Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers

by
Hajime Kaneko (Tsukuba), Takeshi Kurosawa (Tokyo),
Yohei Tachiya (Hirosaki) and Taka-aki Tanaka (Yokohama)

1. Introduction. Let α and β be real algebraic numbers with $|\alpha|>1$ and $\alpha \beta=-1$. Then the generalized Fibonacci numbers and Lucas numbers are expressed, respectively, as

$$
\begin{equation*}
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n} \quad(n \geq 0) \tag{1.1}
\end{equation*}
$$

If $\alpha=(1+\sqrt{5}) / 2$, we have $U_{n}=F_{n}$ and $V_{n}=L_{n}(n \geq 0)$, where $\left\{F_{n}\right\}_{n \geq 0}$ and $\left\{L_{n}\right\}_{n \geq 0}$ are the sequences of Fibonacci numbers and Lucas numbers defined, respectively, by $F_{n+2}=F_{n+1}+F_{n}(n \geq 0), F_{0}=0, F_{1}=1$ and by $L_{n+2}=L_{n+1}+L_{n}(n \geq 0), L_{0}=2, L_{1}=1$. Let $d \geq 2$ be an integer. In [2], the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products

$$
\begin{equation*}
\prod_{\substack{k=1 \\ U_{d^{k}} \neq-a_{i}}}^{\infty}\left(1+\frac{a_{i}}{U_{d^{k}}}\right) \quad(i=1, \ldots, m) \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\prod_{\substack{k=1 \\ V_{d^{k}} \neq-a_{i}}}^{\infty}\left(1+\frac{a_{i}}{V_{d^{k}}}\right) \quad(i=1, \ldots, m) \tag{1.3}
\end{equation*}
$$

to be algebraically dependent, where a_{i} are non-zero rational integers. In this paper, we relax the condition on the non-zero rational integers a_{1}, \ldots, a_{m} to non-zero real algebraic numbers, which gives new cases where the infinite products $\sqrt{1.2}$) or $\sqrt{1.3}$ are algebraically dependent.

[^0]The algebraic independence of the infinite products above can be proved by using Mahler's method explained in Section 2, thereby, the algebraic dependence of the infinite products 1.3 with non-zero distinct real algebraic numbers a_{1}, \ldots, a_{m} is reduced to the problem of determining whether the set of the roots of the quadratic polynomials $z^{2}+a_{i} z+1(1 \leq i \leq m)$ and $z^{2}+1$ includes subsets described by a certain algorithm. If $\left|a_{i}\right|>2(1 \leq i \leq m)$, the method used in this paper is essentially similar to that of [2] dealing with the case where a_{1}, \ldots, a_{m} are rational integers. If a_{1}, \ldots, a_{m} are non-zero distinct real algebraic numbers including those with $\left|a_{i}\right| \leq 2$, it can arise that the infinite products (1.3) which were not treated in [2] are algebraically dependent (see Examples 26 below). In such a case, we establish the algorithm of selecting d th roots to find subsets mentioned above whose elements distribute on the unit circle with certain symmetry. For this purpose, Lemmas 4.1 and 4.2 play a crucial role. The necessary and sufficient conditions given in Theorems 1.1 and 1.3 are useful to obtain explicit algebraic dependence relations between the infinite products 1.2 and 1.3 , whose transcendence degrees are just one less than the numbers of the infinite products appearing in each relation (see Examples $1 \sqrt{6}$).

We introduce the following notation which will be needed throughout this paper. Let $d \geq 2$ be a fixed integer. For $\tau \in \mathbb{C}$ with $|\tau|=1$ and $i=0,1, \ldots$, define $\Omega_{i}(\tau):=\left\{z \in \mathbb{C} \mid z^{d^{i}}=\tau\right.$ or $\left.z^{d^{i}}=\bar{\tau}\right\}$. Here and in what follows, for any $\gamma \in \mathbb{C}$ we denote by $\bar{\gamma}$ the complex conjugate of γ. Moreover, for $S \subset \mathbb{C}$ we denote $\bar{S}:=\{\bar{\gamma} \mid \gamma \in S\}$. Let $\zeta_{m}=\exp (2 \pi \sqrt{-1} / m)$. For any fixed integer $k \geq 1$, let $S_{k}(\tau)$ be a non-empty subset of $\Omega_{k}(\tau)$ such that for any $\gamma \in S_{k}(\tau)$ the numbers $\zeta_{d} \gamma$ and $\bar{\gamma}$ belong to $S_{k}(\tau)$. Namely, $S_{k}(\tau)$ satisfies

$$
\begin{equation*}
S_{k}(\tau)=\zeta_{d} S_{k}(\tau) \quad \text { and } \quad S_{k}(\tau)=\overline{S_{k}(\tau)} \tag{1.4}
\end{equation*}
$$

For example, if $k=3, d=2$, and $\tau=1$, we have $\Omega_{3}(1)=\left\{\zeta_{8}^{j} \mid 0 \leq j \leq 7\right\}$ and we can choose $S_{3}(1)=\left\{ \pm \zeta_{8}, \pm \zeta_{8}^{3}\right\}$. Note that the following sets are determined depending only on $S_{k}(\tau)$:

$$
\begin{aligned}
\Lambda_{i}(\tau) & =\left\{\gamma^{d^{k-i}} \mid \gamma \in S_{k}(\tau)\right\} \subset \Omega_{i}(\tau) & & (0 \leq i \leq k-1) \\
\Gamma_{i}(\tau) & =\left\{\gamma \in \Omega_{i}(\tau) \mid \gamma^{d} \in \Lambda_{i-1}(\tau)\right\} \backslash \Lambda_{i}(\tau) & & (1 \leq i \leq k-1)
\end{aligned}
$$

Define

$$
\mathcal{E}_{k}(\tau)=\left(\bigcup_{i=1}^{k-1} \Gamma_{i}(\tau)\right) \cup S_{k}(\tau), \quad \mathcal{F}_{k}(\tau)= \begin{cases}\mathcal{E}_{k}(\tau) \cup\{\tau, \bar{\tau}\} & \text { if } \tau \notin \mathcal{E}_{k}(\tau) \\ \mathcal{E}_{k}(\tau) \backslash\{\tau, \bar{\tau}\} & \text { otherwise }\end{cases}
$$

Note that $\mathcal{E}_{1}(\tau)=S_{1}(\tau)$. The main results of this paper are as follows:
TheOrem 1.1. Let $\left\{U_{n}\right\}_{n \geq 0}$ be the sequence defined by 1.1) and d an integer greater than 1. Let a_{1}, \ldots, a_{m} be non-zero distinct real algebraic num-
bers. Then the numbers

$$
\prod_{\substack{k=0 \\ U_{d^{k}} \neq-a_{i}}}^{\infty}\left(1+\frac{a_{i}}{U_{d^{k}}}\right) \quad(i=1, \ldots, m)
$$

are algebraically dependent if and only if d is odd and there exist $\tau_{1}, \tau_{2} \in \mathbb{C}$ with $\tau_{1} \neq \tau_{2},\left|\tau_{1}\right|=\left|\tau_{2}\right|=1$ and $\mathcal{F}_{k_{1}}\left(\tau_{1}\right), \mathcal{F}_{k_{2}}\left(\tau_{2}\right)$ with $k_{1}, k_{2} \geq 1$ such that $\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cap \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \subset\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}\right\}$ and $\left\{a_{1}, \ldots, a_{m}\right\}$ contains

$$
-\frac{1}{\alpha-\beta}(\gamma+\bar{\gamma})
$$

for all $\gamma \in\left(\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cup \mathcal{F}_{k_{2}}\left(\tau_{2}\right)\right) \backslash\{ \pm \sqrt{-1}\}$.
Corollary 1.2. For any integer $d \geq 2$ and for any real algebraic number $a \neq 0$, the infinite product

$$
\prod_{\substack{k=0 \\ U_{d^{k}} \neq-a}}^{\infty}\left(1+\frac{a}{U_{d^{k}}}\right)
$$

is transcendental.
This follows from the fact that the algebraic dependence condition of Theorem 1.1 requires two non-empty sets $\mathcal{F}_{k_{1}}\left(\tau_{1}\right)$ and $\mathcal{F}_{k_{2}}\left(\tau_{2}\right)$. The transcendence of the numbers such as the infinite products in Corollary 1.2 was shown in 5].

Examples 16 below are obtained by using Theorems 1.1 and 1.3 of this paper. For the details, see [3].

Example 1. Let a be a non-zero real algebraic number. The transcendental numbers

$$
s_{1}=\prod_{\substack{k=0 \\ F_{3^{k}} \neq-a}}^{\infty}\left(1+\frac{a}{F_{3^{k}}}\right) \text { and } s_{2}=\prod_{\substack{k=0 \\ F_{3^{k}} \neq a}}^{\infty}\left(1-\frac{a}{F_{3^{k}}}\right)
$$

are algebraically dependent if and only if $a= \pm 1 / \sqrt{5}$. If $a=1 / \sqrt{5}$, then $s_{1} s_{2}^{-1}=2+\sqrt{5}$.

TheOrem 1.3. Let $\left\{V_{n}\right\}_{n \geq 0}$ be the sequence defined by 1.1) and d an integer greater than 1. Let a_{1}, \ldots, a_{m} be non-zero distinct real algebraic numbers. Then the numbers

$$
\begin{equation*}
\prod_{\substack{k=0 \\ V_{d^{k}} \neq-a_{i}}}\left(1+\frac{a_{i}}{V_{d^{k}}}\right) \quad(i=1, \ldots, m) \tag{1.5}
\end{equation*}
$$

are algebraically dependent if and only if at least one of the following three properties is satisfied:
(i) $d=2$ and the set $\left\{a_{1}, \ldots, a_{m}\right\}$ contains $b_{1}, \ldots, b_{l}(l \geq 3)$ satisfying $b_{1}<-2, b_{2}=-b_{1}, b_{j}=b_{j-1}^{2}-2(j=3, \ldots, l-1), b_{l}=-b_{l-1}^{2}+2$.
(ii) $d=2$ and there exist $\tau \in \mathbb{C}$ with $|\tau|=1$ and $\mathcal{F}_{k}(\tau)$ with $k \geq 1$ such that $\left\{a_{1}, \ldots, a_{m}\right\}$ contains $-(\gamma+\bar{\gamma})$ for all $\gamma \in \mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}$.
(iii) $d \geq 4$ is even and there exist $\tau_{1}, \tau_{2} \in \mathbb{C}$ with $\tau_{1} \neq \tau_{2},\left|\tau_{1}\right|=$ $\left|\tau_{2}\right|=1$ and $\mathcal{F}_{k_{1}}\left(\tau_{1}\right), \mathcal{F}_{k_{2}}\left(\tau_{2}\right)$ with $k_{1}, k_{2} \geq 1$ such that $\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cap$ $\mathcal{F}_{k_{2}}\left(\tau_{2}\right) \subset\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}\right\}$ and $\left\{a_{1}, \ldots, a_{m}\right\}$ contains $-(\gamma+\bar{\gamma})$ for all $\gamma \in\left(\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cup \mathcal{F}_{k_{2}}\left(\tau_{2}\right)\right) \backslash\{ \pm \sqrt{-1}\}$.
REMARK 1.4. If $d=2$, setting $\tau_{1}=\zeta_{3}=\zeta_{6}^{2}, S_{1}\left(\tau_{1}\right)=\left\{\zeta_{6}, \zeta_{6}^{2}, \zeta_{6}^{4}, \zeta_{6}^{5}\right\}$, $\tau_{2}=-1$, and $S_{1}\left(\tau_{2}\right)=\{\sqrt{-1},-\sqrt{-1}\}$, we have $\mathcal{F}_{1}\left(\tau_{1}\right)=\left\{\zeta_{6}, \zeta_{6}^{5}\right\}$ and $\mathcal{F}_{1}\left(\tau_{2}\right)=\{-1, \sqrt{-1},-\sqrt{-1}\}$. Hence, using (ii) of Theorem 1.3 and noting that $-\left(\zeta_{6}+\zeta_{6}^{5}\right)=-1$ and $-(-1-1)=2$, we see that the corresponding infinite products (1.5) are algebraic numbers. Indeed,

$$
\prod_{k=1}^{\infty}\left(1-\frac{1}{V_{2^{k}}}\right)=\frac{\alpha^{4}-1}{\alpha^{4}+\alpha^{2}+1} \quad \text { and } \quad \prod_{k=1}^{\infty}\left(1+\frac{2}{V_{2^{k}}}\right)=\frac{\alpha^{2}+1}{\alpha^{2}-1}
$$

Corollary 1.5. Let $d \geq 2$ be an integer and $a \neq 0$ be a real algebraic number with $(d, a) \neq(2,-1),(2,2)$. Then the infinite product

$$
\prod_{\substack{k=0 \\ V_{d^{k}} \neq-a}}^{\infty}\left(1+\frac{a}{V_{d^{k}}}\right)
$$

is transcendental.
This corollary can be deduced from the following discussion: Case (iii) of Theorem 1.3 requires two non-empty sets $\mathcal{F}_{k_{1}}\left(\tau_{1}\right)$ and $\mathcal{F}_{k_{2}}\left(\tau_{2}\right)$. Hence, if $d \geq 4$, the infinite product in the corollary is transcendental. When $d=2$, case (i) of Theorem 1.3 requires at least three numbers. Therefore only case (iii) has a possibility for the infinite product to be algebraic. If the number of elements in $\mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}$ is at most two, the infinite product is algebraic, as is shown in Remark 1.4 above. The transcendence of the numbers such as the infinite products in the corollary was shown in [5].

