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Asymptotic formulae for partition ranks

by

Jehanne Dousse (Paris) and Michael H. Mertens (Köln)

1. Introduction and statement of results. A partition of n is a
non-increasing sequence of natural numbers whose sum is n. For example,
there are five partitions of 4: 4, 3+1, 2+2, 2+1+1 and 1+1+1+1. Let p(n)
denote the number of partitions of n. One of the most beautiful theorems
in partition theory is Ramanujan’s congruences for p(n). He proved [9] that
for all n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Dyson [6] introduced the rank, defined as the largest part of a partition
minus the number of its parts, in order to explain the congruences modulo 5
and 7 combinatorially. He conjectured that for all n, the partitions of 5n+4
(resp. 7n + 5) can be divided into 5 (resp. 7) different classes of the same
size according to their rank modulo 5 (resp. 7). This was later proved by
Atkin and Swinnerton-Dyer [2].

However the rank fails to explain the congruences modulo 11. Therefore
Dyson conjectured the existence of another statistic which he called the
“crank” which would give a combinatorial explanation for all the Ramanujan
congruences. The crank was later found by Andrews and Garvan [1, 7]. If for
a partition λ, o(λ) denotes the number of ones in λ, and µ(λ) is the number
of parts strictly larger than o(λ), then the crank of λ is defined as

crank(λ) :=

{
largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0.

Denote by M(m,n) the number of partitions of n with crank m, and by
N(m,n) the number of partitions of n with rank m.
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The first author and Bringmann [3] recently proved a longstanding con-
jecture of Dyson by using the modularity of the crank generating func-
tion and an extension to two variables of Wright’s version of the circle
method [10].

Theorem 1.1 (Bringmann–Dousse). If |m| ≤ 1
π
√
6

√
n log n, we have, as

n→∞,

(1.1) M(m,n) =
β

4
sech2

(
βm

2

)
p(n)(1 +O(β1/2|m|1/3)),

where β := π/
√

6n.

For the rank the situation is more complicated since the generating func-
tion is not modular but mock modular, which means roughly that there
exists some non-holomorphic function such that its sum with the generating
function has nice modular properties. Nonetheless it is possible to apply a
method similar to [3] in this case. This way we prove that the same formula
also holds for the rank.

Theorem 1.2. If |m| ≤
√
n logn

π
√
6

, we have, as n→∞,

N(m,n) =
β

4
sech2

(
βm

2

)
p(n)(1 +O(β1/2|m|1/3)).

Remark 1.3. As in [3], we could in fact replace the error term by

O(β1/2mα2(m)) for any α(m) such that logn
n1/4 = o(α(m)) for all |m| ≤

1
π
√
6

√
n log n and βmα(m) → 0 as n → ∞. Here we have chosen α(m) =

|m|−1/3 to avoid complicated expressions in the proof.

Remark 1.4. After [3], and simultaneously with and independently of the
present paper, Parry and Rhoades [8] proved that the same formula holds for
all of Garvan’s k-ranks. The crank corresponds to the case k=1 and the rank
to k = 2. Their proof uses a completely different method: they use a sieving
technique and do not rely on the modularity of the generating function.

The rest of this paper is organized as follows: in Section 2 we recall
some important facts about Appell–Lerch sums, Mordell integrals, and also
Euler polynomials, which are used in Section 3 to prove some preliminary
estimates for the rank generating function. In Section 4, we use these results
to prove the estimates close to and far from the dominant pole, which we
need in Section 5 to establish our main result, Theorem 1.2.

2. Preliminaries

2.1. (Mock) modular forms. A key ingredient in the proof of our
main theorem is the (mock) modularity of the rank generating function,
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defined as follows (throughout, if not specified otherwise, we always assume
τ ∈ H, z ∈ R, q := e2πiτ , and ζ := e2πiz):

(2.1) R(z; τ) :=

∞∑
n=0

∑
m∈Z

N(m,n)ζmqn =
1− ζ
(q)∞

∑
n∈Z

(−1)nq
3n2+n

2

1− ζqn
.

Let us further define

η(τ) := q1/24(q)∞ = q1/24
∞∏
n=1

(1− qn),(2.2)

θ(z; τ) := iq1/8ζ1/2
∞∏
n=1

(1− qn)(1− ζqn)(1− ζ−1qn−1).(2.3)

In this section we are going to collect some transformation properties of
η and θ and recall the definition and most important properties of Appell–
Lerch sums as studied by Zwegers [12].

