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Modular embeddings and rigidity for Fuchsian groups

by

Robert A. Kucharczyk (Bonn)

1. Introduction. In 1968 George Mostow published his famous Rigid-
ity Theorem [20]: if M1 and M2 are two closed oriented hyperbolic manifolds
of dimension n ≥ 3 and f : π1(M1)→ π1(M2) is a group isomorphism, then
there exists a unique isometry M1 → M2 inducing f . This can be reformu-
lated as a statement about lattices in the orientation-preserving isometry
group PSO(1, n) of hyperbolic n-space Hn:

Theorem (Mostow). Let n ≥ 3 and let Γ1, Γ2 ⊂ PSO(1, n) be cocompact
lattices. Let f : Γ1 → Γ2 be an isomorphism of abstract groups. Then f is
the conjugation by some element of the full isometry group PO(1, n) of Hn,
in particular f extends to an algebraic automorphism of PSO(1, n).

This was later generalised by various authors; in particular, the condition
that Γj be cocompact can be weakened to having finite covolume (see [24]).
The condition that n 6= 2, however, is necessary: two-dimensional hyperbolic
manifolds are the same as hyperbolic Riemann surfaces, which are well-
known to admit deformations.

As a model for the hyperbolic plane take the upper half-plane H =
{τ ∈ C | Im τ > 0}, so its orientation-preserving isometry group becomes
identified with PSL(2,R) via Möbius transformations. In this article we
prove that a variant of Mostow’s Rigidity Theorem does hold in Isom+(H) =
PSL(2,R) if we restrict ourselves to a certain class of lattices for which
congruence subgroups are defined, and demand that the group isomorphism
preserve congruence subgroups.

We first state our result in the simpler case of arithmetic groups. Recall
that given a totally real number field k ⊂ R, a quaternion algebra B over k
which is split over the identity embedding k → R and ramified over all
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other infinite places of k, an order O ⊂ B and an isomorphism ϕ : B⊗kR→
M(2,R), we obtain a group homomorphism ϕ : O1 → PSL(2,R) whose image
is a lattice, where O1 is the group of units in O with reduced norm one.
A lattice Γ ⊂ PSL(2,R) is called arithmetic if Γ is commensurable to some
such ϕ(O1).

For a non-zero ideal n ⊂ ok we then define the principal congruence
subgroup

O1(n) = {b ∈ O1 | b− 1 ∈ n · O}.
If Γ contains a subgroup of finite index in ϕ(O1), we set Γ (n) = Γ∩ϕ(O1(n)),
and a subgroup of Γ is a congruence subgroup if it contains some Γ (n).

Theorem (Special case of Theorem A below). Let Γ1, Γ2 ⊂ PSL(2,R)
be arithmetic Fuchsian groups, and let f : Γ1 → Γ2 be an isomorphism of
abstract groups such that for every subgroup ∆ ⊆ Γ1 of finite index, ∆ is
a congruence subgroup of Γ1 if and only if f(∆) is a congruence subgroup
of Γ2. Then there exists some a ∈ PGL(2,R) such that f is the conjugation
by a. In particular, Γ2 = aΓ1a

−1.

Without the assumption about congruence subgroups the conclusion no
longer holds (see Remark 10.1).

Now both the notion of congruence subgroup and our result can be
extended to a larger class of Fuchsian groups. For a subgroup Γ ⊆ PSL(2,R)

denote its preimage in SL(2,R) by Γ̃ . A lattice Γ ⊂ PSL(2,R) is called
semiarithmetic if tr2 γ is a totally real algebraic integer for each γ ∈ Γ̃ ; this
notion is invariant under commensurability. It was introduced in [25], and
many classes of Fuchsian groups are semiarithmetic:

(i) Arithmetic lattices are semiarithmetic.
(ii) All Fuchsian triangle groups∆(p, q, r) are semiarithmetic. However,

they fall into infinitely many commensurability classes, only finitely
many of which are arithmetic (see [31]).

(iii) In [25] further examples of semiarithmetic groups which are not
arithmetic were constructed by giving explicit generators.