EXAMPLE 2. Let $a \neq \pm 1, \pm 2$ be a real algebraic number. The transcendental numbers

$$
s_{1}=\prod_{\substack{k=1 \\ L_{2^{k}} \neq-a}}^{\infty}\left(1+\frac{a}{L_{2^{k}}}\right) \quad \text { and } \quad s_{2}=\prod_{\substack{k=1 \\ L_{2^{k}} \neq a}}^{\infty}\left(1-\frac{a}{L_{2^{k}}}\right)
$$

are algebraically dependent if and only if $a= \pm \sqrt{2}$. If $a= \pm \sqrt{2}$, then $s_{1} s_{2}=\sqrt{5} / 3$.

Example 3. The transcendental numbers

$$
\begin{aligned}
& s_{1}=\prod_{k=1}^{\infty}\left(1-\frac{\sqrt{3}}{L_{4^{k}}}\right), \quad s_{2}=\prod_{k=1}^{\infty}\left(1+\frac{\sqrt{3}}{L_{4^{k}}}\right), \\
& s_{3}=\prod_{k=1}^{\infty}\left(1-\frac{1}{L_{4^{k}}}\right), \quad s_{4}=\prod_{k=1}^{\infty}\left(1+\frac{2}{L_{4^{k}}}\right)
\end{aligned}
$$

satisfy

$$
s_{1} s_{2} s_{3} s_{4}^{-1}=\frac{5}{8}
$$

while trans. $\operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=3$.
Example 4. The transcendental numbers

$$
\begin{gathered}
s_{1}=\prod_{k=1}^{\infty}\left(1-\frac{1}{L_{6^{k}}}\right), \quad s_{2}=\prod_{k=1}^{\infty}\left(1+\frac{1}{L_{6^{k}}}\right), \quad s_{3}=\prod_{k=1}^{\infty}\left(1+\frac{2}{L_{6^{k}}}\right) \\
s_{4}=\prod_{k=1}^{\infty}\left(1+\frac{\sqrt{3}}{L_{6^{k}}}\right), \quad s_{5}=\prod_{k=1}^{\infty}\left(1-\frac{\sqrt{3}}{L_{6^{k}}}\right)
\end{gathered}
$$

satisfy

$$
s_{1} s_{2} s_{3} s_{4}^{-1} s_{5}^{-1}=\frac{\sqrt{5}}{2}
$$

while trans. $\operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)=4$.
Example 5. The transcendental numbers

$$
s_{i}=\prod_{k=1}^{\infty}\left(1+\frac{a_{i}}{L_{4^{k}}}\right) \quad(i=1, \ldots, 8)
$$

where
$a_{1}=-\left(\zeta_{16}^{1}+\zeta_{16}^{15}\right), a_{2}=-\left(\zeta_{16}^{5}+\zeta_{16}^{11}\right), a_{3}=-\left(\zeta_{16}^{7}+\zeta_{16}^{9}\right), a_{4}=-\left(\zeta_{64}^{3}+\zeta_{64}^{61}\right)$, $a_{5}=-\left(\zeta_{64}^{13}+\zeta_{64}^{51}\right), a_{6}=-\left(\zeta_{64}^{19}+\zeta_{64}^{45}\right), a_{7}=-\left(\zeta_{64}^{29}+\zeta_{64}^{35}\right), a_{8}=2$,
satisfy

$$
s_{1} s_{2} \cdots s_{7} s_{8}^{-2}=\frac{25}{7(7-\sqrt{2-\sqrt{2}})}
$$

while trans. $\operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(s_{1}, \ldots, s_{8}\right)=7$.
Example 6. The transcendental numbers

$$
s_{i}=\prod_{k=1}^{\infty}\left(1+\frac{a_{i}}{L_{4^{k}}}\right) \quad(i=1, \ldots, 10)
$$

where

$$
\begin{array}{lllll}
a_{1}=-\frac{3}{2}, & a_{2}=\frac{\sqrt{7}}{2}, & a_{3}=\frac{3}{2}, & a_{4}=-\frac{\sqrt{7}}{2}, & a_{5}=\frac{31}{16} \\
a_{6}=-\frac{4}{\sqrt{5}}, & a_{7}=\frac{2}{\sqrt{5}}, & a_{8}=\frac{4}{\sqrt{5}}, & a_{9}=-\frac{2}{\sqrt{5}}, & a_{10}=\frac{14}{25}
\end{array}
$$

satisfy

$$
s_{1} s_{2} s_{3} s_{4} s_{5}^{-1} s_{6}^{-1} s_{7}^{-1} s_{8}^{-1} s_{9}^{-1} s_{10}=\frac{3024}{3575}
$$

while trans. $\operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(s_{1}, \ldots, s_{10}\right)=9$.
The proofs of Theorems 1.1 and 1.3 will be given in Section 5 .
2. Functional equations. In this section, we explain the Mahler method mentioned in the Introduction. Let \boldsymbol{K} be an algebraic number field, $\boldsymbol{K}(z)$ the field of rational functions over \boldsymbol{K}, and $\boldsymbol{K}[[z]]$ the ring of formal power series with coefficients in \boldsymbol{K}. In what follows, let d be an integer greater than 1. We define the subgroup H_{d} of the multiplicative group $\boldsymbol{K}(z)^{\times}$ of non-zero elements of $\boldsymbol{K}(z)$ by

$$
\begin{equation*}
H_{d}:=\left\{\left.\frac{g\left(z^{d}\right)}{g(z)} \right\rvert\, g(z) \in \boldsymbol{K}(z)^{\times}\right\} . \tag{2.1}
\end{equation*}
$$

The functions $c_{1}(z), \ldots, c_{m}(z) \in \boldsymbol{K}(z)^{\times}$are called multiplicatively dependent modulo H_{d} if there exist rational integers e_{1}, \ldots, e_{m}, not all zero, such that

$$
\prod_{i=1}^{m} c_{i}(z)^{e_{i}} \in H_{d}
$$

If no such rational integers exist, then the functions $c_{1}(z), \ldots, c_{m}(z)$ are said to be multiplicatively independent modulo H_{d}.

We use the following lemmas for proving the theorems.
Lemma 2.1 (Kubota [1, Corollary 8]). Let $f_{1}(z), \ldots, f_{m}(z) \in \boldsymbol{K}[[z]] \backslash\{0\}$ satisfy the functional equations

$$
\begin{equation*}
f_{i}\left(z^{d}\right)=c_{i}(z) f_{i}(z), \quad c_{i}(z) \in \boldsymbol{K}(z)^{\times} \quad(i=1, \ldots, m) \tag{2.2}
\end{equation*}
$$

Then $f_{1}(z), \ldots, f_{m}(z)$ are algebraically independent over $\boldsymbol{K}(z)$ if and only if the rational functions $c_{1}(z), \ldots, c_{m}(z)$ are multiplicatively independent modulo H_{d}.

Lemma 2.2 (Kubota [1], see also Nishioka [4, Theorem 3.6.4]). Suppose that $f_{1}(z), \ldots, f_{m}(z) \in \boldsymbol{K}[[z]]$ converge in $|z|<1$ and satisfy the functional equations (2.2) with $c_{i}(0) \neq 0$. Let γ be an algebraic number with $0<|\gamma|<1$ such that $c_{i}\left(\gamma^{d^{k}}\right)$ are defined and non-zero for all $k \geq 0$. If $f_{1}(z), \ldots, f_{m}(z)$ are algebraically independent over $\boldsymbol{K}(z)$, then the values $f_{1}(\gamma), \ldots, f_{m}(\gamma)$ are algebraically independent.

Let $\left\{R_{n}\right\}_{n \geq 0}$ be the sequence $\left\{U_{n}\right\}_{n \geq 0}$ or $\left\{V_{n}\right\}_{n \geq 0}$ defined by 1.1. Then for any non-zero real algebraic numbers a_{1}, \ldots, a_{m}, we set

$$
\Phi_{i}(z)=\prod_{k=0}^{\infty}\left(1+\frac{p_{i} z^{d^{k}}}{1+b z^{2 d^{k}}}\right) \quad(i=1, \ldots, m)
$$

where

$$
\left(p_{i}, b\right)= \begin{cases}\left((\alpha-\beta) a_{i},-(-1)^{d}\right) & \text { if } R_{n}=U_{n} \tag{2.3}\\ \left(a_{i},(-1)^{d}\right) & \text { if } R_{n}=V_{n}\end{cases}
$$

Taking an integer $N \geq 1$ such that $\left|R_{d^{k}}\right|>\max \left\{\left|a_{1}\right|, \ldots,\left|a_{m}\right|\right\}$ for all $k \geq N$ and noting that $\alpha \beta=-1$, we get

$$
\begin{aligned}
\Phi_{i}\left(\alpha^{-d^{N}}\right) & =\prod_{k=N}^{\infty}\left(1+\frac{p_{i} \alpha^{-d^{k}}}{1+b \alpha^{-2 d^{k}}}\right)=\prod_{k=N}^{\infty}\left(1+\frac{p_{i}}{\alpha^{d^{k}}+b(-1)^{d^{k}} \beta^{d^{k}}}\right) \\
& =\prod_{k=N}^{\infty}\left(1+\frac{a_{i}}{R_{d^{k}}}\right) \quad(i=1, \ldots, m)
\end{aligned}
$$

so that

$$
\begin{equation*}
\prod_{\substack{k=0 \\ R_{d^{k}} \neq-a_{i}}}^{\infty}\left(1+\frac{a_{i}}{R_{d^{k}}}\right)=\Phi_{i}\left(\alpha^{-d^{N}}\right) \prod_{\substack{k=0 \\ R_{d^{k}} \neq-a_{i}}}^{N-1}\left(1+\frac{a_{i}}{R_{d^{k}}}\right) \quad(i=1, \ldots, m) \tag{2.4}
\end{equation*}
$$

Suppose that the numbers (2.4) are algebraically dependent. Then so are the values $\Phi_{1}\left(\alpha^{-d^{N}}\right), \ldots, \Phi_{m}\left(\alpha^{-d^{N}}\right)$. Since $\Phi_{1}(z), \ldots, \Phi_{m}(z)$ satisfy the functional equations

$$
\begin{equation*}
\Phi_{i}\left(z^{d}\right)=c_{i}(z) \Phi_{i}(z), \quad c_{i}(z)=\frac{1+b z^{2}}{1+p_{i} z+b z^{2}} \quad(i=1, \ldots, m) \tag{2.5}
\end{equation*}
$$

the functions $\Phi_{1}(z), \ldots, \Phi_{m}(z)$ are algebraically dependent over $\boldsymbol{K}(z)$ by Lemma 2.2 with $\boldsymbol{K}=\mathbb{Q}\left(\alpha, a_{1}, \ldots, a_{m}\right)$. Then by Lemma 2.1 the rational functions $c_{1}(z), \ldots, c_{m}(z)$ are multiplicatively dependent modulo H_{d}, so there exist integers e_{1}, \ldots, e_{m}, not all zero, and $g(z) \in \boldsymbol{K}(z)^{\times}$such that $\prod_{i=1}^{m} c_{i}(z)^{e_{i}}=g\left(z^{d}\right) / g(z)$. Then, renumbering the p_{i}, we may assume that there exist coprime polynomials $A(z), B(z) \in \boldsymbol{K}[z] \backslash\{0\}$ such that

$$
\begin{equation*}
A\left(z^{d}\right) B(z) \prod_{i=1}^{k} P_{i}(z)^{e_{i}}=\left(1+b z^{2}\right)^{e} A(z) B\left(z^{d}\right) \prod_{i=k+1}^{l} P_{i}(z)^{e_{i}} \tag{2.6}
\end{equation*}
$$

where k, e_{i}, e are integers with $k, e_{i} \geq 1, e \geq 0$ and $P_{i}(z)=1+p_{i} z+b z^{2}$. We note that $\sum_{i=1}^{k} e_{i}=e+\sum_{i=k+1}^{l} e_{i}$.

We consider the functional equation (2.7) below, which is more general than 2.6). Let $P(z), Q(z) \in \mathbb{C}[z] \backslash\{0\}$ be coprime polynomials with $\operatorname{deg} P(z) Q(z)>0$ satisfying

$$
\begin{equation*}
A\left(z^{d}\right) B(z) P(z)=A(z) B\left(z^{d}\right) Q(z) \tag{2.7}
\end{equation*}
$$

where $d \geq 2$ is an integer and $A(z), B(z) \in \mathbb{C}[z] \backslash\{0\}$ are coprime. Note that the degrees of $P(z)$ and $Q(z)$ are not necessarily the same.

Let θ be a complex number and $\left\{\theta_{n}\right\}_{n \geq 1}$ a sequence of non-real numbers. We call $\left\{\theta_{n}\right\}_{n \geq 1}$ a compatible non-real sequence of roots of θ if $\theta_{1}^{d}=\theta$, $\theta_{n+1}^{d}=\theta_{n}$ for any $n \geq 1$, and the set $\left\{\theta_{n} \mid n \geq 1\right\}$ is infinite. In particular, $\theta_{n}^{d^{n}}=\theta$ for any $n \geq 1$.

Lemma 2.3. Assume that $P(z)$ and $Q(z)$ satisfy 2.7 . Let $\theta \in \mathbb{C}$.
(i) Suppose that there exists a compatible non-real sequence $\left\{\theta_{n}\right\}_{n \geq 1}$ of roots of θ satisfying $Q\left(\theta_{n}\right) \neq 0$ (resp. $\left.P\left(\theta_{n}\right) \neq 0\right)$ for any $n \geq 1$. Then $A(\theta) \neq 0($ resp. $B(\theta) \neq 0)$.
(ii) Let l be a positive integer. Assume that $Q\left(\theta^{d^{n}}\right) \neq 0$ for any n with $1 \leq n \leq l$ and that $B\left(\theta^{d}\right)=0$. Then $B\left(\theta^{d^{n}}\right)=0$ for any n with $1 \leq n \leq l+1$
(iii) Suppose $Q\left(\theta^{d^{n}}\right) \neq 0$ for any $n \geq 1$ and the set $\left\{\theta^{d^{n}} \mid n \geq 1\right\}$ is infinite. Then $B\left(\theta^{d}\right) \neq 0$.

