in the p-adic completions Kp

rather than in K itself.

3. Expansions of ζp modulo powers of π. Define

W =
(p− 1)! + 1

p
, Aj =

j∑
i=1

1

i
, A0 = 0,

Hj =

j∑
i=1

1

i2
, H0 = 0, Lj =

j∑
i=1

1

i3
, L0 = 0.
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In the proof of Lemma 2.1, it was established that ζp ≡
∑p−2

i=0
1
i!π

i

(mod πp−1). Papers [9] and [10] give explicit congruences for ζp modulo
π2p−1 and π3p−2, respectively.

Recall the definition of the Dwork series Eπ(X) = exp(πX − πXp).
By [14, Theorem 14.3.2], we have Eπ(1) = ζp. To obtain a representa-
tion for ζp modulo a power of p, it is possible to appropriately truncate
the above Dwork series. For example, according to [14, Lemma 14.2.2],
to obtain a congruence modulo p2 it suffices to truncate Eπ(X) modulo
X2(p+1)+1.

A more explicit approach is to use the representation

ζp =

p−2∑
i=0

(
1

p− 1

τ(θ−i)

πi

)
πi

derived earlier and the Gross–Koblitz formula. According to [2, (11.2.12)],
this formula states that τ(θ−i)/πi = −Γp

(
i

p−1
)
, where Γp(x) is the p-adic

Gamma function.
To explain this approach, we now derive an explicit congruence for ζp

modulo p4. For simplicity assume that p ≡ 1 (mod 4). Then Lp−1 ≡ 0
(mod p) and also Hp−1 ≡ 0 (mod p). Furthermore, since

2Ap−1 =

p−1∑
i=1

(
1

i
+

1

p− i

)
= p

p−1∑
i=1

1

i(p− i)
≡ −pHp−1 ≡ 0 (mod p2),

we also have Ap−1 ≡ 0 (mod p2).

Proposition 3.1. Let p ≡ 1 (mod 4) be a prime. Then

ζp ≡
p−2∑
i=0

cp−1−iπ
i (mod p4),

where

ci = i!(−1)i
(

1− ipW + p2
(
−iW +

i(i− 1)

2
W 2

)
+ p3

(
i(2i− 1)

2
W 2 − i(i− 1)(i− 2)

6
W 3

))
·
(

1 + p

(
iAi−1 +

(i− 1)i

2
Ap−1

)
+ p2

(
iAi−1 + i2

(
A2
i−1
2
− Hi−1

2

)
− (i− 1)i(2i− 1)

12
Hp−1

)
+ p3

(
iAi−1 + i2

(
A2
i−1
2
− Hi−1

2

)
+ i3

(
A3
i−1
6
− Ai−1Hi−1

2
+
Li−1

3

)))
.
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Proof. It is enough to find certain values of p-adic Gamma functions
modulo p4. We have

Γp

(
1− i

p− 1

)
≡ Γp

(
1 +

(p4 − 1)i

p− 1

)
= Γp

(
1 + i(1 + p+ p2 + p3)

)
= −

i(1+p+p2+p3)∏
j=1

(p,j)=1

j (mod p4).

We write

1

p− 1

i∏
d=1

(ip3 + ip2 + ip+ d)

≡ i!
(

1 + ipAi−1 + ip2Ai−1 + i2p2
(
1
2A

2
i−1 − 1

2Hi−1
)

+ ip3Ai−1

+ i2p3
(
1
2A

2
i−1− 1

2Hi−1
)

+ i3p3
(
1
6A

3
i−1− 1

2Ai−1Hi−1 + 1
3Li−1

))
(mod p4)

and
p−1∏
d=1

(ap3 + bp2 + cp+ d)

= (p− 1)!
(

1 + cpAp−1 + bp2Ap−1 + c2p2
(
1
2A

2
p−1 − 1

2Hp−1
)

+ ap3Ap−1

+ bcp3
(
1
2A

2
p−1 − 1

2Hp−1
)

+ c3p3
(
1
6A

3
p−1 − 1

2Ap−1Hp−1 + 1
3Lp−1

))
≡ (−1 + pW )

(
1 + cpAp−1 − c2p2 12Hp−1

)
(mod p4).