(iv) The theory of flat surfaces provides another construction of semi-
arithmetic groups. If X is a closed Riemann surface and ω is a
holomorphic one-form on X which is not identically zero, a simple
geometric construction yields the Veech group (1) SL(X,ω) which
is a discrete subgroup of SL(2,R). In certain cases the Veech group
is a lattice, and then its image in PSL(2,R) is a semiarithmetic
group by [17, Theorems 5.1, 5.2] and [19, Proposition 2.6]. Veech
groups are never cocompact (see [10, p. 509]), therefore a Veech

(1) The name first appeared in [9] but these groups were studied before from different
points of view (see [33]).
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group which is a lattice is arithmetic if and only if it is commen-
surable to SL(2,Z) (2). In [17] we find, for every real quadratic
number field k, a construction of a lattice Veech group contained
in SL(2, ok), which is therefore semiarithmetic but not arithmetic.

Examples (ii) and (iv) intersect: in [2, Theorem 6.12] it is proved that
every non-cocompact triangle group ∆(p, q,∞) is commensurable to some
Veech group. On the other hand, cocompact triangle groups can never be
Veech groups, and only finitely many of the examples in [17] are commen-
surable with triangle groups.

The generalisation of the notion of congruence subgroups to semiarith-
metic groups is a bit involved; we refer the reader to Section 4.

Now, the conclusion of Theorem A does not hold for general semi-
arithmetic groups; we need to impose one more condition, which is the
existence of a modular embedding : Let Γ ⊂ PSL(2,R) be a semiarith-
metic subgroup, and let k be the number field generated by all tr2 γ with
γ ∈ Γ̃ . Then for every embedding σ : k → R there exists a group embed-
ding iσ : Γ → PSL(2,R), unique up to conjugation in PGL(2,R), such that
tr2 iσ(γ) = σ(tr2 γ) for every γ ∈ Γ (see [25, Remark 4]). The original group

Γ is arithmetic precisely if no iσ(Γ ) for σ different from the identity embed-
ding contains a hyperbolic element. In general, let σ1, . . . , σr be those embed-
dings σ for which iσ(Γ ) contains a hyperbolic element. Then the coordinate-
wise embedding (iσ1 , . . . , iσr) : Γ → PSL(2,R)r maps Γ into an irreducible
arithmetic group Λ ⊂ PSL(2,R)r; for the precise construction see Section 7.

We note that if Γ is not already arithmetic itself, it is mapped into Λ
with Zariski-dense image of infinite index; such groups are called thin. This
is essentially due to S. Geninska [8, Proposition 2.1 and Corollary 2.2]; we
explain it below in Corollary 7.2.

Now Λ acts on Hr by coordinate-wise Möbius transformations, and a
modular embedding for Γ is then a holomorphic map F : H→ Hr equivariant
for Γ → Λ.

(i) If Γ is arithmetic, then r = 1 and Λ contains Γ as a finite index
subgroup. We may take F (τ) = τ as a modular embedding.

(ii) All Fuchsian triangle groups admit modular embeddings (see [5,
Theorem, p. 96]).

(iii) Most of the new examples of semiarithmetic groups in [25] do not
admit modular embeddings (see [25, Corollary 4]).

(iv) Veech groups which are lattices always admit modular embeddings
(see [19, Corollary 2.11]). This solves [25, Problem 1], which asks

(2) For a complete characterisation of (X,ω) whose Veech group is arithmetic see [9,
Theorem 4].
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whether every Fuchsian group admitting a modular embedding is
arithmetic or commensurable with a triangle group: there exist
Veech groups which are neither (3), but do admit modular em-
beddings.

More generally, we say Γ virtually admits a modular embedding if some
finite index subgroup of Γ admits one.

Theorem A. For j = 1, 2, let Γj ⊂ PSL(2,R) be semiarithmetic lattices
which virtually admit modular embeddings. Let f : Γ1 → Γ2 be an isomor-
phism of abstract groups such that for every subgroup ∆ ⊆ Γ1 of finite index,
∆ is a congruence subgroup of Γ1 if and only if f(∆) is a congruence sub-
group of Γ2. Then there exists a ∈ PGL(2,R) such that f is conjugation
by a. In particular, Γ2 = aΓ1a

−1.

This theorem will be proved in Section 8. It rests on the following re-
sult on congruence subgroups in semiarithmetic groups, which may be of
independent interest.

