On a conjecture of Sárközy and Szemerédi

by
Yong-Gao Chen and Jin-Hui Fang (Nanjing)

Two infinite sequences A, B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. For a set T of non-negative integers, let $T(x)$ be the counting function of T. That is, $T(x)=|T \cap[0, x]|$.

It is easy to see that, for infinite additive complements A, B, we have

$$
\liminf _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \geq 1
$$

In 1994, Sárközy and Szemerédi [14] proved the following deep result which was conjectured by Danzer in 1964 ([2], see also [5, p. 10] and [9, p. 75]).

Theorem (Sárközy and Szemerédi, 1994). For infinite additive complements A, B, if

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \leq 1 \tag{0.1}
\end{equation*}
$$

then

$$
\begin{equation*}
A(x) B(x)-x \rightarrow \infty \quad \text { as } x \rightarrow \infty \tag{0.2}
\end{equation*}
$$

Sárközy and Szemerédi [14, p. 245] posed the following conjecture.
Conjecture 0.1. There exist infinite additive complements A, B satisfying (0.1) such that

$$
\begin{equation*}
A(x) B(x)-x=O(\min \{A(x), B(x)\}) \tag{0.3}
\end{equation*}
$$

In this paper, we disprove this conjecture. In fact, the following stronger result is proved.

[^0]Theorem 0.2. For infinite additive complements A, B, if (0.1) holds, then, for any given $M>1$, we have

$$
A(x) B(x)-x \geq(\min \{A(x), B(x)\})^{M}
$$

for all sufficiently large integers x.
For related results, one may refer to [1], [6, [7, 8], [10], [12] and [13].

1. Preliminary lemmas

Lemma 1.1 (Narkiewicz [11). For infinite additive complements A, B, if (0.1) holds, then either

$$
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=1 \quad \text { or } \quad \lim _{x \rightarrow \infty} \frac{B(2 x)}{B(x)}=1 .
$$

Lemma 1.2. Let $S=\left\{s_{1}, s_{2}, \ldots\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots\right\}$ be finite sequences of integers, and let $r(S, T, n)$ denote the number of solutions $n=$ $s_{i}+t_{j}, s_{i} \in S, t_{j} \in T$, and $\delta(S, T, n)$ denote the number of solutions $n=t_{j}-s_{i}, s_{i} \in S, t_{j} \in T$. Then

$$
\left(\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)\right)^{2} \geq \sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1) .
$$

Proof. Let

$$
\begin{array}{r}
M_{1}=\left\{\left(i_{1}, j_{1}, i_{2}, j_{2}\right): s_{i_{1}}, s_{i_{2}} \in S, t_{j_{1}}, t_{j_{2}} \in T, i_{1} \neq i_{2} \text { or } j_{1} \neq j_{2},\right. \\
\left.s_{i_{1}}+t_{j_{1}}=s_{i_{2}}+t_{j_{2}}\right\}, \\
M_{2}=\left\{\left(i_{1}, j_{1}, i_{2}, j_{2}\right): s_{i_{1}}, s_{i_{2}} \in S, t_{j_{1}}, t_{j_{2}} \in T, i_{1} \neq i_{2} \text { or } j_{1} \neq j_{2},\right. \\
\\
\left.t_{j_{2}}-s_{i_{1}}=t_{j_{1}}-s_{i_{2}}\right\} .
\end{array}
$$

Then $M_{1}=M_{2}$ and

$$
\begin{aligned}
\left|M_{1}\right| & =\sum_{n} r(S, T, n)(r(S, T, n)-1) \\
& =\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)^{2}+\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1), \\
\left|M_{2}\right| & =\sum_{n} \delta(S, T, n)(\delta(S, T, n)-1) \\
& =\sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1)^{2}+\sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1) .
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
& \left(\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)\right)^{2} \geq \sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)^{2} \\
& \quad \geq \frac{1}{2}\left(\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)^{2}+\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)\right)=\frac{1}{2}\left|M_{1}\right| \\
& \quad=\frac{1}{2}\left|M_{2}\right|=\frac{1}{2}\left(\sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1)^{2}+\sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1)\right) \\
& \quad \geq \sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1)
\end{aligned}
$$

REmARK. Similarly,

$$
\left(\sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1)\right)^{2} \geq \sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)
$$

2. Proof of Theorem $\mathbf{0 . 2}$. We will prove the following general theorem.

Theorem 2.1. Let A and B be infinite additive complements such that (0.1) holds. Suppose that h is a function on $(0, \infty)$ satisfying:
(a) $h(x) \rightarrow \infty$ as $x \rightarrow \infty$;
(b) $h(\min \{A(x), B(x)\}) \leq \frac{2}{3} \sqrt{x}$ for all sufficiently large integers x.

