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The arithmetic of curves defined by iteration

by

Wade Hindes (Providence, RI)

1. Introduction. The arithmetic properties of iterated rational maps
(heights, integer points in orbits, preperiodic points etc.) provide many in-
teresting problems, both directly and by analogy, in classical arithmetic
geometry. In this paper, we study another object straddling both geometry
and dynamics, the arboreal representation attached to a rational function.
Specifically, in the case of quadratic polynomials f = fc(x) = x2 + c, we
translate key problems regarding the size of the Galois groups of iterates of
f into a geometric framework.

To state these results, we fix some notation. For f = x2+c, let fn denote
the nth iterate of f and let Gn(f) = Gal(fn) be the Galois group of fn.
Moreover, let Tn denote the set of roots of f, f2, . . . , fn together with 0, and
set

(1) T∞ :=
⊔
n≥0

f−n(0) and G∞ = lim←−Gn(f).

If f is irreducible, then Tn carries a natural 2-ary rooted tree structure:
α, β ∈ Tn share an edge if and only if f(α) = β. Furthermore, as f is a
polynomial with rational coefficients, Gn(f) acts via graph automorphisms
on Tn. Hence, we have injections Gn ↪→ Aut(Tn) and G∞ ↪→ Aut(T∞) called
the arboreal representations associated to f . A major problem in arithmetic
dynamics, most notably because of its application to density questions in
orbits [15], is to study the size of these images. For a nice exposition on the
subject, as well as the formulation for rational functions φ ∈ Q(x), see [14].

For a fixed stage n, a natural question to ask is which rational values of
c supply a polynomial x2 + c whose nth iterate is the first to have smaller
than expected Galois group. When n = 4, the only examples up to a very
large height are c = 2/3 and c = −6/7. Moreover, we prove that there are
no such integer values (in contrast to the n = 3 case in [11]) and formulate
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questions for larger n. Specifically, let

S(n) = {c ∈ Q | |Aut(Tn−1) : Gn−1(fc)|=1 and |Aut(Tn) : Gn(fc)| > 1}.
Then we use techniques in the theory of rational points on curves (Chabauty’s
method, unramified coverings, the Mordell–Weil sieve, and bounds on linear
forms in logarithms) to deduce the following maximality result for the fourth
iterate of these quadratic polynomials.

Theorem 1.1. Let fc(x) = x2 + c for some c ∈ Q. Then all of the
following statements hold:

(i) S(4) ∩Z = ∅. That is, if c is an integer and G3(fc) ∼= Aut(T3), then
G4(fc) ∼= Aut(T4).

(ii) If c 6= 3 is an integer and G2(fc) ∼= Aut(T2), then G4(fc) ∼=
Aut(T4).

(iii) If the curve F2 : y2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1 has no rational
points of Weil height greater than 10100, then S(4) = {2/3,−6/7}.

In the proof of this and subsequent theorems, the key objects which
parametrize the size of these dynamical Galois groups are the hyperelliptic
curves

Cn : y2 = fn(x) and Bn : y2 = (x− c)fn(x).

Adding to the evidence for open image conjectures in dynamics (see [10],
[11], and [14, Conjecture 3.11]), we use these curves defined by iteration and
some standard conjectures in arithmetic geometry to prove the following
theorem.

Theorem 1.2. Let f(x) = x2 + c for some integer c. If c 6= −2 and −c
is not a square, then both of the following statements hold:

(i) The Hall–Lang conjecture implies that |Aut(T∞) : G∞(f)| is finite.
(ii) If the weak form of Hall’s conjecture for the Mordell curves holds with

C = 100 and ε = 4, then when f(x) = x2 + 3, we have |Aut(T∞) :
G∞(f)| = 2.

Remark 1.1. This result is analogous to a theorem of Serre for non-CM
elliptic curves [2]. Moreover, the analogy is particularly interesting since
when c = −2, the relevant family of curves actually has CM; see Theorem 1.3
below. The author [11] and Gratton et al. [10] (independently) prove the
conclusion of part (i) of Theorem 1.2 assuming the ABC conjecture holds
over Q instead of the Hall–Lang conjecture.

We begin Section 2 by discussing some general arithmetic properties of
Cn and Bn. Specifically, we address problems related to the torsion sub-
groups and simple factors of their Jacobians. For this, we extract informa-
tion from the specific case when c = −2 and f is a Chebyshev polynomial.
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In this case, the curves in this family have some very special properties. In
particular, let J(Bn) be the Jacobian of Bn. Then we have the following
theorem.

Theorem 1.3. When f(x) = x2−2, all of the following statements hold:

(i) J(Bn) is an absolutely simple abelian variety that has complex mul-
tiplication by Q(ζ + ζd), where ζ is a primitive 2n+2th root of unity
and d = 2n+1 − 1.

(ii) Consider Bn/Fp and let χ(Bn, t) be the characteristic polynomial
of Frobenius.

(a) If p ≡ 5 mod 8, then χ(Bn, t) = t2
n

+ p2
n−1

for all n ≥ 1.

(b) If p ≡ 3 mod 8, then χ(Bn, t) = t2
n

+ p2
n−1

for all n ≥ 2.

(iii) J(Bn)(Q)Tor ∼= Z/2Z for all n ≥ 1. It follows that rank(J(Bn)(Q))
≥ 1 for all n ≥ 2. Furthermore, rank(J(Cn)(Q)) ≥ n − 2 for all
n ≥ 1.

(iv) Bn(Q) = {∞, (−2, 0), (0,±2)} for all n ≥ 2.

Note that in part (iv) of Theorem 1.3 we have determined the ratio-
nal points on a family of curves whose Jacobians are of positive rank and
geometrically simple, a usually difficult task. The key point is that our poly-
nomial f = x2− 2 is equipped with a rational cycle (the fixed point 2), and
we will discuss generalizations of this construction to other polynomials with
similar dynamical properties (see (18)). Furthermore, as a corollary, we ob-
tain the factorization (into simple factors) of the Jacobians of Cn for a large
class of quadratic polynomials.

Corollary 1.1. If f(x) = x2 + ax + b ≡ x2 − 2 mod p for some p ≡
±3 mod 8, then the decomposition

J(Cn) ∼ J(B1)× · · · × J(Bn−1)

is indecomposable over Q. In particular, whenever c+ 2 has a prime factor
p ≡ ±3 mod 8, then the decomposition above is indecomposable for fc(x) =
x2 + c.

We close with a discussion of certain Galois uniformity questions, analo-
gous to those for preperiodic points of rational polynomials (see [20] and [13]).
For the sake of completeness, all Galois groups were computed with Sage [23],
and the descent calculations were carried out with Magma [1]. Since the
curves we study are hyperelliptic, the relevant codes may be easily found in
the Magma handbook. Finally, we let Res(f, g) denote the resultant of two
polynomials f and g.

2. Arithmetic properties of curves defined by iteration. Let
f = fc(x) = x2 + c. As mentioned in the Introduction, the size of the Galois
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group of fn is encoded in the existence of certain rational points on the curve

(2) Cn := {(x, y) | y2 = fnc (x)}
and its quadratic twists (for now, we bracket the discussion of this corre-
spondence and take it up in Section 3). In particular, to understand the
Galois groups as we iterate f , we must study the arithmetic of these curves.
As a first step, in this section we analyze the torsion subgroups and simple
factors of their Jacobians.

When studying the rational points on a curve of large genus, one often
attempts to find a map to a curve of lower genus, where the typical arith-
metic procedures are more easily carried out. Note that by iterating f we
obtain maps

(3) Cn
f−→ Cn−1

f−→ · · · f−→ C1.

However, in order to completely decompose the Jacobians of Cn (and per-
haps compute their endomorphism rings), it would be better to find maps
to curves whose Jacobians are simple. Fortunately, for m < n we also have
the coverings πm : Cn → Bm given by

(4) Bm := y2 = (x− c)fmc (x) and πm(x, y) =
(
fn−mc (x), yfn−m−1c (x)

)
.

Remark 2.1. Similar maps and curves, πm and Bm, can be constructed
for all quadratic polynomials f = x2 + bx + c simply by completing the
square (see [11]).

From this we can deduce that the Jacobian of Cn decomposes as one
might expect from our setup. For simplicity, we adopt the notation J(C)
for the Jacobian of any curve C throughout. Furthermore, we write A ∼ B
when A and B are isogenous abelian varieties.

