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Double integrals on a weighted projective plane
and Hilbert modular functions for Q(

√
5)
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Atsuhira Nagano (Tokyo)

1. Introduction. The aim of this paper is to give a canonical extension
of classical elliptic integrals to the Hilbert modular case for Q(

√
5).

The arrangement of four points on the projective line P1(C) is deeply
related to elliptic modular functions for the principal congruence subgroup
Γ (2). The double covering of P1(C) branched at four points gives an elliptic
curve. The coordinate of the configuration space of four branch points on
P1(C) gives a modular function for Γ (2) via the period mapping of the
family of the corresponding elliptic curves.

One of the most successful extensions of the above classical situation to
several variables is given by K. Matsumoto, T. Sasaki and M. Yoshida [8].
They showed an interesting relation between the arrangement of six lines
on the projective plane P2(C) and modular functions on a 4-dimensional
bounded symmetric space of type I via the period mapping of the family of
K3 surfaces coming from the arrangement of six lines.

We shall give another natural extension of classical elliptic integrals to
the case of several variables. Hilbert modular functions for real quadratic
fields are very popular among modular functions of several variables. How-
ever, to the best of the author’s knowledge, to obtain simple and geometric
extensions of classical elliptic integrals to Hilbert modular cases is a highly
non-trivial problem. Although Hilbert modular functions with level 2 struc-
ture can be obtained from the moduli of hyperelliptic curves of genus 2, they
are characterized by complicated modular equations (see Remark 2.9).

In this paper, we focus on Hilbert modular functions for Q(
√

5). Since
the real quadratic field Q(

√
5) gives the smallest discriminant, several re-

searchers (for example, K. B. Gundlach [2], F. Hirzebruch [4], R. Müller [10])
studied this case in detail. We shall give a simple and geometric interpre-
tation of Hilbert modular functions in this case. We consider the double
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integrals of the algebraic function F of (3.2) in two variables on chambers
surrounded by the parabola P of (2.2) and the quintic curve Q of (2.3) with
the (2, 5)-cusp. These double integrals are equal to the period integrals of
the Kummer surface K(X,Y ) of (2.1). The equation (2.1) gives a double
covering of the weighted projective plane P(1 : 1 : 2) branched along P
and Q, and the complex parameters (X,Y ) determine the arrangement of
the branch loci. The parameters (X,Y ) are regarded as a pair of Hilbert
modular functions for Q(

√
5) via explicit double integrals (see Remark 2.16

and Theorem 3.9). Our results are coherent with the theory of classical
elliptic integrals (see Table 1). The results of this paper are used in [12].

Table 1. Classical elliptic integrals and the result of this paper

Classical story Result of this paper

Base space P1(C) P(1 : 1 : 2)

Branch loci 4 points P and Q

Variety Elliptic curve Kummer surface K(X,Y )

Arrangement Elliptic modular for Γ (2) Hilbert modular for Q(
√

5)

The author conjectures that we can similarly obtain simple and geo-
metric interpretations of other Hilbert modular functions, using suitable
weighted projective planes. Our results might give a first step in such an
approach to Hilbert modular functions.

2. The Kummer surface K(X,Y ) and Hilbert modular functions
for Q(

√
5). We consider the period mapping for the family K = {K(X,Y )}

of surfaces where

(2.1) K(X,Y ) : v2 = (u2 − 2y5)(u− (5y2 − 10Xy + Y ))

for (X,Y ) 6= (0, 0). The equation (2.1) gives a double covering of the (y, u)-
space branched along the parabola

(2.2) u = 5y2 − 10Xy + Y

and the quintic curve

(2.3) u2 = 2y5

with the (2, 5)-cusp (y, u) = (0, 0). The parameters (X,Y ) define the ar-
rangement of the divisors P and Q. In this section, we study the properties
of the family K.

2.1. Hilbert modular functions for Q(
√

5) and the K3 surface
S(X,Y ). In this subsection, we survey the results of [11].

Let O be the ring of integers in the real quadratic field Q(
√

5). Set
H = {z ∈ C | Im(z) > 0}. The Hilbert modular group PSL(2,O) acts on
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H×H by (
α β

γ δ

)
: (z1, z2) 7→

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
,

for g =
( α β
γ δ

)
∈ PSL(2,O), where ′ is the conjugate in Q(

√
5). We also

consider the involution τ : (z1, z2) 7→ (z2, z1).

Definition 2.1. If a holomorphic function g on H × H satisfies the
transformation law

g

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
= (γz1 + δ)k(γ′z2 + δ′)kg(z1, z2)

for any
( α β
γ δ

)
∈ PSL(2,O), we call g a Hilbert modular form of weight k for

Q(
√

5). If g(z2, z1) = g(z1, z2), then g is called a symmetric modular form.
If a meromorphic function f on H×H satisfies

f

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
= f(z1, z2)

for any
( α β
γ δ

)
∈ PSL(2,O), we call f a Hilbert modular function for Q(

√
5).