Proof. For the proof of (i) we only check the case of

$$
\begin{equation*}
Q\left(\theta_{n}\right) \neq 0 \quad(n \geq 1) \tag{2.8}
\end{equation*}
$$

since that of $P\left(\theta_{n}\right) \neq 0(n \geq 1)$ is proved by the symmetry of 2.7$)$. Suppose on the contrary that $A(\theta)=0$. By 2.8 and the fact that $A(z)$ and $B(z)$ are coprime, $B(\theta) Q\left(\theta_{1}\right) \neq 0$. Thus, substituting $z=\theta_{1}$ into 2.7), we get $A\left(\theta_{1}\right)=0$ because $\theta_{1}^{d}=\theta$. Next suppose that $A\left(\theta_{n}\right)=0$ for some $n \geq 1$. In the same way as above, $B\left(\theta_{n}\right) Q\left(\theta_{n+1}\right) \neq 0$. Since $\theta_{n+1}^{d}=\theta_{n}$, putting $z=\theta_{n+1}$ into 2.7, we see that $A\left(\theta_{n+1}\right)=0$. Hence $A\left(\theta_{n}\right)=0$ for any $n \geq 1$, which is impossible since the set $\left\{\theta_{n} \mid n \geq 1\right\}$ is infinite and $A(z)$ is a polynomial. This completes the proof of (i).

Next we show (iii) by induction on n. The case of $n=1$ is trivial. Suppose that $B\left(\theta^{d^{n}}\right)=0$ for some n with $1 \leq n \leq l$. Then $A\left(\theta^{d^{n}}\right) Q\left(\theta^{d^{n}}\right) \neq 0$ since $A(z)$ and $B(z)$ are coprime. Thus, substituting $z=\theta^{d^{n}}$ into 2.7 , we get $B\left(\theta^{d^{n+1}}\right)=0$, and (iii) is proved.

Statement (iii) follows from (iii) since $B(z)$ is a polynomial.
3. The case where $P(z)$ and $Q(z)$ are products of quadratic polynomials. Let $\boldsymbol{K} \subset \mathbb{R}$ be an algebraic number field. In this section, we consider the special case of $P(z)$ and $Q(z)$ involving (2.6), namely, $P(z), Q(z)$
are expressed as

$$
\begin{equation*}
P(z)=\prod_{i=1}^{s}\left(1+p_{i} z+b z^{2}\right), \quad Q(z)=\prod_{j=s+1}^{t}\left(1+q_{j} z+b z^{2}\right) \tag{3.1}
\end{equation*}
$$

with $b= \pm 1$ and $p_{i} \neq q_{j}$ for all i, j and $P(z), Q(z)$ satisfy the functional equation 2.7 with $A(z), B(z) \in \boldsymbol{K}[z] \backslash\{0\}$. Note that p_{1}, \ldots, p_{s} are not necessarily distinct and neither are q_{s+1}, \ldots, q_{t}. First we show $b=1$ in Lemma 3.2 below, and then we investigate the properties of $P(z)$ and $Q(z)$ in different situations (see Subsections 3.1 and 3.2 .

Suppose that $P(z) Q(z)$ has real roots. Let α_{1} be one of these with the largest absolute value, so $\alpha_{1} \in \mathbb{R}$ satisfies $P\left(\alpha_{1}\right) Q\left(\alpha_{1}\right)=0$ and

$$
\begin{equation*}
\left|\alpha_{1}\right|=\max \{|\gamma| \mid \gamma \in \mathbb{R}, P(\gamma) Q(\gamma)=0\} \tag{3.2}
\end{equation*}
$$

Then, exchanging $A(z)$ and $B(z)$ in 2.7 if necessary, we may assume that

$$
P\left(\alpha_{1}\right)=0
$$

By (3.1), $\beta_{1}:=\left(b \alpha_{1}\right)^{-1}$ satisfies $P\left(\beta_{1}\right)=0$ and the absolute value of β_{1} is the smallest among those of the real roots of $P(z) Q(z)$. Comparing the orders at $z=1$ of both sides of (2.7), we obtain $P(1) Q(1) \neq 0$, which yields $\alpha_{1}, \beta_{1} \neq 1$.

Lemma 3.1. Let $P(z)$ and $Q(z)$ be polynomials of the form 3.1 which satisfy 2.7). If the roots of $P(z) Q(z)$ are real, then $A(z) B(z)$ has no negative root.

Proof. For any negative number θ, there exists a compatible non-real sequence $\left\{\theta_{n}\right\}_{n \geq 1}$ of roots of θ. We see that $P\left(\theta_{n}\right) Q\left(\theta_{n}\right) \neq 0$ for any $n \geq 1$ by the assumption of the lemma. Thus $A(\theta) B(\theta) \neq 0$ by Lemma 2.3(i). Since θ is any negative number, the lemma is proved.

Lemma 3.2. If $b=-1$, then there are no polynomials $A(z)$ and $B(z)$ of the form (3.1) which satisfy (2.7).

Proof. Since $b<0$, the roots of $P(z) Q(z)$ are real. By the definition of α_{1} and β_{1}, we have $\alpha_{1} \beta_{1}=-1$. Hence $\alpha_{1}<-1$ or $-1<\beta_{1}<0$ because $\alpha_{1}, \beta_{1} \neq 1$. Suppose that $\alpha_{1}<-1$. Then $Q\left(\alpha_{1}^{d^{n}}\right) \neq 0$ for any $n \geq 1$ by (3.2). Substituting $z=\alpha_{1}$ into (2.7), we get $A\left(\alpha_{1}\right) B\left(\alpha_{1}^{d}\right)=0$, which is a contradiction since $A\left(\alpha_{1}\right) \neq 0$ by Lemma 3.1 and $B\left(\alpha_{1}^{d}\right) \neq 0$ by Lemma 2.3 (iii). Similarly we deduce a contradiction in the case of $-1<\beta_{1}<0$, using the fact that $\left|\beta_{1}\right|$ is the smallest modulus among the roots of $P(z) Q(z)$.

By Lemma 3.2, we have $b=1$. Hence we need only consider the equation

$$
\begin{equation*}
A\left(z^{d}\right) B(z) P(z)=A(z) B\left(z^{d}\right) Q(z) \tag{3.3}
\end{equation*}
$$

where $A(z), B(z) \in \boldsymbol{K}[z] \backslash\{0\}$ are coprime and

$$
P(z)=\prod_{i=1}^{s}\left(1+p_{i} z+z^{2}\right), \quad Q(z)=\prod_{j=s+1}^{t}\left(1+q_{j} z+z^{2}\right)
$$

with $p_{i} \neq q_{j}$ for all i, j.
3.1. The case where $d=2$ and $P(z) Q(z)$ has real roots. In this subsection, we consider equation (3.3) where $d=2$ and $P(z) Q(z)$ has real roots.

Lemma 3.3. Let $P(z)$ and $Q(z)$ be polynomials satisfying (3.3) with $d=2$. Suppose that $P(z) Q(z)$ has a real root $\alpha_{1}<0$ with (3.2). Then $\alpha_{1}=-1$.

Proof. First we note that the non-real roots of $P(z) Q(z)$ are of absolute value 1 , since $P(z) Q(z)$ is the product of quadratic self-reciprocal polynomials. Assume that $\alpha_{1} \neq-1$. Since $\alpha_{1}<0$ and $\beta_{1}=\alpha_{1}^{-1}$, we get $\left|\alpha_{1}\right|>1>\left|\beta_{1}\right|$, and so $Q\left(\alpha_{1}^{2^{n}}\right) \neq 0$ for any $n \geq 0$ by 3.2 and the fact that $P(z)$ and $Q(z)$ are coprime. Substituting $z=\alpha_{1}$ into (3.3), we get $A\left(\alpha_{1}\right)=0$, because $B\left(\alpha_{1}^{2}\right) \neq 0$ by Lemma 2.3(iii).

On the other hand, there exists a compatible non-real sequence $\left\{\theta_{n}\right\}_{n \geq 1}$ of roots of α_{1} because $\alpha_{1}<0$. Hence we see that $Q\left(\theta_{n}\right) \neq 0$ for any $n \geq 1$ by $\left|\theta_{n}\right|>1$. By Lemma $2.3(\mathrm{i})$ we get $A\left(\alpha_{1}\right) \neq 0$, which is a contradiction. Therefore $\alpha_{1}=\beta_{1}=-1$.

LEMMA 3.4. Let $P(z)$ and $Q(z)$ be polynomials satisfying (3.3) with $d=2$. Suppose that $P(z) Q(z)$ has a real root $\alpha_{1}>0$ with (3.2). Then there exist $k \geq 1$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha_{1}=\alpha^{2^{k}}$ and $\beta=\alpha^{-1}$ such that $P(z), Q(z)$, and $A(z)$ are divisible respectively by

$$
\begin{align*}
& \left(z-\alpha^{2^{k}}\right)\left(z-\beta^{2^{k}}\right), \quad(z-\alpha)(z-\beta) \prod_{i=0}^{k-1}\left(z+\alpha^{2^{i}}\right)\left(z+\beta^{2^{i}}\right), \quad \text { and } \\
& \prod_{i=1}^{k}\left(z-\alpha^{2^{i}}\right)\left(z-\beta^{2^{i}}\right) \tag{3.4}
\end{align*}
$$

Proof. Consider the positive 2^{j} th roots $\alpha_{1}^{2^{-j}}, \beta_{1}^{2^{-j}}$ for any integer $j \geq 1$. Note that $\alpha_{1}>1$. We first show that $A\left(-\alpha_{1}^{2^{-j}}\right) \neq 0$ for any $j \geq 1$. Suppose on the contrary that $A\left(-\alpha_{1}^{2^{-j}}\right)=0$ for some $j \geq 1$. Then there exists an integer $l \geq 1$ such that, for $\theta:=\left(-\alpha_{1}^{2^{-j}}\right)^{2^{-l}} \in \mathbb{C} \backslash \mathbb{R}$, we have $A\left(\theta^{2}\right)=0$ and $A(\theta) \neq 0$ since $A(z)$ is a polynomial. Substituting $z=\theta$ into (3.3) with $d=2$, we obtain $Q(\theta)=0$, which is impossible with $|\theta|>1$, since $Q(z)$ is the product of quadratic self-reciprocal polynomials, and so its non-real roots are of absolute value 1 .

If there exists an integer $i \geq 1$ satisfying $Q\left(\alpha_{1}^{2^{-i}}\right)=0$, we denote the minimal such i by k. Otherwise, we let $k=\infty$. We verify

$$
A\left(\alpha_{1}^{2^{-j}}\right)=0 \quad(0 \leq j \leq k-1)
$$

by induction on j, which implies that $k<\infty$ since $A(z)$ is a polynomial. For $j=0$ we substitute $z=\alpha_{1}$ into (3.3) with $d=2$. Then $A\left(\alpha_{1}\right)=0$ because $B\left(\alpha_{1}^{2}\right) \neq 0$ by 3.2 and Lemma 2.3 (iii). Next we show that $A\left(\alpha_{1}^{2^{-j}}\right)=0$ for $1 \leq j \leq k-1$ under the assumption that $A\left(\alpha_{1}^{2^{-(j-1)}}\right)=0$. Then $B\left(\alpha_{1}^{2^{-j+1}}\right) \neq$ 0 and by the minimality of k we have $Q\left(\alpha_{1}^{2^{-j}}\right) \neq 0$. Substituting $z=\alpha_{1}^{2^{-j}}$ into 3.3, we obtain $A\left(\alpha_{1}^{2^{-j}}\right)=0$.

We see that k is the minimal integer such that $Q\left(\beta_{1}^{2^{-k}}\right)=0$ because $\beta_{1}=\alpha_{1}^{-1}$ and $Q(z)$ is self-reciprocal. In the same way as in the preceding paragraph, we obtain $A\left(\beta_{1}^{2^{-j}}\right)=0$ for $0 \leq j \leq k-1$. Letting $\alpha:=\alpha_{1}^{2^{-k}}$ and $\beta:=\alpha^{-1}=\beta_{1}^{2^{-k}}$, we see that $P(z)$ and $A(z)$ are divisible by the corresponding polynomials in (3.4). For any $1 \leq j \leq k$, substituting $z=$ $-\alpha_{1}^{2^{-j}}$ into 3.3 , we get $Q\left(-\alpha_{1}^{2^{-j}}\right)=0$ since $A\left(\alpha_{1}^{2^{-j+1}}\right)=0, B\left(\alpha_{1}^{2^{-j+1}}\right) \neq 0$, and $A\left(-\alpha_{1}^{2^{-J}}\right) \neq 0$ by the first paragraph of the proof. Observing that $Q\left(\alpha_{1}^{2^{-k}}\right)=0$ and that $\beta_{1}=\alpha_{1}^{-1}$ and $Q(z)$ is self-reciprocal, we have verified the lemma.

