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1. Introduction. Let m and n be integers, with m positive. A set of m
positive integers is called a D(n)-m-tuple if the product of any two distinct
elements increased by n is a perfect square. In this paper we study exclusively
D(1)-m-sets, which will be called Diophantine m-tuples. When m = 2 (3, 4,
5 or 6), we shall speak of Diophantine pairs (triples, quadruples, quintuples
or sextuples, respectively).

Since Dujella [6] proved that there are no Diophantine sextuples and only
finitely many Diophantine quintuples, the major concern is to confirm the
folklore conjecture according to which no Diophantine quintuple exists. An
essential ingredient of any strategy seems to be a convenient stratification of
the set of Diophantine tuples. Quite early the notion of regular Diophantine
tuple appeared (see [1]): a Diophantine triple {a, b, c} with a < b < c is
called regular if c = c+, where c± = a + b ± 2

√
ab+ 1, and a Diophantine

quadruple {a, b, c, d} with a < b < c < d is called regular if d = d+, where
d± = a + b + c + 2abc ± 2

√
(ab+ 1)(ac+ 1)(bc+ 1). A stronger conjecture

put forward by [1] and independently by [13] claims that every Diophantine
quadruple is regular.

We shall also employ another useful classification and adopt Fujita’s
point of view, calling {a, b, c} a standard triple if it satisfies one of the
following:

• c > b5 (standard of the first kind);
• b > 4a and c ≥ b2 (standard of the second kind);
• b > 12a and b5/3 < c < b2 (standard of the third kind).

Each Diophantine quadruple contains at least one standard triple, not
necessarily unique, since the properties required in the classification are
not mutually exclusive. Large gaps of entries in a Diophantine set facili-
tate theoretical analysis (e.g., they are necessary in order to employ the
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hypergeometric method), while small gaps are preferable for explicit com-
putations. Therefore, identification of as many as possible standard triples
is of interest.

The main outcome of the work reported here is evidence that this classi-
fication is not the most appropriate in the study of Diophantine quintuples.
Finding a suitable replacement remains a task for future work.

Theorem 1.1. The quadruple left after removing the largest entry of a
Diophantine quintuple contains no standard triple of the first kind.

In the process of obtaining such a qualitative information, enhancements
of the relative and absolute size of entries of a hypothetical Diophantine
quintuple emerge.

Theorem 1.2. Let {a, b, c, d, e} be a Diophantine quintuple with a < b <
c < d < e. If b > 4a then d < min{9.5b4, b2c, 1072.188} and b < 1035.793 <
6.209 · 1035. If b < 4a then either c = a + b + 2

√
ab+ 1 and b < 1017.647 <

4.44·1017, d < min{16b3, 1053.292}, or c = (4ab+2)(a+b−2
√
ab+ 1)+2a+2b

and d < min{c2, 1047.086}, b < 1011.7715 < 5.91 · 1011.

This compares favourably with the absolute bound d < 3.5 · 1096 just
published [8] and even with d < 1074 obtained in [20].

The new absolute bounds on the entries of a putative Diophantine quin-
tuple entail improved estimates on the number of such objects. The best
published result to date is 6.8 · 1032, due to Elsholtz, Filipin, and Fujita [8].

Theorem 1.3. There are at most 1031 Diophantine quintuples.

The main technical device on which the strength of these theorems relies
is a twist of the congruence method, more precisely, of the way to transform
a congruence relation into an equality. After the work reported in this paper
was completed, a preprint of Wu and He [20] was brought to our atten-
tion, where the same idea has been exploited. This approach is employed
in the next section, where it is shown that certain Diophantine quadruples
{a, b, c, d} with a < b < c < d satisfy c < 9.5b4. In particular, this yields
Theorem 1.1. The same idea can be adapted for the study of D(n)-sets for
n 6= 1, but we leave this for subsequent work. Theorem 1.2 is proved in
Section 3. The proof of Theorem 1.3 requires explicit bounds for relevant
arithmetic functions and is presented in the last section of the paper.

2. Standard triples of Diophantine quadruples. The results we
shall prove in this section are better than the published ones mainly due to
a careful study of standard triples appearing in a Diophantine quadruple.

Lemma 2.1. Let (a, b, c, d) be a Diophantine quadruple with a < b < c
< d and r the positive integer satisfying ab+ 1 = r2.
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(1) In case the quadruple is regular, the following hold:

(a) If b > 4a then {a, b, d} is a standard triple of the second kind.
Moreover, when c < b1.5 then either

(i) c = a+ b+ 2r and {a, c, d} is a standard triple of the second
kind, or

(ii) c ≥ 4ab+ a+ b and {a, c, d} is a standard triple of the third
kind.

(b) Assume b < 4a. Then:

(iii) If c ≥ b3 then {a, b, d} is a standard triple of the first kind.
Otherwise, either

(iv) c = a+ b+ 2r and {a, c, d} is a standard triple of the second
kind, or

(v) c = 4 r(r − a)(b− r) and {b, c, d} is a standard triple of the
third kind.

(2) In case the quadruple is not regular, the triple {a, c, d} is standard
of the second kind. More precisely, d > c3.5.