Remark 2.2. Hirzebruch [4] showed that the symmetric Hilbert modu-
lar surface (H×H)/〈PSL(2,O), τ〉 is isomorphic to the weighted projective
plane P(1 : 3 : 5) = {(A : B : C)}. The point (A : B : C) = (1 : 0 : 0) gives
the cusp (

√
−1∞,

√
−1∞) of the modular surface. Let

(2.4) X =
B

A3
, Y =

C

A5
.

The pair (X,Y ) defines a system of affine coordinates of {A 6= 0} of
P(1 : 3 : 5).

Remark 2.3. Müller [10] introduced certain Hilbert modular forms g2
(s6, s10, s15, resp.) of weight 2 (6, 10, 15, resp.). They generate the ring of
Hilbert modular forms for Q(

√
5).

A K3 surface X is a simply connected compact complex surface with
KX = 0. The homology group H2(X,Z) has a unimodular lattice structure.
Let NS(X), the Néron–Severi lattice of X, be the sublattice in H2(X,Z)
generated by the divisors onX. The orthogonal complement Tr(X) of NS(X)
in H2(X,Z) is called the transcendental lattice of X.

We consider the family F = {S(A : B : C) | (A : B : C) ∈ P(1 : 3 : 5)
− {(1 : 0 : 0)}} of K3 surfaces with an elliptic fibration given by the affine
equation

(2.5) S(A : B : C) : z20 = x30 − 4y20(4y0 − 5A)x20 + 20By30x0 + Cy40.

For a generic point (A : B : C) ∈ P(1 : 3 : 5), the intersection matrix of
the Néron–Severi lattice NS(S(A : B : C)) is given by E8(−1) ⊕ E8(−1) ⊕
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2 1
1 −2

)
(see [11]). Set D = {ξ ∈ P3(C) | ξAtξ = 0, ξAtξ > 0}, where

A = U ⊕
(
2 1
1 −2

)
gives the transcendental lattice of S(A : B : C). Here, U

is a parabolic lattice of rank 2. Note that D is composed of two connected
components D+ and D−. We let (1 : 1 : −

√
−1 : 0) ∈ D+. In [11], we

considered the multivalued period mapping P(1 : 3 : 5)−{(1 : 0 : 0)} → D+

for F given by

(2.6) Φ : (A : B : C) 7→
( �

Γ1

ω :
�

Γ2

ω :
�

Γ3

ω :
�

Γ4

ω
)
,

where ω is a holomorphic 2-form up to a constant factor and Γ1, . . . , Γ4 are
2-cycles on S(A : B : C).

Remark 2.4. Let {Γ̌1, . . . , Γ̌4} be a basis of the transcendental lattice A.
We can take 2-cycles Γ1, . . . , Γ4 such that (Γj · Γ̌k) = δj,k (j, k = 1, . . . , 4).
These 2-cycles Γ1, . . . , Γ4 give the period mapping (2.6).

Note that we have a biholomorphic mapping j : H × H → D+. The
multivalued mapping j−1 ◦ Φ on {A 6= 0} is given by

(2.7) (X,Y ) 7→ (z1, z2) =

(
−
	
Γ3
ω + 1−

√
5

2

	
Γ4
ω	

Γ2
ω

,−
	
Γ3
ω + 1+

√
5

2

	
Γ4
ω	

Γ2
ω

)
.

Theorem 2.5 ([11]). The multivalued period mapping (2.7) gives a de-
veloping map of the Hilbert modular orbifold (H×H)/〈PSL(2,O), τ〉 with
the branch divisor

Y (−1728X5 + 64(5X2 − Y )2 + 720X3Y − 80XY 2 + Y 3) = 0.

The inverse of (2.7) gives a pair (X(z1, z2), Y (z1, z2)) of symmetric Hilbert
modular functions for Q(

√
5).

Remark 2.6. The icosahedral group is deeply related to Hilbert modu-
lar functions for Q(

√
5) (see [4] or [6]). Since the divisor

(2.8) − 1728X5 + 64(5X2 − Y )2 + 720X3Y − 80XY 2 + Y 3 = 0

is derived from Klein’s icosahedral invariants, this relation is called Klein’s
icosahedral relation.

Remark 2.7. The inverse (X(z1, z2), Y (z1, z2)) of (2.7) has an explicit
expression in terms of Müller’s modular forms g2, s6, s10 (see [11]).

2.2. The Kummer surface for the Humbert surface of invari-
ant 5. In this subsection, we recall the properties of the Humbert surface
of invariant 5.

Let S2 be the Siegel upper half-plane of degree 2. The symplectic group
Sp(4,Z) acts on S2. The quotient space S2/Sp(4,Z) gives the moduli space
of principally polarized Abelian surfaces. Take Ω =

(
σ1 σ2
σ2 σ3

)
∈ S2. Let LΩ

be the lattice generated by the columns of the matrix (Ω, I2). The complex
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torus ZΩ = C/LΩ of dimension 2 gives a principally polarized Abelian sur-
face. We note that ZΩ corresponds to the Jacobian variety of a hyperelliptic
curve of genus 2.

Let T be the involution of a 2-dimensional complex torus Z induced by
(z1, z2) 7→ (−z1,−z2) on the universal covering C2. The minimal resolution
Kum(Z) = Z/〈id, T 〉 is called the Kummer surface. Kum(Z) is a K3 surface.
Note that Z is an Abelian surface if and only if Kum(Z) is an algebraic K3
surface.