Then

$$
\begin{equation*}
A(x) B(x)-x \geq h(\min \{A(x), B(x)\}) \tag{2.1}
\end{equation*}
$$

for all sufficiently large integers x.
Firstly we derive Theorem 0.2 from Theorem 2.1. Suppose that Theorem 2.1 is true. Take $h(x)=x^{M}$. By Lemma 1.1, we may assume that

$$
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=1
$$

Then $A(x) \leq x^{1 /(2 M+2)}$ for all sufficiently large x. Thus

$$
h(\min \{A(x), B(x)\}) \leq h(A(x))=A(x)^{M} \leq x^{M /(2 M+2)}<\frac{2}{3} \sqrt{x}
$$

for all sufficiently large x. Now Theorem 0.2 follows from Theorem 2.1,
Proof of Theorem 2.1. Let $f_{x}(n)$ be the number of solutions of $a+b=n$, $a \in A, a \leq x, b \in B$ and $b \leq x$. Since A, B are infinite additive complements, we have

$$
f_{x}(n) \geq 1, \quad n_{0} \leq n \leq x
$$

Hence

$$
\begin{equation*}
A(x) B(x) \geq x-n_{0} \tag{2.2}
\end{equation*}
$$

By (0.1) and 2.2 , we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A(x) B(x)}{x}=1 \tag{2.3}
\end{equation*}
$$

By Lemma 1.1, we may assume that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=1 \tag{2.4}
\end{equation*}
$$

By (2.3) and 2.4), we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{B(2 x)}{B(x)}=\lim _{x \rightarrow \infty} \frac{B(2 x) A(2 x)}{2 x} \frac{2 x}{A(x) B(x)} \frac{A(x)}{A(2 x)}=2 \tag{2.5}
\end{equation*}
$$

By (2.4) and 2.5),

$$
\begin{equation*}
A(x)<x^{1 / 4}, \quad B(x)>x^{3 / 4} \tag{2.6}
\end{equation*}
$$

for all sufficiently large x. Then

$$
\min \{A(x), B(x)\}=A(x)
$$

for all sufficiently large x.
If (2.1) does not hold, then

$$
\begin{equation*}
A(x) B(x)-x<h(A(x)) \tag{2.7}
\end{equation*}
$$

for infinitely many positive integers x.
Now we cancel the multiplicities of $B(B$ is a sequence, and some integers may appear in B many times). Let B^{\prime} be the set of all integers of B. Then B^{\prime} can be seen as a strictly increasing sequence. Thus $B^{\prime}(\ell+1) \leq B^{\prime}(\ell)+1$ for all integers ℓ. By (2.3), we have $B(x)<\infty$ for all $x>0$. This implies that each integer appears in B at most finitely many times. So B^{\prime} is an infinite set.

Since the sum of A and B contains all sufficiently large integers, it follows that so does the sum of A and B^{\prime}. That is, A and B^{\prime} are also infinite additive complements. It is clear that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{A(x) B^{\prime}(x)}{x} \leq \limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \leq 1 \tag{2.8}
\end{equation*}
$$

Similar to (2.3), we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A(x) B^{\prime}(x)}{x}=1 \tag{2.9}
\end{equation*}
$$

By (2.4) and (2.9), as in (2.5),

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{B^{\prime}(2 x)}{B^{\prime}(x)}=2 \tag{2.10}
\end{equation*}
$$

By (2.4) and 2.10, we find that

$$
\begin{equation*}
A(x)<x^{1 / 4}, \quad B^{\prime}(x)>x^{3 / 4} \tag{2.11}
\end{equation*}
$$

for all sufficiently large x. Then $\min \left\{A(x), B^{\prime}(x)\right\}=A(x)$ for all sufficiently large x.