Proposition 2.1. Let f(x) = fc(x) = x2 + c. If fn is separable, then
Cn is nonsingular and

(5) J(Cn) ∼ J(B1)× · · · × J(Bn−1)

for all n ≥ 2. In particular, we have such a decomposition when f is irre-
ducible.

Proof. We will proceed by induction on n. If n = 2, then both C2 and
B1 have genus 1. Moreover, π1 : C2 → B1 is nonconstant (f has degree two)
and hence the induced map on Jacobians must be an isogeny.

Now for the general case: We fix n and let fm : Cn → Cm be the map
(x, y) 7→ (fn−m(x), y). The maps fn−1 and πn−1 induce maps

φ = (πn−1, fn−1) : Cn → Bn−1×Cn−1, φ∗ : J(Cn)→ J(Bn−1)×J(Cn−1).

We show that φ induces an isomorphism φ∗ on the space of regular differentials
on Cn and on Bn−1 × Cn−1, from which it follows that φ∗ is an isogeny.
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Note that genus(Cn) = 2n−1 − 1 and genus(Bm) = 2m−1. It follows that
for 0 ≤ i ≤ 2n−2−1, the set {(xi/y)dx} is a basis of H0(Bn−1, Ω). Similarly,
{(xj/y)dx} is a basis of H0(Cn−1, Ω) for 0 ≤ j ≤ 2n−2 − 2. One computes

π∗n−1

(
xi

y
dx

)
=
f(x)i

xy
d(f(x)) = 2

f(x)i

y
dx,(6)

f∗n−1

(
xj

y
dx

)
=
f(x)j

y
d(f(x)) =

2f(x)jx

y
dx.(7)

Since

dimQ(H0(Cn, Ω)) = 2n−1 − 1 = 2n−2 + 2n−2 − 1

= dimQ(H0(Bn−1, Ω)) + dimQ(H0(Cn−1, Ω)),

it suffices to show that φ∗ is surjective, to infer that it is an isomorphism.
To do this, it is enough to show that {(xi/y)dx} inside H0(Cn, Ω) is in the
span of the images of π∗n−1 and f∗n−1 for all 0 ≤ i ≤ 2n−1 − 2. To establish
this, we again proceed by induction.

Note that by (6) and (7), we have

dx

y
=

1

2
· 2dx

y
=

1

2
π∗n−1

(
dx

y

)
,

xdx

y
=

1

2
· 2xdx

y
=

1

2
f∗n−1

(
dx

y

)
.

As for the inductive step, suppose that (xi/y)dx is in the span of π∗n−1 and
f∗n−1 for all i ≤ t− 1. Furthermore, assume that t is even and write t = 2k.

If we write f(x)k = xt +
∑t−1

i=0 cix
i, then

xtdx

y
=

1

2
π∗n−1

(
xkdx

y

)
−

t−1∑
i=0

ci
xidx

y
.

However, the tail sum is in the span of π∗n−1 and f∗n−1 by the induction
hypothesis (note that t is even and t ≤ 2n−1 − 2 implies that k ≤ 2n−2 − 1,
which is needed to force (xk/y)dx ∈ H0(Bn−1, Ω) as desired).

Similarly, if t = 2k+ 1, then write f(x)k = x2k +
∑t−2

i=0 six
i. We see that

xtdx

y
=
xf(x)kdx

y
−

t−2∑
i=0

si
xi+1dx

y
=

1

2
f∗n−1

(
xkdx

y

)
−

t−2∑
i=0

si
xi+1dx

y
.

Again, the tail sum is in the intended span. To see this, note that t ≤ 2n−1−2
implies that k ≤ 2n−2 − 3, and hence (xk/y)dx is in H0(Cn−1, Ω).

The argument above establishes that J(Cn) ∼ J(Bn−1)×J(Cn−1). How-
ever, by induction we deduce that

J(Cn) ∼ J(Bn−1)× J(Bn−2)× · · · × J(B1)

as claimed.
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In Corollary 1.1, we show that for many values of c and every m, the
Jacobian J(Bm) of Bm is simple. To do this, we extract information from
the special case when c = −2. In this situation, f = x2 − 2 is a Chebyshev
polynomial of degree 2, often denoted T2 elsewhere in the literature [21, 1.6].
More generally, fn is the Chebyshev polynomial T2n of degree 2n.

We consider the Chebyshev polynomials Td as characterized by the equa-
tions

(8) Td(z + z−1) = zd + z−d for all z ∈ C∗,

and Td is known to be a degree d monic polynomial with integer coefficients.
The classical Chebyshev polynomials T̃d were defined in the following way:

if we write z = eit, then T̃d(2 cos(t)) = 2 cos(dt),

though we use the first characterization in (8), where Td is monic. For a
complete discussion of these polynomials, see [21, 1.6].

It has long been known that the dynamical behavior of the Chebyshev
polynomials is particularly simple. We will harness this simplicity to deduce
strong conclusions about the curves Bn in this case. However, the key insight
is that a polynomial does not have to actually be a Chebyshev polynomial
for parts of this analysis to work, but simply reduce to x2− 2 modulo some
prime p ≡ ±3 mod 8.

In particular, we obtain arithmetic information for a large class of quad-
ratic polynomials. Our first result in the Chebyshev case is the following.

Theorem 2.1. Let f(x) = x2 − 2 and consider the curves Bn/Fp.

(i) If p ≡ 5 mod 8, then Bn has characteristic polynomial χ(Bn, t) =

t2
n

+ p2
n−1

for all n ≥ 1.
(ii) If p ≡ 3 mod 8, then Bn has characteristic polynomial χ(Bn, t) =

t2
n

+ p2
n−1

for all n ≥ 2.

In particular, J(Bn)(Fp) ∼= Z/(p2n−1
+ 1)Z and J(Bn) is supersingular for

the n and p given above.

Proof. To compute χ(Bn, t), we consider the auxiliary curves

(9) Cn : y2 = x(x2
n

+ 1) and B±n : y2 = (x± 2)T2n(x).

Note that Cn+1 is equipped with the maps

(10) φ± : Cn+1 → B±n , φ±(x, y) =

(
x+

1

x
,
(x± 1)y

x2n−1+1

)
,

and that B±n /Fp are nonsingular for every odd prime. The nonsingularity
follows from the fact that T2 = f is critically finite: {f(0), f2(0), f3(0), . . . }
= {±2}. Hence the discriminant of (x± 2)fn(x) is a power of 2. In general,
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the discriminant ∆m of fmc for any quadratic polynomial fc = x2 + c is

(11) ∆m = ±∆2
m−1 · 22

m
fmc (0)

(see [15, Lemma 2.6]). Before proceeding with the proof of Theorem 2.1, we
are in need of a few lemmata.

Lemma 2.1. Let n be any positive integer. If m < 2n and p ≡ ±3 mod 8,
then the field Fpm contains an element α satisfying α2n+1

= 1, which is not
a square in Fpm.

Proof. Write q = pm and suppose that m = 2t. Notice that Fq contains

an element α of order 2t+2, since p2
t − 1 is divisible by 2t+2 and F∗q is cyclic.

To see this, write

(p2
t − 1) = (p2

t−1 − 1)(p2
t−1

+ 1) = (p− 1)(p+ 1)(p2 + 1) · · · (p2t−1
+ 1),

inductively. As either p + 1 or p − 1 is ≡ 0 mod 4 and every other term in
the product is even, we see that p2

t − 1 is divisible by 2t+2.

However, p ≡ ±3 mod 8 implies that no higher power of 2 can divide the
product. Hence α is not a square in Fq. Finally, the conditions on m force

t ≤ n− 1. Therefore, α2n+1
= 1 as desired.

In general we may write m = 2ta for some odd a. By applying the result
in the 2-powered case to the subfield Fp2t ⊂ Fq, we may find an element
α ∈ Fp2t with the desired properties. Note that if such an element α were

a square in Fq, then it must be a square in Fp2t (otherwise there would be

a proper quadratic extension of Fp2t contained in Fq, contradicting the fact

that a is odd). However, as was the case above, the fact that p ≡ ±3 mod 8
implies that α is not a square in Fp2t .

Lemma 2.2. If v2(p + 1) = k, then #B+
n (Fq) = #B−n (Fq) for all n ≥ k

and all q = pt.