Remark 2.8. Let Ω ∈ S2 and ZΩ be the corresponding principally
polarized Abelian surface. The Kummer surface Kum(ZΩ) can be given by
the double covering of P2(C) = {(ζ0 : ζ1 : ζ2)} whose branch divisor is given
by the six lines ζ2 = 0, ζ2 + 2ζ1 + ζ0 = 0, ζ0 = 0 and ζ2 + 2λjζ1 + λ2jζ0 = 0,
(j ∈ {1, 2, 3}) with three complex parameters λ1, λ2 and λ3. In this paper,
this Kummer surface is denoted by KH(λ1, λ2, λ3).

An element Ω =
(
σ1 σ2
σ2 σ3

)
∈ S2 is said to have a singular relation with

invariant ∆ if there exist relatively prime integers a, b, c, d, e such that
aσ1 + bσ2 + cσ3 + d(σ22 − σ1σ3) + e = 0 and ∆ = b2 − 4ac − 4de. Set
N5 = {Ω ∈ S2 | σ has a singular relation with invariant ∆}. Let p be
the canonical projection S2 → S2/Sp(4,Z). Then H5 = p(N5), called the
Humbert surface of invariant 5, is the moduli space of principally polarized
Abelian surfaces A such that O ⊂ End(A).

Remark 2.9. Humbert [5] showed that Ω has s singular relation with
∆ = 5 if and only if

(2.9) 4(λ21λ3 − λ22 + λ23(1− λ1) + λ22λ3)(λ
2
1λ2λ3 − λ1λ22λ3)

= (λ21(λ2 + 1)λ3 − λ22(λ1 + λ3) + (1− λ1)λ2λ23 + λ1(λ2 − λ3))2

(see also [3, Theorem 2.9]). This relation is called Humbert’s modular equa-
tion for ∆ = 5. Let Q : M2,2 → S2/Sp(4,Z) be the natural projection,
where M2,2 is the moduli space of genus two curves with level 2 structure.
The equation (2.9) defines a component of the inverse image Q−1(H5).

This modular equation is studied in detail by several researchers (for
example, Hashimoto and Murabayashi [3]). However, since (2.9) is compli-
cated, studying the moduli properties of the family {KH(λ1, λ2, λ3)} corre-
sponding to H5 does not seem to be easy.

2.3. The Shioda–Inose structure. Let X be an algebraic K3 surface.
Let ω be the unique holomorphic 2-form on X up to a constant factor. If an
involution ι : X → X satisfies ι∗ω = ω, we call ι a symplectic involution. Set
G = 〈ι, id〉 ⊂ Aut(X) and Ỹ = X/G. If Y → Ỹ is the minimal resolution,
then Y is a K3 surface. We have the rational quotient mapping χ : X 99K Y .
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Definition 2.10. We say that a K3 surface X admits a Shioda–Inose
structure if there exists a symplectic involution ι ∈ Aut(X) with rational
quotient mapping χ : X 99K Y such that Y is a Kummer surface and χ∗
induces a Hodge isometry Tr(X)(2) ' Tr(Y ).

Theorem 2.11 (Morrison [9]). The K3 surface X admits a Shioda–
Inose structure if and only if there is an embedding E8(−1) ⊕ E8(−1) ↪→
NS(X). A symplectic involution ι exchanging the two copies of E8(−1) in-
duces a Shioda–Inose structure.

2.4. Kummer surface K(X,Y ). By Theorem 2.11, the K3 surface
S(A : B : C) for (A : B : C) 6= (1 : 0 : 0) admits a Shioda–Inose structure.
Therefore, there exists a Kummer surface K(A : B : C) and a symplectic
involution ι of S(A : B : C) such that the corresponding rational quotient
mapping χ : S(A : B : C) 99K K(A : B : C) induces a Hodge isometry
Tr(S(A : B : C))(2) ' Tr(K(A : B : C)).

We shall obtain an explicit defining equation of K(A : B : C) by realizing
the above symplectic involution ι. To find such an involution, we need a
special elliptic fibration on S(A : B : C) given by the following lemma.

Lemma 2.12. The defining equation of S(A : B : C) in (2.5) is bira-
tionally equivalent to

(2.10) z21 = x1(x
2
1 + (20Ay21 − 20By1 + C)x1 + 16y51).

Proof. Apply the birational transformation

x0 =
x1

16y1
, y0 = − x1

16y21
, z0 =

x1z1
256y41

to (2.5).

a0

a0'

a1

a1
¢

a2
¢

a3 a3
¢

a2

a4 a4
¢

c3

c1

c2

b0

b1

c3'

c1'

c2'

HOL

HO'L

Fig. 1. The singular fibres given by (2.10)
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The mapping π1 : S(A : B : C) → P1(C) given by (x1, y1, z1) 7→ y1
defines an elliptic fibration. The fibre π−11 (0) (π−11 (∞), resp.) is a singular
fibre of π1 of type I10 (III∗, resp.). We set π−11 (0) = a0 + a1 + · · · + a4 +
a′0 + a′1 + · · ·+ a′4 and π−11 (∞) = b0 + b1 + c1 + c2 + c3 + c′1 + c′2 + c′3. Let O
be the zero of the Mordell–Weil group. Let O′ be the section of π1 given by
(x1, y1, z1) = (0, y1, 0). Note that 2O′ = O (see Figure 1).