Proof. A consequence of [14, Lemma 4] is that either c = a + b + 2r or
c > 4ab. Using this, one can readily prove that for a regular Diophantine
quadruple one has c(4ab + 1) < d < 4c(ab + 1). This and the hypothesis
b > 4a imply that {a, b, d} is a standard triple of the second kind. When
c = a+ b+ 2r, one gets 9a < c < 2.25b and therefore d > 4abc > ac2. When
c ≥ 4ab+a+b ≥ 4ab+4 > 16a2 one has, on the one hand, d < c(4ab+4) ≤ c2,
and, on the other hand, c > 21a. Since from the additional condition c < b1.5

it follows that d > 4abc > 4ac5/3, we conclude that {a, c, d} is a standard
triple of the third kind.

(b) Part (iii) is obvious from the inequalities d > 4abc > b2c ≥ b5.
For c = a+ b+ 2r one gets 4a < c < 4b, so that d > 4abc > ac2 and part

(iv) is established. Suppose c > a + b + 2r. Then by [14, Theorem 8] there
exists an integer k ≥ 2 such that c = ck or c = ck, where the increasing
sequences (ck) and (ck) are given by the non-homogeneous linear recurrence
relation

Xk+2 = (4ab+ 2)Xk+1 −Xk + 2(a+ b) (k ≥ 0)

and the initial conditions

c0 = 0, c1 = a+ b+ 2r, c0 = 0, c1 = a+ b− 2r.

Notice that from the relations

c2 = 4r(a+ r)(b+ r) > 8abr > 4ab2 > b3 > c

and

c3 = 8r(r − a)(b− r)(2ab+ 1) + a+ b+ 2r > 16abr > 2c
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it follows that

c = c2 = (4ab+ 2)(a+ b− 2r) + 2(a+ b) ≥ 4ab+ 2(a+ b) + 2

(the last inequality follows by noting that, on the one hand, a+ b− 2r ≥ 0
with equality if and only if b = a+ 2, and, on the other hand, for b = a+ 2
one has c2 = c1). Hence, d < 4c(ab+1) < c2 and d > 4abc > b2c > c5/3. The
conclusion holds once we show that c > 12b. This holds for b ≥ 9 because
then

c > 4ab+ 2a+ 2b+ 1 ≥ b2 + 3.5b+ 1.5 > 12b.

It remains to examine the regular Diophantine quadruples with a+ 2 <
b < 4a, b ≤ 8, and c = c2 < b3. It is readily seen that these conditions imply
a ≤ 5 and that there is a unique such Diophantine quadruple, (a, b, c, d) =
(3, 8, 120, 11781). Now it is clear that indeed c = 120 > 96 = 12b.

Suppose now that the Diophantine quadruple under study is not regular.
From [14, Lemma 4] one learns that c > 4a, while [6, Proposition 1] ensures
d > c3.5. Thus, {a, c, d} is a standard Diophantine triple of the second kind.

Let {a, b, c, d} be a Diophantine quadruple with a < b < c < d. Then
there exist positive integers r, s, t, x, y, z such that

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2,

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2.

Eliminating d from these equations results in a system of generalized Pell
equations

az2 − cx2 = a− c,(1)

bz2 − cy2 = b− c.(2)

The z-component of each solution to (1) and respectively to (2) appears in
a linear recurrence sequence given by

v0 = z0, v1 = sz0 + cx0, vk+2 = 2svk+1 − vk,
and respectively

w0 = z1, w1 = tz1 + cy1, wk+2 = 2twk+1 − wk,
for certain integers z0, z1, x0, y1 satisfying (see, e.g., [6] or [11])

1 ≤ x0 <
√
s+ 1

2
, 1 ≤ |z0| <

√
c
√
c

2
√
a
,

1 ≤ y1 <
√
t+ 1

2
, 1 ≤ |z1| <

√
c
√
c

2
√
b
.

The technical part on [9] depends on the following hypothesis. (In order
to facilitate comparison, we keep the numbering of the assumptions used
there.)
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Assumption 2.2. There exist integers m ≥ 3, n ≥ 2, and z0 such that
|z0| = 1, z = v2m = w2n, and c > b5.

By work of Dujella [6, Lemma 3] it is known that Assumption 2.2 implies
n ≤ m ≤ 2n, z0 = z1, and x0 = y1 = 1. Filipin and Fujita [9] derive many
other consequences of the same hypothesis. We shall use a more precise
comparison of the two indices m and n.

Lemma 2.2. On Assumption 2.2 one has m < 1.2n.

Proof. Although the statement of [9, Lemma 2.3] reads m ≤ 1.2n, its
proof rules out the equality case.

We shall also need the displayed relation (2.9) from [9].

Lemma 2.3. Let {a, b, c, d} be a Diophantine quadruple with a<b<c<d.
Set a′ = max{b− a, a}. If Assumption 2.2 holds then

n <
4 log

(
4.001a1/2(a′)1/2b2c

)
log
(
1.299a1/2b1/2(b− a)−1c

)
log(4bc) log

(
0.1053a(a′)−1b−1(b− a)−2c

) .

Another ingredient in our argument is the congruence

(3) εam2 + sm ≡ εbn2 + tn (mod 4c), where ε = ±1,

derived from Assumption 2.2 and [5, Lemma 4]. It will be used in the proof
of the crucial lemma below, in which the numerical coefficient is slightly
better than that in [20, Lemma 2].