Proof. Notice that when q = p2t or p ≡ 1 mod 4, the claim easily follows:
Choose α in Fq such that α2 = −1. Then (x, y) 7→ (−x, αy) is a bijection
from B+

n (Fq) to B−n (Fq).
When q = p2t+1, we define the bijections

(12) π+ : B+
n (Fq)→ B−n (Fq) and π− : B−n (Fq)→ B+

n (Fq)

using the following strategy: For π+ we take (a, b) ∈ B+
n (Fq) and pullback φ+

defined in (10) to a point (w, y) ∈ Cn(Fq2). Next, apply the endomorphism
(w, y) 7→ (ζ2w, ζy) on Cn(Fq2) for a suitably chosen root of unity ζ. Finally,
apply φ− to get a point on B−n (Fq). Define π− in a similar fashion.

Specifically, let a ∈ Fq and write a = w + w−1 for some w ∈ F∗q2 .

Moreover, since v2(p + 1) = k, we may choose a primitive 2k+1th root of
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unity ζ ∈ Fp2 ⊆ Fq2 . Define the maps π+ and π− as follows:

π+(a, b) :=


(2, 0), (a, b) = (−2, 0),(
a, w−1w+1b

)
, a 6= −2, a2 − 4 ∈ F2q ,(

ζ2w + (ζ2w)−1, ζ
2w−1
w+1 ·

−1
ζ b
)
, a 6= −2, a2 − 4 /∈ F2q ,

∞, (a, b) =∞,
and

π−(a, b) :=


(−2, 0), (a, b) = (2, 0),(
a, w+1

w−1b
)
, a 6= −2, a2 − 4 ∈ F2q ,(

ζ2w + (ζ2w)−1, ζ
2w−1
w+1 · −ζ · b

)
, a 6= −2, a2 − 4 /∈ F2q ,

∞, (a, b) =∞.

One easily checks that π+ and π− are inverses, that π+(B+
n (Fq)) ⊂ B−n (Fq2),

and that π−(B−n (Fq)) ⊆ B+
n (Fq2). The content which remains to be checked

is that the respective images of π+ and π− are in fact defined over Fq. We
complete the argument for π+ only, as the argument for π− is identical.

Suppose that a2 − 4 ∈ F2q and that (a, b) ∈ B+
n (Fq). Since w + w−1 = a

(or equivalently w2−aw+1 = 0), the quadratic formula tells us that w ∈ Fq.
Hence w+1

w−1b ∈ Fq and π+(a, b) ∈ B−n (Fq) as claimed.

On the other hand, if a2 − 4 /∈ F2q , then the Frobenius map x 7→ xq

acts nontrivially on w, and must send it to w−1, the only other root of
x2 − ax+ 1 = 0. Note that

(ζ2)q = (ζ2)(p
2t+1) = ((ζ2)p

2t
)p = (ζ2)p = ζ−2,

since ζ2 is in Fp2 (hence is fixed by applying x 7→ xp an even number of

times) and 2(p + 1) ≡ 0 mod 2k+1. It follows that (ζ2w)q = (ζ2w)−1 and
(ζ2w) + (ζ2w)−1 ∈ Fq.

For the second coordinate, we compute(
ζ2w − 1

w + 1
· −1

ζ
· b
)q

=

1
ζ2w
− 1

1
w + 1

· −1q

ζq
bq =

1

ζq+2
· ζ

2w − 1

w + 1
b.

It suffices to show that ζq+1 = −1. To see this, write q = p2t+1 and use the
fact that (ζ)p

2t
= ζ, since ζ ∈ Fq2 . In particular, ζq+1 = ζ(ζp

2t
)p = (ζ)p+1 =

−1 as desired. Hence π+(a, b) ∈ B−n (Fq).
Now for the proof of Theorem 2.1: One checks that φ± is a quotient map

for the involution

ψ±(x, y) =

(
1

x
,
±y
x2n+1

)
of Cn+1 defined in (9). If G = Aut(Cn+1), then a result of Kani and Rosen
[19] on the equivalence of idempotents in the group algebra Q[G] implies
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that the Jacobian of the curve Cn+1 has a decomposition

(13) J(Cn+1) ∼ J(B+
n )× J(B−n )

over the rationals. Moreover, since every odd prime is a prime of good re-
duction, we have a similar decomposition of J(Cn) over Fp.

Therefore, it suffices to compute the characteristic polynomial of Frobe-
nius for Cn+1 to find that of Bn. In keeping with our earlier notation, we
denote this characteristic polynomial by χ(Cn+1, t). We refer the reader to
[6, §14.1] for the formulas relating the coefficients of this polynomial to the
number of points on the curve over Fq.

Note that the genus of Cn+1 is g = 2n, and so to compute the coefficients
of the Euler polynomial of Cn+1, we need to find

Nm = #Cn+1(Fq) = q + 1 +
∑
x∈Fq

(
x

q

)(
x2

n+1
+ 1

q

)
for q = pm and m ≤ 2n. To do this, suppose that m < 2n and apply Lemma
2.1 to find a nonsquare α ∈ Fpm satisfying α2n+1

= 1. We compute

Nm − (q + 1) =
∑
x∈S

2n+1∑
i=1

(
x · αi

q

)(
(αi · x)2

n+1
+ 1

q

)
(14)

=
∑
x∈S

(2n+1∑
i=1

(
αi

q

))(
x

q

)(
x2

n+1
+ 1

q

)
= 0,

where S is a set of coset representatives for F∗q/〈α〉; the final equality follows

from the fact that
(
α
p

)
= −1.

It is known that χ can be expressed as

χ(t) = t2g + a1t
2g−1 + · · ·+ ag + pag−1 + · · ·+ pg,

where for i ≤ g one has

(15) iai = (Ni − pi − 1) + (Ni−1 − pi−1 − 1)a1 + · · ·+ (N1 − p− 1)ai−1.

This recurrence relation for the coefficients ai follows from Newton’s formula
expressing the elementary power polynomials in terms of the elementary
symmetric functions (see [7, p. 619]).

It can be seen from the character sum on (14) and the expression in (15)
that

(16) χ(Cn, t) = t2
n+1

+ at2
n

+ p2
n

and 2na = N2n − p2
n − 1.

Note that the Hasse–Weil bound implies that a ≤ 2p2
n−1

. We show that this
is an equality.
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From Lemma 2.2, it follows that J(Cn+1) ∼ J(B+
n )2 and χ(Cn, t) =

χ(B+
n , t)

2 for the n designated in Theorem 2.1. If we write

a = 2p2
n−1

+ 2b21p
2n−1−1 + · · ·+ b22n−2 ,

where the bi’s are the coefficients of the characteristic polynomial of J(Bn),
then the bound on a implies that

2b21p
2n−1−1 + · · ·+ b22n−2 = 0.

We conclude that bi = 0 for all i, and that χ(Bn, t) = t2
n

+p2
n−1

as claimed.
The group structure of J(Bn)(Fp) follows from a theorem of Zhu, which may
be found in [12, §45].

As mentioned in the Introduction, we can extract global information for
a large class of quadratic polynomials from the local data in the Chebyshev
case. We restate this information here.

Corollary 1.4. If f(x) = x2 + ax + b ≡ x2 − 2 mod p for some p ≡
±3 mod 8, then the decomposition

J(Cn) ∼ J(B1)× · · · × J(Bn−1)

is indecomposable over Q. In particular, whenever c+ 2 has a prime factor
p ≡ ±3 mod 8, then the decomposition above is indecomposable for fc(x) =
x2 + c.

Remark 2.2. We can also use Theorem 2.1 to extract global torsion
data. For instance, let f(x) = x2+63. Then one can prove that J(Bn)(Q)Tor
∼= Z/2Z for all n ≤ 30. This follows from Theorem 2.1 and the fact that
gcd(52

n
+ 1, 132

n
+ 1) = 2 for all n ≤ 30.

In the Chebyshev case, the positive density of primes at which J(Bn) has
supersingular reduction suggests the presence of latent symmetries. Indeed,
one sees that J(B1) is an elliptic curve which has complex multiplication by
Z[
√
−2]:

[
√
−2](x, y) =

(
−1

2
· x

2 − 2

x− 2
+ 2,

1

−2
√
−2
· y((x− 2)2 − 2)

(x− 2)2

)
.