We have an involution ι of S(A : B : C) given by

(x1, y1, z1) 7→
(

16y51
x1

, y1,
−16y51z1

x21

)
.

This is a symplectic involution. Note that ι is a van Geemen–Sarti involution
for elliptic surfaces (see [1]). Let G = 〈id, ι〉. Set

(2.11) u1 = x1 +
16y51
x1

, v1 =
x21 − 16y51

z1
.

They are G-invariants. We can see that (x1, y1, z1) 7→ (u1, y1, v1) defines a
2-to-1 mapping.

Theorem 2.13. The defining equation of the Kummer surface K(A :
B : C) is given by

(2.12) v2 = (u2 − 2y5)(u− (5Ay2 − 10By + C)).

For generic (A : B : C) ∈ P(1 : 3 : 5), the intersection matrix of the
transcendental lattice Tr(K(A : B : C)) is given by

A(2) =

(
0 2

2 0

)
⊕
(

4 2

2 −4

)
.

Proof. We can check directly that ι interchanges the two copies of E8(−1)
in NS(S(A : B : C)) (see Figure 2). Therefore, by Theorem 2.11, the involu-
tion ι gives a Shioda–Inose structure on S(A : B : C).

a0 a0'a1a2 a3

¢a1 a4

¢

a4a1

¢

c3'c1' c2'c3c1 c2HOL HO'L

æ æ æ

æ

æ æ æ æ æ æ

æ

æ æ æ æ æ

Fig. 2. E8(−1) lattices in NS(S(A : B : C))

From (2.10), (2.11) and the birational transformation

u1 = −u, v1 =

√
−1 v

u− (5Ay2 − 10By + C)
, y1 =

y

2
,

we can check that the defining equation of S(A : B : C)/G is (2.12).
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The form of the intersection matrix of Tr(K(A : B : C)) follows from the
fact that ι gives the Shioda–Inose structure.

We thus have the family K̃ = {K(A : B : C)} of Kummer surfaces. The
projection (y, u, v) 7→ (y, u) defines the double covering P : K(A : B : C)→
P(1 : 1 : 2) = {(ζ0 : ζ1 : ζ2)}, where y = ζ1/ζ0 and u = ζ2/ζ

2
0 on {ζ0 6= 0}.

Its branch divisor is given by P̃ ∪ Q̃, where

(2.13)
P̃ ∩ {ζ0 6= 0} = {(y, u) | u = 5Ay2 − 10By + C},
Q̃ ∩ {ζ0 6= 0} = {(y, u) | u2 = 2y5}.

Remark 2.14. The equation (2.12) gives an expression of the Kum-
mer surface Kum(ZΩ) for Ω ∈ H5. It is different from the expression of
KH(λ1, λ2, λ3) in Remark 2.9. Our expression has some advantages. For ex-
ample, our parameter space has a simple compactification by adding the
point (A : B : C) = (1 : 0 : 0). This point is equal to the cusp of the Hilbert
modular surface (H×H)/〈PSL(2,O), τ〉 (see Remark 2.2).

Let ωK be the unique holomorphic 2-form on K(A : B : C) up to a
constant factor. Set χ∗(Γj) = ∆j for j ∈ {1, 2, 3, 4}. The period mapping
for K is given by

(2.14) ΦK : (A : B : C) 7→
( �

∆1

ωK :
�

∆2

ωK :
�

∆3

ωK :
�

∆4

ωK

)
∈ D.

Since χ∗(ωK) = ω and χ∗(Γj) = ∆j , we clearly have the following propo-
sition.

Proposition 2.15.( �

Γ1

ω : · · · :
�

Γ4

ω
)

=
( �

∆1

ωK : · · · :
�

∆4

ωK

)
.

Remark 2.16. According to Theorem 2.5 and the above proposition,
the inverse of j−1 ◦ ΦK gives the pair (X,Y ) of Hilbert modular functions
for Q(

√
5) via the period mapping ΦK .

Consider the projection π : K(A : B : C)→ P1(C) given by (u, y, v) 7→ y.
The elliptic surface K((A : B : C), π,P1(C)) has the singular fibre π−1(0)
(π−1(∞), resp.) of type I5 (III∗, resp.) and five other singular fibres
π−1(s1), . . . , π

−1(s5) of type I2.

Proposition 2.17. The vector space NS(K(A : B : C))⊗ZQ is generated
by the components of the singular fibres, the section O given by the zero of
the Mordell–Weil group and a general fibre F of π.

Proof. NS(K(A : B : C))⊗ZQ is an 18-dimensional vector space over Q.

Set π−1(y) =
⋃r(y)
j=0 Θy,j , where Θy,j is a connected component and Θy,0 ∩O

6= ∅. By calculating the intersection numbers, we can check that the 18
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divisors Θ0,1, . . . , Θ0,4, Θs1,1, . . . , Θs5,1, Θ∞,1, . . . , Θ∞,7, O and F generate a
sublattice of NS(K(A : B : C)) of rank 18. Hence the claim follows.