Lemma 2.1. For η and θ as in (2.2) and (2.3) we have the following
transformation laws:

η

(
−1

τ

)
=
√
−iτ η(τ),(2.4)

θ

(
z

τ
;−1

τ

)
= −i

√
−iτ e

πiz2

τ θ(z; τ),(2.5)

where
√
· denotes the principal branch of the holomorphic square-root.

Following Chapter 1 of [12] we define the following.

Definition 2.2.

(i) For z ∈ C and τ ∈ H, we define the Mordell integral as

h(z) = h(z; τ) =

∞�

−∞

eπiτw
2−2πzw

cosh(πw)
dw.

(ii) For τ ∈ H and u, v ∈ C \ (Z⊕ Zτ), we call the expression

(2.6) A1(u, v; τ) = eπiu
∑
n∈Z

(−1)nq
n2+n

2 e2πinv

1− e2πiuqn

an Appell–Lerch sum. We also call µ(u, v; τ) := A1(u, v; τ)/θ(v; τ) a
normalized Appell–Lerch sum.

We need some transformation properties of these functions:

Lemma 2.3 (cf. [12, Proposition 1.2]). The Mordell integral has the fol-
lowing properties:
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(i) h(z) + e−2πiz−πiτh(z + τ) = 2ζ−1/2q−1/8,

(ii) h(z/τ ;−1/τ) =
√
−iτ e−πiz2/τh(z; τ).

Lemma 2.4 (cf. [12, Propositions 1.4 and 1.5]).

(i) One has
µ(−u,−v) = µ(u, v).

(ii) Under modular inversion, the Appell–Lerch sum has the following
transformation law:

1√
−iτ

e
πi(u−v)2

τ µ

(
u

τ
,
v

τ
;−1

τ

)
+ µ(u, v; τ) =

1

2i
h(u− v; τ),

or equivalently

−1

τ
e
πi(u2−2uv)

τ A1

(
u

τ
,
v

τ
;−1

τ

)
+A1(u, v; τ) =

1

2i
h(u− v; τ)θ(v; τ).

2.2. Euler polynomials and Euler numbers. We now recall some
facts about Euler polynomials. We define the Euler polynomials by the gen-
erating function

(2.7)
2exz

ez + 1
=:

∞∑
k=0

Ek(x)
zk

k!
.

Let us recall two lemmas from [3] which will be useful in our proof.

Lemma 2.5. We have

−1

2
sech2

(
t

2

)
=

∞∑
r=0

E2r+1(0)
t2r

(2r)!
.

Lemma 2.6. For j ∈ N0 set

(2.8) Ej :=

∞�

0

z2j+1

sinh(πz)
dz.

Then
Ej = (−1)j+1E2j+1(0)/2.

3. Transformation formulae. In this section, we split R(z; τ) into
several summands to determine its transformation behaviour under τ 7→
−1/τ .

Lemma 3.1. For all τ ∈ H and z ∈ R, we have

(3.1) R(z;τ)=
q1/24

η(τ)

[
i(ζ1/2−ζ−1/2)η3(3τ)

θ(3z; 3τ)
−ζ−1(ζ1/2−ζ−1/2)A1(3z,−τ ;3τ)

− ζ(ζ1/2 − ζ−1/2)A1(3z, τ ; 3τ)

]
with A1 as in (2.6).
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This was first mentioned in [11, Theorem 7.1], but contained a slight
typo there. To be precise, the factor i in front of the first summand was
missing and the sign in front of the second and third was wrong.

Now we want to determine some asymptotic expressions for the three
summands in (3.1). To do so, write τ = is/(2π) and s = β(1 + ixm−1/3)
with x ∈ R satisfying |x| ≤ πm1/3/β.