REmARK 3.5. Let $P(z)$ and $Q(z)$ be polynomials satisfying (3.3) with $d=2$ and let α, β be as in Lemma 3.4. Then $P(z)$ and $Q(z)$ are divisible by

$$
z^{2}+b_{k+2} z+1 \quad \text { and } \quad \prod_{i=1}^{k+1}\left(z^{2}+b_{i} z+1\right)
$$

respectively, where $k \geq 1$ and

$$
\begin{aligned}
b_{1} & =-(\alpha+\beta)<-2 \sqrt{\alpha \beta}=-2 \\
b_{2} & =\alpha+\beta=-b_{1} \\
b_{i} & =\alpha^{2^{i-2}}+\beta^{2^{i-2}}=\left(\alpha^{2^{i-3}}+\beta^{2^{i-3}}\right)^{2}-2=b_{i-1}^{2}-2 \quad(3 \leq i \leq k+1), \\
b_{k+2} & =-\left(\alpha^{2^{k}}+\beta^{2^{k}}\right)=-b_{k+1}^{2}+2
\end{aligned}
$$

3.2. The case where $d \geq 3$ or $P(z) Q(z)$ has no real roots. First we consider equation (3.3) in the case where $P(z) Q(z)$ has no real roots. Since $P(z) Q(z)$ is the product of quadratic self-reciprocal polynomials, the roots of $P(z) Q(z)$ are in the set

$$
\begin{equation*}
\mathcal{M}:=\{\omega \in \mathbb{C}| | \omega \mid=1, \omega \neq 1\} \tag{3.5}
\end{equation*}
$$

In the case of $d \geq 3$ we have the following:
LEMMA 3.6. Let $P(z)$ and $Q(z)$ be polynomials satisfying (3.3). If $d \geq 3$, then the roots of $P(z) Q(z)$ are in \mathcal{M}.

Proof. Suppose that $P(z) Q(z)$ has real roots and let $\alpha_{1}(\neq 1)$ be a real root of $P(z)$ as in (3.2). Assume that $\alpha_{1} \neq-1$. Then $\left|\alpha_{1}\right|>1>\left|\beta_{1}\right|$. As in the proof of Lemma 3.3, we deduce a contradiction for $d \geq 3$ since there exists a compatible non-real sequence $\left\{\theta_{n}\right\}_{n \geq 1}$ of roots of α_{1}.

In any case stated above, the roots of $P(z) Q(z)$ are continued in \mathcal{M}. In the next section we investigate such a case for more general polynomials $P(z)$ and $Q(z)$.
4. The case where $P(z) Q(z)$ has roots in \mathcal{M}. Let $P(z)$ and $Q(z)$ be non-zero coprime polynomials with complex coefficients satisfying (2.7). We note that $P(z)$ and $Q(z)$ are not necessarily products of quadratic polynomials. In this section, assume that $P(z) Q(z)$ has roots in \mathcal{M}. Let $\alpha \in \mathbb{C}$ with $|\alpha|=1$ be the root of $P(z) Q(z)$ having the smallest positive argument among its roots in \mathcal{M}. Without loss of generality, we may assume that $P(\alpha)=0$ and $Q(\alpha) \neq 0$. Substituting $z=\alpha$ into (2.7), we get $A(\alpha) B\left(\alpha^{d}\right)=0$. Taking a compatible non-real sequence $\left\{\theta_{n}\right\}_{n \geq 1}$ of roots of α satisfying $0<\arg \left(\theta_{n}\right)<\arg (\alpha)$ for any $n \geq 1$, we get $Q\left(\theta_{n}\right) \neq 0$, and so $A(\alpha) \neq 0$ by Lemma 2.3(i). Therefore

$$
\begin{equation*}
B\left(\alpha^{d}\right)=0 \tag{4.1}
\end{equation*}
$$

In this section we calculate the factors of $B(z), P(z)$, and $Q(z)$. First we consider the case where $Q\left(\alpha^{d^{m}}\right)=0$ for some $m \geq 1$, which corresponds to Lemma 4.1 below. Next we treat the case where $Q\left(\alpha^{d^{m}}\right) \neq 0$ for any integer $m \geq 1$, which corresponds to Lemma 4.2. We introduce the following notation. For $\tau \in \mathbb{C}$ with $|\tau|=1$, set

$$
\Theta_{i}(\tau):=\left\{\gamma \in \mathbb{C} \mid \gamma^{d^{i}}=\tau\right\} \quad(i=0,1, \ldots)
$$

We note that if $\pm 1 \in \Theta_{i}(\tau)$ for some $i \geq 0$, then $\tau= \pm 1$.
Let $k \geq 1$ be an integer and $M_{k}(\tau)$ a subset of $\Theta_{k}(\tau)$ satisfying $M_{k}(\tau)=$ $\zeta_{d} M_{k}(\tau)$. For any given $M_{k}(\tau)$ the following sets are uniquely determined:

$$
\begin{array}{ll}
N_{i}(\tau)=\left\{\gamma^{d^{k-i}} \mid \gamma \in M_{k}(\tau)\right\} \subset \Theta_{i}(\tau) & (0 \leq i \leq k-1) \\
M_{i}(\tau)=\left\{\gamma \in \Theta_{i}(\tau) \mid \gamma^{d} \in N_{i-1}(\tau)\right\} \backslash N_{i}(\tau) & (1 \leq i \leq k-1) \\
\tilde{\mathcal{E}}_{k}(\tau)=\bigcup_{i=1}^{k} M_{i}(\tau), \quad \tilde{\mathcal{F}}_{k}(\tau)= \begin{cases}\tilde{\mathcal{E}}_{k}(\tau) \cup\{\tau\} & \text { if } \tau \notin \tilde{\mathcal{E}}_{k}(\tau) \\
\tilde{\mathcal{E}}_{k}(\tau) \backslash\{\tau\} & \text { otherwise }\end{cases}
\end{array}
$$

We observe that

$$
\begin{equation*}
N_{0}(\tau)=\{\tau\} \tag{4.2}
\end{equation*}
$$

Moreover, we use the notation

$$
N_{i}^{1 / d}(\tau):=\left\{\gamma \in \mathbb{C} \mid \gamma^{d} \in N_{i}(\tau)\right\}
$$

in the proof of Lemmas 4.1 and 4.2 .

Let $F^{(\tau)}(z)$ be a polynomial defined by

$$
F^{(\tau)}(z)=\prod_{\gamma \in M_{1}(\tau)}(z-\gamma) \cdots \prod_{\gamma \in M_{k}(\tau)}(z-\gamma)
$$

Lemma 4.1. Let $P(z)$ and $Q(z)$ satisfy (2.7). Let $\alpha \in \mathbb{C}$ with $|\alpha|=1$ be the root of $P(z) Q(z)$ with the smallest positive argument among its roots in \mathcal{M}. Assume that $P(\alpha)=0$ and $Q\left(\alpha^{d^{m}}\right)=0$ for some integer $m \geq 1$. Then there exist $k \geq 1, \tau \in \mathbb{C}$ with $|\tau|=1$, and $M_{k}(\tau)$ with $\tau \notin \tilde{\mathcal{E}}_{k}(\tau)$ such that $P(z)$ and $Q(z)$ are divisible by $F^{(\tau)}(z)$ and $z-\tau$, respectively.

Proof. Let $s \geq 1$ be an integer such that $Q\left(\alpha^{d^{s}}\right)=0$ and $Q\left(\alpha^{d^{j}}\right) \neq 0$ for $j=0,1, \ldots, s-1$. Then $B\left(\alpha^{d^{j+1}}\right)=0$ for $j=0,1, \ldots, s-1$ by 4.1 and Lemma 2.3 (ii). Setting $\tau=\alpha^{d^{s}}$, we have $|\tau|=1, B(\tau)=0$, and $A(\tau) \neq 0$. We give an algorithm to find $M_{k}(\tau)$, defining $M_{i}(\tau)$ and $N_{i}(\tau)$ below for $i=1, \ldots, k$ inductively.

Let

$$
B_{1}(z):=\frac{B(z)}{z-\tau} \in \mathbb{C}[z] \quad \text { and } \quad Q_{1}(z):=\frac{Q(z)}{z-\tau} \in \mathbb{C}[z] .
$$

Then

$$
\begin{equation*}
A\left(z^{d}\right) B_{1}(z) P(z)=\left(z^{d}-\tau\right) A(z) B_{1}\left(z^{d}\right) Q_{1}(z) . \tag{4.3}
\end{equation*}
$$

Define
$N_{1}(\tau):=\left\{\gamma \in \Theta_{1}(\tau) \mid B_{1}(\gamma)=0\right\}$ and $M_{1}(\tau):=\left\{\gamma \in \Theta_{1}(\tau) \mid B_{1}(\gamma) \neq 0\right\}$. Note that $\Theta_{1}(\tau)=N_{1}(\tau) \cup M_{1}(\tau)$ and $N_{1}(\tau) \cap M_{1}(\tau)=\emptyset$. Substituting $z=\gamma \in \Theta_{1}(\tau)$ into 4.3), we get $B_{1}(\gamma) P(\gamma)=0$ because $A\left(\gamma^{d}\right)=A(\tau) \neq 0$. Hence, letting

$$
B_{2}(z):=\frac{B_{1}(z)}{\prod_{\gamma \in N_{1}(\tau)}(z-\gamma)} \quad \text { and } \quad P_{1}(z):=\frac{P(z)}{\prod_{\gamma \in M_{1}(\tau)}(z-\gamma)} \in \mathbb{C}[z]
$$

we see that

$$
\begin{align*}
A\left(z^{d}\right)\left(B_{2}(z) \prod_{\gamma \in N_{1}(\tau)}\right. & (z-\gamma))\left(P_{1}(z) \prod_{\gamma \in M_{1}(\tau)}(z-\gamma)\right) \tag{4.4}\\
& =\left(z^{d}-\tau\right) A(z)\left(B_{2}\left(z^{d}\right) \prod_{\gamma \in N_{1}(\tau)}\left(z^{d}-\gamma\right)\right) Q_{1}(z) .
\end{align*}
$$

Noting that

$$
\prod_{\gamma \in N_{1}(\tau)}(z-\gamma) \prod_{\gamma \in M_{1}(\tau)}(z-\gamma)=z^{d}-\tau
$$

and dividing both sides of (4.4) by $z^{d}-\tau$, we get

$$
\begin{equation*}
A\left(z^{d}\right) B_{2}(z) P_{1}(z)=A(z) B_{2}\left(z^{d}\right) Q_{1}(z) \prod_{\gamma \in N_{1}(\tau)}\left(z^{d}-\gamma\right) . \tag{4.5}
\end{equation*}
$$

If $N_{1}(\tau)=\emptyset$, then $\Theta_{1}(\tau)=M_{1}(\tau)$, and hence $M_{1}(\tau)=\zeta_{d} M_{1}(\tau)$. Otherwise, for any $\gamma \in N_{1}^{1 / d}(\tau)$, we have $B_{1}\left(\gamma^{d}\right)=0$, and hence $A\left(\gamma^{d}\right) \neq 0$. Then, substituting $z=\gamma \in N_{1}^{1 / d}(\tau)$ into 4.5 , we get $B_{2}(\gamma) P_{1}(\gamma)=0$. Define

$$
\begin{aligned}
N_{2}(\tau) & :=\left\{\gamma \in N_{1}^{1 / d}(\tau) \mid B_{2}(\gamma)=0\right\}, \\
M_{2}(\tau) & :=\left\{\gamma \in N_{1}^{1 / d}(\tau) \mid B_{2}(\gamma) \neq 0\right\} .
\end{aligned}
$$

We note that $N_{1}^{1 / d}(\tau)=N_{2}(\tau) \cup M_{2}(\tau)$ and $N_{2}(\tau) \cap M_{2}(\tau)=\emptyset$. Hence, setting

$$
B_{3}(z):=\frac{B_{2}(z)}{\prod_{\gamma \in N_{2}(\tau)}(z-\gamma)} \quad \text { and } \quad P_{2}(z):=\frac{P_{1}(z)}{\prod_{\gamma \in M_{2}(\tau)}(z-\gamma)} \in \mathbb{C}[z]
$$

we have

$$
\begin{align*}
& A\left(z^{d}\right)\left(B_{3}(z)\right.\left.\prod_{\gamma \in N_{2}(\tau)}(z-\gamma)\right)\left(P_{2}(z) \prod_{\gamma \in M_{2}(\tau)}(z-\gamma)\right) \tag{4.6}\\
&=A(z)\left(B_{3}\left(z^{d}\right) \prod_{\gamma \in N_{2}(\tau)}\left(z^{d}-\gamma\right)\right) Q_{1}(z) \prod_{\gamma \in N_{1}(\tau)}\left(z^{d}-\gamma\right)
\end{align*}
$$

Dividing both sides of 4.6 by

$$
\prod_{\gamma \in N_{2}(\tau)}(z-\gamma) \prod_{\gamma \in M_{2}(\tau)}(z-\gamma)=\prod_{\gamma \in N_{1}(\tau)}\left(z^{d}-\gamma\right)
$$

we get

$$
A\left(z^{d}\right) B_{3}(z) P_{2}(z)=A(z) B_{3}\left(z^{d}\right) Q_{1}(z) \prod_{\gamma \in N_{2}(\tau)}\left(z^{d}-\gamma\right)
$$

If $N_{2}(\tau)=\emptyset$, then $N_{1}^{1 / d}(\tau)=M_{2}(\tau)$, and hence $\zeta_{d} M_{2}(\tau)=M_{2}(\tau)$. Otherwise, in the same way as above, we have

$$
A\left(z^{d}\right) B_{4}(z) P_{3}(z)=A(z) B_{4}\left(z^{d}\right) Q_{1}(z) \prod_{\gamma \in N_{3}(\tau)}\left(z^{d}-\gamma\right)
$$

We repeat this process, which terminates in a finite number of steps since $B(z)$ is a polynomial. Namely, there exists $k \geq 1$ such that $N_{k}(\tau)=\emptyset$, and so $N_{k-1}^{1 / d}(\tau)=M_{k}(\tau)$. This implies $M_{k}(\tau)=\zeta_{d} M_{k}(\tau)$ and

$$
A\left(z^{d}\right) B_{k+1}(z) P_{k}(z)=A(z) B_{k+1}\left(z^{d}\right) Q_{1}(z)
$$

Since $P(z)$ and $Q(z)$ are coprime and $Q(\tau)=0$, we deduce that $\tau \notin \tilde{\mathcal{E}}_{k}(\tau)$. This completes the proof of Lemma 4.1.