By (2.4) and (2.12), we have K(X,Y ) in (2.1).

3. Double integrals of an algebraic function on chambers sur-
rounded by a parabola and a quintic curve. In this section, we obtain
an extension of classical elliptic integrals. We shall study a single-valued
branch U0 → D+ of the multivalued period mapping ΦK explicitly where
U0 is the open set in R2 given by Figure 3. By the analytic continuation of
this single-valued branch, we obtain the multivalued period mapping ΦK of
(2.14). The arrangement of P of (2.2) and Q of (2.3) determines the cham-
bers R1, R2, R3 and R4 in Figure 9. Theorem 3.9 gives an extension of the
classical elliptic integrals to the Hilbert modular case for Q(

√
5).

3.1. The elliptic curve E(y). For y > 0, set α(y) = y2
√

2y, β(y) =
−y2
√

2y and p(y) = 5y2 − 10Xy + Y where
√
y > 0. Note that α(y), β(y)

and p(y) are real valued analytic functions for y ∈ R+. Set

(3.1) E(y) : v2 = (u− α(y))(u− β(y))(u− p(y))

for y ∈ R+. Of course, E(y) gives the fibre for y ∈ R+ of the elliptic surface
(K(X,Y ), π,P1(C)). The discriminant of the right hand side of (3.1) for u
has five roots in the y-plane.

Let U0 be the domain in R2 = {(X,Y )} described in Figure 3. The
curve in Figure 3 is Klein’s icosahedral relation in (2.8). If (X,Y ) ∈ U0,

Fig. 3. The domain U0 in (X,Y )-space R2.

the five roots of the discriminant of the right hand side of (3.1) for u are
in R+ (⊂ y-space). So, we let s1 = s1(X,Y ), s2 = s2(X,Y ), s3 = s3(X,Y ),
s4 = s4(X,Y ) and s5 = s5(X,Y ) be these five roots such that 0 < s1 <
s2 < s3 < s4 < s5.
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For (X,Y ) ∈ U0 and sj−1 < y < sj (j = 0, . . . , 6), we denote the right
hand side of E(y) by (u − w1(y))(u − w2(y))(u − w3(y)), where w1(y) <
w2(y) < w3(y) (see Table 2 and Figure 4).

Table 2. The correspondence between {w1, w2, w3} and {α, β, p}

0 < y < s1 s1 < y < s2 s2 < y < s3 s3 < y < s4 s4 < y < s5 s5 < y

w1(y) β(y) β(y) p(y) β(y) β(y) β(y)

w2(y) α(y) p(y) β(y) p(y) α(y) p(y)

w3(y) p(y) α(y) α(y) α(y) p(y) α(y)

p

Α

Β

u

y
0.05 0.10 0.15 0.20

-0.1

0.1

0.2

0.3

0.4

0.5 u

y

Β

Α
p

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1

0

1

2

3

y

u

p

Α

Β

2 4 6 8 10 12

-400

-200

0

200

400

600

0 < y < 0.2 0 < y < 1.5 0 < y < 12

Fig. 4. The graph of u = α(y), β(y), p(y)

Since α(y), β(y) and p(y) are real for y ∈ R+, the function

F (y, u+) =
√

(u+ − α(y))(u+ − β(y))(u+ − p(y))

is single-valued on {(y, u+) | y ∈ R+, Im(u+) > 0}. Hence,

(3.2) F (y, u) = lim
t→0

F (y, u+
√
−1 t) ∈ R

is single-valued for sj−1 < y < sj and u 6∈ {α(y), β(y), p(y),∞}, as is seen
in Table 3.

Table 3. The values of F (u, y)

−∞ < u < w1 w1 < u < w2 w2 < u < w3 w3 < u <∞
F (u, y) −

√
−1R+ −R+

√
−1R+ R+

Take a base point b ∈ (s2, s3) (⊂ R). We can take a basis {γ1, γ2} of the
homology group H1(π

−1(b),Z) such that (γ1 · γ2) = 1 and

�

γ1

ω = 2

p(b)�

β(b)

du√
F (b, u)

,
�

γ2

ω = 2

β(b)�

α(b)

du√
F (b, u)

.

For j ∈ {0, 1, 2} (∈ {3, 4, 5}, resp.), we set lj = {(sj ,−
√
−1 t) | t ≥ 0}

(= {(sj ,
√
−1 t) | t ≥ 0}, resp.). We call lj the cut line for sj . For y in
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C − {l0, . . . , l5}, take an arc αy which does not meet the cut lines lj (j ∈
{0, . . . , 5}) with the start (end, resp.) point b (y, resp.). Let u 7→ ay(u)
(0 ≤ u ≤ 1) be the parametric representation of αy. Take a 1-cycle γ on
E(b). For γ ∈ H1(π

−1(b),Z), we choose a 1-cycle γαy(u) on π−1(ay(u))
which depends continuously on u with γαy(0) = γ. If α′y is homotopic to αy
in C − {l0 ∪ · · · ∪ l5}, we have γαy(1) = γα′y(1). So, we have a well-defined

correspondence C− {l0 ∪ · · · ∪ l5} 3 y 7→ γαy(1) ∈ H1(π
−1(y),Z). Then, we

set

(3.3) γ = γαy(1) ∈ H1(π
−1(y),Z) (y ∈ C− {y0, . . . , y5}).