Lemma 3.2. Assume that |z| < 1/3. Then for |x| ≤ 1 we have, as
n→∞,

i
η3(3τ)

θ(3z; 3τ)
=
−iπe

6π2z2

s

3s sinh
(
2π2z
s

)[1 +O
(
e−

4π2

3
Re( 1

s
)(1−3z))+O

(
e−

4π2

3
Re( 1

s
)(1+3z)

)]
,

Proof. By the transformation formulae from Lemma 2.1,

i
η3(3τ)

θ(3z;3τ)
= i

(
1√
−3iτ

)3
η3
(
− 1

3τ

)
i√
−3iτ e

−πi (3z)
2

3τ θ
(
z
τ ;− 1

3τ

)
= i

η3
(
− 1

3τ

)
3τe−3πi

z2

τ θ
(
z
τ ;− 1

3τ

) =
2πη3

(
2πi
3s

)
e

6π2z2

s

3sθ
(
2πz
is ; 2πi

3s

)
=

2πe
6π2z2

s e−
π2

6s

3ise
2π2z
s e−

π2

6s

∞∏
k=1

(
1− e−

4π2k
3s

)2(
1− e

4π2z
s
− 4π2k

3s

)(
1− e−

4π2z
s
− 4π2(k−1)

3s

)
=

2πe
6π2z2

s

3ise
2π2z
s

(
1− e−

4π2z
s

) ∞∏
k=1

(
1− e−

4π2k
3s

)2(
1− e

4π2z
s
− 4π2k

3s

)(
1− e−

4π2z
s
− 4π2k

3s

)
=

2πe
6π2z2

s

3is
(
e

2π2z
s − e−

2π2z
s

) ∞∏
k=1

(
1− e−

4π2k
3s

)2(
1− e

4π2z
s
− 4π2k

3s

)(
1− e−

4π2z
s
− 4π2k

3s

)
=
−iπe

6π2z2

s

3s sinh
(
2π2z
s

)[1+O
(
e−

4π2

3
Re( 1

s
)(1−3z))+O(e− 4π2

3
Re( 1

s
)(1+3z)

)]
.

Before estimating the two last summands of (3.1), we need two more
lemmas about A1 and h.

Lemma 3.3. Let z ∈ R with |z| < 1/3. Then for |x| ≤ 1 we have, as
n→∞,

A1

(
2πz

is
,∓1

3
;
2πi

3s

)
=

−1

2 sinh
(
2π2z
s

)
+O

(
e

−2π2

3
Re( 1

s
)(2−3z))+O

(
e

−2π2

3
Re( 1

s
)(2+3z)

)
.
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Proof. In the proof, we assume that ζ and q are such that |ζqn| < 1 if
n > 0 and |ζqn| > 1 if n < 0. By applying the geometric series

1

1− x
=

{∑∞
k=0 x

k if |x| < 1,

−
∑∞

k=1 x
−k if |x| > 1,

we find (writing ρ = e2πi/3)

ζ−1/2A1(z,∓1/3; τ) =
1

1− ζ
+

∞∑
n=1

(−1)nρ∓nq
n2+n

2

∞∑
k=0

ζkqnk

−
∞∑
n=1

(−1)nρ±nq
n2−n

2

∞∑
k=1

ζ−kq(−n)·(−k).

If we see the above as a power series in q, we find that when n→∞,

ζ−1/2A1(z,∓1/3; τ) =
1

1− ζ
+O(q) +O(ζ−1q).

Thus

A1(z,∓1/3; τ) =
−1

ζ1/2 − ζ−1/2
+O(ζ1/2q) +O(ζ−1/2q).

Plugging in ζ = e4π
2z/s and q = e−4π

2/(3s) (which satisfy our condition
that |ζqn| < 1 if n > 0 and |ζqn| > 1 if n < 0), we find

A1

(
2πz

is
,∓1

3
;
2πi

3s

)
=

−1

e
2π2z
s − e

−2π2z
s

+O
(
e2π

2zRe( 1
s
)e−

4π2

3
Re( 1

s
)
)

+O
(
e−2π

2zRe( 1
s
)e−

4π2

3
Re( 1

s
)
)

=
−1

2 sinh
(
2π2z
s

) +O
(
e

−2π2

3
Re( 1

s
)(2−3z))+O

(
e

−2π2

3
Re( 1

s
)(2+3z)

)
.

We now turn to the Mordell integral.

Lemma 3.4. For |x| ≤ 1 we have, as n→∞,∣∣∣∣h(3z ± is

2π
;
3is

2π

)∣∣∣∣� e−β/6.

Proof. We apply Lemma 3.4 of [5] with ` = 0, k = 2, h = ∓1, u = 0,
z = π/(3s) and α = 3z. This gives∣∣∣∣h(3z ± is

2π
;
3is

2π

)∣∣∣∣� e
−π
18

Re( 3s
π
).