Lemma 4.2. Let $P(z)$ and $Q(z)$ satisfy (2.7). Let $\alpha \in \mathbb{C}$ with $|\alpha|=1$ be the root of $P(z) Q(z)$ with the smallest positive argument among its roots in \mathcal{M}. Assume that $P(\alpha)=0$ and $Q\left(\alpha^{d^{m}}\right) \neq 0$ for any integer $m \geq 1$. Then
there exist $k \geq 1, \tau \in \mathbb{C}$ with $|\tau|=1$, and $M_{k}(\tau)$ with $\tau \in \tilde{\mathcal{E}}_{k}(\tau)$ such that $P(z)$ is divisible by $F^{(\tau)}(z) /(z-\tau)$.

Proof. We give an algorithm to find $M_{k}(\tau)$, defining $M_{i}(\tau)$ and $N_{i}(\tau)$ below for $i=1, \ldots, k$ inductively. We see that $B\left(\alpha^{d^{m}}\right)=0$ for any $m \geq 1$ by (4.1) and Lemma 2.3(ii). Hence there exist integers r, s with $1 \leq r<s$ such that $\alpha^{d^{r}}=\alpha^{d^{s}}$, since $B(z)$ is a polynomial. We take the smallest $l=s-r \geq 1$. Note that $B\left(\alpha^{d^{r+1}}\right)=B\left(\alpha^{d^{r+2}}\right)=\cdots=B\left(\alpha^{d^{s}}\right)=0$. Set $\tau:=\alpha^{d^{r}}=\alpha^{d^{s}}$. Since $Q(\tau) \neq 0$, we need the following discussion different from the proof of Lemma 4.1.

Set

$$
B_{0}(z):=B(z), \quad B_{1}(z):=\frac{B(z)}{z-\tau} \in \mathbb{C}[z], \quad \text { and } \quad P_{0}^{\dagger}(z):=(z-\tau) P(z)
$$

For $i=1, \ldots, l-1$ we define the sets $N_{i}(\tau), M_{i}(\tau) \subset \Theta_{i}(\tau)$ and the polynomials $B_{i+1}(z)$ and $P_{i}^{\dagger}(z)$, which are factors of $B(z)$ and $(z-\tau) P(z)$, respectively. Hence $A(z)$ and $B_{i}(z)$ are coprime for $i=0,1, \ldots, l$. To proceed with the induction, we simultaneously check the following for $i=0,1, \ldots, l-1$:
(i) For any $\gamma \in N_{i}(\tau)$ we have

$$
\begin{equation*}
B_{i}(\gamma)=0 \tag{4.7}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\alpha^{d^{s-i}} \in N_{i}(\tau) \tag{4.8}
\end{equation*}
$$

In particular, $N_{i}(\tau) \neq \emptyset$.
(iii) It follows that

$$
\begin{equation*}
A\left(z^{d}\right) B_{i+1}(z) P_{i}^{\dagger}(z)=A(z) B_{i+1}\left(z^{d}\right) Q(z) \prod_{\gamma \in N_{i}(\tau)}\left(z^{d}-\gamma\right) \tag{4.9}
\end{equation*}
$$

First, 4.7 and 4.8 with $i=0$ are clear by 4.2. From 2.7 we have

$$
A\left(z^{d}\right) B_{1}(z) P_{0}^{\dagger}(z)=A(z) B_{1}\left(z^{d}\right) Q(z)\left(z^{d}-\tau\right)
$$

which implies 4.9 with $i=0$.
Suppose that there exists an integer j with $1 \leq j \leq l-1$ such that $N_{i}(\tau)$, $B_{i+1}(z)$, and $P_{i}^{\dagger}(z)$ satisfy 4.7 - 4.9 for $i=0,1, \ldots, j-1$. Set

$$
\begin{aligned}
& N_{j}(\tau):=\left\{\gamma \in N_{j-1}^{1 / d}(\tau) \mid B_{j}(\gamma)=0\right\} \\
& M_{j}(\tau):=\left\{\gamma \in N_{j-1}^{1 / d}(\tau) \mid B_{j}(\gamma) \neq 0\right\}
\end{aligned}
$$

Then 4.7) holds for $i=j$. Since $N_{j-1}^{1 / d}(\tau) \subset \Theta_{j}(\tau)$ by $N_{j-1}(\tau) \subset \Theta_{j-1}(\tau)$, we get $N_{j}(\tau), M_{j}(\tau) \subset \Theta_{j}(\tau)$. For any $\gamma \in N_{j-1}^{1 / d}(\tau)$, we have $B_{j-1}\left(\gamma^{d}\right)=0$ by 4.7 with $i=j-1$, and so $A\left(\gamma^{d}\right) \neq 0$ since $B_{j-1}(z)$ and $A(z)$ are coprime. Thus, substituting $z=\gamma \in N_{j-1}^{1 / d}(\tau)$ into 4.9 with $i=j-1$, we
get $B_{j}(\gamma) P_{j-1}^{\dagger}(\gamma)=0$. In particular, all the elements of the set $M_{j}(\tau)$ are the roots of $P_{j-1}^{\dagger}(z)$. Define

$$
\begin{aligned}
B_{j+1}(z) & :=\frac{B_{j}(z)}{\prod_{\gamma \in N_{j}(\tau)}(z-\gamma)} \in \mathbb{C}[z], \\
P_{j}^{\dagger}(z) & :=\frac{P_{j-1}^{\dagger}(z)}{\prod_{\gamma \in M_{j}(\tau)}(z-\gamma)} \in \mathbb{C}[z] .
\end{aligned}
$$

Note that $\alpha^{d^{s-j}} \in N_{j-1}^{1 / d}(\tau)$ by 4.8 with $i=j-1$ and

$$
B_{j}(z)=\frac{B(z)}{\prod_{i=0}^{j-1} \prod_{\gamma \in N_{i}(\tau)}(z-\gamma)}
$$

Recall that $B\left(\alpha^{d^{s-j}}\right)=0$. For the proof of 4.8 with $i=j$, it suffices to show that $\alpha^{d^{s-j}} \notin N_{h}(\tau)$ for any $h=0,1, \ldots, j-1$. Suppose on the contrary that $\alpha^{d^{s-j}} \in N_{h}(\tau) \subset \Theta_{h}(\tau)$. Then $\alpha^{d^{s-j+h}}=\tau=\alpha^{d^{s}}$, which contradicts the minimality of l. Hence we showed 4.8 with $i=j$. We rewrite 4.9 with $i=j-1$ as

$$
\begin{aligned}
& A\left(z^{d}\right)\left(B_{j+1}(z) \prod_{\gamma \in N_{j}(\tau)}(z-\gamma)\right)\left(P_{j}^{\dagger}(z) \prod_{\gamma \in M_{j}(\tau)}(z-\gamma)\right) \\
& =A(z)\left(B_{j+1}\left(z^{d}\right) \prod_{\gamma \in N_{j}(\tau)}\left(z^{d}-\gamma\right)\right) Q(z) \prod_{\gamma \in N_{j-1}(\tau)}\left(z^{d}-\gamma\right) .
\end{aligned}
$$

Dividing both sides of this equality by

$$
\prod_{\gamma \in N_{j}(\tau)}(z-\gamma) \prod_{\gamma \in M_{j}(\tau)}(z-\gamma)=\prod_{\gamma \in N_{j-1}(\tau)}\left(z^{d}-\gamma\right)
$$

we get

$$
A\left(z^{d}\right) B_{j+1}(z) P_{j}^{\dagger}(z)=A(z) B_{j+1}\left(z^{d}\right) Q(z) \prod_{\gamma \in N_{j}(\tau)}\left(z^{d}-\gamma\right),
$$

which implies 4.9 with $i=j$. Therefore, we have defined $N_{i}(\tau), M_{i}(\tau)$, $B_{i+1}(z)$, and $P_{i}^{\dagger}(z)$ for $i=1, \ldots, l-1$.

We show that $z-\tau$ divides both $\prod_{\gamma \in N_{l-1}(\tau)}\left(z^{d}-\gamma\right)$ and

$$
P_{l-1}^{\dagger}(z)=\frac{(z-\tau) P(z)}{\prod_{i=1}^{l-1} \prod_{\gamma \in M_{i}(\tau)}(z-\gamma)}
$$

First by (4.8) with $i=l-1$ we have

$$
\begin{equation*}
\tau^{d}=\alpha^{d^{T+1}}=\alpha^{d^{s-(l-1)}} \in N_{l-1}(\tau) . \tag{4.10}
\end{equation*}
$$

Hence $z-\tau$ divides $\prod_{\gamma \in N_{l-1}(\tau)}\left(z^{d}-\gamma\right)$. Next if $P_{l-1}^{\dagger}(\tau) \neq 0$, then we have
$\tau \in M_{i}(\tau) \subset \Theta_{i}(\tau)$ for some i with $1 \leq i \leq l-1$, and so $\tau^{d^{i}}=\tau$, which contradicts the minimality of l. Dividing both sides of 4.9) with $i=l-1$ by $z-\tau$, and letting $P_{l-1}(z):=P_{l-1}^{\dagger}(z) /(z-\tau)$, we get

$$
\begin{equation*}
A\left(z^{d}\right) B_{l}(z) P_{l-1}(z)=A(z) B_{l}\left(z^{d}\right) Q(z) \frac{\prod_{\gamma \in N_{l-1}(\tau)}\left(z^{d}-\gamma\right)}{z-\tau} \tag{4.11}
\end{equation*}
$$

Define

$$
\begin{aligned}
& N_{l}(\tau):=\left\{\gamma \in N_{l-1}^{1 / d}(\tau) \backslash\{\tau\} \mid B_{l}(\gamma)=0\right\} \\
& M_{l}(\tau):=\left\{\gamma \in N_{l-1}^{1 / d}(\tau) \backslash\{\tau\} \mid B_{l}(\gamma) \neq 0\right\} \cup\{\tau\}
\end{aligned}
$$

If $\gamma \in N_{l-1}^{1 / d}(\tau) \backslash\{\tau\}$, then $A\left(\gamma^{d}\right) \neq 0$ by 4.7 with $i=l-1$. Substituting $z=\gamma$ into 4.11, we get $B_{l}(\gamma) P_{l-1}(\gamma)=0$. Hence, setting

$$
B_{l+1}(z):=\frac{B_{l}(z)}{\prod_{\gamma \in N_{l}(\tau)}(z-\gamma)} \in \mathbb{C}[z], \quad P_{l}(z):=\frac{P_{l-1}(z)}{\prod_{\gamma \in M_{l}(\tau) \backslash\{\tau\}}(z-\gamma)} \in \mathbb{C}[z]
$$

and dividing both sides of 4.11 by

$$
\prod_{\gamma \in N_{l}(\tau)}(z-\gamma) \prod_{\gamma \in M_{l}(\tau) \backslash\{\tau\}}(z-\gamma)=\frac{\prod_{\gamma \in N_{l-1}(\tau)}\left(z^{d}-\gamma\right)}{z-\tau}
$$

we obtain

$$
\begin{equation*}
A\left(z^{d}\right) B_{l+1}(z) P_{l}(z)=A(z) B_{l+1}\left(z^{d}\right) Q(z) \prod_{\gamma \in N_{l}(\tau)}\left(z^{d}-\gamma\right) \tag{4.12}
\end{equation*}
$$

Since $\tau \in N_{l-1}^{1 / d}(\tau)$ by 4.10 , if $N_{l}(\tau)=\emptyset$, then $N_{l-1}^{1 / d}(\tau)=M_{l}(\tau)$, and hence $M_{l}(\tau)=\zeta_{d} M_{l}(\tau)$. Then we let $k=l$, which implies the lemma because

$$
P_{l}(z)=\frac{(z-\tau) P(z)}{\prod_{i=1}^{l} \prod_{\gamma \in M_{i}(\tau)}(z-\gamma)} \in \mathbb{C}[z] .
$$

If $N_{l}(\tau) \neq \emptyset$, for $i(\geq l+1)$, we define inductively

$$
\begin{aligned}
& N_{i}(\tau):=\left\{\gamma \in N_{i-1}^{1 / d}(\tau) \mid B_{i}(\gamma)=0\right\} \\
& M_{i}(\tau):=\left\{\gamma \in N_{i-1}^{1 / d}(\tau) \mid B_{i}(\gamma) \neq 0\right\}
\end{aligned}
$$

and

$$
B_{i+1}(z):=\frac{B_{i}(z)}{\prod_{\gamma \in N_{i}(\tau)}(z-\gamma)}, \quad P_{i}(z):=\frac{P_{i-1}(z)}{\prod_{\gamma \in M_{i}(\tau)}(z-\gamma)}
$$

unless $N_{i-1}(\tau)$ is empty. Note that $B_{i+1}(z), P_{i}(z) \in \mathbb{C}[z]$, since for any γ in $N_{i-1}^{1 / d}(\tau)$ we have $B_{i}(\gamma) P_{i-1}(\gamma)=0$ by 4.12 and $A\left(\gamma^{d}\right) \neq 0$. In the same way as above, we have

$$
A\left(z^{d}\right) B_{l+2}(z) P_{l+1}(z)=A(z) B_{l+2}\left(z^{d}\right) Q(z) \prod_{\gamma \in N_{l+1}(\tau)}\left(z^{d}-\gamma\right)
$$

We repeat this process, which terminates in a finite number of steps since $B(z)$ is a polynomial. Thus there exists an integer $k \geq l$ such that

$$
A\left(z^{d}\right) B_{k+1}(z) P_{k}(z)=A(z) B_{k+1}\left(z^{d}\right) Q(z)
$$

and $N_{k}(\tau)=\emptyset$, which implies $N_{k-1}^{1 / d}(\tau)=M_{k}(\tau)$, and hence $M_{k}(\tau)=$ $\zeta_{d} M_{k}(\tau)$.