Moreover, by checking Igusa invariants against known examples, one sees

that J(B2) also has complex multiplication by Q(
√√

2− 2). Statement (i)
of Theorem 1.3, which follows from the work of Carocca, Lange, and Ro-
driguez [4], shows that these examples are no accident and provides a con-
struction of hyperelliptic curves, defined over the rational numbers, which
have complex multiplication.

There is much more we can prove in the Chebyshev case, especially
about statements pertaining to rational points. In fact, the technique which
we use to determine Bn(Q) for all n ≥ 2 generalizes to polynomials having
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a Gal(Q̄/Q)-stable cycle, which we discuss after restating and proving the
following consolidated theorem.

Theorem 1.3. When f(x) = x2−2, all of the following statements hold:

(i) J(Bn) is an absolutely simple abelian variety that has complex mul-
tiplication by Q(ζ + ζd), where ζ is a primitive 2n+2th root of unity
and d = 2n+1 − 1.

(ii) Consider Bn/Fp and let χ(Bn, t) be the characteristic polynomial
of Frobenius.

(a) If p ≡ 5 mod 8, then χ(Bn, t) = t2
n

+ p2
n−1

for all n ≥ 1.

(b) If p ≡ 3 mod 8, then χ(Bn, t) = t2
n

+ p2
n−1

for all n ≥ 2.

(iii) J(Bn)(Q)Tor ∼= Z/2Z for all n ≥ 1. It follows that rank(J(Bn)(Q))
≥ 1 for all n ≥ 2. Furthermore, rank(J(Cn)(Q)) ≥ n − 2 for all
n ≥ 1.

(iv) Bn(Q) = {∞, (−2, 0), (0,±2)} for all n ≥ 2.

Proof. For the first statement, note that Cn+1 defined in (9) has complex
multiplication by Q(ζ), induced by the map

[ζ] : Cn+1 → Cn+1, [ζ](x, y) = (ζ2x, ζy).

We have already seen that the quotient curve of Cn+1 by the automorphism
ψ is Bn and that J(Cn) ∼ J(Bn)2 over Q̄. It follows that the simple factors
of J(Bn) have complex multiplication by some subfield of Q(ζ); see [17,
Theorem 3.3].

In [4, Theorem 2] it was shown that C′n+1 : y2 = x(x2
n+1 − 1) has a

quotient X with the property that J(X) has complex multiplication by
Q(ζ+ζd). Moreover, since Q(ζ+ζd) does not contain any proper CM fields,
J(X) must be absolutely simple (see [17, Theorem 3.3]).

However, note that Cn+1 and C′n+1 are twists, becoming isomorphic over
Q(ζ). Since any decomposition of an abelian variety is unique up to isogeny,
we must have J(X) ∼ J(Bn). Hence, End0(J(X)) ∼= End0(J(Bn)) and
J(Bn) has CM as claimed.

Remark 2.3. [4, Theorem 2] was established by studying the general
case of metacyclic Galois coverings Y → P1 branched at three points, build-
ing upon previous work of Ellenberg. To translate, the relevant Galois cov-
ering group is

(17) G = 〈[ζ], ψ | [ζ]2
n+1

= ψ2 = 1, ψ ◦ [ζ] ◦ ψ = [ζd]〉,
and one can take Y to be C′n+1.

The second statement of Theorem 1.3 is a restatement of Theorem 2.1.
For the third statement, we use the fact that J(Bn)(Q)Tor injects into
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J(Bn)(Fp) via the reduction map [16]. Hence, J(Bn)(Q)Tor ∼= Z/2Z follows
from the fact that

gcd(52
n

+ 1, 132
n

+ 1, 292
n

+ 1, . . . ) = 2 for all n,

where the above set ranges over all (or almost all) primes p ≡ 5 mod 8. To see
this, fix n and suppose that p∗ is an odd prime which divides p2

n
+1 for almost

all p ≡ 5 mod 8. In particular p2
n ≡ −1 mod p∗, and hence p∗ ≡ 1 mod 4.

Now note that gcd(4p∗+1, 8p∗) = 1, so that Dirichlet’s theorem on arith-
metic progressions implies that there exist infinitely many primes p0 with
p0 = 4p∗+ 1 + 8p∗k0 for some integer k0. Moreover, since 4p∗+ 1 ≡ 5 mod 8,
we have p0 ≡ 5 mod 8. Hence, we may choose p0 such that p2

n

0 +1 ≡ 0 mod p∗

by our assumption on p∗.

Finally, one sees that 1 ≡ 4p∗+1+8p∗k0 ≡ p0 mod p∗ and 2 ≡ p2n0 +1 ≡ 0
mod p∗. This is a contradiction since p∗ is odd.

On the other hand fn(0) = 2 for all n ≥ 2, from which it follows that
(0, 2) ∈ Bn(Q). Moreover, by the argument above, this point (after em-
bedding it into the Jacobian) is not a torsion point. Hence, J(Bn)(Q) has
positive rank. The statement regarding the rank of the rational points of
J(Cn) follows from Proposition 2.1.

Finally, we prove statement (iv) of Thereom 1.3. If n ≥ 2, then Cn maps
to B1 : y2 = (x+2)(x2−2). However, B1 is an elliptic curve, and a 2-descent
shows that B1(Q) has rank zero. It follows that B1(Q) = {∞, (−2, 0)}, and
after computing preimages, we see that Cn(Q) contains only the infinite
points.

If n = 2, a 2-descent shows that the rank of J(B2)(Q) is one. Moreover,
after running the Chabauty function in Magma [1], we see that B2(Q) =
{∞, (−2, 0), (0,±2)}. This matches our claim for larger n. For the remaining
n ≥ 3, we use covering collections to determine Bn(Q).

Since the resultant of x+ 2 and fn is equal to 2 (for all n), the rational
points on Bn are covered by the rational points on the curves

D(d)
n : du2 = x+ 2, dv2 = fn(x) for d ∈ {±1,±2}

(see [25, Example 9]). We will proceed by examining the second defin-

ing equation C
(d)
n : dv2 = fn(x) of D

(d)
n . If d = 1, then our description

of Cn(Q) implies that Dn(Q) has only the points at infinity. If d = −2,

then C
(−2)
n maps to the elliptic curve B

(−2)
1 : −2v2 = (x + 2)(x2 − 2) via

(x, y) 7→ (fn−1(x),−2fn−2(x)y). A descent shows that B
(−2)
1 (Q) has rank

zero, from which it easily follows that B
(−2)
1 (Q) = {∞, (−2, 0)}. By com-

puting preimages, we find that C
(−2)
n and D

(−2)
n have no rational points.

For the remaining cases when d = −1 and d = 2, we map C
(d)
n to B

(d)
2

via (x, y) 7→ (fn−1(x), dfn−2(x)y). However, in either scenario, we find that
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J(B
(d)
2 )(Q) has rank one, and moreover, we can compute a generator using

bounds between the Weil and canonical heights. After running the Chabauty
function in Magma [1] and computing preimages, we find that

C(2)
n (Q) = {(0,±1), (±2,±1)}, C(−1)

n (Q) = {(±1,±1)} for all n ≥ 3.

Consequently, D
(2)
n (Q)={(0,±1,±1), (−2, 0,±1)} and D

(−1)
n (Q)=∅. More-

over, we see that Bn(Q) = {∞, (−2, 0), (0,±2)} as claimed.

Notice that we have determined the rational points on infinitely many
curves Bn, each of which does not cover any lower genus curves (their Ja-
cobians have complex multiplication by a CM field with no proper CM
subfields).

This is a normally difficult task. However, because −2 has finite orbit
under application of the polynomial x2 − 2, the rational points on Bn are
covered by finitely many computable twists of a curve Dn. Moreover, the

twists are independent of n. Furthermore, each of the finitely many D
(d)
n

maps to many lower genus curves where standard rational point techniques
may be applied (e.g. Chabauty’s method, covering collections, rank zero
Jacobians) more reasonably.

We illustrate this situation in the following diagram:

D
(d1)
n (Q)

�� $$

. . . D
(dm)
n (Q)

zz ��

C
(d1)
3 (Q)

yy ��

Bn(Q) C
(dm)
3 (Q)

�� %%

B
(d1)
2 (Q) C

(d1)
2 (Q) . . . C

(dm)
2 (Q) B

(dm)
2 (Q)

A general way to construct examples of families of curves with this sta-
bility behavior is to use rational polynomials f with a finite Gal(Q̄/Q)-stable
cycle.