The result follows.

With this, we can now prove the following estimate for the Appell–Lerch
sums.
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Lemma 3.5. For |z| ≤ 1/6 and |x| ≤ 1 we have, as n→∞,

A1(3z,∓τ ; 3τ) =
iπ

3s

ζ±1e
6π2z2

s

sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)
.

Proof. We use the transformation properties of A1 to obtain

A1(3z,∓τ ; 3τ)

=
1

2i
h(3z ± τ ; 3τ)θ(∓τ ; 3τ) +

1

3τ
e
πi(3z2±2zτ)

τ A1

(
z

τ
,∓1

3
;− 1

3τ

)
=

1

2i
h

(
3z ± is

2π
;
3is

2π

)
θ

(
∓ is

2π
;
3is

2π

)
+

2π

3is
e

2π2(3z2± 2izs
2π )

s A1

(
2πz

is
,∓1

3
;
2πi

3s

)
= ±1

2
es/6h

(
3z ± is

2π
;
3is

2π

)
η

(
is

2π

)
− 2πi

3s
e

6π2z2

s ζ±1A1

(
2πz

is
,∓1

3
;
2πi

3s

)
,

by Lemmas 2.3 and 2.4. In the last equality we have additionally used

θ(∓τ ; 3τ) = ±iq−1/6η(τ),

which is easily deduced from the definition of θ in (2.3). By Lemmas 3.4
and 2.1, we have∣∣∣∣12es/6h

(
3z ± is

2π
;
3is

2π

)
η

(
is

2π

)∣∣∣∣� eβ/6−β/6
∣∣∣∣η( is2π

)∣∣∣∣� 1

|s|1/2
e

−π2
6

Re( 1
s
).

By Lemma 3.3,

−2πi

3s
e

6π2z2

s ζ±1A1

(
2πz

is
,∓1

3
;
2πi

3s

)

=
πi

3s

e
6π2z2

s ζ±1

sinh
(
2π2z
s

) +O
(
e−π

2 Re( 1
s
)( 4

3
−2z−6z2))+O

(
e−π

2 Re( 1
s
)( 4

3
+2z−6z2)).

For |z| ≤ 1/6, we have 4/3 − 2z − 6z2 > 1/6 and 4/3 + 2z − 6z2 > 1/6.
Therefore

e−π
2 Re( 1

s
)( 4

3
+2z−6z2) � 1

|s|1/2
e

−π2
6

Re( 1
s
),

e−π
2 Re( 1

s
)( 4

3
−2z−6z2) � 1

|s|1/2
e

−π2
6

Re( 1
s
).

Thus the dominant error term comes from ±1
2e
s/6h

(
3z± is

2π ; 3is
2π

)
η
(
is
2π

)
. The

lemma follows.

4. Asymptotic behavior. Since N(m,n) = N(−m,n) for all m and n,
we assume from now on that m ≥ 0. In this section we want to study the
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asymptotic behaviour of the generating function of N(m,n). Define

Rm(τ) :=

1/2�

−1/2

R(z; τ)e−2πimz dz.

Let us recall that τ = is/(2π) and s = β(1 + ixm−1/3) with x ∈ R satis-
fying |x| ≤ πm1/3/β. To simplify the forthcoming calculations, we need the
following lemma.

Lemma 4.1. We have

Rm(τ) = 3
q1/24

η(τ)

1/6�

−1/6

gm(z; τ)e−2πimz dz,

where

gm(z; τ)

:=



−A1(3z, τ ; 3τ)e3πiz +A1(3z,−τ ; 3τ)e−3πiz for m ≡ 0 (mod 3),

−A1(3z,−τ ; 3τ)e−πiz − i η
3(3τ)

θ(3z; 3τ)
e−πiz for m ≡ 1 (mod 3),

A1(3z, τ ; 3τ)eπiz + i
η3(3τ)

θ(3z; 3τ)
eπiz for m ≡ 2 (mod 3).

Proof. By (3.1), write

Rm(τ) =
q1/24

η(τ)
(I1 − I2 − I3),

where

I1 :=

1/2�

−1/2

i(ζ1/2 − ζ−1/2)η3(3τ)

θ(3z; 3τ)
e−2πimz dz,

I2 :=

1/2�

−1/2

ζ−1(ζ1/2 − ζ−1/2)A1(3z,−τ ; 3τ)e−2πimz dz,

I3 :=

1/2�

−1/2

ζ(ζ1/2 − ζ−1/2)A1(3z, τ ; 3τ)e−2πimz dz.