Theorem B. Let Γ ⊂ PSL(2,R) be a semiarithmetic lattice satisfying
the trace field condition (4) with trace field k. Then there exists a finite set
S(Γ ) of rational primes with the following properties:

(i) If p is a prime ideal in k not dividing any element of S(Γ ), then
Γ/Γ (p) ' PSL(2, ok/p).

(ii) If q is a rational prime power not divisible by any element of S(Γ )
and ∆ is a normal congruence subgroup of Γ with Γ/∆ ' PSL(2, q),
then there exists a unique prime ideal p of k of norm q with ∆ =
Γ (p).

Here, (i) is a combination of Proposition 4.5 and Lemma 5.1; (ii) is
Proposition 8.1.

In particular, the information which groups PSL(2, q) appear how of-
ten as congruence quotients determines the splitting behaviour of all but
finitely many primes in k (see Remark 8.2). On the other hand, allowing
non-congruence quotients we get many more finite groups. The collection
of all these finite groups will determine the abstract isomorphism type of a
Fuchsian lattice, but of course no more (see [4, Theorem 1.1]).

Outline. In Sections 2 and 3 we fix the notation and recall standard
results on the group PSL(2), both over the reals and over finite fields. In

(3) Almost all of McMullen’s genus two examples in [17] do the job: only finitely
many real quadratic fields appear as invariant trace fields of triangle groups, so if k is not
among them, then any lattice Veech group with trace field k cannot be commensurable
to a triangle group, and it cannot be arithmetic either since it is not cocompact.

(4) This is a technical condition which is always satisfied after passing to a finite index
subgroup (see Definition 4.1).
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Sections 4 and 5 we introduce semiarithmetic subgroups of PSL(2,R) and
study their congruence subgroups. The object of Section 6 is the deduc-
tion of a statement about PSL(2) from an analogous result for SL(2) by
Culler and Shalen [6, Proposition 1.5.2]: a finitely generated subgroup of
PSL(2,R) is determined up to conjugacy by its squared traces. This allows
us to work with numbers instead of matrices in the remainder of the arti-
cle. In Section 7 we formally define modular embeddings and discuss some
consequences of their existence. Then in Section 8 the previous observations
are used to prove Theorem A and the hard part of Theorem B. Section 9
presents an example with two arithmetic groups, sharpening the statement
of Theorem A considerably in this special case. Finally Section 10 discusses
some possible and impossible generalisations.

2. Traces on PSL(2) and Möbius transformations. For every ring
A we set PGL(2, A) = GL(2, A)/A× where A× is embedded by means of
scalar matrices. We also set PSL(2, A) = SL(2, A)/{±1}. There is an obvious
homomorphism PSL(2, A)→ PGL(2, A), but in general it is neither injective
nor surjective.

Let k be a field. The determinant homomorphism GL(2, k) → k× de-
scends to a homomorphism PGL(2, k) → k×/(k×)2, and we obtain a short
exact sequence

(1) 1→ PSL(2, k)→ PGL(2, k)→ k×/(k×)2 → 1.

In particular, PSL(2,C) and PGL(2,C) are naturally isomorphic whereas
for k = R or a finite field of odd characteristic, PSL(2, k) becomes identified
with an index two normal subgroup of PGL(2, k).

Note that since PSL(2, k) is a normal subgroup of PGL(2, k), the latter
operates faithfully on the former by conjugation. Since tr(−g) = −tr g, the
squared trace map tr2 : SL(2, k)→ k descends to a map

tr2 : PSL(2, k)→ k, {g,−g} 7→ (tr g)2.

For k = R we also define

|tr| : PSL(2,R)→ R, {g,−g} 7→ |tr g|.
Let H = {τ ∈ C | Im τ > 0} be the upper half-plane. The group SL(2,R)
operates on H in the well-known way by Möbius transformations, descending
to a faithful action by PSL(2,R). This in fact identifies PSL(2,R) with both
the group of holomorphic automorphisms and that of orientation-preserving
isometries (for the Poincaré metric) of H. Elements of PSL(2,R) can be
classified by their behaviour on H (see [11, Section 1.3]):

Proposition 2.1. Let ±1 6= g ∈ PSL(2,R). Then g belongs to exactly
one of the following classes:
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(i) g is elliptic: it has a unique fixed point in H, and tr2 g < 4.
(ii) g is parabolic: it has a unique fixed point in P1(R), but not in H.