Since

$$
A(x) B^{\prime}(x)-x \leq A(x) B(x)-x
$$

for all integers x, it follows from (2.7) that

$$
\begin{equation*}
A(x) B^{\prime}(x)-x<h(A(x)) \tag{2.12}
\end{equation*}
$$

for infinitely many positive integers x.
Suppose that $x_{1}<x_{2}<\cdots$ are all positive integers with

$$
\begin{equation*}
A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)-x_{k}<h\left(A\left(x_{k}\right)\right) . \tag{2.13}
\end{equation*}
$$

By the assumption on h,

$$
\begin{equation*}
h\left(A\left(x_{k}\right)\right) \leq \frac{2}{3} \sqrt{x_{k}}<x_{k}^{1 / 2} . \tag{2.14}
\end{equation*}
$$

By 2.11 and 2.14,

$$
\begin{equation*}
B^{\prime}\left(x_{k}\right)-2 h\left(A\left(x_{k}\right)\right)>x_{k}^{3 / 4}-2 x_{k}^{1 / 2} \rightarrow \infty \quad \text { as } k \rightarrow \infty . \tag{2.15}
\end{equation*}
$$

Let u_{k} be the largest integer with

$$
B^{\prime}\left(u_{k}\right) \leq B^{\prime}\left(x_{k}\right)-2 h\left(A\left(x_{k}\right)\right)
$$

It follows from (2.15) that u_{k} exists for sufficiently large k and $u_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Since $h\left(A\left(x_{k}\right)\right) \rightarrow \infty$ as $k \rightarrow \infty$, we know that $u_{k}<x_{k}$ for all sufficiently large integers k. By the definition of u_{k}, we have

$$
B^{\prime}\left(u_{k}\right)+1 \geq B^{\prime}\left(u_{k}+1\right)>B^{\prime}\left(x_{k}\right)-2 h\left(A\left(x_{k}\right)\right)
$$

Thus

$$
\begin{equation*}
2 h\left(A\left(x_{k}\right)\right) \leq B^{\prime}\left(x_{k}\right)-B^{\prime}\left(u_{k}\right)<2 h\left(A\left(x_{k}\right)\right)+1 . \tag{2.16}
\end{equation*}
$$

By the assumption on h and (2.11,

$$
0 \leq \lim _{k \rightarrow \infty} \frac{2 h\left(A\left(x_{k}\right)\right)}{B^{\prime}\left(x_{k}\right)} \leq \lim _{k \rightarrow \infty} \frac{2 x_{k}^{1 / 2}}{x_{k}^{3 / 4}}=0
$$

It follows from 2.16 that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{B^{\prime}\left(u_{k}\right)}{B^{\prime}\left(x_{k}\right)}=1 \tag{2.17}
\end{equation*}
$$

Thus, by (2.10) and (2.17),

$$
\lim _{k \rightarrow \infty} \frac{B^{\prime}\left(u_{k}\right)}{B^{\prime}\left(\frac{1}{2} x_{k}\right)}=\lim _{k \rightarrow \infty} \frac{B^{\prime}\left(u_{k}\right)}{B^{\prime}\left(x_{k}\right)} \lim _{k \rightarrow \infty} \frac{B^{\prime}\left(x_{k}\right)}{B^{\prime}\left(\frac{1}{2} x_{k}\right)}=2
$$

So $\frac{1}{2} x_{k}<u_{k}<x_{k}$ for all sufficiently large integers k. Thus

$$
\begin{equation*}
A\left(\frac{1}{2} x_{k}\right) \leq A\left(u_{k}\right) \leq A\left(x_{k}\right) \tag{2.18}
\end{equation*}
$$

for all sufficiently large integers k. By (2.4) and (2.18) we have

$$
\lim _{k \rightarrow \infty} \frac{A\left(u_{k}\right)}{A\left(x_{k}\right)}=1
$$

Thus, by (2.9) and (2.17),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{u_{k}}{x_{k}}=\lim _{k \rightarrow \infty} \frac{u_{k}}{A\left(u_{k}\right) B^{\prime}\left(u_{k}\right)} \frac{A\left(u_{k}\right) B^{\prime}\left(u_{k}\right)}{A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)} \frac{A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)}{x_{k}}=1 . \tag{2.19}
\end{equation*}
$$

Let $w_{k}=x_{k}-u_{k}$. Then, by (2.19), we have $w_{k}=o\left(x_{k}\right)$. By 2.16),

$$
\begin{aligned}
2 h\left(A\left(x_{k}\right)\right) & \leq B^{\prime}\left(x_{k}\right)-B^{\prime}\left(u_{k}\right)=B^{\prime}\left(u_{k}+w_{k}\right)-B^{\prime}\left(u_{k}\right) \\
& \leq B^{\prime}\left(u_{k}\right)+w_{k}-B^{\prime}\left(u_{k}\right)=w_{k} .
\end{aligned}
$$