Next,

i−1∏
c=0

p−1∏
d=1

(ip3 + ip2 + cp+ d)

≡ (−1 + pW )i
i−1∏
c=0

(
1 + cpAp−1 − c2p2 12Hp−1

)
≡ (−1 + pW )i

(
1 +

(i− 1)i

2
pAp−1 −

(i− 1)i(2i− 1)

6
p2 12Hp−1

)
(mod p4)

and
p−1∏
c=0

p−1∏
d=1

(ap3 + bp2 + cp+ d) ≡ (−1 + pW )p
p−1∏
c=0

(
1 + cpAp−1 − c2p2 12Hp−1

)
≡ (−1 + pW )p (mod p4).

Consequently,
i−1∏
b=0

p−1∏
c=0

p−1∏
d=1

(ip3 + bp2 + cp+ d) ≡ (−1 + pW )ip (mod p4)
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and
i−1∏
a=0

p−1∏
b=0

p−1∏
c=0

p−1∏
d=1

(ap3 + bp2 + cp+ d) ≡ (−1 + pW )ip
2

(mod p4).

Combining all together we get

Γp

(
1− i

p− 1

)
≡ −(−1 + pW )i(1+p+p

2)i!

(
1 +

(i− 1)i

2
pAp−1 −

(i− 1)i(2i− 1)

6
p2 12Hp−1

)
·
(

1 + ipAi−1 + ip2Ai−1 + i2p2
(
1
2A

2
i−1 − 1

2Hi−1
)

+ ip3Ai−1

+ i2p3
(
1
2A

2
i−1− 1

2Hi−1
)

+ i3p3
(
1
6A

3
i−1− 1

2Ai−1Hi−1 + 1
3Li−1

))
(mod p4),

and the statement follows.

Using [14, Theorem 14.1.3], which implies Γp
(

i
p−1
)
Γp
(
1− i

p−1
)

= (−1)i,

we see immediately that the above proposition extends the expansions of ζp
obtained in [9] and [10]. Hence the representation of ζp modulo pt follows
from the Gross–Koblitz formula.

4. Generalized Kummer congruences and p-adic L-functions. In
this section we derive a formula relating values of p-adic L-functions at 1 to
generalized Kummer congruences.

Proposition 4.1. Let χ = θkj be a nontrivial character corresponding
to a field K (that is, 1 ≤ j ≤ n− 1). Then

Lp(1, χ) =
∞∑
s=0

(−1)s
j(j + n) · · · (j + (s− 1)n)

s!ns
Cs,

where

Cs = −
s∑
l=0

(−1)s−l
(
s

l

)
Bjk+l(p−1)

jk + l(p− 1)
(1− pjk+l(p−1)−1) ≡ 0 (mod ps).

Proof. From the construction of the p-adic L-function (see [19, Theo-
rem 5.11]) corresponding to χ we have

Lp(1− (ns+ j)k, χ) = −
B(ns+j)k

(ns+ j)k
(1− p(ns+j)k−1).

The sequence of negative integers {−us = 1−(ns+j)k = 1−jk−(p−1)s}∞s=0

is dense in the set Zp of p-adic integers. Therefore Lp(X,χ) is the unique
continuous function f(X) on Zp that satisfies

f(1− jk − (p− 1)s) = −
Bjk+(p−1)s

jk + (p− 1)s
(1− pjk+(p−1)s−1).
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Using p-adic interpolation as in [3, pp. 322 and 333], we obtain

f(X) =
∞∑
s=0

KsQs(X),

where

Ps(X) = (X−1+ jk)(X−1+ jk+(p−1)) · · · (X−1+ jk+(s−1)(p−1)),

Ps(1− jk − s(p− 1)) = (−1)ss!(p− 1)s,

P
′
s+1(1− jk − l(p− 1)) = (−1)ll!(s− l)!(p− 1)s,

Qs(X) =
Ps(X)

