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1. Introduction and statement of results. A partition of n is a
non-increasing sequence of natural numbers whose sum is n. For example,
there are five partitions of 4: 4, 3+1,2+2,2+1+4+1and 1+1+1+1. Let p(n)
denote the number of partitions of n. One of the most beautiful theorems
in partition theory is Ramanujan’s congruences for p(n). He proved [9] that
for all n > 0,

p(bn+4) =0 (mod 5),
p("Tn+5) =0 (mod 7),
p(11n+6) =0 (mod 11).

Dyson [6] introduced the rank, defined as the largest part of a partition
minus the number of its parts, in order to explain the congruences modulo 5
and 7 combinatorially. He conjectured that for all n, the partitions of 5n+4
(resp. Tn + 5) can be divided into 5 (resp. 7) different classes of the same
size according to their rank modulo 5 (resp. 7). This was later proved by
Atkin and Swinnerton-Dyer [2].

However the rank fails to explain the congruences modulo 11. Therefore
Dyson conjectured the existence of another statistic which he called the
“crank” which would give a combinatorial explanation for all the Ramanujan
congruences. The crank was later found by Andrews and Garvan [, [7]. If for
a partition A, o(\) denotes the number of ones in A, and p()\) is the number
of parts strictly larger than o(\), then the crank of X is defined as

crank(\) largest part of A if o(A\) =0,
(X)) —o(N) if o(A) > 0.

Denote by M(m,n) the number of partitions of n with crank m, and by
N(m,n) the number of partitions of n with rank m.
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The first author and Bringmann [3] recently proved a longstanding con-
jecture of Dyson by using the modularity of the crank generating func-
tion and an extension to two variables of Wright’s version of the circle
method [10].

THEOREM 1.1 (Bringmann-Dousse). If |m| < %ﬁ\/ﬁlog n, we have, as
n — 00,

(L) b = see?( 5 ol (1-+ 05 m ),

where [ := 77/\/671

For the rank the situation is more complicated since the generating func-
tion is not modular but mock modular, which means roughly that there
exists some non-holomorphic function such that its sum with the generating
function has nice modular properties. Nonetheless it is possible to apply a
method similar to [3] in this case. This way we prove that the same formula
also holds for the rank.

THEOREM 1.2. If |m| < ‘/Z\%g", we have, as n — oo,

N(m,n) = £ sech? <ﬁm>p(n)(1 + O(BY2|m][V/3)).

4 2

REMARK 1.3. As in [3], we could in fact replace the error term by
O(BY?ma?(m)) for any a(m) such that flg/’z = o(a(m)) for all |m| <
%ﬁ\/ﬁlogn and Sma(m) — 0 as n — oo. Here we have chosen a(m) =

]m|_1/ 3 to avoid complicated expressions in the proof.

REMARK 1.4. After [3], and simultaneously with and independently of the
present paper, Parry and Rhoades [§] proved that the same formula holds for
all of Garvan’s k-ranks. The crank corresponds to the case k=1 and the rank
to k = 2. Their proof uses a completely different method: they use a sieving
technique and do not rely on the modularity of the generating function.

The rest of this paper is organized as follows: in Section [2| we recall
some important facts about Appell-Lerch sums, Mordell integrals, and also
Euler polynomials, which are used in Section [3] to prove some preliminary
estimates for the rank generating function. In Section 4} we use these results
to prove the estimates close to and far from the dominant pole, which we
need in Section [5] to establish our main result, Theorem

2. Preliminaries

2.1. (Mock) modular forms. A key ingredient in the proof of our
main theorem is the (mock) modularity of the rank generating function,
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defined as follows (throughout, if not specified otherwise, we always assume
T€H, z € R, q:= 2™, and ( := >™):

o0 3n2+n
m. n 1- -1 nq 2
21 REn =Y Y Ny -t Y
n=0mecZ 7)oo nez q
Let us further define
(2:2) (1) = q""*(Q)os = ¢/ T (1 = ¢,
n=1

(2.3) 0(z;7) = ig" 8 T (1 = gM (@ = ¢g™)(1 = g™ ).

n=1

In this section we are going to collect some transformation properties of
n and 0 and recall the definition and most important properties of Appell—
Lerch sums as studied by Zwegers [12].

