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On a conjecture of Sárközy and Szemerédi

by

Yong-Gao Chen and Jin-Hui Fang (Nanjing)

Two infinite sequences A,B of non-negative integers are called infinite
additive complements if their sum contains all sufficiently large integers. For
a set T of non-negative integers, let T (x) be the counting function of T .
That is, T (x) = |T ∩ [0, x]|.

It is easy to see that, for infinite additive complements A,B, we have

lim inf
x→∞

A(x)B(x)

x
≥ 1.

In 1994, Sárközy and Szemerédi [14] proved the following deep result
which was conjectured by Danzer in 1964 ([2], see also [5, p. 10] and
[9, p. 75]).

Theorem (Sárközy and Szemerédi, 1994). For infinite additive comple-
ments A, B, if

(0.1) lim sup
x→∞

A(x)B(x)

x
≤ 1,

then

(0.2) A(x)B(x)− x→∞ as x→∞.

Sárközy and Szemerédi [14, p. 245] posed the following conjecture.

Conjecture 0.1. There exist infinite additive complements A, B satis-
fying (0.1) such that

(0.3) A(x)B(x)− x = O(min{A(x), B(x)}).

In this paper, we disprove this conjecture. In fact, the following stronger
result is proved.
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Theorem 0.2. For infinite additive complements A, B, if (0.1) holds,
then, for any given M > 1, we have

A(x)B(x)− x ≥ (min{A(x), B(x)})M

for all sufficiently large integers x.

For related results, one may refer to [1], [6], [7], [8], [10], [12] and [13].

1. Preliminary lemmas

Lemma 1.1 (Narkiewicz [11]). For infinite additive complements A, B,
if (0.1) holds, then either

lim
x→∞

A(2x)

A(x)
= 1 or lim

x→∞

B(2x)

B(x)
= 1.

Lemma 1.2. Let S = {s1, s2, . . . } and T = {t1, t2, . . . } be finite se-
quences of integers, and let r(S, T, n) denote the number of solutions n =
si + tj, si ∈ S, tj ∈ T , and δ(S, T, n) denote the number of solutions
n = tj − si, si ∈ S, tj ∈ T . Then( ∑

r(S,T,n)≥1

(r(S, T, n)− 1)
)2
≥

∑
δ(S,T,n)≥1

(δ(S, T, n)− 1).

Proof. Let

M1 = {(i1, j1, i2, j2) : si1 , si2 ∈ S, tj1 , tj2 ∈ T, i1 6= i2 or j1 6= j2,

si1 + tj1 = si2 + tj2},
M2 = {(i1, j1, i2, j2) : si1 , si2 ∈ S, tj1 , tj2 ∈ T, i1 6= i2 or j1 6= j2,

tj2 − si1 = tj1 − si2}.

Then M1 = M2 and

|M1| =
∑
n

r(S, T, n)(r(S, T, n)− 1)

=
∑

r(S,T,n)≥1

(r(S, T, n)− 1)2 +
∑

r(S,T,n)≥1

(r(S, T, n)− 1),

|M2| =
∑
n

δ(S, T, n)(δ(S, T, n)− 1)

=
∑

δ(S,T,n)≥1

(δ(S, T, n)− 1)2 +
∑

δ(S,T,n)≥1

(δ(S, T, n)− 1).
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It is clear that( ∑
r(S,T,n)≥1

(r(S, T, n)− 1)
)2
≥

∑
r(S,T,n)≥1

(r(S, T, n)− 1)2

≥ 1

2

( ∑
r(S,T,n)≥1

(r(S, T, n)−1)2 +
∑

r(S,T,n)≥1

(r(S, T, n)−1)
)

=
1

2
|M1|

=
1

2
|M2|=

1

2

( ∑
δ(S,T,n)≥1

(δ(S, T, n)−1)2 +
∑

δ(S,T,n)≥1

(δ(S, T, n)−1)
)

≥
∑

δ(S,T,n)≥1

(δ(S, T, n)− 1).

Remark. Similarly,( ∑
δ(S,T,n)≥1

(δ(S, T, n)− 1)
)2
≥

∑
r(S,T,n)≥1

(r(S, T, n)− 1).

2. Proof of Theorem 0.2. We will prove the following general theo-
rem.

Theorem 2.1. Let A and B be infinite additive complements such that
(0.1) holds. Suppose that h is a function on (0,∞) satisfying:

(a) h(x)→∞ as x→∞;
(b) h(min{A(x), B(x)}) ≤ 2

3

√
x for all sufficiently large integers x.