Ps(1− jk − s(p− 1))

and

Cs =
s∑
l=0

Ps(1− jk − s(p− 1))

P
′
s+1(1− jk − l(p− 1))

f(1− jk − l(p− 1))

= −
s∑
l=0

(−1)ss!(p− 1)s

(−1)ll!(s− l)!(p− 1)s
Bjk+l(p−1)

jk + l(p− 1)
(1− pjk+l(p−1)−1)

= −
s∑
l=0

(−1)s−l
(
s

l

)
Bjk+l(p−1)

jk + l(p− 1)
(1− pjk+l(p−1)−1).

In particular,

Qs(1) =
(jk)(jk+kn) · · · (jk+(s−1)kn)

(−1)ss!(kn)s
= (−1)s

j(j+n) · · · (j+(s−1)n)

s!ns

and

Lp(1, χ) = f(1) =
∞∑
s=0

(−1)s
j(j + n) · · · (j + (s− 1)n)

s!ns
Cs.

The generalized Kummer congruence (see [3, Corollary 6 of Theorem 7])

r∑
s=0

(−1)s
(
r

s

)
Bl+s(p−1)

l + s(p− 1)
(1− pl−1+s(p−1)) ≡ 0 (mod pr)

which is valid for l not divisible by p− 1 concludes the proof.

5. p-adic logarithms. In [7], [9] and [13], explicit formulas for specific
sums of roots of polynomials corresponding to expansions of ζp were ob-
tained. We will show how these expressions correspond to p-adic logarithms
of units.

Let p(X) = a0X
d + a1X

d−1 + · · ·+ ad be a polynomial of degree d that

has roots λ1, . . . , λd. For each j, define sj = λj1 + · · ·+ λjd to be the sum of
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the jth powers of the roots of p(X). Recall that in the Introduction we have
assigned to a unit δ ∈ K the polynomial pK(X) and have denoted by Sr the
sum of the rth powers of the roots of pK(X).

Lemma 5.1. Let δ ∈ K be a unit such that δ = d0 + d1πK + · · · +
dn−1π

n−1
K , where di ∈ Kp, and p(X) = d0X

n−1 + d1X
n−2 + · · · + dn−1 be

the corresponding polynomial of degree n− 1. Then

Sr =

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
1

nπrK

n−1∑
i=0

ω−rki log(δσ
i
)

for r = 1, . . . , n− 1.

Proof. For i = 0, . . . , n− 1 let λ1,i, . . . , λn−1,i be the roots of

pi(X) = d0X
n−1 + d1ω

kiXn−2 + · · ·+ dn−1ω
(n−1)ki

and sj,i be the sum of the jth powers of these roots. Using Newton’s formulas
and induction we verify that sr+jn,i = sr+jn,0ω

kri for i, r = 1, . . . , n− 1 and

each j. Lemma 2.1 implies δσ
i

= d0(1− λ1,iπK) · · · (1− λn−1,iπK). Then

logp(δ
σi

) = logp(d0) +

n−1∑
l=1

∞∑
j=1

λjl,i
πjK
j

= logp(d0) +

∞∑
j=1

sj,i
πjK
j

= logp(d0) +

(
−psn,0

n
+ p2

s2n,0
2n

+ · · ·+ (−1)jpj
sjn,0
jn

+ · · ·
)

+
n−1∑
l=1

∞∑
j=0

(−1)jpj
sl+jn,0
l + jn

ωlkiπlK .

Since
∑n−1

i=0 ω
ki = 0 and δ is a unit, we obtain

0 = logp(1) =

n−1∑
i=0

logp(δ
σi

)

= n logp(d0) + n

(
−psn,0

n
+ p2

s2n,0
2n

+ · · ·+ (−1)jpj
sjn,0
jn

+ · · ·
)
.