Lemma 2.4. Suppose there exist integers m ≥ n ≥ 2 and z0 such that
|z0| = 1, z = v2m = w2n, 2n ≥ m ≥ 3. Then m > 0.5b−1/2c1/2.

Proof. Assume m ≤ 0.5b−1/2c1/2. As a first step towards a contradiction,
we show that (3) is actually an equality. To this end, we estimate its terms:

max{am2, bn2} ≤ bm2 ≤ 0.25c,

max{sm, tn} ≤ tm ≤ 0.5b−1/2c1/2
√
bc+ 1 < 0.5c+

1

4b
< 0.6c,

whence (3) turns into an equality that can be written as

ε(am2 − bn2) = tn− sm.

Multiplying both sides by tn+ sm and performing minor algebraic manip-
ulations, this is found to be equivalent to

(4) (bn2 − am2)(c+ ε(tn+ sm)) = m2 − n2.

Notice that bn2− am2 = 0 entails m2−n2 = 0, which in turn implies a = b,
absurd. Therefore, since for any Diophantine pair (a, b) one has a + 2 ≤ b,
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it follows that

c ≤ tn+ sm+m2 − n2 ≤ m
√
bc+ 1 +m

√
ac+ 1 + 0.75m2

≤ 0.5
(√
bc+ 1 +

√
(b− 2)c+ 1 + 0.375b−1/2c1/2

)
b−1/2c1/2

< c,

a contradiction.

Now we can prove the main result of this section.

Theorem 2.1. Keep the notation introduced above. Then Assumption 2.2
holds for no Diophantine quadruple {a, b, c, d} with a+ 2 < b < c < d.

Proof. Assume {a, b, c, d} is a Diophantine quadruple fulfilling Assump-
tion 2.2. We examine three cases separately.

Case b ≥ 2a. Before entering into details, we outline the approach. We
shall first prove that only at most half a dozen Diophantine pairs (a, b) can
be extended to Diophantine triples satisfying Assumption 2.2. For each pair
thus determined we obtain sharp upper bounds for the third entry c. Next,
computer-aided sieving (using nothing more than the issquare command
of Pari/GP [18]) outputs no values c in the allowed range for which both
ac+1 and bc+1 are squares. This contradiction shows that Assumption 2.2
does not hold when b ≥ 2a.

Now we implement the strategy just described.
Note that in the present case one has a′ = b− a. Clearly, a1/2(b− a)1/2

≤ b/2 by arithmetic-geometric mean inequality, and from b ≥ 2a we readily
obtain a1/2b1/2(b−a)−1 ≤

√
2. Even better, for a = 1 one has b1/2(b−1)−1 ≤

2b−1/2. Therefore, the inequality from Lemma 2.3 becomes

n <
4 log(4.001b5/2c) log(2.598b−1/2c)

log(4bc) log(0.1053b−4c)
for a = 1

and

n <
4 log(2.001b3c) log(1.299

√
2c)

log(4bc) log(0.1053ab−4c)
for a ≥ 2.

As the right sides above decrease with c, from b5 < c it follows that

n <
4 log(4.001b15/2) log(2.598b9/2)

log(4b6) log(0.1053b)
<

45 log(1.204b) log(1.237b)

2 log(1.259b) log(0.1053b)

and

n <
4 log(2.001b8) log(1.299

√
2b5)

log(4b6) log(0.1053ab)
<

80 log(1.091b) log(1.130b)

3 log(1.259b) log(0.1053ab)
,

respectively. Comparison with the lower bound for n provided by the hy-
pothesis c ≥ b5 and Lemmas 2.2 and 2.4, namely,

(5) n > 5
6m > 5

12b
−1/2c1/2 ≥ 5

12b
2,
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results in the inequalities

b2 <
54 log(1.204b) log(1.237b)

log(1.259b) log(0.1053b)
for a = 1

and

b2 <
64 log(1.091b) log(1.130b)

log(1.259b) log(0.1053ab)
for a ≥ 2.

Thus, when a = 1 one obtains b ≤ 17, so that (a, b) = (1, 8) or (1, 15),
while for a ≥ 2 one gets b ≤ 13, which means that only (a, b) = (2, 12), (3, 8),
(4, 12) need further consideration.

For each of these we use inequality (5) and get c1/2 bounded by a rational
function in log c. For instance, for (a, b) = (1, 8) one has

c1/2 < 27.153
log(677.49c) log(0.525c)

log(32c) log(390883.2−1c)
,

whence c < 89000. For each of the other four Diophantine pairs the upper
bound for c derived with the help of (5) is smaller than the fifth power of
the corresponding b. So it only remains to confirm that Assumption 2.2 does
not hold when (a, b) = (1, 8). This is obtained by checking that there is no c
between 85 = 32768 and 89000 such that both c+ 1 and 8c+ 1 are perfect
squares.

Case 1.45a ≤ b < 2a. For b < 2a one has a′ = a, so that the inequality
from Lemma 2.3 reads

n <
4 log(4.001ab2c) log

(
1.299a1/2b1/2(b− a)−1c

)
log(4bc) log

(
0.1053b−1(b− a)−2c

) .