Then

(2.1) A(x)B(x)− x ≥ h(min{A(x), B(x)})

for all sufficiently large integers x.

Firstly we derive Theorem 0.2 from Theorem 2.1. Suppose that The-
orem 2.1 is true. Take h(x) = xM . By Lemma 1.1, we may assume that

lim
x→∞

A(2x)

A(x)
= 1.

Then A(x) ≤ x1/(2M+2) for all sufficiently large x. Thus

h(min{A(x), B(x)}) ≤ h(A(x)) = A(x)M ≤ xM/(2M+2) < 2
3

√
x

for all sufficiently large x. Now Theorem 0.2 follows from Theorem 2.1.

Proof of Theorem 2.1. Let fx(n) be the number of solutions of a+b = n,
a ∈ A, a ≤ x, b ∈ B and b ≤ x. Since A, B are infinite additive complements,
we have

fx(n) ≥ 1, n0 ≤ n ≤ x.
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Hence

(2.2) A(x)B(x) ≥ x− n0.
By (0.1) and (2.2), we have

(2.3) lim
x→∞

A(x)B(x)

x
= 1.

By Lemma 1.1, we may assume that

(2.4) lim
x→∞

A(2x)

A(x)
= 1.

By (2.3) and (2.4), we have

(2.5) lim
x→∞

B(2x)

B(x)
= lim

x→∞

B(2x)A(2x)

2x

2x

A(x)B(x)

A(x)

A(2x)
= 2.

By (2.4) and (2.5),

(2.6) A(x) < x1/4, B(x) > x3/4

for all sufficiently large x. Then

min{A(x), B(x)} = A(x)

for all sufficiently large x.
If (2.1) does not hold, then

(2.7) A(x)B(x)− x < h(A(x))

for infinitely many positive integers x.
Now we cancel the multiplicities of B (B is a sequence, and some integers

may appear in B many times). Let B′ be the set of all integers of B. Then
B′ can be seen as a strictly increasing sequence. Thus B′(`+ 1) ≤ B′(`) + 1
for all integers `. By (2.3), we have B(x) < ∞ for all x > 0. This implies
that each integer appears in B at most finitely many times. So B′ is an
infinite set.

Since the sum of A and B contains all sufficiently large integers, it follows
that so does the sum of A and B′. That is, A and B′ are also infinite additive
complements. It is clear that

(2.8) lim sup
x→∞

A(x)B′(x)

x
≤ lim sup

x→∞

A(x)B(x)

x
≤ 1.

Similar to (2.3), we have

(2.9) lim
x→∞

A(x)B′(x)

x
= 1.

By (2.4) and (2.9), as in (2.5),

(2.10) lim
x→∞

B′(2x)

B′(x)
= 2.
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By (2.4) and (2.10), we find that

(2.11) A(x) < x1/4, B′(x) > x3/4

for all sufficiently large x. Then min{A(x), B′(x)} = A(x) for all sufficiently
large x.

Since

A(x)B′(x)− x ≤ A(x)B(x)− x
for all integers x, it follows from (2.7) that

(2.12) A(x)B′(x)− x < h(A(x))

for infinitely many positive integers x.

Suppose that x1 < x2 < · · · are all positive integers with

(2.13) A(xk)B
′(xk)− xk < h(A(xk)).

By the assumption on h,

(2.14) h(A(xk)) ≤ 2
3

√
xk < x

1/2
k .

By (2.11) and (2.14),

(2.15) B′(xk)− 2h(A(xk)) > x
3/4
k − 2x

1/2
k →∞ as k →∞.

Let uk be the largest integer with

B′(uk) ≤ B′(xk)− 2h(A(xk)).

It follows from (2.15) that uk exists for sufficiently large k and uk → ∞ as
k → ∞. Since h(A(xk)) → ∞ as k → ∞, we know that uk < xk for all
sufficiently large integers k. By the definition of uk, we have

B′(uk) + 1 ≥ B′(uk + 1) > B′(xk)− 2h(A(xk)).

Thus

(2.16) 2h(A(xk)) ≤ B′(xk)−B′(uk) < 2h(A(xk)) + 1.

By the assumption on h and (2.11),

0 ≤ lim
k→∞

2h(A(xk))

B′(xk)
≤ lim

k→∞

2x
1/2
k

x
3/4
k

= 0.

It follows from (2.16) that

(2.17) lim
k→∞

B′(uk)

B′(xk)
= 1.