Therefore we can write simply

logp(δ
σi

) =
n−1∑
l=1

∞∑
j=0

(−1)jpj
sl+jn,0
l + jn

ωlkiπlK

and
n−1∑
i=0

ω−rki logp(δ
σi

) = n
∞∑
j=0

(−1)jpj
sr+jn,0
r + jn

πrK .
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We will apply the previous lemma to the case when K = L and δ =

ζp + ζ−1p . Since δ = ησ2 , where η2 = ζ
(p−1)/2
p + ζ

(p+1)/2
p , we have

m−1∑
i=0

ω−2ri logp(δ
σi

) =

m−1∑
i=0

ω−2ri logp(η
σi+1

2 ) =
ω2r

2

p−1∑
i=1

ω−2ri logp(η
σi

2 )

=
χ(2)

2

p−1∑
j=1

χ(j) logp(ζ
−j/2
p + ζj/2p ),

where ω2ri = χ(2i) for a nontrivial even character χ = θ2r belonging to L.

Rewrite the expression

χ(2)

2

p−1∑
j=1

χ(j) logp(ζ
−j/2
p + ζj/2p )

=
χ(2)

2

p−1∑
j=1

χ(j)
(
logp(1− ζ2jp )− logp(1− ζjp)

)
=
χ(2)

2
(χ(2)− 1)

p−1∑
j=1

χ(j) logp(1− ζjp) =
χ(4)− χ(2)

2

−p
τ(χ)

Lp(1, χ)

according to [19, Theorem 5.18].

Assume now that ζp =
∑p−2

i=0 aiπ
i. Then ζp + ζ−1p =

∑m−1
i=0 a2iπ

i
L and

p(X) = a0X
m−1 +a2X

m−2 + · · ·+a2m−2 is the polynomial corresponding to
δ. According to Lemma 5.1 applied to L and δ, the corresponding Sr equals

1

mπrL

m−1∑
i=0

ω−2ri logp(δ
σi

) =
χ(4)− χ(2)

(p− 1)π2r
−p
τ(χ)

Lp(1, χ)

=
χ(4)− χ(2)

p− 1

−τ(χ)

π2r
Lp(1, θ

2r) =
θ2r(4)− θ2r(2)

p− 1
Γp

(
2r

p− 1

)
Lp(1, θ

2r)

by [19, Lemmas 4.7 and 4.8] and the Gross–Koblitz formula.

We have proved the following proposition.

Proposition 5.1. Let ζp =
∑p−2

i=0 aiπ
i, let λ1, . . . , λm−1 be the roots of

p(X) = 2a0X
m−1 + 2a2X

m−2 + · · ·+ 2a2m−2 and let sr = λr1 + · · ·+ λrm−1.
Then for r = 1, . . . ,m− 1 we have

∞∑
j=0

(−1)jpj
sr+jm
r + jm

=
θ2r(4)− θ2r(2)

p− 1
Γp

(
2r

p− 1

)
Lp(1, θ

2r)

= (θ2r(2)− θ2r(4))a2rLp(1, θ
2r).



292 F. Marko

6. p-adic regulator. In Proposition 5.1 we have applied Lemma 5.1 to
the field L and explained the appearance of p-adic L-functions in the context
of Jakubec’s work. We now apply Lemma 5.1 to the field K and a suitable
unit ε to obtain a relationship to the p-adic regulator of K.

Assume as before that ζp =
∑p−2

i=0 aiπ
i. Using the properties of the ele-

ment π, we see that βK = k
∑n−1

i=0 akiπ
i
K .

Proposition 6.1. Let ε =
∑n−1

i=0 xiβ
σi

K be a unit in K of index f ,

p(X) = k
n−1∑
i=0

aki(x0 + x1ω
ki + x2ω

2ki + · · ·+ xn−1ω
(n−1)ki)Xn−1−i,

d(K) be the discriminant and Rp(K) be the p-adic regulator of the field K.
If n is odd, then

(−1)(n−1)/2
n−1∏
r=1

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
fn−1

nn−2
Rp(K)√
d(K)

.

If n is even, then

(−1)n/2Γp

(
1

2

) n−1∏
r=1

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
fn−1

nn−2
Rp(K)√
d(K)

.