Despite its simplicity, the observation that in this case any Diophantine
pair must satisfy either (a, b) = (8, 15) or a ≥ 15 and b ≥ 24 is very helpful.

When (a, b) = (8, 15), proceeding as explained in the previous case one
gets c < 105 < 155, in contradiction with Assumption 2.2.

Let us now examine the remaining Diophantine pairs. As the function
x 7→ x/(b − x2) is increasing for 0 < x <

√
b, b − a < b/2, a ≤ b/1.45,

and 15 ≤ a ≤ b− 9 (either equality attained only for (a, b) = (15, 24)), one
obtains

n <
4 log(2.76b3c) log(3.4761c)

log(4bc) log(0.4212b−3c)
.

The right side decreases when c increases, so that

n <
4 log(2.76b8) log(3.4761b5)

log(4b6) log(0.4212b2)
,

that is,

n <
40 log(1.1354b) log(1.283b)

3 log(1.2599b) log(0.6489b)
.
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The key observation is that this inequality yields n ≤ 16. From (5) it
then follows that b ≤ 6. Since this inequality contradicts b ≥ 24, we conclude
that Assumption 2.2 does not hold in this case either.

Case a+ 3 ≤ b < 1.45a. Note that now 13 ≤ b− a < 9b/29, whence

n <
4 log(4.001b3c) log(0.09993bc)

log(4bc) log(1.0933b−3c)
.

Since the right side is a decreasing function in c, from b5 < c one obtains

n <
16 log(1.19b) log(0.682b)

log(1.259b) log(1.045b)
.

This obviously yields n < 16, and therefore one can proceed as in the
previous case to obtain b ≤ 5. Hence, a + 3 ≤ 5, which in turn implies
4 ≤ a+ 3 ≤ b < 2 · 1.45 < 3, another contradiction.

The proof of Theorem 2.1 is complete.

We now use the result just proved to strengthen it in a particular case
appearing in later developments. For conciseness, we introduce the following
hypothesis on a Diophantine quadruple {a, b, c, d} with a < b < c < d.

Assumption 2.1. There exist integers m ≥ n ≥ 2 and z0 such that
|z0| = 1, z = v2m = w2n, m ≥ 3.

Lemma 2.5. Suppose Assumption 2.1 holds. If b ≥ 8 and c > b4 then
m ≤ 4

3n.

Proof. As in [6, proof of Lemma 3], the starting point is provided by the
inequalities vk ≥ v1(2s − 1)k−1 and wk ≤ w1(2t)

k−1 valid for positive k. In
view of the hypothesis c > b4 ≥ 84, we readily get

1.984
√
ac < 2s− 1, s+ 1 < 1.016

√
ac, t < c5/8.

Combining this with the bounds for z0, z1, x0, y1 recalled above, we obtain

v1 = sz0 + cx0 ≥
c2 − ac− z20
s|z0|+ cx0

>
c2 − ac− z20

2cx0
>
c− a− 0.5a−0.5c0.5

2x0

>
0.998c− 0.5a−0.5c0.5

2x0
>

0.99c

2x0
> 0.694a−1/4c3/4

and

w1 = tz1 + cy1 < 2cy1 < c
√

2(t+ 1) < 1.003
√

2 c21/16 < 1.419c21/16.

Hence,

0.694a−1/4c3/4 · (1.984
√
ac )2m−1 < v2m = w2n < 1.419c21/16 · (2c5/8)2n−1,

which in turn implies

1.9842m−1cm+1/4 < 22n+0.033c5n/4+11/16.
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It follows that either 2m−1 < 1.0118(2n+0.033) or m+1/4 < 5n/4+11/16,
that is,

m < 1.012n+ 0.517 or m < 1.25n+ 0.4375.

The former inequality is stronger and each implies n≥3 (because m≥3).
Note that they also imply m < 4

3n for n ≥ 6 and m ≤ n+ 1 for n = 3, 4, 5.
The conclusion of our lemma is therefore proven.

Lemma 2.6. On Assumption 2.1, the inequality

n <
4 log

(
4.001a1/2(a′)1/2b2c

)
log
(
1.299a1/2b1/2(b− a)−1c

)
log(4bc) log

(
0.1053a(a′)−1b−1(b− a)−2c

)
(with a′ = max{b− a, a}) holds whenever c ≥ 9.5b4.

Proof. The proof is the same as the proof of [9, (2.9)].

Theorem 2.2. Suppose Assumption 2.1 holds for a Diophantine quad-
ruple {a, b, c, d} with a+ 2 < b < c < d. Then c < 9.5b4.

Proof. Having in mind Theorem 2.1 and the fact that no Diophantine
pair (a, b) with a+ 2 < b has b = 10 or 11, we may supppose b ≥ 12.

The strategy is the same as in the proof of Theorem 2.1. For contradic-
tion, assume c ≥ 9.5b4. The details vary according to the sign of b − 2a.
Moreover, it is convenient to examine very small values of a separately.

Case a = 1. Now we are facing a difficulty due to the fact that for c
close to 9.5b4, the term log(0.1053b−1(b − 1)−3c) ∼ log 1.00035 becomes
pretty small and the quality of the upper bound on n decreases rapidly.
A palliative would be to use a lower bound for b(b − 1)−1 better than the
obvious one. Since this expression decreases when b increases, one needs to
bound b from above.