REmARK 4.3. The case where $\tau=-1$ and d is even corresponds to Lemma 4.1. The cases where $\tau=-1$ and d is odd and where $\tau=1$ correspond to Lemma 4.2 . We also note that the case where $-1 \in \tilde{\mathcal{F}}_{k}(\tau)$ occurs when d is even and $\tau= \pm 1$.

Let $H^{(\tau)}(z)$ be a polynomial defined by

$$
H^{(\tau)}(z)=\prod_{\gamma \in N_{k-1}(\tau)}(z-\gamma) \cdots \prod_{\gamma \in N_{0}(\tau)}(z-\gamma)
$$

where $N_{i}(\tau)(0 \leq i \leq k-1)$ are defined in the proof of either Lemma 4.1 or 4.2.

LEmmA 4.4. The polynomial $B(z)$ is divisible by $H^{(\tau)}(z)$, and by factoring out we have an equation of the same form as (2.7), namely,

$$
A\left(z^{d}\right) B^{\dagger}(z) P^{\dagger}(z)=A(z) B^{\dagger}\left(z^{d}\right) Q^{\dagger}(z)
$$

where

$$
P^{\dagger}(z)=\frac{P(z)}{F^{(\tau)}(z)}, \quad Q^{\dagger}(z)=\frac{Q(z)}{z-\tau}, \quad B^{\dagger}(z)=\frac{B(z)}{H^{(\tau)}(z)}
$$

if $\tau \notin \tilde{\mathcal{E}}_{k}(\tau)$, and

$$
P^{\dagger}(z)=\frac{P(z)}{F^{(\tau)}(z) /(z-\tau)}, \quad Q^{\dagger}(z)=Q(z), \quad B^{\dagger}(z)=\frac{B(z)}{H^{(\tau)}(z)}
$$

if $\tau \in \tilde{\mathcal{E}}_{k}(\tau)$.
Proof. The fact that $B(z)$ is divisible by $H^{(\tau)}(z)$ is shown in the proof of Lemma 4.1 or 4.2. By the definition of the sets therein, we have

$$
\text { 13) } \begin{align*}
& F^{(\tau)}(z) \tag{4.13}\\
&= \prod_{\gamma \in M_{k}(\tau)}(z-\gamma) \prod_{\gamma \in M_{k-1}(\tau)}(z-\gamma) \cdots \prod_{\gamma \in M_{1}(\tau)}(z-\gamma) \\
&=\prod_{\gamma \in N_{k-1}(\tau)}\left(z^{d}-\gamma\right) \prod_{\gamma \in N_{k-2}^{1 / d}(\tau) \backslash N_{k-1}(\tau)}(z-\gamma) \cdots \prod_{\gamma \in N_{0}^{1 / d}(\tau) \backslash N_{1}(\tau)}(z-\gamma)
\end{align*}
$$

$$
\begin{aligned}
& =\prod_{\gamma \in N_{k-1}(\tau)} \frac{z^{d}-\gamma}{z-\gamma} \prod_{\gamma \in N_{k-2}(\tau)}\left(z^{d}-\gamma\right) \\
& \times \prod_{\gamma \in N_{k-3}^{1 / d}(\tau) \backslash N_{k-2}(\tau)}(z-\gamma) \cdots \prod_{\gamma \in N_{0}^{1 / d}(\tau) \backslash N_{1}(\tau)}(z-\gamma) \\
& =\prod_{\gamma \in N_{k-1}(\tau)} \frac{z^{d}-\gamma}{z-\gamma} \prod_{\gamma \in N_{k-2}(\tau)} \frac{z^{d}-\gamma}{z-\gamma} \cdots \prod_{\gamma \in N_{0}(\tau)} \frac{z^{d}-\gamma}{z-\gamma} \prod_{\gamma \in N_{0}(\tau)}(z-\gamma) \\
& =\frac{H^{(\tau)}\left(z^{d}\right)}{H^{(\tau)}(z)}(z-\tau)
\end{aligned}
$$

Hence the lemma is proved by dividing both sides of 2.7 by $H^{(\tau)}(z) F^{(\tau)}(z)$ $=H^{(\tau)}\left(z^{d}\right)(z-\tau)$ in the case of Lemma 4.1 and by $H^{(\tau)}(z) F^{(\tau)}(z) /(z-\tau)=$ $H^{(\tau)}\left(z^{d}\right)$ in the case of Lemma 4.2.

5. Proof of the theorems

Lemma 5.1 (A special case in Nishioka [4, Lemma 2.3.3]). Let \boldsymbol{L} be a subfield of \mathbb{C} and suppose that

$$
f(z) \in \mathbb{C}[[z]] \cap \boldsymbol{L}(z)
$$

If $f(z)$ converges at $z=\alpha$, then $f(\alpha) \in \boldsymbol{L}(\alpha)$.
Proof of Theorem 1.3. First we check the necessary conditions for algebraic dependence. Assume that the values $\Phi_{1}\left(\alpha^{-d^{N}}\right), \ldots, \Phi_{m}\left(\alpha^{-d^{N}}\right)$ in Section 2 are algebraically dependent. As is mentioned in that section, there exist integers $e \geq 0$ and $e_{i} \geq 1(1 \leq i \leq l)$, and coprime polynomials $A(z), B(z) \in \boldsymbol{K}[z] \backslash\{0\}$ satisfying the functional equation 2.6 with $b=1$ by Lemma 3.2 . Recall that $P_{i}(z)=1+p_{i} z+z^{2}$. We define

$$
P(z):=\prod_{i=1}^{k} P_{i}(z)^{e_{i}} \quad \text { and } \quad Q(z):=\left(1+z^{2}\right)^{e} \prod_{i=k+1}^{l} P_{i}(z)^{e_{i}}
$$

and so $\operatorname{deg} P(z)=\operatorname{deg} Q(z)$. If $\gamma \in \mathbb{C}$ is a zero of $P(z) Q(z)$, then $\gamma= \pm \sqrt{-1}$ or $-(\gamma+\bar{\gamma}) \in\left\{a_{1}, \ldots, a_{m}\right\}$ by (2.3).

First we consider the case of $d=2$. If $P(z)$ or $Q(z)$ has a real root, we take a real root α_{1} of $P(z) Q(z)$ with the largest absolute value among its real roots, that is, α_{1} satisfies 3.2. Exchanging the above definition of $P(z)$ and $Q(z)$ if necessary, we may assume that $P\left(\alpha_{1}\right)=0$. If α_{1} is positive, then case (i) of Theorem 1.3 holds by Lemma 3.4 and Remark 3.5. If α_{1} is negative, then we have $\alpha_{1}=-1$ by Lemma 3.3, namely, $P(-1)=0$. Thus we see that $a_{i}=2$ for some i, and case (iii) of Theorem 1.3 holds (see Remark 1.4).

Next we suppose that $P(z) Q(z)$ has non-real roots, which are included in the set \mathcal{M} defined by (3.5) as is shown in Subsection 3.2. Exchanging the
above definitions of $P(z)$ and $Q(z)$ if necessary, we may assume that $P(z)$ has a non-real root with the smallest positive argument among the roots of $P(z) Q(z)$ in \mathcal{M}. Then the assumptions of either Lemma 4.1 or Lemma 4.2 are satisfied. Setting $\mathcal{E}_{k}(\tau):=\tilde{\mathcal{E}}_{k}(\tau) \cup \overline{\tilde{\mathcal{E}}_{k}(\tau)}$, we have

$$
\mathcal{E}_{k}(\tau)=\Gamma_{1}(\tau) \cup \cdots \cup \Gamma_{k-1}(\tau) \cup S_{k}(\tau),
$$

where $S_{k}(\tau)=M_{k}(\tau) \cup \overline{M_{k}(\tau)}, \Lambda_{i}(\tau)=N_{i}(\tau) \cup \overline{N_{i}(\tau)}(0 \leq i \leq k-1)$, and $\Gamma_{i}(\tau)=M_{i}(\tau) \cup \overline{M_{i}(\tau)}(1 \leq i \leq k-1)$. Using the conditions on $M_{i}(\tau)(1 \leq$ $i \leq k)$, we see that the assumptions on $\mathcal{E}_{k}(\tau)$ stated in the Introduction are satisfied. Now we show that the set of roots of $P(z) Q(z)$ contains $\mathcal{F}_{k}(\tau)$. Note that if $\gamma \in \mathbb{C}$ is a zero of $P(z)$ (resp. $Q(z)$), then $\bar{\gamma}$ is also a zero of $P(z)$ (resp. $Q(z)$). If the assumptions of Lemma 4.1 are satisfied, then the set of roots of $P(z)$ (resp. $Q(z)$) contains $\mathcal{E}_{k}(\tau)$ (resp. $\left.\{\tau, \bar{\tau}\}\right)$. Since $P(z)$ and $Q(z)$ are coprime, $\tau \notin \mathcal{E}_{k}(\tau)$, and so $\mathcal{F}_{k}(\tau)=\mathcal{E}_{k}(\tau) \cup\{\tau, \bar{\tau}\}$. Thus the set of the roots of $P(z) Q(z)$ contains $\mathcal{F}_{k}(\tau)$ in this case. On the other hand, if the assumptions of Lemma 4.2 are satisfied, then we get $\mathcal{E}_{k}(\tau) \supset\{\tau, \bar{\tau}\}$ and $\mathcal{F}_{k}(\tau)=\mathcal{E}_{k}(\tau) \backslash\{\tau, \bar{\tau}\}$. Moreover, the set of the roots of $P(z)$ contains $\mathcal{F}_{k}(\tau)$. Hence case (iii) of Theorem 1.3 holds in both cases.

We now consider the case of $d \geq 3$. By (2.3) and Lemma 3.2, we get $b=1$, and so d is even. By Lemma 3.6, the roots of $P(z) Q(z)$ are included in \mathcal{M}. By Lemma 4.1 or 4.2 , there exist $\tau_{1} \in \mathbb{C}$ with $\left|\tau_{1}\right|=1$ and $\tilde{\mathcal{E}}_{k_{1}}\left(\tau_{1}\right)$ with $k_{1} \geq 1$ such that
(i) $\tau_{1} \notin \tilde{\mathcal{E}}_{k_{1}}\left(\tau_{1}\right)$ and $P(z), Q(z)$ are divisible by $F^{\left(\tau_{1}\right)}(z), z-\tau_{1}$, respectively, or
(ii) $\tau_{1} \in \tilde{\mathcal{E}}_{k_{1}}\left(\tau_{1}\right)$ and $P(z)$ is divisible by $F^{\left(\tau_{1}\right)}(z) /\left(z-\tau_{1}\right)$.

Dividing (2.7) by these terms, from Lemma 4.4 we have

$$
A\left(z^{d}\right) B^{\dagger}(z) P^{\dagger}(z)=A(z) B^{\dagger}\left(z^{d}\right) Q^{\dagger}(z),
$$

which has the same form as 2.7). For convenience, denote $\eta^{(1)}(z):=P^{\dagger}(z)$ and $\xi^{(1)}(z):=Q^{\dagger}(z)$. Since the number of the elements in $\tilde{\mathcal{E}}_{k_{1}}\left(\tau_{1}\right)$ is not less than $d>2$, we have $\operatorname{deg} \eta^{(1)}(z)<\operatorname{deg} \xi^{(1)}(z)$. In particular, $\operatorname{deg} \eta^{(1)}(z) \xi^{(1)}(z)$ >0. Let $\alpha^{(1)} \in \mathbb{C}$ with $\left|\alpha^{(1)}\right|=1$ be a root of $\eta^{(1)}(z) \xi^{(1)}(z)$ having the smallest positive argument among its roots. If $\xi^{(1)}\left(\alpha^{(1)}\right) \neq 0$, then $\eta^{(1)}\left(\alpha^{(1)}\right)=0$. We apply Lemma 4.4 with $P(z)=\eta^{(1)}(z)$ and $Q(z)=\xi^{(1)}(z)$. We write the polynomials corresponding to $P^{\dagger}(z)$ and $Q^{\dagger}(z)$ therein as $\eta^{(2)}(z)$ and $\xi^{(2)}(z)$, respectively. Then we see that $\operatorname{deg} \eta^{(2)}(z)<\operatorname{deg} \xi^{(2)}(z)$. Repeating this process, we can define $\eta^{(i)}(z), \xi^{(i)}(z)$, and $\alpha^{(i)}(i=2,3, \ldots)$ inductively whenever $\xi^{(i-1)}\left(\alpha^{(i-1)}\right) \neq 0$. This process terminates in a finite number of steps since $P^{\dagger}(z)$ is a polynomial.