Proof. Since

ε = k

n−1∑
i=0

aki(x0 + x1ω
ki + x2ω

2ki + · · ·+ xn−1ω
(n−1)ki)πiK ,

the polynomial p(X) corresponds to ε. By Lemma 5.1,

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
1

nπrK

n−1∑
i=0

θ−rk(gi) logp(ε
σi

)

=
1

nπrK

∑
ρ∈Gal(K/Q)

χ(ρ) logp(ε
ρ)

for r = 1, . . . , n− 1, where χ(σi) = θ−rk(gi) is a nontrivial character corre-
sponding to the field K.

Therefore
n−1∏
r=1

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
n−1∏
r=1

1

nπrK

∑
ρ∈Gal(K/Q)

χ(ρ) logp(ε
ρ).

If n is odd, then the last expression equals

1

nn−1(−p)(n−1)/2
∏
χK 6=1

∑
ρ∈Gal(K/Q)

χ(ρ) logp(ε
ρ) = (−1)(n−1)/2

fn−1

nn−2
Rp(K)√
d(K)
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by [19, Theorem 3.11, Lemma 5.26 and p. 74]. As usual, since Rp(K) is
determined only up to a sign, we can choose it suitably and obtain the
desired equality.

If n is even, then

n−1∏
r=1

1

πrK
=

1

(−p)n/2−1
1

πm
=

1

(−p)n/2−1
−Γp(1/2)
√
p

by the Gross–Koblitz formula and [2, Theorem 1.3.4] because τ(θm) =
√
p.

The second statement follows.

We remark that Γp(1/2) is a fourth root of unity which is a primitive
root in the case p ≡ 1 (mod 4).

7. p-adic class number formula

Proposition 7.1. Let p ≡ 1 (mod 4) and p(X) be a polynomial corre-
sponding to NL/K(ζ1 + ζ−1p ) and sr be the sum of the rth powers of its roots.
Then

∞∑
j=0

(−1)jpj
sr+jn
r + jn

= (θkr(4)− θkr(2))
1

2n
Γp

(
r

n

)
Lp(1, θ

kr).

If n is odd, then

(−1)(n−1)/2
n−1∏
r=1

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
1

2n−1nn−2

∏
χK 6=1

Lp(1, χK).

If n is even, then

(−1)n/2Γp

(
1

2

) n−1∏
r=1

∞∑
j=0

(−1)jpj
sr+jn
r + jn

=
1

2n−1nn−2

∏
χK 6=1

Lp(1, χK).

Proof. If ζp =
∑p−2

i=0 aiπ
i, then the polynomial pL(X) = 2a0X

m−1 +
2a2X

m−2 + · · · + 2a2m−2 corresponds to ζp + ζ−1p . Denote the sum of the
ith powers of its roots by sL,i. Using Newton’s formulas and Lemma 2.1 we
verify that sr = (k/2)sL,kr/2 for each r = 1, . . . , n − 1. Therefore the first
statement follows from Proposition 5.1.

According to [14, Theorem 14.1.3], the condition p ≡ 1 (mod 4) im-
plies that

∏n−1
r=1 Γp(r/n) equals (−1)(n−1)/2 if n is odd, and it equals

(−1)n/2−1Γp(1/2) if n is even. Since
∏
χK 6=1(χK(4)−χK(2)) =

∏n
r=1(ω

2kr−ωkr)
= n and 1/Γp(1/2) = −Γp(1/2), the claims follow.

7.1. Proof of Theorem 1.1. According to [15, Theorem 1], it is pos-
sible to choose a unit ε ∈ K of index f coprime to p. (If n = l is an odd prime,
then K has a Minkowski unit of index 1, that is, its conjugations generate
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the group of units of the field K modulo ±1.) Therefore the existence of a
unit δ from the statement of Theorem 1.1 is guaranteed.

For equation (1) use Propositions 6.1 and 7.1, and the p-adic class num-
ber formula

2n−1h(K)Rp(K)√
d(K)

=
∏
χK 6=1

Lp(1, χK)

(see [19, Theorem 5.24]). Equation (2) follows from Proposition 4.1.