Proceeding as in the proof of Theorem 2.1, one replaces c by 9.5b4 in
Lemma 2.6. Having in mind that b1/2(b − 1)−1 ≤ 1000 · 999−1b−1/2 when
b ≥ 1000, the reconciliation of the upper bound for n thus obtained with
the lower bound derived from

(6) n ≥ 3
4m > 3

8b
−1/2c1/2 ≥ 3

√
9.5
8 b3/2

results in

b3/2 < 44997.3
log(1.751b) log(2.051b)

log(2.0699b)
,

whence b < 5600 and r ≤ 74. Taking 742−1
742−2 as a lower bound for b(b− 1)−1

has the favourable consequence of diminishing the value 44997.3 in the above
inequality to 17536.2. This in turn implies r ≤ 53, and so b(b−1)−1 ≥ 532−1

532−2 ,
which leads to r ≤ 45. Playing once more the same game one concludes that
b ≤ 1680.
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At this junction of the proof we start the filtering phase. For each value
of r between 4 and 41 we let a computer program search for integers of the
form c = s2 − 1 having the properties: bc + 1 = (r2 − 1)c + 1 is a perfect
square and c is at least 9.5b4 but smaller than b5. The output list consists
of 67 items: for r = 8 or 9 a unique c of this kind was found, when r = 41
there are three admissible values, and for each of the remaining r there
are precisely two corresponding c’s. For each of these pairs (b, c) the upper
bound for n computed with the help of Lemma 2.6 was much smaller than
the lower bound for n given in (6).

Case b ≥ 2a ≥ 4. This time one gets

b3/2 < 32.301
log(1.523b) log(2.044b)

log(2.0699b)
,

whence b ≤ 21. For each integer a with 3 ≤ a ≤ 10 we write the inequality
from Lemma 2.6 for this specific a, and find that b is at most 15 when a = 3
and at most 11 when a ≥ 4. Recall that in this proof one also has b ≥ 12 to
conclude that the only Diophantine pair satisfying all restrictions presently
in force is (a, b) = (2, 12). For this pair, inequality (6) and Lemma 2.6 give

c1/2 < 36.951
log(2576.595c) log(0.6364c)

log(48c) log(c/56981)
,

whence c < 195000, which contradicts the requirement c > 9.5 · 124 >
196000.

Case b < 2a. Note that now one has a′ = a, and either (a, b) = (8, 15)
or a ≥ 15. Hence, b− a ≥ 7, so that

n <
28 log(1.6816b) log(1.1201b)

log(2.0699b) log(1.00035b)
< 28.

From b3/2 < 27·8
3
√
9.5

it then follows that b ≤ 8, in contradiction with b ≥ 15.

3. Bounds for the size of elements in a Diophantine quintuple.
Our next goal is to apply all these considerations to a putative Diophantine
quintuple {a, b, c, d, e} with a < b < c < d < e. Recall that the positive
integers x, y, z satisfying ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2 are solutions
to simultaneous Pell equations (1)–(2). Similarly, there exist positive integers
α, β, γ, δ such that ae + 1 = α2, be + 1 = β2, ce + 1 = γ2, de + 1 = δ2.
Elimination of e results in a system of three Pell equations: aδ2−dα2 = a−d,
bδ2−dβ2 = b−d, cδ2−dγ2 = c−d. Taken individually, each of these quadratic
equations has solutions given by linearly recurrent sequences. In particular,
the common unknown can be expressed as δ = Ui, δ = Vj , δ = Wk, where
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the positive integers i, j, k indicate the rank of appearance in the sequences

U0 = ±1, U1 = ±x+ d, Ui+2 = 2xUi+1 − Ui,
V0 = ±1, V1 = ±y + d, Vj+2 = 2yVj+1 − Vj ,
W0 = ±1, W1 = ±z + d, Wk+2 = 2zWk+1 −Wk.

As explained in [12], all indices are even and satisfy 4 ≤ k ≤ j ≤ i ≤ 2k
and j ≥ 6. Clearly, the sequences (vm), (wn) involved in considerations from
Section 2 used for the quadruple {a, b, d, e} are actually (Ui), (Vj). Therefore,
the requirements on the parity and size of indices from Assumptions 2.1
and 2.2 are fulfilled.

The following is a more explicit version of Theorem 1.1.

Proposition 3.1. Let {a, b, c, d, e} be a Diophantine quintuple with a <
b < c < d < e. If b > 4a then {a, b, d} is a standard Diophantine triple
of the second kind which satisfies d < 9.5b4. Otherwise, c < b3, d < 9.5b4,
and either c = a + b + 2r and {a, c, d} is standard of the second kind or
c = (4ab+2)(a+ b−2r)+2(a+ b) and {b, c, d} is standard of the third kind.

Proof. Recall that Fujita [11] has proved that removing the largest el-
ement from any Diophantine quintuple results in a regular Diophantine
quadruple. The first part of the conclusion then follows directly from Lem-
ma 2.1(1a). In view of the preceding considerations, the inequality d < 9.5b4

is a consequence of Theorem 2.2, which can be applied to (a, b, d, e) because
no Diophantine quintuple contains a pair {A−1, A+1} with A ≥ 2 (see [10]).
When b < 4a and c > b3 it follows that d > b5, in contradiction with The-
orem 2.1 employed for the Diophantine quadruple (a, b, d, e). The last part
of the conclusion is given by Lemma 2.1(1b).