For instance, if f(x) = x2−31/48, then f has a Gal(Q̄/Q)-stable 4-cycle:

1/4 +
√
−15/6

f−−−−→ −1 +
√
−15/12xf yf

−1−
√
−15/12

f←−−−− 1/4−
√
−15/6.

We construct a polynomial g from this cycle. Set α = 1/4 +
√
−15/6 and let

ᾱ = 1/4−
√
−15/6 be its Galois conjugate. Similarly, set β = −1+

√
−15/12
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and β̄ = −1−
√
−15/12. Now, if one considers

g(x) = x2 − x/2 + 23/48 = (x− α)(x− ᾱ) or

g(x) = x2 + 2x+ 53/48 = (x− β)(x− β̄),

then Supp(Res(g, fn)) ⊆ {2, 3, 23, 53} for either choice of g.

Hence, to determine the rational points on

y2 = g(x)fn(x) for all n ≥ 1,

it suffices to compute the rational points on

D(d)
g (fn) : du2 = g(x), dv2 = fn(x),

where d = ±2e0 · 3e1 · 23e2 · 53e3 and ei ∈ {0, 1} for all i ≥ 0. However, the
equation dv2 = fn(x) maps to dv2 = fm(x) for all m < n, and a strategy

for determining D
(d)
g (fn)(Q) is to choose an m for which the Jacobian of

dv2 = fm(x) has rank zero, or at least satisfies Chabauty’s condition.

One can use this to show that

(18) An : y2 = g(x)fn(x) satisfies An(Q) = {∞±} for all n ≥ 1.

Now that we have studied these curves defined by quadratic iteration
in some detail, we use them and the theory of rational points on curves to
classify Galois behavior in the dynamical setting.

3. Dynamical Galois groups and curves. In order to probe how the
curves Cn and their quadratic twists relate to the Galois theory of fn, we
must first discuss the necessary background. Let f ∈ Q[x] be a polynomial
of degree d whose iterates are separable. That is, we assume that the poly-
nomials obtained from successive composition of f have distinct roots in an
algebraic closure.

We recall some notation. Let Tn denote the set of roots of f, f2, . . . , fn

together with 0, and let Gn(f) be the Galois group of fn over the rationals.
Furthermore, set

(19) T∞ :=
⊔
n≥0

f−n(0) and G∞ = lim←−Gn(f).

Note that Tn (respectively T∞) carries a natural d-ary rooted tree structure:
α, β ∈ Tn share an edge if and only if f(α) = β. Moreover, as f is a polynomial
with rational coefficients,Gn(f) acts via graph automorphisms on Tn. Hence,
we have injections Gn ↪→ Aut(Tn) and G∞ ↪→ Aut(T∞). Such a framework
is called the arboreal representation associated to f and we can ask about
the size of the image G∞ ≤ Aut(T∞). For a nice exposition, see [14].

Remark 3.1. Note that Aut(Tn) is the n-fold iterated wreath product
of the symmetric group Sd. We will use this characterization when useful.
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In the quadratic case, it has been conjectured that the image of G∞(f)
is “large” under mild assumptions on f ; see [14, Conjecture 3.11] for a more
general statement.

Conjecture 3.1 (Finite index). Let f ∈ Q[x] be a quadratic polyno-
mial. If all iterates of f are irreducible and f is post-critically infinite, then
|Aut(T∞) : G∞(f)| is finite.

Here post-critically infinite means that the orbit of the unique root of
f ’s derivative, also known as critical point, is infinite. This is an analog of
Serre’s result for the Galois action on the prime-powered torsion points of a
non-CM elliptic curve. For a discussion of this analogy, see [2].

The hypotheses of Conjecture 3.1 are easily satisfied in the case when
f(x) = x2 + c and c is an integer: If c 6= −2 and −c is not a square, then
fn is irreducible for all n, and the set {f(0), f2(0), . . . } is infinite. Stoll [24]
has given congruence relations on c which ensure that the Galois groups
of iterates of f(x) = x2 + c are maximal (i.e. Gn(f) ∼= Aut(Tn) for all n).
However, much is unknown as to the behavior of integer values not satisfying
Stoll’s congruences, not to mention the more general setting of rational c
(for instance c = 3 and 2/3).

In order to attack the finite index conjecture for more general values
of c, we use the following fundamental lemma (due to Stoll), which gives
a criterion for the maximality of the Galois groups of iterates in terms of
rational points; see [24, Corollary 1.3] for the case when f = x2 + c and c is
an integer, or [15, Lemma 3.2] for the result concerning all rational quadratic
polynomials:

Lemma 3.1. Let f ∈ Q[x] be a quadratic polynomial, let γ ∈ Q be such
that f ′(γ) = 0, and let Km be a splitting field for fm. If f, f2, . . . , fn are all
irreducible polynomials, then the subextension Kn/Kn−1 is not maximal if
and only if fn(γ) is a square in Kn−1.

Remark 3.2. Let f(x) = x2 + c. Note that with the hypotheses of
Lemma 3.1, Kn/Kn−1 is not maximal if and only in (0, y) ∈ Cn(Kn−1) for
some y ∈ Kn−1. Furthermore, |Q(y) : Q| = 2 as f ∈ Q[x].

As promised, we use quadratic twists of Cn and the Hall–Lang conjecture
on integral points of elliptic curves to prove the finite index Conjecture 3.1
in this case when c is an integer. Before we restate and prove Theorem 1.2,
we remind the reader of the aforementioned conjectures.

Conjecture 3.2 (Hall). For all ε > 0 there is a constant Cε (depending
only on ε) such that for all nonzero D ∈ Z and all x, y ∈ Z satisfying
y2 = x3 +D, we have

|x| ≤ CεD2+ε.
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Conjecture 3.2 is often referred to as the weak form of Hall’s conjecture.
The original conjecture was made with ε = 0, and though not yet disproven,
is no longer believed to be true. Lang would later generalize Hall’s conjecture
to the following.

Conjecture 3.3 (Hall–Lang). There are absolute constants C and κ
such that for every elliptic curve E/Q given by a Weierstrass equation

y2 = x3 +Ax+B with A,B ∈ Z
and for every integral point P ∈ E(Q) we have

|x(P )| ≤ C max{|A|, |B|}κ.
See [22, 9.7] for a discussion of these conjectures as well as the relevant

background material. Assuming these conjectures, we have the following
dynamical corollaries.

Theorem 1.2. Let f(x) = x2 + c for some integer c. If c 6= −2 and −c
is not a square, then both of the following statements hold:

(i) The Hall–Lang conjecture implies that |Aut(T∞) : G∞(f)| is finite.
(ii) If the weak form of Hall’s conjecture for the Mordell curves holds with

C = 100 and ε = 4, then when f(x) = x2 + 3, we have |Aut(T∞) :
G∞(f)| = 2.

Proof. Let f(x) = x2 + c and suppose that the subextension Kn/Kn−1
is not maximal. We will show that such an n ≥ 2 is bounded.

Since c is an integer such that −c is not a square, [24, Corollary 1.3]
implies that fn(0) is not a square, and that f1, . . . , fn are irreducible poly-
nomials. Lemma 3.1 implies that fn(0) is a square in Kn−1. Hence, there is
some y ∈ Z such that

dy2 = fn(0) for Q(
√
d) ⊂ Kn−1 and d square-free.

Moreover, d is a product of distinct primes pi dividing 2
∏n−1
j=1 f

j(0). To see
this latter fact, we use the formula for the discriminant ∆m of fm,

∆m = ±∆2
m−12

2mfm(0),

given in [15, Lemma 2.6]. It follows that the rational primes that ramify
in Kn−1 must divide 2

∏n−1
j=1 f

j(0). Since the primes which divide d must
ramify in Kn−1, we obtain the desired description of the pi. Also note that
if pi | f j(0) and pi | fn(0) (which is the case since pi | d), then it divides
fn−j(0).

In any case, we may assume that d =
∏
i pi, where the pi’s are distinct

primes dividing 2
∏bn/2c
j=1 f j(0). Here bxc denotes the floor function.