First, using (2.3) and (2.6), notice that

θ(3z + 1; 3τ) = −θ(3z; 3τ),(4.1)

A1(3z + 1, τ ; 3τ) = −A1(3z, τ ; 3τ),(4.2)

A1(3z + 1,−τ ; 3τ) = −A1(3z,−τ ; 3τ).(4.3)
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Thus by (4.1),

I1 =
(−1/6�
−1/2

+

1/6�

−1/6

+

1/2�

1/6

) i(ζ1/2 − ζ−1/2)η3(3τ)

θ(3z; 3τ)
e−2πimz dz

= −i
1/6�

−1/6

(
eπi(z−1/3) − e−πi(z−1/3)

) η3(3τ)

θ(3z; 3τ)
e−2πim(z−1/3) dz

+ i

1/6�

−1/6

(
eπiz − e−πiz

) η3(3τ)

θ(3z; 3τ)
e−2πimz dz

− i
1/6�

−1/6

(
eπi(z+1/3) − e−πi(z+1/3)

) η3(3τ)

θ(3z; 3τ)
e−2πim(z+1/3) dz

=

1/6�

−1/6

[
eπiz

(
−e

πi
3
(2m−1) + 1− e

πi
3
(−2m+1)

)
− e−πiz

(
−e

πi
3
(2m+1) + 1− e

πi
3
(−2m−1))]i η3(3τ)

θ(3z; 3τ)
e−2πimz dz.

Therefore

(4.4) I1 =



0 for m ≡ 0 (mod 3),

−3i

1/6�

−1/6

η3(3τ)

θ(3z; 3τ)
e−πiz(2m+1) dz for m ≡ 1 (mod 3),

3i

1/6�

−1/6

η3(3τ)

θ(3z; 3τ)
e−πiz(2m−1) dz for m ≡ 2 (mod 3).

By the same method and using (4.2) and (4.3), we obtain

I2 =



−3

1/6�

−1/6

A1(3z,−τ ; 3τ)e−πiz(2m+3) dz for m ≡ 0 (mod 3),

3

1/6�

−1/6

A1(3z,−τ ; 3τ)e−πiz(2m+1) dz for m ≡ 1 (mod 3),

0 for m ≡ 2 (mod 3),

(4.5)
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I3 =



3

1/6�

−1/6

A1(3z, τ ; 3τ)e−πiz(2m−3) dz for m ≡ 0 (mod 3),

0 for m ≡ 1 (mod 3),

−3

1/6�

−1/6

A1(3z, τ ; 3τ)e−πiz(2m−1) dz for m ≡ 2 (mod 3).

(4.6)

The result follows.

4.1. Bounds near the dominant pole. In this section we consider
the range |x| ≤ 1. We start by determining the main term of gm.

Lemma 4.2. For all m ≥ 0, −1/6 ≤ z ≤ 1/6 and |x| ≤ 1 we have, as
n→∞,

gm

(
z;
is

2π

)
=

2π sin(πz)e
6π2z2

s

3s sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)
.

Proof. If m ≡ 0 (mod 3), by Lemma 3.5 we have

gm(z; τ) = −A1(3z, τ ; 3τ)e3πiz +A1(3z,−τ ; 3τ)e−3πiz

= − iπ
3s

eπize
6π2z2

s

sinh
(
2π2z
s

) +
iπ

3s

e−πize
6π2z2

s

sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

=
iπ

3s

e
6π2z2

s

sinh
(
2π2z
s

)(− eπiz + e−πiz
)

+O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

=
2π sin(πz)e

6π2z2

s

3s sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)
.

If m ≡ 1 (mod 3), by Lemmas 3.2 and 3.5 we have

gm(z; τ) = −A1(3z,−τ ; 3τ)e−πiz − i η
3(3τ)

θ(3z; 3τ)
e−πiz

= − iπ
3s

eπize
6π2z2

s

sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

+
iπe−πize

6π2z2

s

3s sinh
(
2π2z
s

) [1+O
(
e−

4π2

3
Re( 1

s
)(1−3z))+O(e− 4π2

3
Re( 1

s
)(1+3z)

)]
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=
iπ

3s

e
6π2z2

s

sinh
(
2π2z
s

)(−eπiz + e−πiz) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

=
2π sin(πz)e

6π2z2

s

3s sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)
.