LEMMA 2.1. For n and 0 as in (2.2) and (2.3) we have the following

transformation laws:

(2:4) 77<—i> = V/=irn(7),
(25) 0(2-1) = - o

T T

where \/- denotes the principal branch of the holomorphic square-root.
Following Chapter 1 of [I2] we define the following.
DEFINITION 2.2.

(i) For z € C and 7 € H, we define the Mordell integral as

o ritw?—2mzw
(&

(ii) For 7 € H and u,v € C\ (Z @& Z7), we call the expression

7l2 n
(-1)"g"=
1— 627riuqn

) 2minv
(2.6) Ai(u,v;7) =™ Z ¢

nez

an Appell-Lerch sum. We also call u(u,v; 1) := Ai(u,v;7)/0(v;7) a
normalized Appell-Lerch sum.

We need some transformation properties of these functions:

LEMMA 2.3 (cf. [I12], Proposition 1.2]). The Mordell integral has the fol-
lowing properties:



86 J. Dousse and M. H. Mertens

(1) h(z) + 6—27riz—7ri7'h(z + 7_) _ 2c—1/2q—1/8;
(ii) h(z/7;—1/7) = V=it e ™= /Th(z; 7).
LEMMA 2.4 (cf. [I2] Propositions 1.4 and 1.5]).
(i) One has
,U,(—’U,, —U) = :u‘(u7 U)'
(ii) Under modular inversion, the Appell-Lerch sum has the following
transformation low:

1 mi(u—v)? 1 1
- 67M<uav;_) +M(U,U;7') = *,h(U-’U;T),
—iT 23

or equivalently

1 ﬂi(u272uv) 1 1
——e T A <u’ E; —> + A1 (u,v;7) = —=h(u — v; 7)0(v; 7).
T T'T T 21

2.2. Euler polynomials and Euler numbers. We now recall some
facts about FEuler polynomials. We define the Fuler polynomials by the gen-
erating function

2e%% e Zk
(2.7) i kZ_OEk(x)M.

Let us recall two lemmas from [3] which will be useful in our proof.

LEMMA 2.5. We have
t2r

1 ot >
—3 sech <2> = TZ:;)EQTH(O) oo

LEMMA 2.6. For j € Ny set
% 2j+1

(28) gj = ) W

Then '
& = (=17 Eyj41(0)/2.

3. Transformation formulae. In this section, we split R(z;7) into
several summands to determine its transformation behaviour under 7 —
—1/7.

LEMMA 3.1. For all T € H and z € R, we have
q'/2 i(C1/2_€—1/2)n3(3T)
n(T) 0(3z;37)

(3.1) R(z7)= —¢HCE= ¢ Ay(32,—7337)

— (¢ = ) A1 (32, 7 37)
with Ay as in (2.6]).



Asymptotic formulae for partition ranks 87

This was first mentioned in [II, Theorem 7.1], but contained a slight
typo there. To be precise, the factor ¢ in front of the first summand was
missing and the sign in front of the second and third was wrong.

Now we want to determine some asymptotic expressions for the three
summands in (3.1). To do so, write 7 = is/(27) and s = B(1 + izm~/3)
with z € R satisfying |z| < mm!/3/8.

LEMMA 3.2. Assume that |z| < 1/3. Then for |x| < 1 we have, as
n — oo,

67222

- 3(37) —ime s
1 =
0(32;37) 3s sinh(%)

Proof. By the transformation formulae from Lemma [2.1

[1 + O(e—% Re(é)(l—f&z)) —%—O(e_% Re(%)(l—i—:ﬁz))]’