A rational point on the curve C
(d)
n : dy2 = fn(x) maps to B

(d)
1 : dy2 =

(x − c)f(x) via (x, y) 7→ (fn−1(x), yfn−2(x)). Transforming B
(d)
1 into stan-
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dard form, we get

E
(d)
1 : y2 = x3 + 598752(c2 − 3c)d2x+ 161243136(c3 − 18c2)d3,

via (x, y) 7→ (d(x − 12c), 2d2y). In particular, if Kn/Kn−1 is not maximal,
then we obtain an integer point

(20)
(
d(fn−1(0)− 12c), 2yd2fn−2(0)

)
∈ E(d)

1 (Q).

If we assume the Hall–Lang conjecture on integral points of elliptic curves,
then there exist constants C and κ such that

d(fn−1(0)− 12c) < C max{|598752(c2 − 3c)d2|, |161243136(c3 − 18c2)d3|}κ.
See [22] or [5] for the relevant background on elliptic curves. In either case

(21) |fn−1(0)| < C ′|d|κ′ ≤ C ′|f(0)f2(0) · · · f bn/2c(0)|κ′

for some new constants C ′ and κ′. However, this implies that n is bounded.

For example, if c > 0, then fm(0) > f(0)f2(0) · · · fm−1(0) for all m.
Hence, if we let t = bn/2c+ 1 and suppose κ′ < 2s, then

(22) fn−1(0) < C ′(f t(0))κ
′
< C ′f t+s(0).

Since 0 is not preperiodic, the result follows. A similar argument works in
the case when c ≤ −3: we simply use the fact that |fm(0)| ≥ (fm−1(0)−1)2

(see [24, Corollary 1.3]).

Explicitly, when c = 3 the j invariant of B
(d)
1 is zero, and we may trans-

form B
(d)
1 into the Mordell curve M (−2d)3 := y2 = x3 − (2d)3. In particular,

a point (0, y) ∈ C(d)
n (Q) yields a point(

(fn−1(0)− 1)d, d2yfn−2(0)
)
∈M (−2d)3(Q).

If the weak form of Hall’s conjecture for the Mordell curves holds with ε = 4
and C(ε) = 100, then for f(x) = x2 + 3 we have

|(fn−1(0)− 1)d| < 100|(−2d)3|6.
This implies that

(23) fn−1(0) < 26214400d17 + 1 ≤ 26214400(f bn/2c+1(0))17 + 1.

However, such a bound implies that n ≤ 13. Moreover, one checks that
the only n ≤ 13 with dy2 = fn(0) and d equal to a product of distinct
primes dividing 2

∏n−1
j=1 f

j(0) is n = 3. In this case, f3(0) = 72 · 3 = 72f(0)
and |Aut(T3) : G3(f)| = 2. It follows that the index of the entire family,
|Aut(T∞) : G∞(f)|, must also equal 2.

Remark 3.3. For ε = 4, our constant C = 100 safely fits the data pitting
the known integer points on the Mordell curves against the size of their
defining coefficients (see [9]). In fact, even for Elkies’ large examples [8], our
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choice of C works (thus far) for the strong form of Hall’s conjecture (ε = 0),
though our proof will also work if one insists on a much larger constant.

We now take a different approach to studying these dynamical Galois
groups. In Theorem 1.2, we used the curves coming from fc(x) = x2 + c
to analyze the Galois theory of f ’s iterates (viewing c ∈ Q as fixed), inves-
tigating the stability as n grows. We now change our perspective slightly.
Suppose that we fix a stage n, and ask for which rational values of c
the Galois group of fnc is smaller than Aut(Tn). Of course this question
needs to be refined, as there will be many trivial values of c (for in-
stance if −c is a square). A natural adjustment then is to ask for which
rational numbers, Gn(fc) is smaller than expected for the first time at
stage n. As noted in Theorem 1.2, an interesting example is c = 3 and
n = 3:

(24) Gal((x2 + 3)2 + 3) ∼= D4
∼= Aut(T2),

yet one computes that |Gal(((x2 + 3)2 + 3)2 + 3)| = 64 < 22
3−1, and

hence the third iterate of f = x2 + 3 is the first of f ’s iterates to have
a Galois group which is not maximal. This leads to the following defini-
tion:

Definition 3.1. Let c be a rational number and let n ≥ 2. If fc = x2+c
is a quadratic polynomial such that

Gn−1(fc) ∼= Aut(Tn−1) and Gn(fc) � Aut(Tn),

then we say that fc has a newly small nth iterate. Furthermore, let

S(n) := {c ∈ Q | fc has a newly small nth iterate}
be the set of rational values of c supplying a polynomial with a newly small
nth iterate.

Our refined question then becomes to describe S(n). In the case when
n = 3, we completely characterized S(3) in terms of the x-coordinates of
two rank-one elliptic curves (see [11, Theorem 3.1]). In particular, using
bounds on linear forms in elliptic logarithms, we concluded that S(3) ∩ Z
= {3} (see [11, Corollary 3.1]). Hence, x2 + 3 is the only integer polynomial
in the family x2 + c with this particular Galois degeneracy.

Furthermore, in [11] we use this characterization to compute many new
examples of polynomials with newly small third iterate by adding together
the points corresponding to known examples on the elliptic curve: e.g. f(x) =
x2 − 2/3, x2 + 6/19, x2 − 17/14. Moreover, since generators of both curves
are easily computed and since the complement of S(3) and the points on
the curves are explicit [11, Theorem 3.1], we have in some sense found all
examples.
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It is natural to ask what happens for larger n. As an illustration, consider
the case when n = 4 and c = −6/7. One computes with Sage [23] that∣∣Gal

(
((x2 − 6/7)2 − 6/7)2 − 6/7

)∣∣ = 22
3−1,∣∣Gal

((
((x2 − 6/7)2 − 6/7)2 − 6/7

)2 − 6/7
)∣∣ = 8192.

Since 8192 < 22
4−1, we see that −6/7 ∈ S(4). Are there any other examples?

Although not entirely satisfactory, we have the following theorem which we
restate from the Introduction:

Theorem 1.1. Let fc(x) = x2 + c for some c ∈ Q. Then all of the
following statements hold:

(i) S(4) ∩Z = ∅. That is, if c is an integer and G3(fc) ∼= Aut(T3), then
G4(fc) ∼= Aut(T4).

(ii) If c 6= 3 is an integer and G2(fc) ∼= Aut(T2), then G4(fc) ∼=
Aut(T4).

(iii) If the curve F2 : y2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1 has no rational
points of Weil height greater than 10100, then S(4) = {2/3,−6/7}.

Proof. As in [11], we associate values in S(n) with the rational points on
certain curves. To continue, we need the following lemma:

Lemma 3.2. Let fc(x) = f(x) = x2 + c and let Km be the splitting field
of fm over Q. If c ∈ S(4), then f4 is irreducible and

Q(
√
−c), Q(

√
f2(0)), Q

(√
−f

2(0)

c

)
, Q(

√
f3(0)),

Q
(√
−f

3(0)

c

)
, Q

(√
f3(0)

f2(0)

)
, Q

(√
−f

3(0)

c+ 1

)
are the distinct quadratic subfields of K3.

Proof. First note that if Gal(fm) ∼= Aut(Tm), then Km contains exactly
2m − 1 quadratic subfields. The reason is that the number of quadratic
subfields is the number of subgroups of Gal(Km) whose quotient is Z/2Z.
Now Aut(Tm) is the m-fold wreath product of Z/2Z, and one can show
that the maximal abelian quotient of exponent 2 of this group is (Z/2Z)m

(see [24]). This quotient group, by its maximality property, will contain
as a subgroup any quotient that is abelian of exponent 2, and hence the
quotients that are isomorphic to Z/2Z are in one-to-one correspondence
with the subgroups of (Z/2Z)m of order 2. However, that is the same as the
number of distinct elements of order 2, which is 2m − 1.

Now for the proof of Lemma 3.2: Suppose that c ∈ S(4). Then Gal(f j) ∼=
Aut(Tj) for all 1 ≤ j ≤ 3, and the subextensions K3/K2, K2/K1, and
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K1/Q are all maximal. In particular −f(0) = −c is not a rational square
and K1 = Q(

√
−c). Since Aut(T2) acts transitively on the roots of f2, it

follows that f2 is irreducible. Then Lemma 3.1 implies that f2(0) /∈ (K1)
2.