Finally, if m ≡ 2 (mod 3), by Lemmas 3.2 and 3.5 we have

gm(z; τ) = A1(3z, τ ; 3τ)eπiz + i
η3(3τ)

θ(3z; 3τ)
eπiz

=
iπ

3s

e−πize
6π2z2

s

sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

− iπeπize
6π2z2

s

3s sinh
(
2π2z
s

)[1+O
(
e−

4π2

3
Re( 1

s
)(1−3z))+O(e− 4π2

3
Re( 1

s
)(1+3z)

)]
=
iπ

3s

e
6π2z2

s

sinh
(
2π2z
s

)(e−πiz − eπiz) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)

=
2π sin(πz)e

6π2z2

s

3s sinh
(
2π2z
s

) +O

(
1

|s|1/2
e−

π2

6
Re( 1

s
)

)
.

In view of Lemma 4.2 it is natural to define

Gm,1(s) :=
2π

s

1/6�

−1/6

sin(πz)e
6π2z2

s

sinh
(
2π2z
s

) e−2πimz dz,

Gm,2(s) := 3

1/6�

−1/6

(
gm

(
z;
is

2π

)
− 2π sin(πz)e

6π2z2

s

3s sinh
(
2π2z
s

) )
e−2πimz dz.

Thus

(4.7) Rm(τ) =
q1/24

η(τ)
(Gm,1(s) + Gm,2(s)).

Note that we can rewrite Gm,1(s) as

Gm,1(s) =
4π

s

1/6�

0

sin(πz)e
6π2z2

s

sinh
(
2π2z
s

) cos(2πmz) dz.

Lemma 4.3. Assume that |x| ≤ 1 and m ≤ 1
6β log n. Then, as n→∞,

Gm,1(s) =
s

4
sech2

(
βm

2

)
+O

(
β2m2/3 sech2

(
βm

2

))
.
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Proof. We use the same method as in [3]. Inserting the Taylor expansion
of sin(πz), exp(6π2z2/s), and cos(2πmz) in the definition of Gm,1(s), we find
that

sin(πz)e
6π2z2

s cos(2πmz)

=
∑

j,ν,r≥0

(−1)j+ν

(2j + 1)!(2ν)!r!
π2j+1(2πm)2ν

(
6π2

s

)r
z2j+2ν+2r+1.

This yields

Gm,1(s) =
4π

s

∑
j,ν,r≥0

(−1)j+ν

(2j + 1)!(2ν)!r!
π2j+1(2πm)2ν

(
6π2

s

)r
Ij+ν+r,

where for ` ∈ N0 we define

I` :=

1/6�

0

z2`+1

sinh
(
2π2z
s

) dz.
We next relate I` to E` defined in (2.8). For this, we note that

(4.8) I` =

∞�

0

z2`+1

sinh
(
2π2z
s

) dz − I ′`
with

I ′` :=

∞�

1/6

z2`+1

sinh
(
2π2z
s

) dz � ∞�

1/6

z2`+1e−2π
2zRe( 1

s
) dz

�
(

Re

(
1

s

))−2`−2
Γ

(
2`+ 2;

π2

3
Re

(
1

s

))
,

where Γ (α;x) :=
	∞
x e−wwα−1 dw. Since

(4.9) Γ (`;x) ∼ x`−1e−x as x→∞,

this yields

I ′` �
(

Re

(
1

s

))−1
e−

π2

3
Re( 1

s
) ≤ e−

π2

3
Re( 1

s
).

By a substitution in Lemma 2.6, we know that

∞�

0

z2`+1

sinh
(
2π2z
s

) dz =

(
s

2π

)2`+2 (−1)`+1E2`+1(0)

2
.
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Thus

Gm,1(s) =
∑

j,ν,r≥0

(−1)r+13r

22j+r+1(2j + 1)!(2ν)!r!
m2νs2j+2ν+r+1

×
(
E2j+2ν+2r+1(0) +O

(
|z|−2j−2ν−2r−2e−

π2

3
Re( 1

s
)
))

=

∞∑
ν=0

(ms)2ν

(2ν)!