3
e () (s
0 e g
. 72,2
)
.2 :
37’6737”79 i; _%) 389(2%2, %)
_ 271'6#8_2% a (1 — e‘4§§k)2
Sise e H i (1— e ) (1— e o)
2776%322 il (1—e 4gfk)2
= 31'362”522 (1 B 6_47;2,2) Pt (1 B 647r522_47§zk)( B e_4ﬂ§?z_47:;§k)
27T€67T322 a (1 — 6_4§§k)2
= 3i8(627r32z . 6_%) kH:l (1 . 6477522_47?:3]6)(1 e 47r322_47§zk>
6ﬂ222
—ime s 472 1 472 1
-  _ 1+0 — =5 Re(5)(1-32) +0 — =5 Re(5)(1+32) '
3s Sinh(%) [ (e ’ ) (e : )] =

Before estimating the two last summands of (3.1), we need two more
lemmas about A; and h.

LEMMA 3.3. Let z € R with |z| < 1/3. Then for |z| < 1 we have, as
n— 0o,

g (2 1wy
s T8 85 ) T s ()

+ O(e%ﬂzRe(%)@_‘gz)) +0O(e

,23772 Re(%)(2+3z)).
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Proof. In the proof, we assume that ( and ¢ are such that [(¢"| < 1 if
n >0 and |(¢"| > 1 if n < 0. By applying the geometric series

1 _{Zzozomk if |z] <1,

T—z =32 a7 if |z > 1,
we find (writing p = 627”/3)
o0
¢ I/QA (z :|:1/3 7_}_2 n2+n Zqu”k
k=0

_Z nin ZC q—n k

If we see the above as a power series in ¢, we find that when n — 00,

CTHV2AL(2, F1/3;7) = 1—1C +0(q) +0(¢ ).
Thus
-1

=] +0(¢?q) + 0(C"'g).

Ai(z,F1/3;7) =

Plugging in ¢ = ™2/ and q = e=4m*/(39) (which satisfy our condition
that |(¢"| < 1ifn >0 and |(¢"| > 1 if n < 0), we find

=Tl L o( R Ry | o2 Rel ) Reld))
€ s — € s
B znh_(lm £ O(e7F RIC) 4 o TF ReDE)
S

We now turn to the Mordell integral.

LEMMA 3.4. For |z| <1 we have, as n — o0,

18 3’LS
h{3z+ —; —

Proof. We apply Lemma 3.4 of [5] with £ =0,k =2 h =F1, u =0,
z=m/(3s) and o = 3z. This gives

h(3e4 530 | o7 Re(E),
2’ 2w

< e P8,

The result follows. =

With this, we can now prove the following estimate for the Appell-Lerch
sums.
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LEMMA 3.5. For|z| <1/6 and |x| <1 we have, as n — oo,

6222

in (fle s 1 2% Rel
A (32 +7; 37') 35 Slnh(wz)‘i‘0<|5’1/2€ 6 (s)>

Proof. We use the transformation properties of A; to obtain
Al (3Z, F75 37—)

1 1 ri32242z7) z 1 1
BBz 30T 4+ —e A (E
5; MB82 £ 73 87T)0(F7:37) + e 1<’7":F3’ 37’)

1 is 3is is 3is o 23242 2wz 1 2mi
= (3w B g F 12,20 ST Ty (2T o T
2 < E o 27r> <$27r’ 27r> T 355° 1< FRREY 33)

oo (3 B0, (2] Brigmt oy (Bns 1 om
2 2m 2w 2T 3s 3 3s
by Lemmas [2.3] and [2.4] In the last equality we have additionally used

0(F7;37) = +ig~/On(7),
which is easily deduced from the definition of # in (2.3)). By Lemmas

and 2.1 we have
L /6 15 3is is 8/6—B/6 1 —7r2R 1
—e%°h( 3z 4+ —; — e(s).
‘28 < o 2w>”(2w)’<<e 7 277 < e
By Lemma [3.3]
2mi on222 g 2mz 1 2mi
_ A 222
3¢ ¢ 1( 335 >
6#222
T e s Cil 2 Ra(ly 4 2 2Rarly(4 2
e O(efﬂ Re($)(53—22—62 )) _i_O(effr Re(5)(5+22—62 ))