It follows from $h\left(A\left(x_{k}\right)\right) \rightarrow \infty$ as $k \rightarrow \infty$ that $w_{k} \rightarrow \infty$ as $k \rightarrow \infty$. It is clear that (2.16) is equivalent to

$$
\begin{equation*}
2 h\left(A\left(x_{k}\right)\right) \leq B^{\prime}\left(x_{k}\right)-B^{\prime}\left(x_{k}-w_{k}\right)<2 h\left(A\left(x_{k}\right)\right)+1 . \tag{2.20}
\end{equation*}
$$

Now we prove that $A\left(x_{k}\right)=A\left(w_{k}\right)$ for all sufficiently large integers k. Let $f_{x}^{\prime}(n)$ be the number of solutions of $a+b=n, a \in A, a \leq x, b \in B^{\prime}$ and $b \leq x$. Since A, B^{\prime} are infinite additive complements, we have

$$
\begin{equation*}
f_{x}^{\prime}(n) \geq 1, \quad n_{0}^{\prime} \leq n \leq x \tag{2.21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
A(x) B^{\prime}(x) \geq x-n_{0}^{\prime} . \tag{2.22}
\end{equation*}
$$

By (2.13), 2.20) and (2.21), we have

$$
\begin{aligned}
h\left(A\left(x_{k}\right)\right) & >A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)-x_{k}=\sum_{n=0}^{2 x_{k}} f_{x_{k}}^{\prime}(n)-x_{k} \\
& \geq \sum_{n=n_{0}^{\prime}+1}^{x_{k}} f_{x_{k}}^{\prime}(n)+\sum_{\substack{w_{k}<a \leq x_{k} \\
a \in A}} \sum_{\substack{x_{k}-w_{k}<b \leq x_{k} \\
b \in B^{\prime}}} 1-x_{k} \\
& \geq \sum_{n=n_{0}^{\prime}+1}^{x_{k}} 1+\sum_{\substack{w_{k}<a \leq x_{k} \\
a \in A}} \sum_{\substack{x_{k}-w_{k}<b \leq x_{k} \\
b \in B^{\prime}}} 1-x_{k} \\
& =\left(A\left(x_{k}\right)-A\left(w_{k}\right)\right)\left(B^{\prime}\left(x_{k}\right)-B^{\prime}\left(x_{k}-w_{k}\right)\right)-n_{0}^{\prime} \\
& \geq 2\left(A\left(x_{k}\right)-A\left(w_{k}\right)\right) h\left(A\left(x_{k}\right)\right)-n_{0}^{\prime} .
\end{aligned}
$$

Thus

$$
0 \leq A\left(x_{k}\right)-A\left(w_{k}\right) \leq \frac{1}{2}+\frac{n_{0}^{\prime}}{2 h\left(A\left(x_{k}\right)\right)}<1
$$

for all sufficiently large integers k. So $A\left(x_{k}\right)=A\left(w_{k}\right)$ for all sufficiently large integers k. Since $w_{k}=o\left(x_{k}\right)$, we have $2 w_{k}<x_{k}$ for all sufficiently large integers k. As $w_{k}<2 w_{k}<x_{k}$ and $A\left(x_{k}\right)=A\left(w_{k}\right)$ for all sufficiently large integers k, we get $A\left(x_{k}\right)=A\left(2 w_{k}\right)$ for all sufficiently large integers k.

Define

$$
\begin{aligned}
D & =\left\{(b, a): b \in B^{\prime}, a \in A, b \leq x_{k}-w_{k}, b-a>w_{k}\right\}, \\
D_{1} & =\left\{(b, a): b \in B^{\prime}, a \in A, 2 w_{k}<b \leq x_{k}-w_{k}, b-a>w_{k}\right\}, \\
D_{2} & =\left\{(b, a): b \in B^{\prime}, a \in A, \frac{3}{2} w_{k}<b \leq 2 w_{k}, b-a>w_{k}\right\} .
\end{aligned}
$$