Its squared trace satisfies tr2 g = 4.
(iii) g is hyperbolic: it has two distinct fixed points in P1(R), one of

them repelling and one of them attracting, but no fixed points in H.
Its squared trace satisfies tr2 g > 4.

3. The finite groups PSL(2, q). Next we study PSL(2) over finite
fields. With Fq being the field of q elements we also write PSL(2, q) instead
of PSL(2,Fq).

Proposition 3.1. If q > 3 is an odd prime power, then PSL(2, q) is a
simple group of order 1

2q(q
2−1). Furthermore PSL(2, q) ' PSL(2, q′) if and

only if q = q′.

Proof. The simplicity of PSL(2, q) is a well-known fact, see e.g. [34, Sec-
tion 3.3.2]. The order of PSL(2, q) is easily calculated using (1), for instance.
The function q 7→ 1

2q(q
2−1) is strictly increasing on N, therefore if PSL(2, q)

and PSL(2, q′) have the same orders, then q = q′.

As remarked in Section 2, PGL(2, q) operates by conjugation on PSL(2, q).
Furthermore the Frobenius automorphism ϕ : Fq → Fq defined by ϕ(x) = xp,
where p is the prime of which q is a power, defines an automorphism ϕ of
PSL(2, q). The following is also well-known (see e.g. [34, Theorem 3.2(ii)]):

Proposition 3.2. The automorphism group of PSL(2, q) is generated
by PGL(2, q) and ϕ.

In particular if q = p is a prime, then every automorphism of PSL(2, p)
is the restriction of an inner automorphism of PGL(2, p), and the map
tr2 : PSL(2, p) → Fp is invariant under all automorphisms. So the follow-
ing definition works:

Definition 3.3. Let G be a finite group which is abstractly isomorphic
to some PSL(2, p) for an odd prime p. Then the map tr2G : G→ Fp is defined
as follows: choose some isomorphism α : G → PSL(2, p), then set tr2G =
tr2 ◦ α.

If p is replaced by a prime power q, the corresponding map on G is
only well-defined up to automorphisms of Fq, i.e. we may define a map
tr2G : G→ Fq/AutFq.

Lemma 3.4. Let n ∈ N and let q1, . . . , qn, q
′ be odd prime powers. Let

β : G = PSL(2, q1)× · · · × PSL(2, qn)→ PSL(2, q′)

be a group epimorphism. Then there is a 1 ≤ j ≤ n such that q′ = qj and
for some automorphism α of PSL(2, q′) we can write β = α ◦prj, where prj
is the projection on the jth factor.
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Proof. By the Jordan–Hölder Theorem, the only simple quotients of G
are the PSL(2, qj), so q′ = qj for some j.

We now proceed by induction on n. For n = 1 the lemma is trivial, so
assume the lemma has been proved for n. Let β : G → PSL(2, q′) be an
epimorphism where G has n + 1 factors. For cardinality reasons it cannot
be injective, so there exists some g ∈ G r {1} with β(g) = 1. Write g =
(g1, . . . , gn+1). Then gj 6= 1 for some j; for simplicity of notation assume that
j = n+ 1. Since PSL(2, qn+1) has trivial centre, there exists some hn+1 ∈ G
which does not commute with gn+1. Then set

h = (1, . . . , 1, hn+1) ∈ G
and compute

1 = β(h)β(h−1) = β(ghg−1h−1) = β(1, . . . , 1, gn+1hn+1g
−1
n+1h

−1
n+1)

using β(g) = 1. That is, β restricted to the (n + 1)st factor has non-trivial
kernel. Since that factor is simple, the restriction of β to the (n+1)st factor
has to be trivial, so β factors through the projection onto the first n factors,
hence (by induction hypothesis) onto one of them.

4. Semiarithmetic groups and their congruence subgroups. Let
Γ ⊂ PSL(2,R) be a lattice and let Γ̃ be its preimage in SL(2,R). By Γ (2)

we denote the subgroup of Γ generated by all γ2 with γ ∈ Γ . Since Γ is
finitely generated, Γ (2) is then a normal subgroup of finite index in Γ .