~ 3 sinh (2%

For |z| < 1/6, we have 4/3 — 2z — 622 > 1/6 and 4/3 + 22 — 622 > 1/6.
Therefore

e~ Re(1)(3+2:-62%) L =2 Re(})
‘ |l/2

“r2Re(1)(4-2:-622) L =2 Re())

(& s/\3 << s
| |1/2

Thus the dominant error term comes from +35 Les/ 6h(Sz + 5fr ; 317‘:) (%) The
lemma follows. m

4. Asymptotic behavior. Since N(m,n) = N(—m,n) for all m and n,
we assume from now on that m > 0. In this section we want to study the
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asymptotic behaviour of the generating function of N(m,n). Define

1/2

Ry, (7) == S R(z;7)e 2™m= 2.

-1/2
Let us recall that 7 = is/(27) and s = B(1 + izm~/3) with = € R satis-
fying |z| < 7m!/3 /3. To simplify the forthcoming calculations, we need the
following lemma.

LEMMA 4.1. We have

1/6
q'/2

n(r)

—2mimz dz
)

Ry (1) =3

gm(z;7)e
~1/6

where

gm (2 7)
—A1(32,7;37)e3™* + A1(32, —7;37)e 3™ for m = 0 (mod 3),

3
—A1(32,—7;37)e TE — ime_”z form =1 (mod 3),

= 0(3z;37)
3
A1(32,7;37)e™ + 2'0?35);1)6”2 form =2 (mod 3).
Proof. By , write
gL/
m = L —1I,—1I R
R (7) ) (Iy — Iz — I3)
where
1/2 i(C1/2 _ C_1/2)773(37') i
=] 0(32;3 ¢ dz,
—-1/2 ( Z5 T)
1/2
Iy = S CTHCM? = ¢V AL (32, =7 37)e 2T dz,
~1/2
1/2
Igi= | C(CY? = V) A (32, 737)e 2 da.
~1/2
First, using (2.3]) and (2.6)), notice that
(4.1) 0(3z+1;37) = —0(3z; 37),
(4.2) A1(32 +1,7;37) = — A1 (32,75 37),

(4.3) A1(3z2+1,—7;37) = —A1(32, —T;37).



Asymptotic formulae for partition ranks 91

Thus by (4.1)),

~1/6  1/6  1/2 _
n=(§ +§ +] U = C P Gn) amime g,
' 0(3z;371)

—-1/2 -1/6 1/6
1/6

3
. mi(z—1/3) _ _—wi(z—1/3)\ " (37) —2mim(z—1/3)
= —j S (e (=—1/ e )70(3,2; 37_)6 # dz
~1/6
1/6 3
. Tz —Tiz n <3T) —2mimz
+i S (e e )6(32;37_)6 dz
~1/6
1/6 5
o mi(z4+1/3) _ _—mi(z+1/3)\ " (37) —2mim(z+1/3) 4
! S (e ¢ )«9(3,2;37')6 ®
~1/6
1/6 | |
_ S [em‘z(_e%’@m—l) +1— 6%1(—2m+1))
—-1/6

. us’ s} 3 3 ;
. 6_7”2(—67(2m+1) +1-— 63(_2m_1))]i0?3£;73-3_) e~ 2mimz .

Therefore

0 for m =0 (mod 3),

/6
_ 3 S mefﬂ%@m“) dz for m =1 (mod 3),
0(3z;371)
(44) L = ~1/6
1/6 4
3 18/6 ‘97(7?)2‘;)’;)_)6—”2'2(2711—1) dz for m =2 (mod 3).

By the same method and using (4.2)) and (4.3)), we obtain

1/6
-3 S Ay (32, —7;37)e ™ 2mH3) g2 for m = 0 (mod 3),
~1/6
(4.5) Ly={ 1/6
3 S A1(3z,—T; 37)6_””(2””1) dz  form =1 (mod 3),
~1/6
L 0 for m = 2 (mod 3),
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( 1/6
3 S A1(32,7;37)e ™™ =3) gz for m = 0 (mod 3),
~1/6
(46) Is= <0 for m =1 (mod 3),
1/6
-3 S A1(32,7:37)e ™™ d2 for m =2 (mod 3).
~1/6

The result follows. =

4.1. Bounds near the dominant pole. In this section we consider
the range |z| < 1. We start by determining the main term of g,,.