Then $D_{1} \cap D_{2}=\emptyset, D_{1} \cup D_{2} \subset D$. Hence $|D| \geq\left|D_{1}\right|+\left|D_{2}\right|$.
For $(b, a) \in D_{1}$, we have $a<b-w_{k} \leq x_{k}-2 w_{k} \leq x_{k}$ and $b>2 w_{k}$. Since $A\left(x_{k}\right)=A\left(w_{k}\right)$ for all sufficiently large integers k, we have $a \leq w_{k}$ for all sufficiently large integers k. Thus

$$
D_{1}=\left\{(b, a): b \in B^{\prime}, a \in A, 2 w_{k}<b \leq x_{k}-w_{k}, a \leq w_{k}\right\}
$$

for all sufficiently large integers k. By (2.9) and (2.22), noting that $A\left(w_{k}\right)=$ $A\left(x_{k}\right)=A\left(2 w_{k}\right)$ for all sufficiently large integers k, we have

$$
\begin{aligned}
\left|D_{1}\right| & =\left(B^{\prime}\left(x_{k}-w_{k}\right)-B^{\prime}\left(2 w_{k}\right)\right) A\left(w_{k}\right) \\
& =B^{\prime}\left(x_{k}\right) A\left(w_{k}\right)-B^{\prime}\left(2 w_{k}\right) A\left(w_{k}\right)+\left(B^{\prime}\left(x_{k}-w_{k}\right)-B^{\prime}\left(x_{k}\right)\right) A\left(w_{k}\right) \\
& =B^{\prime}\left(x_{k}\right) A\left(x_{k}\right)-B^{\prime}\left(2 w_{k}\right) A\left(2 w_{k}\right)+\left(B^{\prime}\left(x_{k}-w_{k}\right)-B^{\prime}\left(x_{k}\right)\right) A\left(w_{k}\right) \\
& \geq x_{k}-n_{0}-2 w_{k}+o\left(w_{k}\right)-\left(B^{\prime}\left(x_{k}\right)-B^{\prime}\left(x_{k}-w_{k}\right)\right) A\left(w_{k}\right) .
\end{aligned}
$$

From $A\left(x_{k}\right)=A\left(w_{k}\right),(2.6),(2.20)$ and the assumption on h, we deduce

$$
\begin{aligned}
0 & \leq\left(B^{\prime}\left(x_{k}\right)-B^{\prime}\left(x_{k}-w_{k}\right)\right) A\left(w_{k}\right) \\
& <\left(2 h\left(A\left(x_{k}\right)\right)+1\right) A\left(w_{k}\right)=\left(2 h\left(A\left(w_{k}\right)\right)+1\right) A\left(w_{k}\right) \\
& \leq\left(2 w_{k}^{1 / 2}+1\right) w_{k}^{1 / 4}=o\left(w_{k}\right) .
\end{aligned}
$$

Hence $\left|D_{1}\right| \geq x_{k}-2 w_{k}+o\left(w_{k}\right)$.
Now we are going to estimate $\left|D_{2}\right|$. It is clear that

$$
D_{2} \supseteq\left\{(b, a): b \in B^{\prime}, a \in A, \frac{3}{2} w_{k}<b \leq 2 w_{k}, a \leq \frac{1}{2} w_{k}\right\} .
$$

Thus

$$
\left|D_{2}\right| \geq A\left(\frac{1}{2} w_{k}\right)\left(B^{\prime}\left(2 w_{k}\right)-B^{\prime}\left(\frac{3}{2} w_{k}\right)\right)
$$

It follows from $A\left(x_{k}\right)=A\left(w_{k}\right)$ and $w_{k}<\frac{3}{2} w_{k}<2 w_{k}<x_{k}$ that $A\left(w_{k}\right)=$ $A\left(\frac{3}{2} w_{k}\right)=A\left(2 w_{k}\right)$ for all sufficiently large integers k. By (2.4) and 2.9), we
have