Thus, by (2.10) and (2.17),

lim
k→∞

B′(uk)

B′
(
1
2xk
) = lim

k→∞

B′(uk)

B′(xk)
lim
k→∞

B′(xk)

B′
(
1
2xk
) = 2.
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So 1
2xk < uk < xk for all sufficiently large integers k. Thus

(2.18) A
(
1
2xk
)
≤ A(uk) ≤ A(xk)

for all sufficiently large integers k. By (2.4) and (2.18) we have

lim
k→∞

A(uk)

A(xk)
= 1.

Thus, by (2.9) and (2.17),

(2.19) lim
k→∞

uk
xk

= lim
k→∞

uk
A(uk)B′(uk)

A(uk)B
′(uk)

A(xk)B′(xk)

A(xk)B
′(xk)

xk
= 1.

Let wk = xk − uk. Then, by (2.19), we have wk = o(xk). By (2.16),

2h(A(xk)) ≤ B′(xk)−B′(uk) = B′(uk + wk)−B′(uk)
≤ B′(uk) + wk −B′(uk) = wk.

It follows from h(A(xk)) → ∞ as k → ∞ that wk → ∞ as k → ∞. It is
clear that (2.16) is equivalent to

(2.20) 2h(A(xk)) ≤ B′(xk)−B′(xk − wk) < 2h(A(xk)) + 1.

Now we prove that A(xk) = A(wk) for all sufficiently large integers k.
Let f ′x(n) be the number of solutions of a+ b = n, a ∈ A, a ≤ x, b ∈ B′ and
b ≤ x. Since A, B′ are infinite additive complements, we have

(2.21) f ′x(n) ≥ 1, n′0 ≤ n ≤ x.
Hence

(2.22) A(x)B′(x) ≥ x− n′0.
By (2.13), (2.20) and (2.21), we have

h(A(xk)) > A(xk)B
′(xk)− xk =

2xk∑
n=0

f ′xk(n)− xk

≥
xk∑

n=n′
0+1

f ′xk(n) +
∑

wk<a≤xk
a∈A

∑
xk−wk<b≤xk

b∈B′

1− xk

≥
xk∑

n=n′
0+1

1 +
∑

wk<a≤xk
a∈A

∑
xk−wk<b≤xk

b∈B′

1− xk

= (A(xk)−A(wk))
(
B′(xk)−B′(xk − wk)

)
− n′0

≥ 2(A(xk)−A(wk))h(A(xk))− n′0.
Thus

0 ≤ A(xk)−A(wk) ≤
1

2
+

n′0
2h(A(xk))

< 1
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for all sufficiently large integers k. So A(xk) = A(wk) for all sufficiently
large integers k. Since wk = o(xk), we have 2wk < xk for all sufficiently
large integers k. As wk < 2wk < xk and A(xk) = A(wk) for all suffi-
ciently large integers k, we get A(xk) = A(2wk) for all sufficiently large
integers k.

Define

D = {(b, a) : b ∈ B′, a ∈ A, b ≤ xk − wk, b− a > wk},
D1 = {(b, a) : b ∈ B′, a ∈ A, 2wk < b ≤ xk − wk, b− a > wk},

D2 =
{

(b, a) : b ∈ B′, a ∈ A, 3
2wk < b ≤ 2wk, b− a > wk

}
.

Then D1 ∩D2 = ∅, D1 ∪D2 ⊂ D. Hence |D| ≥ |D1|+ |D2|.
For (b, a) ∈ D1, we have a < b−wk ≤ xk− 2wk ≤ xk and b > 2wk. Since

A(xk) = A(wk) for all sufficiently large integers k, we have a ≤ wk for all
sufficiently large integers k. Thus

D1 = {(b, a) : b ∈ B′, a ∈ A, 2wk < b ≤ xk − wk, a ≤ wk}

for all sufficiently large integers k. By (2.9) and (2.22), noting that A(wk) =
A(xk) = A(2wk) for all sufficiently large integers k, we have

|D1| =
(
B′(xk − wk)−B′(2wk)

)
A(wk)

= B′(xk)A(wk)−B′(2wk)A(wk) +
(
B′(xk − wk)−B′(xk)

)
A(wk)

= B′(xk)A(xk)−B′(2wk)A(2wk) +
(
B′(xk − wk)−B′(xk)

)
A(wk)

≥ xk − n0 − 2wk + o(wk)−
(
B′(xk)−B′(xk − wk)

)
A(wk).