LEMMA 4.2. For allm >0, —=1/6 < z < 1/6 and |z| < 1 we have, as
n — oo,

67222
is 2rsin(mz)e s 1 _x2pet
Zio— | = +0 e Re(3) ),
gm< 27T> 3ssinh (2722) (|s|1/2

Proof. If m =0 (mod 3), by Lemma [3.5[ we have

gm(2;7) = —A1(32,7;37)™% + Ay (32, —7; 37)e 3™

6#222 . 6#222

= _E 467rize ° + E e_ﬂ—lze Si _|_ O 71 67% Re(é)
3s sinh(w) 3s sinh(@) |s]1/2
S S

. 67222
0 € s iz —Tiz 1 _x? Re(1)>
=——F=—(—€"+e + O< e 6

6222

2msin(mz)e s < 1 x2 e
= %7 € 6
3ssinh(m) |S|1/2

s

® =
—

If m =1 (mod 3), by Lemmas and we have

, 3(3 ,
gm(z;7) = —A1(32,—7;37)e” " — 1 0T) (37) e ™

0(3z;37)
. Tiz 62
_im e = +O< ! e—fRe@))
3s sinh(Z22) ©  \[s[1/2
. 6w2z2
ime e s 4m

(1405 R34 (=5 Re(D)(1+32))]

3s sinh(2”2z)

S
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6W2z2
moe s 1 x2 1
- mz Tz o) — % Re(3)
3s sinh(Q”T%)( e + <|3|1/2 ¢
. 6#222 9
_ 2msin(mz)e O< 1 i Re(1)>
3ssinh(¥) | |1/2 .
Finally, if m = 2 (mod 3), by Lemmas and we have
0337 .
gm(z;7) = A1(32,7;371)e™* + ZG?S; 37)_) Tz
T e‘”zeGWjZ2 L0 1 7%Re(l)
= —Fe S
3s sinh(—2”2z) |s|1/2
. 6#222
ime™ e s 472 1 ar? po(l
- [14+0(e 5 Re(5)(1-3z) +0(e 73 Re(5)(1+32)
3s sinh(—%jz) [ ( ) ( )]
6w2z2

_ E € s —Tiz mz 1 77r2 Re(l)
TS A T

6222
2rsin(mz)e s ( I _=%R 1)
= + 0 e 5 Re(5) ),
35 sinh (2222) ERE )

In view of Lemma [4.2] it is natural to define

7T2Z2
2m 1o sin(wz)e6 S orims
Gma(s) == | = —=h d
16 smh( )
1/6 . . 6222
is 2rsin(mz)e s o
Gmol(s) =3 < m(z; > - >e TME 2.
2(s) _18/6 4 2m 3ssinh(2”—;z)
Thus
q'/2
(4.7) Ry (7) = (Gm.1(s) + Gm,2(s))-

n()

Note that we can rewrite G, 1(s) as

6 7\'222
4m g sin(wz)e6 s

5 5 s1nh(27rz)

gml( )

cos(2mmz) dz.

LEMMA 4.3. Assume that |x| <1 and m < % logn. Then, as n — oo,

gm,l(S) = Zsech2 (T) +0 <ﬁ2m2/3 sech? <B;7’L)> .
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Proof. We use the same method as in [3]. Inserting the Taylor expansion
of sin(7z), exp(67222/s), and cos(2wmz) in the definition of G, 1(s), we find
that

67222

sin(rz)e s cos(2mmz)

Z (—1)t> 72 (2em) 2 67> T22j+2u+2r+1
(27 + D)!(2v)!r! s '

Jvr20
This yields
nm (=1 2j+1 o (677"
Ol = 50 2 et BT ) B

where for £ € Ny we define

16 201
Iy = ———dz
T . 272z
) sinh(25)