Definition 4.1. The trace field of Γ is the field Q(trΓ ) ⊂ R generated
by all tr γ with γ ∈ Γ̃ . The invariant trace field of Γ is the trace field of Γ (2).

A lattice Γ satisfies the trace field condition if its trace field and its
invariant trace field agree.

Clearly the trace field contains the invariant trace field, but the two are
not always equal. As the name suggests, the invariant trace field is the more
useful invariant: commensurable lattices have the same invariant trace field,
see [14, Theorem 3.3.4], but not necessarily the same trace field. Hence, if
Γ is any lattice, then Γ (2) satisfies the trace field condition. Therefore any
lattice has a finite index normal sublattice which satisfies the trace field
condition.

Definition 4.2. A lattice Γ ⊂ PSL(2,R) is called semiarithmetic if its
invariant trace field is a totally real number field and every trace tr γ for
γ ∈ Γ̃ is an algebraic integer (5).

Being semiarithmetic is stable under commensurability, therefore every
semiarithmetic lattice contains a semiarithmetic lattice satisfying the trace

(5) It follows from [14, Lemma 3.5.6] that this is equivalent to the definition given in
the introduction.
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field condition. For the following constructions let Γ be a semiarithmetic
lattice satisfying the trace field condition, and let k = Q(tr γ). Then the
k-vector subspace B = k[Γ ] of M(2,R) generated by Γ̃ is in fact a k-sub-
algebra, more precisely a quaternion algebra over k. The ok-subalgebra ok[Γ̃ ]
of B generated by Γ̃ is an order in B, though not necessarily a maximal one.
We choose a maximal order O ⊇ ok[Γ̃ ].

If O1 denotes the subgroup of O× consisting of elements with reduced
norm one, Γ̃ becomes a subgroup of O1. Also write PO1 = O1/{±1} so that
Γ is a subgroup of PO1.

Proposition 4.3. Let Γ ⊂ PSL(2,R) be a semiarithmetic lattice satis-
fying the trace field condition. Then the following are equivalent:

(i) Γ is arithmetic.
(ii) Let k = Q(trΓ ) ⊂ R. Then for every embedding σ : k → R other

than the identity inclusion and every γ ∈ Γ̃ one has |σ(tr γ)| ≤ 2.
(iii) For every embedding σ : k → R other than the identity inclusion,

B ⊗k,σ R is isomorphic to Hamilton’s quaternions H.
(iv) PO1 is a discrete subgroup of PSL(2,R).
(v) The index (PO1 : Γ ) is finite.

Proof. The equivalence (i)⇔(ii) is the main result in [30]; the other
equivalences follow from the explicit classification of arithmetic lattices in
PSL(2,R) (see e.g. [11, Chapter 5] or [14, Chapter 8]).

Now we discuss congruence subgroups. For an elementary definition, let
Γ ⊂ PSL(2,R) be a semiarithmetic lattice satisfying the trace field condi-
tion, and let k and O be as above. Then every non-zero ideal a of ok defines
a subgroup

Γ̃ (a) = {γ ∈ Γ̃ | γ − 1 ∈ a · O}
and its image Γ (a) in Γ , called the principal congruence subgroup of level a.
A congruence subgroup of Γ is then a subgroup containing some principal
congruence subgroup. Similarly we define principal congruence subgroups
O1(a) and congruence subgroups of O1.

These groups can also be defined more abstractly using algebraic groups:
there is a canonical linear algebraic group H over k with H(k) = B1; we may
define it functorially by setting H(A) = (B ⊗k A)1 for every k-algebra A.
Then H is a twisted form of SL(2)k. By Weil restriction of scalars we obtain
an algebraic group G = Resk/QH with a canonical identification G(Q) =

H(k) = B1. Then G is a twisted form of SL(2)dQ where d = [k : Q]; in

particular G(C) is isomorphic to SL(2,C)d.
Choosing a faithful representation G→ GL(n), we can define a congru-

ence subgroup in G(Q) to be one that contains the preimage of a congruence
subgroup of GL(n,Z) as a finite index subgroup. This notion of congruence
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subgroup is independent of the representation G→ GL(n) (see [18, Proposi-
tion 4.1]); that it is equivalent to the more elementary one given before follows
by taking the representation of G→ GL(4d) by left multiplication on B, the
latter considered as a 4d-dimensional Q-vector space with the lattice O.