Next, let rj (j = 0, 1, . . . , 5) be a closed arc in C−{0, s1, . . . , s5}, starting
at b, going around sj with the positive orientation and ending at b. We assume
that rj does not meet the cut line lk if j 6= k. Let t 7→ uj(t) (0 ≤ t ≤ 1) be
the parametric representation of rj . For instance, we can take an arc r1 as
in Figure 5. We choose 1-cycles γ1(t) and γ2(t) on π−1(uj(t)) which depend
continuously on t such that γ1(0) = γ1 and γ2(0) = γ2. So, we have(

γ1(1)

γ2(1)

)
=

(
aj bj

cj dj

)(
γ1

γ2

)
,

where aj , bj , cj , dj ∈ Z and ajdj − bjcj = 1. The correspondence rj 7→Mj =( aj bj
cj dj

)
gives a representation of the fundamental groupπ1(C−{0, s1, . . . , s5}).

We call Mj the monodromy matrix for rj .

è

b

é é é é é é
0 s1 s2

s3 s4 s5

0
0

@

Fig. 5. The points 0, s1, . . . , s5, the cut lines and an arc r1 going around s1

Remark 3.1. If an arc r in the base space of an elliptic fibration goes
around a singular fibre with the positive orientation, the monodromy matrix
Mr is obtained by K. Kodaira [7, Theorem 9.1]. For example, if the singular
fibre is of type Ib (b > 0) or III∗, the monodromy matrix Mr is given by
B−1M0

rB, where M0
r is given by Table 4 and B ∈ GL(2,Z).

Lemma 3.2. The monodromy matrices Mj for {γ1, γ2} are given by
Table 5.
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Table 4. The matrices M0
r for the singular fibres of type Ib and III∗

Singular fibre Matrix M0
r

Ib ( 1 0
b 1 )

III∗
(

0 1
−1 0

)
Table 5. The monodromy matrices Mj (j = 0, 1, . . . , 5,∞)

Type of singular fibre Monodromy matrix for γ1, γ2

y1 I2 M1 =
(
3 −2
2 −1

)
y2 I2 M2 = ( 1 0

2 1 )

y3 I2 M3 = ( 1 0
2 1 )

y4 I2 M4 =
(
3 −2
2 −1

)
y5 I2 M5 =

(
3 −2
2 −1

)
0 I5 M0 = ( 1 −5

0 1 )

∞ III∗ M∞ =
(

3 5
−2 −3

)
Proof. Let us determine the matrix M2 around s2. The fibre π−1(s2) is

a singular fibre of type I2. So, the monodromy matrix M2 is of the form

M2 = B−1
(

1 0

2 1

)
B,

where B ∈ GL(2,Z). Observe that p(y) = w
(3)
1 (y) converges to β(y) =

w
(3)
2 (y) when y → y2 + 0. So, the matrix M2 fixes the 1-cycle γ1 = γ

(3)
1 .

Hence, B = I2 and M2 =
(
1 0
2 1

)
. By the same argument, we obtain Table 5.

3.2. The transcendental lattice 〈D1, . . . , D4〉. From Table 5, we have
the following relations:

(3.4)

M1M2M4M3 =

(
1 4

0 1

)
, M1M2M5M3 =

(
1 4

0 1

)
,

M−12 M3 =

(
1 0

0 1

)
, M0M1M2M

−1
0 M−13 =

(
3 −2

2 −1

)
.

The transformation given by the matrix M1M2M4M3 fixes the 1-cycle γ2.
Let ρ1 be a closed curve in the y-plane starting from the base point b and
going around s1, s2, s4 and s3 successively. Let t 7→ s(t) be a parametric
representation of ρ1. For 0 ≤ t ≤ 1, we define a 1-cycle γ(1)(t) on the
elliptic curve π−1(s(t)). The 1-cycle γ(1)(t) depends continuously on t and
γ(1)(0) = γ(1)(1) = γ2 on π−1(b) = π−1(s(0)) = π−1(s(1)). Then the set

C1 =
⋃

0≤t≤1
γ(1)(t)
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defines a 2-cycle on the surface K(X,Y ). Similarly, we have the 2-cycles C2,
C3 in Figure 6 and C4 in Figure 7.

é é é é é é

0 s1 s2

s3 s4 s5

0

0

@

@

C2

C1

C3

HΓ2L

HΓ2L

H2Γ1-Γ2L

H2Γ1-Γ2L

H-Γ2L

H-Γ2L

H-2Γ1+Γ2L

H-2Γ1+Γ2L

HΓ2L

H2Γ1+Γ2L
a1

a2

è

è

õ õ ó óõõ õ

Fig. 6. 2-cycles C1, C2, C3

é é é é é é

0 s1 s2

s3 s4 s5

0

0

@

C4 H-Γ1-Γ2L

H-9Γ1+4Γ2LHΓ1-6Γ2L

HΓ1-Γ2L

H-Γ1+4Γ2L
õ

ó

Fig. 7. 2-cycle C4
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Lemma 3.3. The intersection matrix for {C1, C2, C3, C4} is

((Cj · Ck))j,k=1,...,4 =


0 2 0 0

2 0 0 0

0 0 −4 −6

0 0 −6 −4

 .