$$
\begin{aligned}
\left|D_{2}\right| & \geq A\left(\frac{1}{2} w_{k}\right)\left(B^{\prime}\left(2 w_{k}\right)-B^{\prime}\left(\frac{3}{2} w_{k}\right)\right) \\
& =A\left(w_{k}\right)(1+o(1))\left(B^{\prime}\left(2 w_{k}\right)-B^{\prime}\left(\frac{3}{2} w_{k}\right)\right) \\
& =(1+o(1))\left(A\left(w_{k}\right) B^{\prime}\left(2 w_{k}\right)-A\left(w_{k}\right) B^{\prime}\left(\frac{3}{2} w_{k}\right)\right) \\
& =(1+o(1))\left(A\left(2 w_{k}\right) B^{\prime}\left(2 w_{k}\right)-A\left(\frac{3}{2} w_{k}\right) B^{\prime}\left(\frac{3}{2} w_{k}\right)\right)=\frac{1}{2} w_{k}+o\left(w_{k}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
|D| \geq\left|D_{1}\right|+\left|D_{2}\right| \geq x_{k}-2 w_{k}+\frac{1}{2} w_{k}+o\left(w_{k}\right) \tag{2.23}
\end{equation*}
$$

Now we derive a contradiction. Let

$$
\begin{aligned}
& \quad S=\left\{a \in A: a \leq x_{k}\right\}, \quad T=\left\{b \in B^{\prime}: b \leq x_{k}\right\}, \quad g(n)=\sum_{\substack{(b, a) \in D \\
b-a=n}} 1 . \\
& \text { Then, for all integers } n,
\end{aligned}
$$

$$
f_{x_{k}}^{\prime}(n)=r(S, T, n), \quad g(n) \leq \delta(S, T, n)
$$

where $r(S, T, n)$ and $\delta(S, T, n)$ are defined as in Lemma 1.2. By that lemma,

$$
\begin{aligned}
\left(\sum_{f_{x_{k}}^{\prime}(n) \geq 1}\left(f_{x_{k}}^{\prime}(n)-1\right)\right)^{2} & =\left(\sum_{r(S, T, n) \geq 1}(r(S, T, n)-1)\right)^{2} \\
& \geq \sum_{\delta(S, T, n) \geq 1}(\delta(S, T, n)-1) \geq \sum_{g(n) \geq 1}(g(n)-1)
\end{aligned}
$$

Noting that $w_{k}<b-a \leq x_{k}-w_{k}$ for all $(b, a) \in D$, we get

$$
\begin{equation*}
\sum_{g(n) \geq 1} 1 \leq \sum_{w_{k}<n \leq x_{k}-w_{k}} 1=x_{k}-2 w_{k} \tag{2.24}
\end{equation*}
$$

It follows from 2.23 and 2.24 that

$$
\begin{aligned}
\sum_{g(n) \geq 1}(g(n)-1) & =\sum_{g(n) \geq 1} g(n)-\sum_{g(n) \geq 1} 1=|D|-\sum_{g(n) \geq 1} 1 \\
& \geq x_{k}-2 w_{k}+\frac{1}{2} w_{k}+o\left(w_{k}\right)-\left(x_{k}-2 w_{k}\right)=\frac{1}{2} w_{k}+o\left(w_{k}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{f_{x_{k}}^{\prime}(n) \geq 1}\left(f_{x_{k}}^{\prime}(n)-1\right) \geq \frac{\sqrt{2}}{2} \sqrt{w_{k}}(1+o(1)) \tag{2.25}
\end{equation*}
$$

Since

$$
\begin{aligned}
\sum_{n=0}^{n_{0}^{\prime}} f_{x_{k}}^{\prime}(n)+\sum_{n=n_{0}^{\prime}+1}^{x_{k}} & \left(f_{x_{k}}^{\prime}(n)-1\right)+\sum_{n=x_{k}+1}^{2 x_{k}} f_{x_{k}}^{\prime}(n) \\
& =\sum_{n=0}^{2 x_{k}} f_{x_{k}}^{\prime}(n)-x_{k}+n_{0}^{\prime}=A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)-x_{k}+n_{0}^{\prime}
\end{aligned}
$$

it follows that

$$
\sum_{f_{x_{k}}^{\prime}(n) \geq 1}\left(f_{x_{k}}^{\prime}(n)-1\right) \leq A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)-x_{k}+n_{0}^{\prime}
$$

Thus, by 2.13), $A\left(x_{k}\right)=A\left(w_{k}\right)$ and the assumption on h, for all sufficiently large integers k, we have

$$
\begin{aligned}
\sum_{f_{x_{k}}^{\prime}(n) \geq 1}\left(f_{x_{k}}^{\prime}(n)-1\right) & \leq A\left(x_{k}\right) B^{\prime}\left(x_{k}\right)-x_{k}+n_{0}^{\prime} \\
& <h\left(A\left(x_{k}\right)\right)+n_{0}^{\prime}=h\left(A\left(w_{k}\right)\right)+n_{0}^{\prime} \leq \frac{2}{3} \sqrt{w_{k}}+n_{0}^{\prime}
\end{aligned}
$$

It follows from 2.25 that

$$
\frac{\sqrt{2}}{2} \sqrt{w_{k}}(1+o(1))<\frac{2}{3} \sqrt{w_{k}}+n_{0}
$$

for all sufficiently large integers k, a contradiction.
This completes the proof of Theorem 2.1.
3. Additive complements with more than two sequences. Infinite sequences A_{1}, \ldots, A_{r} of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers.