7.2. Elementary proof of equation (1) of Theorem 1.1. We will
give an elementary proof of (1) following an idea of Jakubec. For this
part, for simplicity, we will also assume that every nontrivial nth power
residue is congruent to a power of 2 modulo p. This guarantees that ηK =
NL/K(ζp + ζ−1p ) generates the group of cyclotomic units of K. In particular,
if g = 2 is a primitive root modulo p, then by [19, Proposition 8.11], the
unit

η2 = ζ−1/2p

1− ζ2p
1− ζp

= ζp−1/2p (1 + ζp) = ζ(p−1)/2p + ζ(p+1)/2
p

generates the group C(L) of cyclotomic units of L.

Proof of (1). The unit ηK = NL/K(ζ1 + ζ−1p ) generates the group of

cyclotomic units of K and the group 〈ηfK〉 generated by conjugations of ηfK
is contained in the group 〈δ〉 generated by conjugation of δ. Moreover, the
index e equals [〈δ〉 : 〈ε〉] = fn−2h(K) and if we write

ηfK = δc0σ(δ)c1 · · ·σn−2(δ)cn−2 ,

then [15, Lemma 1] implies e =
∣∣∏n−1

i=1 αi
∣∣, where

αi = c0 + c1ω
ki + · · ·+ cn−2ω

(n−2)ki.

For the polynomial p(X) assigned to ηfK , we compute the quantity

n−1∏
r=1

( ∞∑
j=0

(−1)jpj
sr+jn
r + jn

)
.

On the one hand, it is equal to

fn−1
n−1∏
r=1

( ∞∑
j=0

(−1)jpj
Tr+jn
r + jn

)
.

On the other hand, since each si equals αiSi, it also equals

n−1∏
r=1

αr

( ∞∑
j=0

(−1)jpj
Sr+jn
r + jn

)
= ±e

n−1∏
r=1

( ∞∑
j=0

(−1)jpj
Sr+jn
r + jn

)
.
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If n is a prime, it is possible to remove the ambiguity of the sign in
Theorem 1.1 (see e.g. [6]). Also, if n is a prime, then K contains a Minkowski
unit δ (for which f = 1) and Theorem 1.1 is equivalent to the p-adic class
number formula. The advantage of this refomulation is that it is possible to
find its elementary and explicit form modulo powers of p, in particular [9]
contains its explicit form modulo p2 and [13] modulo p3.

In [9], Jakubec formulated the basic idea of his elementary approach to
Theorem 1.1 modulo p2 with the help of some obscure map Φ. An explicit
formula in the case modulo p2 was subsequently obtained in [12]. Exten-
sion of this result to the case modulo p3 was prepared by [16] and carried
out in [13]. The reference to the map Φ was removed in the general case
modulo pt under some natural integrality conditions in [17].

8. Explicit formulas

8.1. Quadratic field

Proposition 8.1. Let p ≡ 1 (mod 4), K be a quadratic field and ε =
T + U

√
p > 1 be its fundamental unit, and let Q = U/T . Then

h(K)
∞∑
j=0

Q2j+1

2j + 1
pj =

∞∑
j=0

(
2j
j

)
4j

Kj ,

where

Kj =

j∑
l=0

(−1)l
(
j

l

)
B(j+2l)m

j + 2l
(1− p(j+2l)m−1) ≡ 0 (mod pj).

Proof. Following [7, p. 297], use Propositions 6.1 and 7.1, Theorem 1.1
and Proposition 4.1.

If we consider the above proposition modulo p, we obtain the classi-
cal Ankeny–Artin–Chowla congruence (see the introduction above or [19,
Theorem 5.37]). Explicit versions of the above congruence modulo p2 was
obtained in [12] and modulo p3 in [13].