(
−s

2
E2ν+1(0) +O(|s|2)

)
=
s

4
sech2

(
ms

2

)
+O(|s|2 cosh(ms)),

where for the last equality we have used Lemma 2.5. The end of the proof
is now exactly the same as in [3, Lemma 3.2].

We now want to bound Gm,2(s).

Lemma 4.4. Assume that |x| ≤ 1. Then, as n→∞,

|Gm,2(s)| �
1

β1/2
e
− π2

12β .

Proof. By Lemma 4.2, we have

|Gm,2(s)| �
1/6�

−1/6

∣∣∣∣ 1

|s|1/2
e−

π2

6
Re( 1

s
)e−2πimz

∣∣∣∣ dz � 1

|s|1/2
e−

π2

6
Re( 1

s
).

By the definition of s, we know that 1/|s|1/2 ≤ 1/β1/2. Furthermore, as
|x| ≤ 1, we have Re(1/s) ≥ 1/(2β). This yields the conclusion.

Combining Lemmas 4.3 and 4.4, we obtain the following asymptotic
estimate of Rm(τ) near the dominant pole.

Proposition 4.5. Assume that |x| ≤ 1. Then, as n→∞,

Rm(τ) =
s3/2

4(2π)1/2
sech2

(
βm

2

)
e
kπ2

6s +O

(
β5/2m2/3 sech2

(
βm

2

)
eπ
√
n/6

)
.

Proof. Recall from (4.7) that

Rm(τ) =
q1/24

η(τ)
(Gm,1(s) + Gm,2(s)).

By Lemma 2.1 we see that

q1/24

η(τ)
=

(
s

2π

)1/2

e
π2

6s (1 +O(β)).

We approximate Gm,1 and Gm,2 using Lemmas 4.3 and 4.4. The main error
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term comes from Gm,1. We obtain

Rm(τ) =
s3/2

4(2π)1/2
e
π2

6s sech2

(
βm

2

)
+O

(
s1/2β2m2/3 sech2

(
βm

2

)
e
π2

6s

)
.

The claim follows now using the estimates

|s| � β, Re

(
1

s

)
≤ 1

β
=

√
6n

π
.

4.2. Estimates far from the dominant pole. In the previous section,
we have established bounds for the behaviour of Rm(τ) close to the pole
τ = 0. For Wright’s version of the circle method, we also need estimates
far away from this pole. In this section, we consider the range 1 ≤ |x| ≤
πm1/3/β. First we need a lemma, which follows from an argument similar
to the one in [10] (see also [3, Lemma 3.5]).

Lemma 4.6. Let P (q) = q1/24/η(τ) be the generating function for par-
titions. Assume that τ = u + iv ∈ H. For Mv ≤ |u| ≤ 1/2 and v → 0, we
have

|P (q)| �
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))]
.

Proof. Let us write the following Taylor rearrangement:

log(P (q)) = −
∞∑
n=1

log(1− qn) =
∞∑
n=1

∞∑
m=1

qnm

m
=
∞∑
m=1

qm

m(1− qm)
.

Then we have the estimate

|log(P (q))| ≤
∞∑
m=1

|q|m

m|1− qm|
≤ |q|
|1− q|

− |q|
1− |q|

+

∞∑
m=1

|q|m

m(1− |q|m)

= log(P (|q|))− |q|
(

1

1− |q|
− 1

|1− q|

)
.

For Mv ≤ |u| ≤ 1/4, we have cos(2πu) ≤ cos(2πMv). Therefore

|1− q|2 = 1− 2e−2πv cos(2πu) + e−4πv ≥ 1− 2e−2πv cos(2πMv) + e−4πv.

By a Taylor expansion around v = 0 we find that

(4.10) |1− q| ≥ 2πv
√

1 +M2 +O(v2).

When 1/4 ≤ |u| ≤ 1/2, we have cos(2πu) ≤ 0. Therefore

|1− q| ≥ 1.

When v → 0, this is asymptotically larger than (4.10). Hence, for all Mv ≤
|u| ≤ 1/2,

(4.11) |1− q| ≥ 2πv
√

1 +M2 +O(v2).
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Furthermore,

(4.12) 1− |q| = 1− e−2πv = 2πv +O(v2).

By Lemma 2.1, we have

P (|q|) =
e

−2πv
24

η(iv)
=
√
v e

π
12v (1 +O(v)).

Thus

(4.13) log(P (|q|)) =
π

12v
+

1

2
log(v) +O(v).