Thus there exists an integer $k \geq 1$ such that $\xi^{(k)}\left(\alpha^{(k)}\right)=0$. Since $\eta^{(k)}(z)$ and $\xi^{(k)}(z)$ are factors of $P^{\dagger}(z)$ and $Q^{\dagger}(z)$, respectively, Lemma 4.1 or 4.2
implies the following: There exist $\tau_{2} \in \mathbb{C}$ with $\left|\tau_{2}\right|=1$ and $\tilde{\mathcal{E}}_{k_{2}}\left(\tau_{2}\right)$ with $k_{2} \geq 1$ such that
(i) $\tau_{2} \notin \tilde{\mathcal{E}}_{k_{2}}\left(\tau_{2}\right)$ and $Q^{\dagger}(z), P^{\dagger}(z)$ are divisible by $F^{\left(\tau_{2}\right)}(z), z-\tau_{2}$, respectively, or
(ii) $\tau_{2} \in \tilde{\mathcal{E}}_{k_{2}}\left(\tau_{2}\right)$ and $Q^{\dagger}(z)$ is divisible by $F^{\left(\tau_{2}\right)}(z) /\left(z-\tau_{2}\right)$.

We note that $\tau_{1} \neq \tau_{2}$, since $B\left(\tau_{1}\right)=A\left(\tau_{2}\right)=0$ and since $A(z)$ and $B(z)$ are coprime. For $j=1,2$, we set $\mathcal{E}_{k_{j}}\left(\tau_{j}\right):=\tilde{\mathcal{E}}_{k_{j}}\left(\tau_{j}\right) \cup \overline{\mathcal{E}_{k_{j}}\left(\tau_{j}\right)}$. As in the case where $d=2$ and $P(z) Q(z)$ has non-real roots, we see that the set of roots of $P(z)$ (resp. $Q(z)$) contains $\mathcal{E}_{k_{1}}\left(\tau_{1}\right) \backslash\left\{\tau_{1}, \overline{\tau_{1}}\right\}$ (resp. $\mathcal{E}_{k_{2}}\left(\tau_{2}\right) \backslash\left\{\tau_{2}, \overline{\tau_{2}}\right\}$) both in the case of Lemmas 4.1 and 4.2. Since $P(z)$ and $Q(z)$ are coprime, we obtain

$$
\left(\mathcal{E}_{k_{1}}\left(\tau_{1}\right) \backslash\left\{\tau_{1}, \overline{\tau_{1}}\right\}\right) \cap\left(\mathcal{E}_{k_{2}}\left(\tau_{2}\right) \backslash\left\{\tau_{2}, \overline{\tau_{2}}\right\}\right)=\emptyset
$$

and so

$$
\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cap \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \subset\left(\mathcal{E}_{k_{1}}\left(\tau_{1}\right) \cap \mathcal{E}_{k_{2}}\left(\tau_{2}\right)\right) \cup\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}\right\} \subset\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}\right\}
$$

Hence we obtain case (iii) of Theorem 1.3.
In what follows, we show that $\Phi_{1}\left(\alpha^{-d^{N}}\right), \ldots, \Phi_{m}\left(\alpha^{-d^{N}}\right)$ are algebraically dependent under the assumption that case (ii), (iii), or (iii) in Theorem 1.3 holds. Recall by (2.3) that $p_{i}=a_{i}(i=1, \ldots, m)$ and $b=1$ since d is even in every case. It suffices to show that there exist a non-empty subset I of $\{1, \ldots, m\}$ and non-zero integers $e_{i}(i \in I)$ satisfying

$$
\begin{equation*}
\prod_{i \in I} c_{i}(z)^{e_{i}}=\prod_{i \in I}\left(\frac{z^{2}+1}{z^{2}+a_{i} z+1}\right)^{e_{i}} \in H_{d} \tag{5.1}
\end{equation*}
$$

where H_{d} is the subgroup of the multiplicative group $\boldsymbol{K}(z)^{\times}$defined by 2.1 , or there exists a $g(z) \in \boldsymbol{K}(z)^{\times}$such that

$$
\prod_{i \in I} c_{i}(z)^{e_{i}}=\frac{g\left(z^{d}\right)}{g(z)}
$$

Here, if $z=0$ is a zero or a pole of $g(z)$, then it is a zero or a pole of $g\left(z^{d}\right) / g(z)$, respectively. Hence $g(0) \neq 0$ because $c_{i}(0)=1(i \in I)$. Then we see by (2.5) that $F(z):=g(z)^{-1} \prod_{i \in I} \Phi_{i}(z)^{e_{i}} \in \boldsymbol{K}[[z]]$ satisfies $F\left(z^{d}\right)=$ $F(z)$, which holds only if $F(z)=\lambda \in \boldsymbol{K}$. In fact, if $l(\geq 1)$ is the lowest degree of non-constant terms of $F(z)$, then that of $F\left(z^{d}\right)$ is $d l$, which contradicts $F\left(z^{d}\right)=F(z)$. Hence

$$
\prod_{i \in I} \Phi_{i}(z)^{e_{i}}=\lambda g(z) \in \boldsymbol{K}[[z]] \cap \boldsymbol{K}(z) .
$$

By Lemma 5.1 we have

$$
\prod_{i \in I} \Phi_{i}\left(\alpha^{-d^{N}}\right)^{e_{i}} \in \boldsymbol{K}
$$

which implies that $\Phi_{1}\left(\alpha^{-d^{N}}\right), \ldots, \Phi_{m}\left(\alpha^{-d^{N}}\right)$ are algebraically dependent and thus we have only to prove (5.1).

Note that, for any $h \geq 1$ and $g(z) \in \boldsymbol{K}(z)^{\times}$,

$$
\begin{equation*}
\frac{g\left(z^{d^{h}}\right)}{g(z)}=\frac{g\left(z^{d}\right)}{g(z)} \frac{g\left(z^{d^{2}}\right)}{g\left(z^{d}\right)} \cdots \frac{g\left(z^{d^{h}}\right)}{g\left(z^{d^{h-1}}\right)} \in H_{d} \tag{5.2}
\end{equation*}
$$

If $d=2$, then for the proof of (5.1) it suffices to check that

$$
\begin{equation*}
\prod_{i \in I}\left(z^{2}+a_{i} z+1\right)^{e_{i}} \in H_{2} \tag{5.3}
\end{equation*}
$$

because

$$
\begin{equation*}
z^{2}+1=\frac{z^{4}-1}{z^{2}-1} \in H_{2} \tag{5.4}
\end{equation*}
$$

First we suppose that case (i) of Theorem 1.3 holds. Since $b_{1}=-b_{2}$, we have

$$
\left(z^{2}+b_{1} z+1\right)\left(z^{2}+b_{2} z+1\right)=z^{4}-\left(b_{2}^{2}-2\right) z^{2}+1
$$

and then

$$
\begin{equation*}
\left(z^{2}+b_{1} z+1\right)\left(z^{2}+b_{2} z+1\right) \prod_{j=3}^{l-1}\left(z^{2^{j-1}}+b_{j} z^{2^{j-2}}+1\right)=z^{2^{l-1}}+b_{l} z^{2^{l-2}}+1 \tag{5.5}
\end{equation*}
$$

by $b_{j}=b_{j-1}^{2}-2(j=3, \ldots, l-1)$ and $b_{l}=-b_{l-1}^{2}+2$. Therefore by 5.2 . and 5.5 we obtain

$$
\begin{aligned}
\left(z^{2}+b_{l} z+1\right)^{-1} & \prod_{j=1}^{l-1}\left(z^{2}+b_{j} z+1\right) \\
& =\frac{z^{2^{l-1}}+b_{l} z^{2^{l-2}}+1}{z^{2}+b_{l} z+1} \prod_{j=3}^{l-1}\left(\frac{z^{2}+b_{j} z+1}{z^{2^{j-1}}+b_{j} z^{2^{j-2}}+1}\right) \in H_{2}
\end{aligned}
$$

which implies (5.3).
Here we suspend the proof of the theorem and investigate the properties of the sets defined in Section 1. For convenience, denote $\Gamma_{k}(\tau):=S_{k}(\tau)$. Then $\mathcal{E}_{k}(\tau)=\bigcup_{i=1}^{k} \Gamma_{i}(\tau)$.

Lemma 5.2. Let $\tau \in \mathbb{C}$ with $|\tau|=1, k \geq 1$, and $S_{k}(\tau) \subset \Omega_{k}(\tau)$ satisfy (1.4). Suppose that $\tau \in \mathcal{E}_{k}(\tau)$. Then
$\operatorname{Card}\left\{i \mid 1 \leq i \leq k, \tau \in \Gamma_{i}(\tau)\right\}=\operatorname{Card}\left\{i \mid 1 \leq i \leq k, \bar{\tau} \in \Gamma_{i}(\tau)\right\}=1$, where Card denotes cardinality.

Proof. Since $\overline{\Gamma_{i}(\tau)}=\Gamma_{i}(\tau)$ for $i=1, \ldots, k$, it suffices to show that

$$
\begin{equation*}
\operatorname{Card}\left\{i \mid 1 \leq i \leq k, \tau \in \Gamma_{i}(\tau)\right\}=1 \tag{5.6}
\end{equation*}
$$

For $x, y \in \mathbb{C}$, we write $x \sim y$ if $x=y$ or if $\bar{x}=y$. Noting that $\tau \in$ $\mathcal{E}_{k}(\tau) \subset \bigcup_{i=1}^{k} \Omega_{i}(\tau)$, we take $l:=\min \left\{i \geq 1 \mid \tau^{d^{i}} \sim \tau\right\}(\leq k)$. Suppose that $\tau \in \Gamma_{j}(\tau) \subset \Omega_{j}(\tau)$ for some $j \geq 1$. Set $j=q l+r$, where q and r are integers
with $q \geq 0$ and $0 \leq r \leq l-1$. Then $\tau \sim \tau^{d^{j}}=\tau^{d^{q l+r}} \sim \tau^{d^{r}}$, and so $r=0$ by the minimality of l. We take $b:=\min \left\{q \geq 1 \mid \tau \in \Gamma_{q l}(\tau)\right\}$. For the proof of (5.6), it suffices to show that $\tau \notin \Gamma_{b l+c l}(\tau)$ for any $c \geq 1$.

Suppose on the contrary that $\tau \in \Gamma_{b l+c l}(\tau)$. Then $\tau^{d} \in \Lambda_{b l+c l-1}(\tau)$. Note that for any i, j with $i \geq j$, if $\gamma \in \Lambda_{i}(\tau)$, then $\gamma^{d^{i-j}} \in \Lambda_{j}(\tau)$. Thus $\tau \sim \tau^{d^{c l}}=\left(\tau^{d}\right)^{d^{c l-1}} \in \Lambda_{b l}(\tau)$. Since $\overline{\Lambda_{b l}(\tau)}=\Lambda_{b l}(\tau)$, we obtain $\tau \in \Lambda_{b l}(\tau)$, which contradicts the fact that $\Gamma_{b l}(\tau) \cap \Lambda_{b l}(\tau)=\emptyset$.

Define

$$
\begin{equation*}
g_{\gamma}(z)=(z-\gamma)(z-\bar{\gamma}) \tag{5.7}
\end{equation*}
$$

for $\gamma \in \mathbb{C}$.
Lemma 5.3. Let $\tau \in \mathbb{C}$ with $|\tau|=1, k \geq 1$, and $S_{k}(\tau) \subset \Omega_{k}(\tau)$ satisfy (1.4). Then there exists an integer valued function e on $\mathcal{F}_{k}(\tau)$ such that

$$
\begin{equation*}
e(\gamma)=e(\bar{\gamma}) \neq 0 \tag{5.8}
\end{equation*}
$$

for any $\gamma \in \mathcal{F}_{k}(\tau)$ and

$$
\begin{equation*}
\prod_{\gamma \in \mathcal{F}_{k}(\tau)} g_{\gamma}(z)^{e(\gamma)} \in H_{d} \tag{5.9}
\end{equation*}
$$

where H_{d} is the subgroup of $\boldsymbol{K}(z)^{\times}$defined by (2.1). In particular, there exists an integer p such that

$$
\begin{equation*}
\left(z^{2}+1\right)^{p} \prod_{\gamma \in \mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}} g_{\gamma}(z)^{e(\gamma)} \in H_{d} \tag{5.10}
\end{equation*}
$$

Proof. It suffices to show 5.9 because $g_{\sqrt{-1}}(z)=g_{-\sqrt{-1}}(z)=z^{2}+1$. Set $\Lambda_{i}^{1 / d}(\tau)=\left\{\gamma \in \mathbb{C} \mid \gamma^{d} \in \Lambda_{i}(\tau)\right\}$ for $i=0,1, \ldots, k-2$ and

$$
g\left(\mathcal{E}_{k}(\tau) ; z\right)=\prod_{\gamma \in S_{k}(\tau)} g_{\gamma}(z) \prod_{\gamma \in \Gamma_{k-1}(\tau)} g_{\gamma}(z) \cdots \prod_{\gamma \in \Gamma_{1}(\tau)} g_{\gamma}(z)
$$