8.2. Cubic field. As an illustration, we give an explicit congruence for
a cubic field K modulo p4.

Proposition 8.2. Let p ≡ 1 (mod 4), n = 3 and δ =
∑n−1

i=0 xiβ
σi

K be
a unit of K of index f coprime to p. Set

e1 =
x0 + x1ω

(p−1)/3 + x2ω
2(p−1)/3

x0 + x1 + x2
, e2 =

x0 + x1ω
2(p−1)/3 + x2ω

(p−1)/3

x0 + x1 + x2
,

and denote by J a Jacobi sum J(θ−(p−1)/3, θ−(p−1)/3) corresponding to a
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cubic character θ−(p−1)/3. Then

h(K)

f

·
[
e1 + p(Je41 + 4e21e2 + 2J−1e22) + p2(J2e71 + 7Je51e

2
2 + 14e31e

2
2 + 7J−1e1e

3
2)

+ p3(J4e111 + 11J3e91e2 + 44J2e71e
2
2 + 77Je51e

3
2 + 55e31e

4
2 + 11J−1e1e

5
2)
]

·
[
Je21 + 2e2 + p(J2e51 + 5Je31e2 + 5e1e

2
2)

+ p2(J3e81 + 8J2e61e2 + 20Je41e
2
2 + 16e21e

3
2 + 2J−1e42)

+ p3(J4e111 + 11J3e91e2 + 44J2e71e
2
2 + 77Je51e

3
2 + 55e31e

4
2 + 11J−1e1e

5
2)
]

≡ ±
[
Bk
k

+
1

3
m

(
Bk
k
− B4k

4k

)
+

2

9
m

(
Bk
k
− 2

B4k

4k
+
B7k

7k

)
+

14

81

(
sBk
k
− 3

B4k

4k
+ 3

B7k

7k
− B10k

10k

)]
·
[
B2k

2k
+

2

3

(
B2k

2k
− B5k

5k

)
+

5

9

(
B2k

2k
− 2

B5k

5k
+
B8k

8k

)
+

40

81

(
B2k

2k
− 3

B5k

5k
+ 3

B8k

8k
− B11k

11k

)]
(mod p4).

Proof. Using Theorem 1.1, we can compute Si from the quadratic poly-
nomial

X2 + Γp(1/3)e1X + Γp(2/3)e2 = X2 + γe1X − e2γ−1,
where γ = Γp(1/3). Since γ3 = J , Newton’s formulas imply

−S1γ−1 = e1,

S2γ = Je21 + 2e2,

S4γ
−1 = Je41 + 4e21e2 + 2J−1e22,

−S5γ = J2e51 + 5Je31e2 + 5e1e
2
2,

−S7γ−1 = J2e71 + 7Je51e
2
2 + 14e31e

2
2 + 7J−1e1e

3
2,

S8γ = J3e81 + 8J2e61e2 + 20Je41e
2
2 + 16e21e

3
2 + 2J−1e42,

S10γ
−1 = J3e101 + 10J2e81e2 + 35Je61e

2
2 + 50e41e

3
2 + 25J−1e21e

4
2 + 2J−2e52,

−S11γ = J4e111 + 11J3e91e2 + 44J2e71e
2
2 + 77Je51e

3
2 + 55e31e

4
2 + 11J−1e1e

5
2,

and the claim follows.

There are similar formulas modulo higher powers of p that relate h(K), f ,
Bernoulli numbers, e1, e2 and the cubic Jacobi sum J . The cubic Jacobi sum
is determined explicitly in [2, Section 3.1] as J = (r3 + is3

√
3)/2, where

4p = r23 + 27s23 and r3 ≡ 1 (mod 3). Additionally, J−1 = (r3 − is3
√

2)/(2p).
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8.3. Other fields. To obtain explicit congruences for fields K of higher
degrees n, we need to understand the fundamental units of K. This is known
only for special types of fields of degree higher than 3, say for quintic fields
of Lehmer’s type. Congruences modulo p2 for these types of fields were
investigated in [12]. As in the case of the cubic field K above, the explicit
congruences involve coefficients

x0 + x1ω
ki + x2ω

2ki + · · ·+ xn−1ω
(n−1)ki

x0 + · · ·+ xn−1
and Jacobi sums of order n.
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