In particular, the distinct quadratic subfields of K2 are

(25) Q(
√
−c), Q(

√
f2(0)), Q

(√
f2(0)

−c

)
.

Note that when m ≥ 2, then the discriminant formula (11) implies that√
fm(0) ∈ Km. By the opening remarks in this proof, there must be exactly

22 − 1 = 3 such subfields. Hence our list is exhaustive for K2.

One simply repeats this argument for the third iterate, obtaining the
claimed list of quadratic subfields of K3. In particular the set {−f(0), f2(0),
f3(0)} does not contain a rational square. It suffices to show that f4(0)
is not a rational square either to deduce that f4 is irreducible (see [15]).
However, a 2-descent on the curve

F0 : y2 = f4c (0) = ((c2 + c)2 + c)2 + c

shows that its Jacobian has rank zero. After reducing modulo several primes
of good reduction, one finds that any torsion must be 2-torsion. Hence
F0(Q) = {∞±, (0, 0), (−1, 0)}, and c ∈ S(4) implies that c 6= 0,−1.

With Lemma 3.2 in place, we are ready to relate the elements of S(4) with
the rational points on certain curves. If c ∈ S(4) then f4c is irreducible and
f4c (0) is not a rational square (see the proof of the lemma). However, since
the extension K4/K3 is not maximal by assumption, Lemma 3.1 implies
that

√
f4c (0) ∈ K3. Hence

√
f4c (0) must live in one of the seven quadratic

subfields of K3 listed in Lemma 3.2. Thus, there must exist y ∈ Q such that
(c, y) is a rational point on one of the following curves:

F1 : y2 =
f4x(0)

−x
= −(x7 + 4x6 + 6x5 + 6x4 + 5x3 + 2x2 + x+ 1),

F2 : y2 =
f4x(0)

f2x(0)
= x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1,

F3 : y2 =
f4x(0)

−(x+ 1)
= −x(x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1),

F4 : y2 =
f4x(0)

x
· f

3
x(0)

x
= (x7 + 4x6 + 6x5 + 6x4 + 5x3 + 2x2 + x+ 1)(x3 + 2x2 + x+ 1),

F5 : y2 = f4x(0)
f3x(0)

−x
= (x8 +4x7 +6x6 +6x5 +5x4 +2x3 +x2 +x) · −(x3 +2x2 +x+1),
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F6 : y2 =
f4x(0)

f2x(0)
f3x(0)

= (x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1)(x4 + 2x3 + x2 + x),

F7 : y2 =
f4x(0)

−(f2x(0))
· f

3
x(0)

x

= −(x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1)(x3 + 2x2 + x+ 1)

(after dividing out the finite singularities coming from c = 0,−1 when nec-
essary).

Note that all of these curves are hyperelliptic, and so at least in principle,
their arithmetic (ranks, integer points etc.) is more easily computable. Also
note that the interesting rational points corresponding to known elements
of S(4) both come from F2(Q):

(26) {∞+,∞−, (0,±1), (2/3,±53/27), (−6/7,±377/343)} ⊆ F2(Q).

Therefore, to describe S(4) it suffices to characterize Fi(Q) for all 1 ≤ i ≤ 7.
We will do this sequentially, employing standard methods in the theory of
rational points on curves. For a nice overview of these techniques, see [25].

Case 1. A 2-descent with Magma [1] shows that the rational points
on the Jacobian of F1 have rank one. Moreover, reducing modulo various
primes of good reduction, one sees that the order of any rational torsion
point must divide 4. However, the only 2-torsion point is Q = [(−1, 0)−∞],
and by examining the image of Q via the 2-descent map, one sees that Q
is not a double in J(F1)(Q). It follows that J(F1)(Q) ∼= Z/2Z ⊕ Z. Since
F1 has genus three, we can apply the method of Chabauty and Coleman to
bound the rational points (in fact, find them all).

To do this we change variables to obtain an equation which is more
amenable to the computations to come: send (x, y) 7→ (−x− 2, y) to map to
the curve

F ′1 : y2 = x7 + 10x6 + 42x5 + 94x4 + 117x3 + 76x2 + 21x+ 1.

A naive point search yields {∞, (−1, 0), (0,±1)} ⊆ F ′1(Q), and we will show
that this set is exhaustive.

Let J = J(F ′1) and use the point P0 = (0, 1) to define an embedding of
F ′1(Q) ⊆ J(Q) ⊆ J(Q3) via P 7→ [P −P0]. Then given a 1-form ω on J(Q3),
one can integrate to form the function

J(Q3)→ Q3 given by P 7→
P�

0

ω.

Coleman’s idea was to notice that if we restrict this function to a residue
class of F ′1(Q3) ⊂ J(Q3), then this function can be computed explicitly in
terms of power series (using a parametrization coming from a uniformizer
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for the class). Moreover, when the genus is larger than the rank of the group
J(Q), as is the case in our example, one can find an ω where the above
function vanishes on J(Q). Finally, using Newton polygons, one can bound
the number of rational points in each residue class by bounding the number
of zeros of a power series in Z3. This is what we will do. For a nice exposition
of this method, see [18].

We will follow the notation and outline of Example 1 in Section 9 of
Wetherell’s thesis [26]. In particular, we use x as a local coordinate system
on the residue class at (0, 1) and the basis η0 = (1/y)dx, η1 = (x/y)dx, and
η2 = (x2/y)dx for the global forms on F ′1. Expanding 1/y in a power series
in terms of x we get

η0 = dx
y

= 1− 21
2 x+ 1019

8 x2− 28089
16 x3 + 3292019

128 x4− 99637707
256 x5 + 6153979535

1024 x6− · · · .
Furthermore, it is known that the ηi are in Z3[[x]]. Then we have the integrals
λi for the ηi in the residue class of (0, 1), that is,

λi(P ) =

P�

(0,1)

ηi.

From our formulas for the ηi, we have

λ0 = x− 21
4 x

2 + 1019
24 x3 − 28089

64 x4 + 3292019
640 x5 − 33212569

512 x6 + 6153979535
7168 x7 − · · · ,

λ1 = 1
2x

2 − 7
2x

3 + 1019
32 x4 − 28089

80 x5 + 3292019
768 x6 − 99637707

1792 x7 + 6153979535
8192 x8 − · · · ,

λ2 = 1
3x

3 − 21
8 x

4 + 1019
40 x5 − 9363

32 x6 + 3292019
896 x7 − 99637707

2048 x8 + 6153979535
9216 x9 + · · · .

Let ωi be the differentials on J corresponding to the ηi on F ′1, i.e. the pull-
backs relative to the inclusion F ′1(Q3) ⊆ J(Q3) given by P 7→
[P − (0, 1)]. Finally, let λ′i be the homomorphism from J(Q3) to Q3 ob-
tained by integrating the ωi. We will calculate the λ′i on J1(Q3), the kernel
of the reduction map.

Let a ∈ J1(Q3), so that a may be represented as a = [P1 +P2 +P3−3P0]
with Pi ∈ C(Q̄3) and Pi = P0 = (0, 1). If sj =

∑3
i=1 x(Pi)

j , then from the
expression

a�

0

ωi =
∑
j

Pj�

(0,1)

ηi

we see that

λ0 = s1 − 21
4 s2 + 1019

24 s3 − 28089
64 s4 + 3292019

640 s5 − 33212569
512 s6 + 6153979535

7168 s7 − · · · ,

λ1 = 1
2s2 −

7
2s3 + 1019

32 s4 − 28089
80 s5 + 3292019

768 s6 − 99637707
1792 s7 + 6153979535

8192 s8 − · · · ,

λ2 = 1
3s3 −

21
8 s4 + 1019

40 s5 − 9363
32 s6 + 3292019

896 s7 − 99637707
2048 s8 + 6153979535

9216 s9 − · · · .
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We wish to find an ω whose integral kills J(Q). However, since log(J(Q))
has rank one in T0(J(Q3)), the dimension of such differentials is 2, and so we
have some freedom with our choice. We will exploit this freedom to bound
the number of points in each residue field.