The proofs of our next results rely on Matveev’s bound [17] for linear forms
in logarithms generated by a Diophantine triple (A,B,C) with A < B < C.
Actually we shall apply its variant mentioned in [12] to the linear form

Λ = j log ξ − k log η + log µ,

where

ξ = S +
√
AC, η = T +

√
BC, µ =

√
B(
√
C ±

√
A)√

A(
√
C ±

√
B)

.

It is known (see [6, (60)]) that

0 < Λ < 8
3ACξ

−2j .

For a standard Diophantine triple (A,B,C) of the second kind with
C > 1028 one obtains

√
AC + 1 <

√
0.25C1.5 + 1 < 0.5001C0.75,

√
BC + 1 <

√
C1.5 + 1 < 1.0001C0.75,
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√
C ±

√
A√

C ±
√
B
<

√
C + 0.5

√
B√

C −
√
B

<
1 + 0.5C−0.25

1− C−0.25
< 1.0001,

√
C ±

√
A√

C ±
√
B
>

√
C − 0.5

√
B√

C +
√
B

>
1− 0.5C−0.25

1 + C−0.25
> 0.9999.

Hence, A1 = 2 log ξ and

A2 = 2 log η < 2 log(2
√
BC + 1) < 2 log(2.0002C0.75) < 1.5216 logC.

Note that the minimal polynomial of µ is the primitive part of A2(C−B)2X4

+ 4A2B(C −B)X3 + 2AB(3AB −AC −BC −C2)X2 + 4AB2(C −A)X +
B2(C −A)2, whose leading coefficient a0 satisfies

1

4

(
C

B
− 1

)
≤ a0 ≤ A2(C −B)2.

Therefore, the following estimates are true:

A3 = 4h(µ) < log(1.00012AB(C −B)2) < log(0.25 · 1.00012C3)

< 3 logC,

A3 > log

(
0.99992

C −B
4A

)
> log

(
0.99992

C −B
B

)
> log(0.99992C0.4999) > 0.499 logC,

whence

Ω = A1A2A3 < 9.1296 log ξ(logC)2,

E = max

{
jA1

A3
,
kA2

A3

}
< max

{
1.5001j

0.499
,
1.5216k

0.499

}
< 3.0493j,

and

W0 = log(6eE log(4e)) < log(118.678j).

Comparison of the lower and upper bounds for Λ results in the inequality

2j log ξ < 6.4407 · 108 · 29.8847 · 16 · 9.1296 log ξ · (logC)2 log(118.678j)

+ log(8AC)− log 3,

that is,

(7) j < 1.40581 · 1012(logC)2 log(118.678j).

Similar arguments prove the following result.

Lemma 3.1. Let (a, b, c, d) be a regular Diophantine quadruple with a <
b < c < d, a+ 2 < b < 4a, and d > 1021.

(a) If c = a+ b+ 2
√
ab+ 1 then j < 1.1169 · 1012(log d)2 log(82.576j).

(b) If c = (4ab+ 2)(a+ b− 2
√
ab+ 1) + 2(a+ b) then

j < 1.1169 · 1012(log d)2 log(69.191j).
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Now we can prove the main results of this section. Together with Propo-
sition 3.1, they imply Theorem 1.2 from the Introduction. In both proofs we
apply results from Section 2 to the Diophantine quadruple (a, b, d, e).

Theorem 3.1. Let {a, b, c, d, e} be a Diophantine quintuple with 4a <
b < c < d < e. Then d < 1072.188 < 1.542·1072 and b < 1035.793 < 6.209·1035.

Proof. As {a, b, c, d} is a regular Diophantine quadruple, one has d =
d+ > 4abc > 4b2. Hence, Lemma 2.4 yields

j >

√
d√
b
>
√

2 d1/4.

Comparison with the upper bound for j provided by (7) leads to the desired
conclusion.

Theorem 3.2. Let {a, b, c, d, e} be a Diophantine quintuple with a < b <
c < d < e and b < 4a. If c = a+ b+ 2

√
ab+ 1 then d < 1053.292 < 1.96 · 1053

and b < 1017.647 < 4.44 · 1017, otherwise c = (4ab+ 2)(a+ b− 2
√
ab+ 1) +

2a+ 2b, d < 1047.086 < 1.22 · 1047, and b < 1011.7715 < 5.91 · 1011.

Proof. By Lemma 2.1 and Proposition 3.1, c has to have one of the
specified forms. When c = a+b+2

√
ab+ 1 one gets c > 2.25b, and therefore

d > 2.25b3. This together with Lemma 2.4 readily yields j > (1.5d)1/3.
Similarly, in the complementary case one arrives at j > d3/8 by noting that
this time d > (4ab)2 > b4. Combining these lower bounds for j with the
upper bounds given in Lemma 3.1, one arrives at the indicated estimates
for d and b.