We next relate Z; to & defined in (2.8)). For this, we note that

o Z2€+1
(4.8) L=\——s-d:-1

0 Sinh(QWTQZ)

with

T Z%—H < 2 1
Ié = S ' e dz < S 2254’16*2” zRe(g) dz
176 smh( p ) 16

() e

where I'(o; ) := (" e “w* ! dw. Since

(4.9) I'(tz) ~az'le™ asz— oo,
this yields

1 -1 Wz 1 wz 1
7, < (Re()) e~ 5 Re(3) < o= Re3),
S

By a substitution in Lemma [2.6] we know that

TR (5 22 (1) By (0)
osmh(%) 2m 2 .
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Thus
- Cus 2v 2j+2v+r+1
2V, r = | 7{2
X (E2j+2l/+2r+1(0) + O(‘Z|_2J_2V—2T—26_? Re(%)))
— (ms)? [ s ,
;) )\ 277 +1(0) + O([s[%)
— Z sech2 <Tr2LS> 4 O(’S’Q COSh(ms)),

where for the last equality we have used Lemma [2.5] The end of the proof
is now exactly the same as in [3, Lemma 3.2]. =

We now want to bound G, 2(s).

LEMMA 4.4. Assume that |x| < 1. Then, as n — oo,

2

1 _=2
|Gm.a(s)] < ——5e 125,

51/2
Proof. By Lemma 4.2 we have
1/6 2 1 . 1 2 1
|gm72(8)| < S |S|1/26—?Re(g) —2mimz dz < ‘S|1/26_?Re(;)'
~1/6

By the definition of s, we know that 1/|s|'/2 < 1/8'/2. Furthermore, as
|z| <1, we have Re(1/s) > 1/(25). This yields the conclusion. =

Combining Lemmas [£.3] and [£.4, we obtain the following asymptotic
estimate of R,,(7) near the dominant pole.

PROPOSITION 4.5. Assume that |x| < 1. Then, as n — oo,

33/2 2 Bm k2 5 Bm
_ P\ kr /2, 2/3 2( P\ \/n/6
Ry, (T) 122 sech ( 5 >66 +O<B m~/” sech < 5 >e )
Proof. Recall from that
q'/2
Ry (1) = = (Gm,1(8) + Gm,2(5))-
n(7)

By Lemma [2.1] we see that
P2 (2) Fasom)
e e € 6s .
n(7) 2m
We approximate Gy, 1 and G, » using Lemmas and .4} The main error
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term comes from G,, 1. We obtain

53/2 x2 o Bm 1 Bm\ =2
__5 = P /232,.2/3 2( P -
Rm(T)—4(2 )1/266 sech < 5 >+<)<s B“m=/” sech ( 5 )eﬁ >

The claim follows now using the estimates

|s| < 5, Re(1> Sl: \/% ]
s) B

™

4.2. Estimates far from the dominant pole. In the previous section,
we have established bounds for the behaviour of R,,(7) close to the pole
7 = 0. For Wright’s version of the circle method, we also need estimates
far away from this pole. In this section, we consider the range 1 < |z| <
wm!/3 /3. First we need a lemma, which follows from an argument similar
to the one in [10] (see also [3, Lemma 3.5]).

LEMMA 4.6. Let P(q) = ¢"/?*/n(r) be the generating function for par-
titions. Assume that 7 = u + iv € H. For Mv < |u|] < 1/2 and v — 0, we

have
Pl < vies L1 - o (1- == )]

Proof. Let us write the following Taylor rearrangement:

log(P(q)) = =Y log(1—¢") =
n=1

Then we have the estimate

|mmm<i I +§ "
- m|l —q™| = |1 —¢q| 1—|<1! m(1—|g|™)

=1
:mmmwMﬁmwﬁﬁ'

For Mv < |u| < 1/4, we have cos(2mu) < cos(2rMwv). Therefore
11— q> =1 — 22 cos(2mu) + ™4™ > 1 — 2e72™ cos(2rMv) + 4™,
By a Taylor expansion around v = 0 we find that
(4.10) 11— g > 2701+ M2 + O(v?
When 1/4 < |u| < 1/2, we have cos(2mu) < 0. Therefore
I1—gq| > 1.