Note that if U = [∞−P0], then 12U is in J1(Q3). Furthermore, a 1-form
kills J(Q) if and only if it kills 12U , since the index of the subgroup generated
by the rational torsion and U is coprime to |J(F3)| = 24. Using Magma, we
calculate the divisor 12U represented as [P1 + P2 + P3 − 3P0], where the
three symmetric functions in the x(Pi) are

σ1 = 5688167583876464940561144764011383197382945288
5528939601706074645413409528185601232466043121 ≡ 2 · 34 mod 35,

σ2 = −2183647192786560140353830791558556354713308560
5528939601706074645413409528185601232466043121 ≡ 22 · 33 mod 35,

σ3 = 4352156372570507181684433225178910249832181376
5528939601706074645413409528185601232466043121 ≡ 23 · 33 mod 35.

Choosing a precision of 35 was arbitrary, though sufficient for our pur-
poses. Note that the valuation of every x(Pi) is at least min{v(σi)/i} =
min{4, 3/2, 1} = 1. It follows that v(sj) ≥ j. Moreover, one verifies that
every term past j = 3 of λi(12U) is congruent to 0 mod 35.

After calculating the sj in terms of the σi, one finds that

λ0(12U) ≡ 2 · 33 mod 35,

λ1(12U) ≡ 33 mod 35,

λ2(12U) ≡ 23 · 33 mod 35.

As the integral is linear in the integrand, there exist global 1-forms α and
β such that

P�

0

α = 0 and

P�

0

β = 0 for all P ∈ J(Q),

with α ≡ 2λ1 − λ0 mod 35 and β ≡ 2λ2 − 4λ0 mod 35. Moreover, α =
(x−1)dx/y and β = (x2−1)dx/y when we view them over F3. However, for
every P ∈ F ′1(F3), either α or β does not vanish at P : see the table below.

P ∈ F ′1(Fp) ordP (α) ordP (β)

∞ 2 0

(0, 1) 0 0

(0,−1) 0 0

(−1, 0) 0 1

It follows that every residue class in F ′1(Q3) contains at most one rational
point, and hence exactly one rational point as claimed.

Case 2. We first use Runge’s method to find F2(Z). This involves com-
pleting the square. Suppose we have an integer solution x. We rewrite our
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equation as

y2 −
(
x3 + 3

2x
2 + 3

8x+ 15
16

)2
= −61

64x
2 − 45

64x+ 31
256 ,

and then multiply by 256 to clear denominators. Write

g = 16x3 + 24x2 + 6x+ 15, h = −244x2 − 180x+ 31, Y = 16y.

Then (Y −g)(Y +g) = h, and (unless one of the factors is zero) |Y −g| ≤ |h|
and |Y +g| ≤ |h|. Note that neither factor can be zero since h has no integer
roots. After combining our inequalities, we see that

(27) |2g| = |(Y + g)− (Y − g)| ≤ 2|h|.

Hence |g| ≤ |h|. As the degree of g is larger than h, we get a small bound on x.
A naive point search shows that F2(Z) = {∞±, (−1,±1), (0,±1), (−2,±1)}.

As for the full rational points, this is (at the moment) beyond reach; for
an explanation, see Remark 3.4 at the end of this section. At best, we can
be sure that the unknown rational points must be of very large height (on
the order of 10100) by running the Mordell–Weil sieve. Since our curve is of
genus 2, we can use explicit bounds between the Weil and canonical heights
to compute a basis of J(F2)(Q). It follows that J(F2)(Q) has basis

P1 = [(0,−1) + (−1,−1)−∞− −∞+],

P2 = [(0,−1) + (0,−1)−∞− −∞+],

P3 = [(0, 1) + (−2, 1)−∞− −∞+],

which we use while sieving with Magma (see [3] for a full discussion of the
Mordell–Weil sieve, or [25] for a basic introduction). On the other hand, a
point search with Magma can be used to list all points of height at most 107

with little work.

Case 3. For F3 and subsequent curves, we use unramified covers to
determine the rational points. Note that Res(x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1,
−x) = 1, and we study the curves

D(d) : du2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1, dv2 = −x, d ∈ {±1},

which are Z/2Z-covers of F3. Moreover, every rational point on F3 lifts to
one on some D(d) (see [25, Example 9]). If d = −1, then the curve du2 =
x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1 has no rational points, since it has no points
in F3. Hence D(−1) has no rational points. On the other hand, if d = 1,
then our description of F2(Z) shows that F3(Z) = {∞, (−1,±1), (0, 0)}.
Moreover, if we assume that there are no unknown points in F2(Q), then we
have found all of the rational points on F3. In any case 0,−1 /∈ S(4). Hence,
F3 contributes no integers to S(4).
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Case 4. Similarly for F4 we have the covers

D(d) : du2 = (x+ 1)(x3 + 2x2 + x+ 1),

dv2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1, d ∈ {±1}.

Again, if d = −1, then one sees that there are no rational points on D(d) by
looking in F3. When d = 1, the second defining equation of D is that of F2,
and so we use our description of F2(Z) to show that F4(Z) = {∞±, (−1, 0),
(0,±1), (−2,±1)}. Under the assumption that there are no unknown rational
points on F2, we can conclude that F4(Z) = F4(Q). In any event 0,−1,−2
are not in S(4), and so F4 also contributes nothing to S(4).

Case 5. The Jacobian of F5 has rank zero, and we easily determine that
F5(Q) = {∞±, (0, 0)}. Since 0 /∈ S(4), we conclude that F5 contributes no
integers to S(4).

Case 6. Since Res(x6+3x5+3x4+3x3+2x2+1, x4+2x3+x2+x) = −1,
the rational points on F6 are covered by the points on

D(d) : du2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1,

dv2 = x4 + 2x3 + x2 + x, d ∈ {±1}.
If d = 1, then the equation u2 = x4+2x3+x2+x represents an elliptic curve
of rank zero having rational points {∞±, (0, 0)}. It follows that D(1)(Q) has
only the points at infinity and those corresponding to x = 0. If d = −1,
then D(−1) has no points over F3. We conclude that F6(Q) = {∞±, (0, 0)}
unconditionally, and nothing new is added to S(4) in this case.

Case 7. The rational points on the final curve F7 are covered by the
points on

D(d) : du2 = x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1,

dv2 = −(x3 + 2x2 + x+ 1), d ∈ {±1}.

As in previous cases, if d = −1, then D(−1) has no points over F3. On the
other hand, when d = 1 we use our description of F2(Z) and F2(Q) do
determine that F7(Z) = {∞, (−2,±1)}. As before, if there are no unknown
rational points on F2, then we will have given a complete list of points on F7.
Note that −2 /∈ S(4) and so, in combination with the previous cases, we have
shown that S(4) ∩ Z = ∅.

Finally, if c 6= 3 is an integer such that G2(fc) ∼= Aut(T2), then G3(fc) ∼=
Aut(T3) by [11, Corollary 3.1]. However, since S(4) ∩Z = ∅, we deduce that
also G4(fc) ∼= Aut(T4).

This finishes the proof of Theorem 1.1.

Remark 3.4. At the moment, proving that we have determined F2(Q)
is far beyond reach. For one, the Galois group of x6 + 3x5 + 3x4 + 3x3 +
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2x2 + 1 is S6, from which it follows that End(J(F2)) ∼= Z; see [27]. In
particular, F2 does not map to any lower genus (elliptic) curves. Moreover,
the rank of J(F2)(Q) is 3, and so the method of Chabauty and Coleman
is not applicable. Furthermore, in order to use a covering collection coming
from the pullback of the multiplication by 2 map on the Jacobian, one would
need to determine generators of the Mordell–Weil group E(K), where E is
an elliptic curve defined over a number field K of degree 17, followed by
elliptic Chabauty. This is currently not feasible.

A naive point search on the relevant curves suggests that S(5) and S(6)

are probably empty. In fact, if n = 5, then the 15 curves, corresponding to
the 24 − 1 quadratic subfields of K4, satisfy the Chabauty condition (small
rank), and so proving that S(5) is empty may be doable. This begs the
question as to whether all n sufficiently large satisfy S(n) = ∅. Is it true for
all n ≥ 5?

This seems beyond reach at the moment. However, the weaker statement
that S(n) ∩Z = ∅ may be attackable if one assumes standard conjectures on
the height of integer points on hyperelliptic curves relative to the size of the
defining coefficients. If true, this would amount to a nice Galois uniformity
principle. Namely, outside of the small exception x2 + 3, it seems as though
G2(fc) ∼= Aut(T2) already implies that Gn(fc) ∼= Aut(Tn) for all n ≥ 1
whenever c is an integer.
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