Proof. Let ρj be the base arc of Cj . For y ∈ ρj , let γ(j)(y) = Cj∩π−1(y).
Suppose the base arcs ρj and ρk intersect in s points y1, . . . , ys in the y-plane.
Then the intersection number (Cj · Ck) is given by

(3.5) (Cj · Ck) =
s∑
l=1

(−1)(ρj · ρk)yl(γ
(j)(yl) · γ(k)(yl)),

where (ρj · ρk)yl is the intersection number of the base arcs ρj and ρk at the
point yl, and (γ(j)(yl) ·γ(k)(yl)) is the intersection number of 1-cycles on the
elliptic curve π−1(yj). See Figure 6. The base arcs ρ1 and ρ2 intersect in two
points a1 and a2. We have (ρ1 · ρ2)a1 = +1 and (ρ1 · ρ2)a2 = −1. Then, from
(3.5), we have

(C1 · C2) = (−1)(+1)(−γ2 · −2γ1 + γ2) + (−1)(−1)(−2γ1 + γ2 · −2γ1 + γ2)

= (−1)(−2) + 0 = 2.

By the same argument, the claim follows.

The following corollary to the above lemma is obvious.

Corollary 3.4. Set

(3.6) D1 = C1, D2 = C2, D3 = C4 − C3, D4 = C4.

Then the intersection matrix for {D1, . . . , D4} is

(3.7) ((Dj ·Dk))j,k=1,...,4 =


0 2 0 0

2 0 0 0

0 0 4 2

0 0 2 −4

 .

Proposition 3.5. The system {D1, D2, D3, D4} gives a basis of the
transcendental lattice of K(X,Y ) with intersection matrix A(2).

Proof. By the above construction, the 2-cycle Dj (j = 1, . . . , 4) does not
meet the singular fibres of (K(X,Y ), π,P1(C)). So, from Theorem 2.5 and
Proposition 2.17, the system {D1, . . . , D4} gives a basis of Tr(K(X,Y )).

3.3. The 2-cycles L1, . . . , L6. Next, we define 2-cycles L1, . . . , L6 on
K(X,Y ). Let %j (j = 1, . . . , 6) be an arc in the y-plane with a parametric
representation t 7→ qj(t) (0 ≤ t ≤ 1) whose start point and end point are
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given by Table 6. We take them so that %j does not meet the cut lines lk

Table 6. The arc %j and 1-cycles for 2-cycles Lj (j = 1, . . . , 6)

L1 L2 L3 L4 L5 L6

start point of %j s5 s4 s3 s2 s1 0

end point of %j ∞ s5 ∞ s3 s4 ∞
1-cycle δ(j) γ1 − γ2 γ1 − γ2 γ1 γ1 γ1 − γ2 γ2

(k ∈ {0, . . . , 5}) if 0 < t < 1. Hence, we can define a 1-cycle δ(j)(qj(t))
on π−1(qj(t)) as in Table 6 in the manner of (3.3). Then we can see that
Lj =

⋃
0≤t≤1 δ

(j)(qj(t)) gives a 2-cycle on K(X,Y ) (see Figure 8).

é é é é é é
0 s1 s2

s3 s4 s5

L2 L1

L3L4

HΓ1-Γ2LHΓ1-Γ2LHΓ1L HΓ1L
@ @ @ @

é é é é é é

0 s1 s2

s3 s4 s5

L5

L6

HΓ1-Γ2L
HΓ2L

@ @@
@

Fig. 8. 2-cycles L1, L2, L3, L4, L5 and L6

Just as we proved Lemma 3.3, we can prove the following lemma and
corollary.

Lemma 3.6.

(3.8) ((Lj · Ck))1≤j≤6, 1≤k≤4 =



0 1 0 0

1 −1 0 0

1 1 1 −1

0 0 −2 −3

0 1 −2 −3

0 0 2 0


.
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Corollary 3.7.

(3.9) ((Lj ·Dk))1≤j≤6, 1≤k≤4 =



0 1 0 0

1 −1 0 0

1 1 −2 −1

0 0 −1 −3

0 1 −1 −3

0 0 −2 0


.

Proposition 3.8. A branch of the period mapping ΦK in (2.14) on U0

has the following expression:

(3.10)

�

∆1

ωK =
�

L1+L2

ωK ,
�

∆2

ωK =
�

L1

ωK =
�

L5−L4

ωK ,

�

∆3

ωK =
�

−L4−3(L6+L5−L4−L3+L2+L1)

ωK ,

�

∆4

ωK =
�

L6+L5−L4−L3+L2+L1

ωK .