From A(xk) = A(wk), (2.6), (2.20) and the assumption on h, we deduce

0 ≤
(
B′(xk)−B′(xk − wk)

)
A(wk)

< (2h(A(xk)) + 1)A(wk) = (2h(A(wk)) + 1)A(wk)

≤ (2w
1/2
k + 1)w

1/4
k = o(wk).

Hence |D1| ≥ xk − 2wk + o(wk).

Now we are going to estimate |D2|. It is clear that

D2 ⊇
{

(b, a) : b ∈ B′, a ∈ A, 3
2wk < b ≤ 2wk, a ≤ 1

2wk
}
.

Thus

|D2| ≥ A
(
1
2wk

)(
B′(2wk)−B′

(
3
2wk

))
.

It follows from A(xk) = A(wk) and wk <
3
2wk < 2wk < xk that A(wk) =

A
(
3
2wk

)
= A(2wk) for all sufficiently large integers k. By (2.4) and (2.9), we
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have

|D2| ≥ A
(
1
2wk

)(
B′(2wk)−B′

(
3
2wk

))
= A(wk)(1 + o(1))

(
B′(2wk)−B′

(
3
2wk

))
= (1 + o(1))

(
A(wk)B

′(2wk)−A(wk)B
′(3

2wk
))

= (1 + o(1))
(
A(2wk)B

′(2wk)−A
(
3
2wk

)
B′
(
3
2wk

))
= 1

2wk + o(wk).

Thus

|D| ≥ |D1|+ |D2| ≥ xk − 2wk + 1
2wk + o(wk).(2.23)

Now we derive a contradiction. Let

S = {a ∈ A : a ≤ xk}, T = {b ∈ B′ : b ≤ xk}, g(n) =
∑

(b,a)∈D
b−a=n

1.

Then, for all integers n,

f ′xk(n) = r(S, T, n), g(n) ≤ δ(S, T, n),

where r(S, T, n) and δ(S, T, n) are defined as in Lemma 1.2. By that lemma,( ∑
f ′xk

(n)≥1

(f ′xk(n)− 1)
)2

=
( ∑
r(S,T,n)≥1

(r(S, T, n)− 1)
)2

≥
∑

δ(S,T,n)≥1

(δ(S, T, n)− 1) ≥
∑

g(n)≥1

(g(n)− 1).

Noting that wk < b− a ≤ xk − wk for all (b, a) ∈ D, we get

(2.24)
∑

g(n)≥1

1 ≤
∑

wk<n≤xk−wk

1 = xk − 2wk.

It follows from (2.23) and (2.24) that∑
g(n)≥1

(g(n)− 1) =
∑

g(n)≥1

g(n)−
∑

g(n)≥1

1 = |D| −
∑

g(n)≥1

1

≥ xk − 2wk + 1
2wk + o(wk)− (xk − 2wk) = 1

2wk + o(wk).

Thus

(2.25)
∑

f ′xk
(n)≥1

(f ′xk(n)− 1) ≥
√

2

2

√
wk (1 + o(1)).

Since

n′
0∑

n=0

f ′xk(n) +

xk∑
n=n′

0+1

(f ′xk(n)− 1) +

2xk∑
n=xk+1

f ′xk(n)

=

2xk∑
n=0

f ′xk(n)− xk + n′0 = A(xk)B
′(xk)− xk + n′0,
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it follows that ∑
f ′xk

(n)≥1

(f ′xk(n)− 1) ≤ A(xk)B
′(xk)− xk + n′0.

Thus, by (2.13), A(xk) = A(wk) and the assumption on h, for all sufficiently
large integers k, we have∑

f ′xk
(n)≥1

(f ′xk(n)− 1) ≤ A(xk)B
′(xk)− xk + n′0

< h(A(xk)) + n′0 = h(A(wk)) + n′0 ≤
2

3

√
wk + n′0.

It follows from (2.25) that
√

2

2

√
wk(1 + o(1)) <

2

3

√
wk + n0

for all sufficiently large integers k, a contradiction.

This completes the proof of Theorem 2.1.

3. Additive complements with more than two sequences. Infinite
sequences A1, . . . , Ar of non-negative integers are called infinite additive
complements if their sum contains all sufficiently large integers.

It is easy to see that, for infinite additive complements A1, . . . , Ar, we
have

lim inf
x→∞

A1(x) · · ·Ar(x)

x
≥ 1.

Theorem 3.1. For infinite additive complements A1, . . . , Ar, if

lim sup
x→∞

A1(x) · · ·Ar(x)

x
≤ 1,

then, for any given M > 1, we have

A1(x) · · ·Ar(x)− x ≥
(

min

{
A1(x) · · ·Ar(x)

A1(x)
, . . . ,

A1(x) · · ·Ar(x)

Ar(x)

})M
for all sufficiently large integers x.