In the same way as for 4.13), noting that $S_{k}(\tau)=\Lambda_{k-1}^{1 / d}(\tau)$ by $S_{k}(\tau)=$ $M_{k}(\tau) \cup \overline{M_{k}(\tau)}, M_{k}(\tau)=\overline{N_{k-1}^{1} d}(\tau)$, and $\Lambda_{k-1}(\tau)=N_{k-1}(\tau) \cup \overline{N_{k-1}(\tau)}$, we see that

$$
\begin{aligned}
g\left(\mathcal{E}_{k}(\tau) ; z\right)= & \prod_{\gamma \in \Lambda_{k-1}(\tau)} g_{\gamma}\left(z^{d}\right) \prod_{\gamma \in \Lambda_{k-2}^{1 / d}(\tau) \backslash \Lambda_{k-1}(\tau)} g_{\gamma}(z) \cdots \prod_{\gamma \in \Lambda_{0}^{1 / d}(\tau) \backslash \Lambda_{1}(\tau)} g_{\gamma}(z) \\
= & \prod_{\gamma \in \Lambda_{k-1}(\tau)} \frac{g_{\gamma}\left(z^{d}\right)}{g_{\gamma}(z)} \prod_{\gamma \in \Lambda_{k-2}(\tau)} g_{\gamma}\left(z^{d}\right) \\
& \times \prod_{\gamma \in \Lambda_{k-3}^{1 / d}(\tau) \backslash \Lambda_{k-2}(\tau)} g_{\gamma}(z) \cdots \prod_{\gamma \in \Lambda_{0}^{1 / d}(\tau) \backslash \Lambda_{1}(\tau)} g_{\gamma}(z)
\end{aligned}
$$

$$
=\prod_{\gamma \in \Lambda_{k-1}(\tau)} \frac{g_{\gamma}\left(z^{d}\right)}{g_{\gamma}(z)} \prod_{\gamma \in \Lambda_{k-2}(\tau)} \frac{g_{\gamma}\left(z^{d}\right)}{g_{\gamma}(z)} \cdots \prod_{\gamma \in \Lambda_{0}(\tau)} \frac{g_{\gamma}\left(z^{d}\right)}{g_{\gamma}(z)} \prod_{\gamma \in \Lambda_{0}(\tau)} g_{\gamma}(z)
$$

Since $\Lambda_{0}(\tau)=\{\tau, \bar{\tau}\}$, we obtain

$$
\begin{equation*}
g^{*}(z):=g\left(\mathcal{E}_{k}(\tau) ; z\right) \prod_{\gamma \in\{\tau, \bar{\tau}\}} g_{\gamma}(z)^{-1} \in H_{d} . \tag{5.11}
\end{equation*}
$$

Note that for $\gamma \in \mathbb{C}$,

$$
\begin{equation*}
\gamma \in \mathcal{E}_{k}(\tau) \quad \text { if and only if } \quad g\left(\mathcal{E}_{k}(\tau) ; \gamma\right)=0 \tag{5.12}
\end{equation*}
$$

Suppose first that $\tau \notin \mathcal{E}_{k}(\tau)$. Then (5.7) and (5.11) imply (5.8) and 5.9) because $\mathcal{F}_{k}(\tau)=\mathcal{E}_{k}(\tau) \cup\{\tau, \bar{\tau}\}$. Noting that $\bar{\tau} \notin \mathcal{E}_{k}(\tau)$ by $\overline{\mathcal{E}_{k}(\tau)}=\mathcal{E}_{k}(\tau)$, we get $e(\gamma) \neq 0$ for any $\gamma \in \mathcal{F}_{k}(\tau)$ by (5.12). Next assume that $\tau \in \mathcal{E}_{k}(\tau)$. Then Lemma 5.2 implies that $g^{*}(z)$ is a polynomial with $g^{*}(\tau) \neq 0$ and $g^{*}(\bar{\tau}) \neq 0$. Thus (5.7) and (5.11) imply (5.8) and 5.9) by $\mathcal{F}_{k}(\tau)=\mathcal{E}_{k}(\tau)$ \} $\{\tau, \bar{\tau}\}$. Moreover, $e(\gamma) \neq 0$ for any $\gamma \in \mathcal{F}_{k}(\tau)$ by (5.12).

Continuation of the proof of Theorem 1.3 . Suppose that case (iii) of Theorem 1.3 holds. Then for any $\gamma \in \mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}$ we have $a_{i(\gamma)}=-(\gamma+\bar{\gamma})$ for some $1 \leq i(\gamma) \leq m$. Using (5.4) and 5.10, we obtain

$$
\prod_{\gamma \in \mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}}\left(z^{2}+a_{i(\gamma)} z+1\right)^{e(\gamma)} \in H_{2}, \quad e(\gamma) \neq 0
$$

which implies (5.3) with a non-empty subset I of $\{1, \ldots, m\}$ and integers e_{i} $(i \in I)$. Note that for $\gamma, \eta \in \mathcal{F}_{k}(\tau) \backslash\{ \pm \sqrt{-1}\}, a_{i(\gamma)}=a_{i(\eta)}$ if and only if $\gamma \sim \eta$. Moreover, if $\gamma \sim \eta$, then $e(\gamma)=e(\eta)$ by 5.8). Hence $e_{i} \neq 0$ for any $i \in I$.

Next suppose that case (iii) of Theorem 1.3 holds. Then, for any $\gamma \in$ $\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \backslash\{ \pm \sqrt{-1}\}$ (resp. $\left.\gamma \in \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \backslash\{ \pm \sqrt{-1}\}\right)$, we have $a_{i(\gamma)}=-(\gamma+\bar{\gamma})$ for some $i(\gamma)$ (resp. $a_{j(\gamma)}=-(\gamma+\bar{\gamma})$ for some $\left.j(\gamma)\right)$. Combining 2.5 and (5.10), we get

$$
\begin{gathered}
\left(z^{2}+1\right)^{q_{1}} \prod_{\gamma \in \mathcal{F}_{k_{1}}\left(\tau_{1}\right) \backslash\{ \pm \sqrt{-1}\}} c_{i(\gamma)}(z)^{e(\gamma)} \in H_{d}, \\
\left(z^{2}+1\right)^{q_{2}} \prod_{\gamma \in \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \backslash\{ \pm \sqrt{-1}\}} c_{j(\gamma)}(z)^{e^{\prime}(\gamma)} \in H_{d},
\end{gathered}
$$

where $q_{1}, q_{2}, e(\gamma)=e\left(\mathcal{F}_{k_{1}}\left(\tau_{1}\right) ; \gamma\right)$, and $e^{\prime}(\gamma)=e\left(\mathcal{F}_{k_{2}}\left(\tau_{2}\right) ; \gamma\right)$ are integers with $e(\gamma), e^{\prime}(\gamma) \neq 0$.

We show that (5.1) is satisfied with a non-empty subset I of $\{1, \ldots, m\}$ and integers $e_{i}(i \in I)$. The case where $q_{1}=0$ or $q_{2}=0$ is clear. If $q_{1} \neq 0$
and $q_{2} \neq 0$, then (5.1) follows from

$$
\prod_{\gamma \in \mathcal{F}_{k_{1}}\left(\tau_{1}\right) \backslash\{ \pm \sqrt{-1}\}} c_{i(\gamma)}(z)^{-q_{2} e(\gamma)} \prod_{\gamma \in \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \backslash\{ \pm \sqrt{-1}\}} c_{j(\gamma)}(z)^{q_{1} e^{\prime}(\gamma)} \in H_{d} .
$$

By (5.8), to prove the existence of the subset I such that $e_{i} \neq 0(i \in I)$, we have only to show that

$$
\begin{equation*}
\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \backslash\{ \pm \sqrt{-1}\} \neq \mathcal{F}_{k_{2}}\left(\tau_{2}\right) \backslash\{ \pm \sqrt{-1}\} \tag{5.13}
\end{equation*}
$$

Suppose on the contrary that

$$
\begin{equation*}
\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \backslash\{ \pm \sqrt{-1}\}=\mathcal{F}_{k_{2}}\left(\tau_{2}\right) \backslash\{ \pm \sqrt{-1}\} \tag{5.14}
\end{equation*}
$$

Then, using (5.14) and the assumptions on $\mathcal{F}_{k_{i}}\left(\tau_{i}\right)$ for $i=1,2$, we get

$$
\begin{align*}
\mathcal{E}_{k_{i}}\left(\tau_{i}\right) & \subset \mathcal{F}_{k_{i}}\left(\tau_{i}\right) \cup\left\{\tau_{i}, \overline{\tau_{i}}\right\} \subset\left(\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cap \mathcal{F}_{k_{2}}\left(\tau_{2}\right)\right) \cup\left\{\tau_{i}, \overline{\tau_{i}}, \sqrt{-1},-\sqrt{-1}\right\} \tag{5.15}\\
& \subset\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}, \sqrt{-1},-\sqrt{-1}\right\} .
\end{align*}
$$

If there exists an $i \in\{1,2\}$ such that $\tau_{i} \notin \mathbb{R}$, then $\mathcal{E}_{k_{i}}\left(\tau_{i}\right)$ contains at least $2 d \geq 8$ elements by (1.4). This contradicts (5.15). Hence we see that $\tau_{1}, \tau_{2} \in$ $\{1,-1\}$ by $\left|\tau_{1}\right|=\left|\tau_{2}\right|=1$, and so $\tau_{h}=-1$ for some $h \in\{1,2\}$ by $\tau_{1} \neq \tau_{2}$. Therefore $\mathcal{E}_{k_{h}}(-1) \subset\{1,-1, \sqrt{-1},-\sqrt{-1}\}$ by (5.15). Since $\mathcal{E}_{k_{h}}(-1)$ contains at least $d \geq 4$ elements by 1.4 , we obtain $\mathcal{E}_{k_{h}}(-1)=\{1,-1, \sqrt{-1},-\sqrt{-1}\}$, which is impossible because $1 \notin \Omega_{i}(-1)$ for any $i \geq 1$. This completes the proof of Theorem 1.3.

Proof of Theorem 1.1. If the values $\Phi_{1}\left(\alpha^{-d^{N}}\right), \ldots, \Phi_{m}\left(\alpha^{-d^{N}}\right)$ in Section 2 are algebraically dependent, then we see that $b=1$ and d is odd by (2.3) and Lemma 3.2. The theorem can be proved in a similar way to Theorem 1.3 only except the following: We show that the sets $\mathcal{F}_{k_{1}}\left(\tau_{1}\right)$ and $\mathcal{F}_{k_{2}}\left(\tau_{2}\right)$ satisfy (5.13). Suppose on the contrary that (5.14 holds. Then, using the assumptions on $\mathcal{F}_{k_{i}}\left(\tau_{i}\right)$ for $i=1,2$, we get

$$
\begin{align*}
S_{k_{i}}\left(\tau_{i}\right) & \subset \mathcal{F}_{k_{i}}\left(\tau_{i}\right) \cup\left\{\tau_{i}, \overline{\tau_{i}}\right\} \subset\left(\mathcal{F}_{k_{1}}\left(\tau_{1}\right) \cap \mathcal{F}_{k_{2}}\left(\tau_{2}\right)\right) \cup\left\{\tau_{i}, \overline{\tau_{i}}, \sqrt{-1},-\sqrt{-1}\right\} \tag{5.16}\\
& \subset\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}, \sqrt{-1},-\sqrt{-1}\right\}
\end{align*}
$$

If there exists an $i \in\{1,2\}$ such that $\tau_{i} \notin \mathbb{R}$, then by the assumptions on $S_{k_{i}}\left(\tau_{i}\right)$ we see that $S_{k_{i}}\left(\tau_{i}\right)$ contains at least $2 d$ elements. Thus 5.16 implies that $d=3$ and

$$
S_{k_{i}}\left(\tau_{i}\right)=\left\{\tau_{1}, \overline{\tau_{1}}, \tau_{2}, \overline{\tau_{2}}, \sqrt{-1},-\sqrt{-1}\right\} .
$$

Hence

$$
\sqrt{-1}^{3^{k_{i}}}=\tau_{i} \quad \text { or } \quad \sqrt{-1}^{3^{k_{i}}}=\overline{\tau_{i}}
$$

Consequently, $\tau_{i}=\sqrt{-1}$ or $\tau_{i}=-\sqrt{-1}$, and so $6 \leq \operatorname{Card} S_{k}\left(\tau_{i}\right) \leq 4$ by (5.16), a contradiction.

We now assume that $\tau_{1}, \tau_{2} \in \mathbb{R}$. Since $\left|\tau_{1}\right|=\left|\tau_{2}\right|=1,5.16$ implies that, for $i=1,2$,

$$
S_{k_{i}}\left(\tau_{i}\right) \subset\{1,-1, \sqrt{-1},-\sqrt{-1}\}
$$

which contradicts the fact that $S_{k_{i}}\left(\tau_{i}\right)=\zeta_{d} S_{k_{i}}\left(\tau_{i}\right)$ since d is odd. This completes the proof of (5.13) and Theorem 1.1.

Acknowledgements. The first author was supported by Grant-in-Aid for JSPS Fellows (grant number 11J00168).

References

[1] K. K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50.
[2] T. Kurosawa, Y. Tachiya, and T. Tanaka, Algebraic independence of infinite products generated by Fibonacci numbers, Tsukuba J. Math. 34 (2010), 255-264.
[3] T. Kurosawa, Y. Tachiya, and T. Tanaka, Algebraic relations with the infinite products generated by Fibonacci numbers, Ann. Math. Inform. 41 (2013), 107-119.
[4] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer, 1996.
[5] Y. Tachiya, Transcendence of certain infinite products, J. Number Theory 125 (2007), 182-200.

Hajime Kaneko
Takeshi Kurosawa
Institute of Mathematics
University of Tsukuba
1-1-1, Tennodai
Tsukuba, Ibaraki 350-0006, Japan
E-mail: kanekoha@math.tsukuba.ac.jp
Yohei Tachiya
Graduate School of Science and Technology
Hirosaki University
Hirosaki 036-8561, Japan
E-mail: tachiya@cc.hirosaki-u.ac.jp
Department of Mathematical Information Science
Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku

Tokyo 162-8601, Japan E-mail: tkuro@rs.kagu.tus.ac.jp

Taka-aki Tanaka
Department of Mathematics
Keio University
3-14-1, Hiyoshi, Kohoku-ku
Yokohama 223-8522, Japan E-mail: takaaki@math.keio.ac.jp

Received on 8.5.2014 and in revised form on 21.11.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11J85; Secondary 11J81, 11J91.
 Key words and phrases: algebraic dependence, infinite products, Fibonacci numbers, Lucas numbers, Mahler's method.