It is easy to see that, for infinite additive complements A_{1}, \ldots, A_{r}, we have

$$
\liminf _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x} \geq 1
$$

Theorem 3.1. For infinite additive complements A_{1}, \ldots, A_{r}, if

$$
\limsup _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x} \leq 1
$$

then, for any given $M>1$, we have

$$
A_{1}(x) \cdots A_{r}(x)-x \geq\left(\min \left\{\frac{A_{1}(x) \cdots A_{r}(x)}{A_{1}(x)}, \ldots, \frac{A_{1}(x) \cdots A_{r}(x)}{A_{r}(x)}\right\}\right)^{M}
$$

for all sufficiently large integers x.
Proof. Given i with $1 \leq i \leq r$, let $A=A_{i}$ and

$$
\begin{aligned}
B & =A_{1}+\cdots+A_{i-1}+A_{i+1}+\cdots+A_{r} \\
& =\left\{\sum_{j=1, j \neq i}^{r} a_{j}: a_{j} \in A_{j}(1 \leq j \leq r, j \neq i)\right\} .
\end{aligned}
$$

Since A_{1}, \ldots, A_{r} are infinite additive complements, so are A and B. It is clear that

$$
B(x) \leq \frac{A_{1}(x) \cdots A_{r}(x)}{A_{i}(x)}
$$

Hence

$$
\limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \leq \limsup _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x} \leq 1
$$

This implies that 0.1 holds. Since A, B are infinite additive complements, we have

$$
\liminf _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \geq 1
$$

Thus

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A(x) B(x)}{x}=1 \tag{3.1}
\end{equation*}
$$

By Lemma 1.1, either

$$
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=1 \quad \text { or } \quad \lim _{x \rightarrow \infty} \frac{B(2 x)}{B(x)}=1
$$

By (3.1),

$$
\lim _{x \rightarrow \infty} \frac{A(2 x) B(2 x)}{A(x) B(x)}=\lim _{x \rightarrow \infty} \frac{A(2 x) B(2 x)}{2 x} \lim _{x \rightarrow \infty} \frac{2 x}{A(x) B(x)}=2
$$

Thus, either

$$
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=1 \quad \text { or } \quad \lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=2
$$

Hence, for every i,

$$
\lim _{x \rightarrow \infty} \frac{A_{i}(2 x)}{A_{i}(x)} \in\{1,2\}
$$

Let

$$
\alpha_{i}=\lim _{x \rightarrow \infty} \frac{A_{i}(2 x)}{A_{i}(x)}, \quad i=1, \ldots, r
$$

Since A_{1}, \ldots, A_{r} are infinite additive complements and

$$
\limsup _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x} \leq 1
$$

it follows that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x}=1 \tag{3.2}
\end{equation*}
$$

Hence $\alpha_{1} \cdots \alpha_{r}=2$. Since $\alpha_{i} \in\{1,2\}$, exactly one of the α_{i} is 2 . Without loss of generality, we may assume that

$$
\alpha_{1}=\cdots=\alpha_{r-1}=1, \quad \alpha_{r}=2
$$

Now, we take $A=A_{r}$ and $B=A_{1}+\cdots+A_{r-1}$. Then

$$
\lim _{x \rightarrow \infty} \frac{A(2 x)}{A(x)}=2 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{B(2 x)}{B(x)}=1
$$

So $A(x)>B(x)$ for all $x \geq x_{0}$. By Theorem 0.2,

$$
A(x) B(x)-x \geq B(x)^{2 M}
$$

for all sufficiently large x. It follows from (3.1) and (3.2) that

$$
\lim _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r-1}(x)}{B(x)}=1
$$

Thus there exists $u_{0} \geq x_{0}$ such that

$$
B(x)^{2} \geq A_{1}(x) \cdots A_{r-1}(x), \quad x \geq u_{0}
$$

Noting that $B(x) \leq A_{1}(x) \cdots A_{r-1}(x)$, we arrive at

$$
\begin{aligned}
A_{1}(x) \cdots A_{r}(x)-x & \geq A(x) B(x)-x \geq B(x)^{2 M} \\
& \geq\left(A_{1}(x) \cdots A_{r-1}(x)\right)^{M}, \quad x \geq u_{0}
\end{aligned}
$$

This completes the proof of Theorem 3.1.
4. Final remarks. We pose several problems for further research.