Let Af be the ring of finite adeles of Q, and endow G(Af ) with the adelic

topology. Similarly let Afk be the ring of finite adeles of k; then there is a

canonical isomorphism Af⊗Qk = Afk inducing G(Af ) = H(Afk). The closure

of O1 in G(Af ) can be identified with the completion of O1 with respect
to all congruence subgroups; equivalently, with the group of elements of
reduced norm one in the profinite completion of O. Therefore we denote it
by Ô1. It is a maximal compact open subgroup of G(Af ).

There is a canonical bijection between open subgroups of Ô1 and con-
gruence subgroups of O1: with a congruence subgroup of O1 we associate
its closure in G(Af ), and with an open subgroup of Ô1 we associate its
intersection with O1. For the proof see again [18, Proposition 4.1].

Proposition 4.4 (Strong approximation for semiarithmetic groups).

The closure of Γ̃ in G(Af ) = H(Afk) is open.

Proof. First we claim that Γ̃ is Zariski-dense in G. It suffices to show
that Γ̃ is Zariski-dense in G(C) ' SL(2,C)d, and the proof of an analo-
gous but more complicated statement over the reals [8, Proposition 2.1 and
Corollary 2.2] carries over mutatis mutandis.

Then we use a special case of a result of M. Nori [21, Theorem 5.4] (see
also [16]): if G is an algebraic group over Q such that G(C) is connected
and simply connected (which is the case for our G since π1(SL(2,C)) =
π1(SU(2)) = π1(S

3) = 1), and Γ is a finitely generated Zariski-dense sub-
group of G(Q) contained in some arithmetic subgroup of G, then the closure
of Γ in G(Af ) is open.

Proposition 4.5. There exists a non-zero ideal m of ok, depending
on Γ , such that for every ideal a of ok prime to m the homomorphism
Γ̃ ↪→ O1 � O1/O1(a) is surjective, i.e. the canonical homomorphism

Γ/Γ (a)→ PO1/PO1(a)

is an isomorphism of finite groups.

The proof uses several results that will be used later on, so we mention
them separately.

Theorem 4.6 (Strong approximation for quaternion algebras). G(Q) =

H(k) is dense in G(Af ) = H(Afk) (6).

(6) Usually this result is phrased differently: if A = Af × R denotes the full adele
ring, then G(Q) · G(R) is dense in G(A). But the latter is canonically isomorphic to
G(Af ) ×G(R), which shows the equivalence to our formulation.
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For the proof see e.g. [23, Theorem 7.12].

We shall now investigate the quotient groups O1/O1(a). These are best
understood locally: if p is a finite prime of k, we set Op = O ⊗ok op. We can
then consider the group O1

p of its elements of norm one, and its congruence

subgroups O1
p (p̂r). Recall that Op is a maximal order in Bp.

Proposition 4.7. Let a be an ideal of k with prime factorisation a =
pr11 · · · prnn . Then the canonical homomorphism

(2) O1/O1(a)→
n∏
j=1

O1
pj/O

1
pj (p̂

rj
j )

is an isomorphism of groups.

Proof. Injectivity is easy, so we only show surjectivity. We use the de-
scription of H(Afk) as the restricted direct product of the completions B1

l =
(B ⊗k kl)1, restricted with respect to the compact subgroups O1

l . For j =
1, . . . , n take an element xj ∈ O1

pj . The Strong Approximation Theorem

furnishes us with an element β ∈ H(k) = B1 with the following properties:

• For j = 1, . . . , n, β considered as an element of B1
pj is congruent to xj

modulo O1
pj (p̂

rj
j ) (note that the latter is an open subgroup of B1

pj ).

• For each finite prime l different from all pj ’s, β is in O1
l .

Then β ∈ O1, and its class on the left hand side of (2) maps to (x1, . . . , xn).

Note that our proof also shows that the map

O1/O1(a)→
n∏
j=1

O1/O1(p
rj
j )

is an isomorphism.

Corollary 4.8. The canonical homomorphism

PO1/PO1(a)→
n∏
j=1

PO1/PO1(p
rj
j )

is an epimorphism whose kernel is isomorphic to (Z/2Z)d for some d < n.