Combining (4.11)–(4.13), we finally obtain

|log(P (q))| ≤ log(P (|q|))− 1

2πv

(
1− 1√

1 +M2

)
(1 +O(v))

=
π

12v
+

1

2
log(v) +O(v)− 1

2πv

(
1− 1√

1 +M2

)
+O(1)

=
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))
+

1

2
log(v) +O(1).

Exponentiating yields the desired result.

We are now able to bound |Rm(τ)| away from q = 1.

Proposition 4.7. Assume that 1 ≤ |x| ≤ πm1/3/β. Then, as n→∞,

|Rm(τ)| �
√
n exp

(
π

√
n

6
−
√

6n

8π
m−2/3

)
.

Proof. By (2.1), we have

Rm(τ) = P (q)

1/2�

−1/2

(
(1− ζ)

∑
k∈Z

(−1)kq
3k2+k

2

1− ζqk

)
e−2πimz dz

= P (q)

1/2�

−1/2

(
1 + (1− ζ)

∑
k≥1

(−1)kq
3k2+k

2

1− ζqk

+ (1− ζ−1)
∑
k≥1

(−1)kq
3k2+k

2

1− ζ−1qk

)
e−2πimz dz.
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So we may bound |Rm(τ)| when n→∞ in the following way:

|Rm(τ)| � |P (q)|
1/2�

−1/2

∑
k≥1

|q|
3k2+k

2

1− |q|k
|e−2πimz| dz

� |P (q)| 1

1− |q|
∑
k≥1

e−β
3k2

2

� |P (q)| 1

1− |q|

∞�

−∞
e−β

3x2

2 dx

� |P (q)| 1
β

√
2π

3β
� |P (q)|n3/4.

Now we use Lemma 4.6 with v = β/(2π), u = βm−1/3x/(2π) and M =
m−1/3. We obtain, for 1 ≤ |x| ≤ πm1/3/β,

|P (q)| � n−1/4 exp

[
2π

β

(
π

12
− 1

2π

(
1− 1√

1 +m−2/3

))]
.

Therefore

|Rm(τ)| � n1/2 exp

[
2π

β

(
π

12
− 1

2π

(
1− 1√

1 +m−2/3

))]
� n1/2 exp

[
π

√
n

6
−
√

6n

π

(
1− 1√

1 +m−2/3

)]
� n1/2 exp

(
π

√
n

6
−
√

6n

8π
m−2/3

)
.

5. The Circle Method. In this section, as in [3], we use Wright’s
variant of the Circle Method to complete the proof of Theorem 1.2.

Using Cauchy’s theorem, we write N(m,n) as an integral of its generat-
ing function Rm(τ):

N(m,n) =
1

2πi

�

C

Rm(τ)

qn+1
dq,

where the contour is the counterclockwise traversal of the circle C := {q ∈C :
|q| = e−β}. Recall that s = β(1+ixm−1/3). Changing variables we may write

N(m,n) =
β

2πm1/3

�

|x|≤πm1/3/β

Rm

(
is

2π

)
ens dx.
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We split this integral into two pieces, N(m,n) = M + E, with

M :=
β

2πm1/3

�

|x|≤1

Rm

(
is

2π

)
ens dx,

E :=
β

2πm1/3

�

1≤|x|≤πm1/3/β

Rm

(
is

2π

)
ens dx.

In the following we show that M contributes to the asymptotic main term,
whereas E is part of the error term.

As the estimate of Rm(τ) close to the dominant pole is exactly the same
as the one of Cm,1(q) in [3], the asymptotic behaviour of M here is the same
as in [3]:

Proposition 5.1. We have

M =
β

4
sech2

(
βm

2

)
p(n)

(
1 +O

(
m1/3

n1/4

))
.

Let us now turn to the integral E.

Proposition 5.2. As n→∞,

E � n1/2 exp

(
π

√
2n

3
−
√

6n

8π
m−2/3

)
.

Proof. Using Proposition 4.7, we may bound

E � β

m1/3

�

1≤x≤πm1/3/β

n1/2 exp

(
π

√
n

6
−
√

6n

8π
m−2/3

)
eβn dx

� n1/2 exp

(
π

√
2n

3
−
√

6n

8π
m−2/3

)
.

Thus E is exponentially smaller than M . This completes the proof of
Theorem 1.2.
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