Problem 4.1. Is there a non-decreasing function $l(x)$ with $l(x) \rightarrow \infty$ as $x \rightarrow \infty$ such that, for infinite additive complements A, B, if (0.1) holds, then

$$
A(x) B(x)-x \geq l(x)
$$

for all sufficiently large integers x ?
The following Problem 4.2 is a special case of Problem 4.1.
Problem 4.2. Is there a positive real number θ such that, for infinite additive complements A, B, if (0.1) holds, then

$$
A(x) B(x)-x \geq x^{\theta}
$$

for all sufficiently large integers x ?
Problem 4.3. For each integer $r \geq 3$, find infinite additive complements A_{1}, \ldots, A_{r} such that

$$
\lim _{x \rightarrow \infty} \frac{A_{1}(x) \cdots A_{r}(x)}{x}=1
$$

For $r=2$, Danzer [2] solved Problem 4.3, which gives a negative answer to a conjecture of Erdős (see [3], [4]).

Chen and Fang [6], 8] proved that, for infinite additive complements A, B, if

$$
\limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x}<3-\sqrt{3} \quad \text { or } \quad \limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x}>2
$$

then $A(x) B(x)-x \rightarrow \infty$ as $x \rightarrow \infty$. On the other hand, Chen and Fang [1] proved that, for any $\varepsilon>0$, there exist infinite additive complements A, B
such that

$$
2-\varepsilon<\limsup _{x \rightarrow \infty} \frac{A(x) B(x)}{x}<2
$$

and $A(x) B(x)-x=1$ for infinitely many positive integers x.
Acknowledgments. This work was supported by the National Natural Science Foundation of China, Grant Nos. 11371195 and 11201237, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

[1] Y.-G. Chen and J.-H. Fang, On additive complements. II, Proc. Amer. Math. Soc. 139 (2011), 881-883.
[2] L. Danzer, Über eine Frage von G. Hanani aus der additiven Zahlentheorie, J. Reine Angew. Math. 214/215 (1964), 392-394.
[3] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
[4] P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221-254.
[5] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monogr. Enseign. Math. 28, Univ. de Genève, Genève, 1980.
[6] J.-H. Fang and Y.-G. Chen, On additive complements, Proc. Amer. Math. Soc. 138 (2010), 1923-1927.
[7] J.-H. Fang and Y.-G. Chen, On finite additive complements, Discrete Math. 313 (2013), 595-598.
[8] J.-H. Fang and Y.-G. Chen, On additive complements. III, J. Number Theory 141 (2014), 83-91.
[9] H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, New York, 1983.
[10] S. Z. Kiss, E. Rozgonyi and Cs. Sándor, On additive complement of a finite set, J. Number Theory 136 (2014), 195-203.
[11] W. Narkiewicz, Remarks on a conjecture of Hanani in additive number theory, Colloq. Math. 7 (1959/60), 161-165.
[12] M. B. Nathanson, Problems in additive number theory, IV: Nets in groups and shortest length g-adic representations, Int. J. Number Theory 7 (2011), 1999-2017.
[13] I. Z. Ruzsa, Additive completion of lacunary sequences, Combinatorica 21 (2001), 279-291.
[14] A. Sárközy and E. Szemerédi, On a problem in additive number theory, Acta Math. Hungar. 64 (1994), 237-245.

Yong-Gao Chen
School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P.R. China E-mail: ygchen@njnu.edu.cn

Jin-Hui Fang
Department of Mathematics
Nanjing University of
Information Science \& Technology
Nanjing 210044, P.R. China
E-mail: fangjinhui1114@163.com

[^0]: 2010 Mathematics Subject Classification: Primary 11B13, 11B34; Secondary 05A17. Key words and phrases: additive complements, sequences, counting functions.