Proof. According to Proposition 3.5, {D1, . . . , D4} gives a basis of
Tr(K(X,Y )). Recall the construction of the 2-cycles Γ1, . . . , Γ4 on S(X,Y )
in Remark 2.4. Together with Proposition 2.15, it is sufficient to take 2-cycles
∆1, . . . ,∆4 ∈ H2(K(X,Y ),Z) such that (∆j ·Dk) = δjk. By Corollary 3.7,
we can check that the 2-cycles on the right hand side of (3.10) have these
properties.

3.4. The chambers R1, R2, R3 and R4. We define the following cham-
bers in R2 (see Figure 9):

(3.11)

R1 = {(u, y) | 0 ≤ y ≤ s2, w1(y) ≤ u ≤ w2(y)},
R2 = {(u, y) | s1 ≤ y ≤ s4, w2(y) ≤ u ≤ w3(y)},
R3 = {(u, y) | s2 ≤ y ≤ s3, w1(y) ≤ u ≤ w2(y)},
R4 = {(u, y) | s4 ≤ y ≤ s5, w2(y) ≤ u ≤ w3(y)}.

They are surrounded by the branch divisors P and Q. From Table 2, we
obtain Table 7.

Theorem 3.9. A branch of the period mapping ΦK in (2.14) on U0 is
given by the following double integrals on the chambers R1, R2, R3 and R4:

(3.12)

�

∆1

ωK = 2
�

R2

du dy

F (u, y)
+ 2

�

R4

du dy

F (u, y)
,

�

∆2

ωK = 2
�

R2

du dy

F (u, y)
,

�

∆3

ωK = 6
�

R1

du dy

F (u, y)
+ 2

�

R3

du dy

F (u, y)
,

�

∆4

ωK = −2
�

R1

du dy

F (u, y)
.
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Α

Β

R1

R2

p

R3

u

y
0.05 0.10 0.15 0.20

-0.10

-0.05

0.00

0.05

0.10

p

R2

Α

u

y

ΒR3

R4

0.5 1.0 1.5

-1

0

1

2

3

0 < y < 0.2 0 < y < 1.5

u

y

p

Β

Α

R4

2 4 6 8 10 12

-200

0

200

400

600

0 < y < 12

Fig. 9. The chambers R1, R2, R3 and R4

Table 7. Elliptic integrals on E(y) for (sj−1, sj)

y 1
2

(	
γ1(y)

ωy
)

1
2

(	
γ2(y)

ωy
)

0 < y < s1
	p(y)
α(y)

du
F (u,y)

+
	∞
p(y)

du
F (u,y)

	β(y)
α(y)

du
F (u,y)

s1 < y < s2
	β(y)
p(y)

du
F (u,y)

	p(y)
α(y)

du
F (u,y)

+
	β(y)
p(y)

du
F (u,y)

s2 < y < s3
	p(y)
β(y)

du
F (u,y)

	β(y)
α(y)

du
F (u,y)

s3 < y < s4
	β(y)
p(y)

du
F (u,y)

	p(y)
α(y)

du
F (u,y)

+
	β(y)
p(y)

du
F (u,y)

s4 < y < s5
	p(y)
α(y)

du
F (u,y)

+
	∞
p(y)

du
F (u,y)

	∞
p(y)

du
F (u,y)

s5 < y
	β(y)
p(y)

du
F (u,y)

	p(y)
α(y)

du
F (u,y)

+
	β(y)
p(y)

du
F (u,y)

Proof. From Proposition 3.8 and Tables 6 and 7, we have

�

∆2

ωK =
�

L5

ωK −
�

L4

ωK = 2

s4�

s1

�

γ1(y)−γ2(y)

dy du

F (u, y)
− 2

s3�

s2

�

γ1(y)

ωK

= 2

s4�

s1

α(y)�

p(y)

dy du

F (u, y)
=

�

R2

dy du

F (u, y)
.
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Similarly,

�

∆1

ωK =
�

L5

ωK −
�

L4

ωK +
�

L2

ωK = 2
�

R2

dy du

F (u, y)
+ 2

s5�

s4

p(y)�

α(y)

dy du

F (u, y)

= 2
�

R2

dy du

F (u, y)
+ 2

�

R4

dy du

F (u, y)
,

�

∆4

ωK =
�

L6

ωK +
�

L5

ωK −
�

L4

ωK −
�

L3

ωK +
�

L2

ωK +
�

L1

ωK

= 2

s1�

0

α(y)�

β(y)

dy du

F (u, y)
+ 2

s2�

s1

β(y)�

p(y)

dy du

F (u, y)
= −

�

R1

dy du

F (u, y)
,

�

∆3

ωK = −
�

L4

ωK − 3
�

∆4

ωK = 2

s3�

s2

β(y)�

p(y)

dy du

F (u, y)
+ 6

�

R1

dy du

F (u, y)

= 2
�

R3

dy du

F (u, y)
+ 6

�

R1

dy du

F (u, y)
.

By the analytic continuation of the single-valued branch on U0 given by
the integrals in (3.12), we obtain the multivalued period mapping ΦK for
the family K. Hence, the Hilbert modular functions for Q(

√
5) are closely

connected with the arrangement of the divisors P of (2.2) and Q of (2.3). The
above theorem gives a canonical extension of the classical elliptic integrals
to the Hilbert modular case with the smallest discriminant.
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