4. An estimate for the number of Diophantine quintuples. We
shall follow the strategy of our predecessors: Consider a pair (a, b) that can
be extended to a Diophantine quintuple {a, b, c, d, e} with a < b < c < d < e.
First we estimate the number of such pairs (a, b) below a certain threshold
and count the possibilities to extend each of them to a Diophantine triple.
By Fujita’s theorem [11], any Diophantine quadruple which appears in a
Diophantine quintuple is uniquely determined by its smallest three elements.
According to another result due to Fujita [12, Theorem 1.2], a Diophantine
quadruple can be extended to a quintuple in at most four ways. Therefore,
we shall only emphasize the new ideas appearing in the proof of estimates
for the number of Diophantine triples.

Counting the number of Diophantine pairs formed by the two smallest
entries in a Diophantine quintuple is paramount to computing the number
of solutions to a congruence derived from the defining condition ab+1 = r2.
This is achieved with the help of the next result.
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Lemma 4.1. Let M be a positive integer and ω : N → N the counting
function of distinct prime divisors. The number of solutions of the congru-
ence X2 ≡ 1 (mod M) in the range 1 ≤ X < M is 2ω(M) if M is odd or
M ≡ 4 (mod 8); 2ω(M)−1 if M ≡ 2 (mod 4); 2ω(M)+1 if M ≡ 0 (mod 8). In
each case, precisely half of the solutions are in the range 1 ≤ X < M/2.

Proof. The first part is well known—see, for instance, [19]. The map
X 7→ M − X gives a bijection between the solutions of the congruence
which are positive and less than M/2, and solutions greater than M/2 and
smaller than M .

There are several papers devoted to the asymptotic behaviour of the
number of D(1)-m-sets. Dujella [7] has given the main term in the asymp-
totic formula for the number of Diophantine pairs and triples. Lao [15] has
obtained a second term in each of them. Martin and Sitar [16] established the
main term in the asymptotic expansion of the number of D(1)-quadruples.
Since in each of these results the intervening constants and the range of
validity remain unspecified, they cannot serve to bound the number of Dio-
phantine quadruples. However, ideas and techniques from their proofs can
be employed to this end.

We now give a series of lower and upper bounds for several arithmetic
functions needed for the proof of the main result of this section. In all of
them, the dominant term agrees with the main term in the corresponding
asymptotic formula.

As usual, µ and ω denote the Möbius function and the counting function
of distinct prime divisors, respectively.

Lemma 4.2. For real x ≥ 1, set Q(x) :=
∑x

n=1 µ
2(n). Then Q(x) =

6
π2x+ P (x), with

(a) −0.103229
√
x ≤ P (x) ≤ 0.679091

√
x for x ≥ 1,

(b) |P (x)| ≤ 0.1333
√
x for x ≥ 1664,

(c) |P (x)| ≤ 0.036438
√
x for x ≥ 82005,

(d) |P (x)| ≤ 0.02767
√
x for x ≥ 438653.

Proof. (a) is obtained with the help of a script written in gp [18]. The
inequality in part (b) is quoted from [3], and the others have been proved
in [4].

These bounds together with familiar techniques like summing by parts
and comparison of sums with integrals serve to obtain the next explicit
bounds for functions intervening in subsequent proofs.

Lemma 4.3. For real x ≥ 1, set

E(x) :=
x∑

n=1

2ω(n), F (x) :=
x∑

n=1

2ω(n)

n
, G(x) :=

x∑
n=1

2ω(2n−1)

2n− 1
.
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Then
6

π2
x log x− 0.518398x < E(x) <

6

π2
x log x+ 2.04864x,

3

π2
(log x)2 + 0.0895 log x− 0.916 < F (x),

F (x) <
3

π2
(log x)2 + 2.6565672 log x+ 1.123069 +

1.05

x
,

G(x) <
3

2π2
(log x)2 + 3.1227147 log x+ 3.56851 +

0.525

x
.

Lemma 4.4. For n,H positive integers, let dH(n) denote the number of
divisors of n in [1, H]. Then, for any N ≥ 2,

N∑
n=2

dH(n2 − 1) < N

[
9

π2
(logH)2 + 12.408437 logH − 2.868921

+
24

π2
logH

H
+

37.98928

H
+

33

H2

]
.

Proof. Using Lemma 4.1 and the inequalities

N∑
n=2

dH(n2 − 1) ≤ 2
N∑
n=1

min(H,n)∑
d=1

n2≡1 (d)

1 ≤ 2
H∑
d=1

N∑
n=d

n2≡1 (d)

1,

one finds that the desired sum is bounded from above by

2N
H∑
d=1

d≡1 (2)

2ω(d)

d
+ 2N

H∑
d=4

d≡4 (8)

2ω(d)

d
+N

H∑
d=2

d≡2 (4)

2ω(d)

d
+ 4N

H∑
d=8

d≡0 (8)

2ω(d)

d
.

Hence,

N∑
n=2

dH(n2−1) ≤ 2NG

(
H + 1

2

)
+NG

(
H + 4

8

)
+NG

(
H + 2

4

)
+NF

(
H

8

)
.

The conclusion follows by applying Lemma 4.3.

As a last preparation before proceeding to the proof of Theorem 1.3 we
quote a consequence of [2, Theorem 2.1].

Lemma 4.5. For N ≥ 2,

N∑
n=1

4ω(n) <
N

6
(logN + 2)3.