Proof. Given i with 1 ≤ i ≤ r, let A = Ai and

B = A1 + · · ·+Ai−1 +Ai+1 + · · ·+Ar

=
{ r∑
j=1, j 6=i

aj : aj ∈ Aj (1 ≤ j ≤ r, j 6= i)
}
.

Since A1, . . . , Ar are infinite additive complements, so are A and B. It is
clear that

B(x) ≤ A1(x) · · ·Ar(x)

Ai(x)
.
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Hence

lim sup
x→∞

A(x)B(x)

x
≤ lim sup

x→∞

A1(x) · · ·Ar(x)

x
≤ 1.

This implies that (0.1) holds. Since A,B are infinite additive complements,
we have

lim inf
x→∞

A(x)B(x)

x
≥ 1.

Thus

(3.1) lim
x→∞

A(x)B(x)

x
= 1.

By Lemma 1.1, either

lim
x→∞

A(2x)

A(x)
= 1 or lim

x→∞

B(2x)

B(x)
= 1.

By (3.1),

lim
x→∞

A(2x)B(2x)

A(x)B(x)
= lim

x→∞

A(2x)B(2x)

2x
lim
x→∞

2x

A(x)B(x)
= 2.

Thus, either

lim
x→∞

A(2x)

A(x)
= 1 or lim

x→∞

A(2x)

A(x)
= 2.

Hence, for every i,

lim
x→∞

Ai(2x)

Ai(x)
∈ {1, 2}.

Let

αi = lim
x→∞

Ai(2x)

Ai(x)
, i = 1, . . . , r.

Since A1, . . . , Ar are infinite additive complements and

lim sup
x→∞

A1(x) · · ·Ar(x)

x
≤ 1,

it follows that

(3.2) lim
x→∞

A1(x) · · ·Ar(x)

x
= 1.

Hence α1 · · ·αr = 2. Since αi ∈ {1, 2}, exactly one of the αi is 2. Without
loss of generality, we may assume that

α1 = · · · = αr−1 = 1, αr = 2.

Now, we take A = Ar and B = A1 + · · ·+Ar−1. Then

lim
x→∞

A(2x)

A(x)
= 2 and lim

x→∞

B(2x)

B(x)
= 1.
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So A(x) > B(x) for all x ≥ x0. By Theorem 0.2,

A(x)B(x)− x ≥ B(x)2M

for all sufficiently large x. It follows from (3.1) and (3.2) that

lim
x→∞

A1(x) · · ·Ar−1(x)

B(x)
= 1.

Thus there exists u0 ≥ x0 such that

B(x)2 ≥ A1(x) · · ·Ar−1(x), x ≥ u0.
Noting that B(x) ≤ A1(x) · · ·Ar−1(x), we arrive at

A1(x) · · ·Ar(x)− x ≥ A(x)B(x)− x ≥ B(x)2M

≥ (A1(x) · · ·Ar−1(x))M , x ≥ u0.
This completes the proof of Theorem 3.1.

4. Final remarks. We pose several problems for further research.

Problem 4.1. Is there a non-decreasing function l(x) with l(x) → ∞
as x→∞ such that, for infinite additive complements A, B, if (0.1) holds,
then

A(x)B(x)− x ≥ l(x)

for all sufficiently large integers x?

The following Problem 4.2 is a special case of Problem 4.1.

Problem 4.2. Is there a positive real number θ such that, for infinite
additive complements A, B, if (0.1) holds, then

A(x)B(x)− x ≥ xθ

for all sufficiently large integers x?

Problem 4.3. For each integer r ≥ 3, find infinite additive complements
A1, . . . , Ar such that

lim
x→∞

A1(x) · · ·Ar(x)

x
= 1.

For r = 2, Danzer [2] solved Problem 4.3, which gives a negative answer
to a conjecture of Erdős (see [3], [4]).

Chen and Fang [6], [8] proved that, for infinite additive complements
A,B, if

lim sup
x→∞

A(x)B(x)

x
< 3−

√
3 or lim sup

x→∞

A(x)B(x)

x
> 2,

then A(x)B(x)− x→∞ as x→∞. On the other hand, Chen and Fang [1]
proved that, for any ε > 0, there exist infinite additive complements A,B
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such that

2− ε < lim sup
x→∞

A(x)B(x)

x
< 2

and A(x)B(x)− x = 1 for infinitely many positive integers x.
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[3] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300.
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