When v — 0, this is asymptotically larger than (4.10)). Hence, for all Mv <
ul <1/2,

(4.11) 11— ¢q| > 2mvV/1 4+ M2 4 O(v?
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Furthermore

(4.12) 1—|gl=1—-e2™ =270+ O(v?).
By Lemma we have
—27v
Pllal) = S = Vo e (14 0(v))
n(iv)
Thus
(4.13)

1
loa(P(la))) = 13- + 5 log(v) + O(v).
Combining (4.11)—(4.13), we finally obtain

log(P(q))] < log(P(jq])) —

- (1 ﬁ)a +0())
= 13+ 31o8) + 00— 5 )
(&5 (- o).

)
Exponentiating yields the desired result. =

We are now able to bound |R,,(7)| away from g =1

PROPOSITION 4.7. Assume that 1 < |z| < 7m!/3/B. Then, as n — oo

|Rn(7)] < Vi exp <W\/§ _ VSf:nm_Q/g)‘

Proof. By (2.1)), we have

1/2
Rm(T)

(_1)kq3sz+k —2mwimz
= P(q) 1-¢ -t e dz
« _15/2(< D )
1/2 vk 3k22+k
P | (1+0-0x 5
—1/2

_ k
= 1—-(q

_ -1 kqgk2+ —2mimz
+(1_C 1)2(1_)C_1qk>62 dz.
k>1
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So we may bound |R,,(7)| when n — oo in the following way:

1/2 ’ |5k +k
q —27
|Rin(7)| < [P(g)] Z ‘k! 2TmE d
1/2k>1
2
< |P(q) Z -85
’k>1
1T .2
< |P(q) S e P dx
1—1q|

< |P<q>|;@ < |P(g)n*".

Now we use Lemma 4.6 with v = 3/(27), u = fm~Y3z/(2r) and M =
m~1/3. We obtain, for 1 < |z| < 7m!/3/3,

2n (7w 1 1
P —1/4 il (UG | [
<o T (G- 5 (1 =)
Therefore
2 (7 1 1
1/2 il S I T
ot < e (5 - 52 (1 )

Vbn 1
< n'?ex |:7T\/E— (1— )]
P 6 ™ V14 m—2/3
< n'/? exp <7T n_ 2/3>

6 87T

5. The Circle Method. In this section, as in [3], we use Wright’s
variant of the Circle Method to complete the proof of Theorem

Using Cauchy’s theorem, we write N(m,n) as an integral of its generat-
ing function R, (7):

1 ¢ Rpn(7)
N(mvn)zﬁs qn+1 dQ7
C

where the contour is the counterclockwise traversal of the circle C':= {g€ C :
lg| = e=#}. Recall that s = B(1+izm~/3). Changing variables we may write

N(m,n):L | Rm(is>e”5dw.

2rml/3
|z|<mm1/3/8
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We split this integral into two pieces, N(m,n) = M + E, with

L p is ns
M = W S Rm % € d.’E,
|lz|<1
_ p is ns

1<]z|<mm1/3 /8
In the following we show that M contributes to the asymptotic main term,
whereas F is part of the error term.
As the estimate of R,,(7) close to the dominant pole is exactly the same
as the one of Cp, 1(¢) in [3], the asymptotic behaviour of M here is the same
as in [3]:

PRrRoPOSITION 5.1. We have

1/3
M = gsech2 <ﬂ2m>p(n) <1 + O(T:l/4>>

Let us now turn to the integral E.

PROPOSITION 5.2. Asn — oo,

2n V6 m—2/3
3 87r i
Proof. Using Proposition [£.7], we may bound

n  Vén _ "
< f/:,) S n1/2exp<7r\/g—8ﬂm 2/3)65 dx

1<z<mm!/3/B
2n \/ _2/3

. n
3 871'

Thus FE is exponentially smaller than M. This completes the proof of
Theorem [T.2

E < n'/? exp (7’[’

< n'/? exp <7r
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