We shall stratify the set of all Diophantine quintuples according to
Lemma 2.1, estimate the number of solutions of each kind, and sum the
individual contributions to get an upper bound for the total number of
D(1)-quintuples.
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Below, (a, b, c, d, e) is a Diophantine set with a < b < c < d < e. Recall
that d = d+, so that 4abc < d < 4c(ab+ 1).

Case b > 4a and c = a + b + 2r. Note that b > 4a is equivalent to
b > 2r. Hence, c > 4r+ a, and therefore d > 4(r2− 1)(4r+ 2) > 16r3. From
d < 1072.188 it follows that r < 1023.6613 =: R. According to Lemma 4.4, the
number of Diophantine pairs (a, b) is less than

1

2

R∑
r=3

dR(r2 − 1) < 7.75 · 1026.

Since c is uniquely determined by a and b, and a Diophantine triple can be
extended to a quintuple in at most four ways, the number of Diophantine
quintuples of this kind is bounded from above by

(8) 7.75 · 1026 · 4 = 3.1 · 1027.

Case b > 4a and 4ab + a + b ≤ c < b1.5. Note that b ≥ 8 whenever
b > 4a, so that d > 4ab(4ab+ a+ b) > 16r4 and r < 1017.746 =: R1. Hence,
the number of Diophantine pairs (a, b) is at most

1

2

R1∑
r=3

dR1(r2 − 1) < 5.646 · 1020.

Each such pair can be extended to a Diophantine triple by a suitable
term of certain binary linearly recurrent sequences. These sequences are
outnumbered by the solutions to the congruence t20 ≡ 1 (mod b) in the range

[−2−1/2b3/4, 2−1/2b3/4] (see [5, Lemma 1]). As 2−1/2b3/4 < 0.5b, according to
Lemma 4.1, the number of those solutions is bounded from above by 2 ·2ω(b).
Now we have b <

√
d/20 < 7.709 · 1035, so each positive integer below

this bound has at most 24 prime divisors. Thus, the number of recurrent
sequences of interest is less than 225. From [8] we learn that each sequence
contains at most three terms eligible as the largest element of a Diophantine
triple. Since there are up to four possibilities to extend a triple to a quintuple,
we conclude that in this case there are at most

(9) 5.646 · 1020 · 225 · 3 · 4 < 2.274 · 1029

Diophantine quintuples.

Case b > 4a and c > b1.5. As it turns out that quintuples subject to
these restrictions have the most important contribution to the grand total,
Elsholtz, Filipin, and Fujita [8] introduced the idea of averaging over the
factors 2ω(b). This technique is responsible for the impressive strengthening
of the previous estimates of the number of Diophantine quintuples. As we
shall see below, a slight improvement is still possible.
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Let us first examine the subcase where a ≥ 1011 =: A3. This hypoth-
esis together with the inequalities 1072.188 > d > 4ab2.5 implies that b <
1.7155 · 1024 =: R2.

For fixed b, the number of Diophantine pairs (a, b) with 4a < b is less
than 2ω(b) (see Lemma 4.1). For fixed a and b, the number of sequences
containing terms eligible for prolongation is at most 2ω(b)+1 and each se-
quence contributes at most five values for c according to [8]. Having in mind
Lemma 4.5, we conclude that the number of Diophantine quintuples with
b < R2 is less than

(10) 4
R2

6
(logR2 + 2)3 · 5 · 4 < 4.418 · 1030.

In the complementary subcase a < A3 one has b < (d/4)1/2.5 < 4.309 ·
1028 and r < 1.001

√
A3b < 1.001

√
A3(d/4)1/2.5 < 6.5709 · 1019 =: R3.

Lemma 4.4 applied in this situation bounds the number of pairs by

R3

[
9

π2
(logA3)

2 + 12.40844 logA3 − 2.868921

]
< 6.0718 · 1022.

On noting that the product of the first 22 primes exceeds 1030, we conclude
that ω(b) ≤ 21. As in each recurrent sequence we can find at most five terms
that can serve as c, the number of Diophantine quintuples in this subcase is
less than

(11) 6.0718 · 1022 · 222 · 5 · 4 < 5.095 · 1030.

Case b < 4a and c = a + b + 2r. Now the inequalities 1053.292 > d >
4abc > b2(b/4 + b + b) = 9b3/4 yield b < 1017.647 =: R4. By Lemmas 4.1
and 4.3, the number of Diophantine pairs is less than

2

R4∑
b=4

2ω(b) <
12

π2
R4 logR4 + 4.09728R4 < 2.38 · 1019.

Again c is uniquely determined by a and b, so that the estimate for the
number of Diophantine quintuples satisfying the hypotheses in force is

(12) 2.38 · 1019 · 4 = 9.52 · 1019.

Case b < 4a and c = 4r(r − a)(b − r). In this case we know that
1047.086 > d > 4abc > b4, that is, b < 1011.7715 =: R5. Since c is unique, the
number of Diophantine quintuples is no more than

(13)

(
12

π2
logR5 + 4.09728

)
R5 · 4 < 8.76 · 1013.

Summing up (8)–(13), we conclude that the number of Diophantine quin-
tuples is bounded from above by 9.75 · 1030.
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