Proof. The homomorphism

O1/O1(p
rj
j )→ PO1/PO1(p

rj
j )

is always surjective, and it is injective precisely when p
rj
j divides (2), other-

wise it has kernel isomorphic to Z/2Z. Similarly the kernel of O1/O1(a)→
PO1/PO1(a) is either trivial or Z/2Z. So the corollary follows from the
remark preceding it.
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Corollary 4.9. Let ∆ ⊆ O1 be a congruence subgroup containing
O1(m) for some ideal m of k. Let a be an ideal of k which is coprime to m.
Then the composition

∆ ↪→ O1 � O1/O1(a)

is surjective.

Proof. This is equivalent to the statement O1(m) ·O1(a) = O1, and this
in turn follows from the isomorphism of finite groups

O1/(O1(m) ∩ O1(a))→ O1/O1(m)× O1/O1(a).

Proof of Proposition 4.5. By Proposition 4.4 there exists some ideal m

of k with O1(m) ⊆ Γ̃ , where the latter denotes the closure of Γ̃ in Ô1 ⊂
G(Af ). This does the job by Corollary 4.9.

Corollary 4.10. Let a and b be coprime ideals of k which are both
prime to 2. Then the canonical homomorphism

PO1(a)/PO1(ab)→ PO1/PO1(b)

is an isomorphism.

5. Congruence quotients of semiarithmetic groups. Our next step
is to determine the quotients on the right hand side of (2). This is done by
distinguishing between the ramified and the unramified case. To simplify
notation, let K be a p-adic field with ring of integers oK and prime ideal
p = (π). Let q = pf be the cardinality of the residue class field κ = oK/p.
Let B be an unramified quaternion algebra over K, and let O ⊂ B be a
maximal order. We may assume that B = M(2,K) and O = M(2, oK); then
O1 = SL(2, oK), and O1(p) is the kernel of the reduction map SL(2, oK)→
SL(2, κ).

Lemma 5.1. Let r ≥ 1. The reduction map SL(2, oK)→ SL(2, oK/p
r) is

surjective and thus induces an isomorphism O1/O1(pr)→ SL(2, oK/p
r). In

particular O1/O1(p) is isomorphic to SL(2, q).

Proof. Let

γ =

(
a b

c d

)
∈ SL(2, oK/p

r)

and lift γ arbitrarily to a matrix

γ =

(
a b

c d

)
∈ GL(2, oK).
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The determinant δ = det γ is an element of 1+pr, hence so is its inverse 1/δ.
Therefore

γ′ =

(
a/δ b/δ

c d

)
∈ SL(2, oK)

still reduces to γ.

Lemma 5.2. Let r ≥ 1. Under the assumptions as before, the quotient
O1(pr)/O1(pr+1) is isomorphic to (Z/pZ)3f .

Proof. We consider the map

(O/pO)0 → SL(2, oK/p
r+1), [A] 7→ [1 + πrA].

Here the left hand side denotes the subgroup of those elements of O/pO =
M(2, κ) that have trace≡ 0 mod p. Note det(1+πrA) ≡ 1+πr trA mod pr+1,
so the map is indeed well-defined. It is an injective group homomorphism,
and its image is precisely the image of O1(pr) in SL(2, oK/p

r+1), which is
isomorphic to O1(pr)/O1(pr+1).

Now we turn to the ramified case. We use the explicit description of B
and O given in [14, Section 6.4]. Let L/K be the unique unramified quadratic
extension. Then B is up to isomorphism given by

B =

{(
a b

πb′ a′

) ∣∣∣∣ a, b ∈ L},
where a 7→ a′ is the non-trivial element of Gal(L/K). This contains a unique
maximal order

O =

{(
a b

πb′ a′

) ∣∣∣∣ a, b ∈ oL

}
,

and O has a unique maximal two-sided ideal

M =

(
0 1

π 0

)
O =

{(
πa b

πb′ πa′

) ∣∣∣∣ a, b ∈ oL

}
.

It satisfies M 2 = pO. We now define congruence subgroups O1(M r) =
O1 ∩ (1 + M r), so that O1(pr) = O1(M 2r).

Lemma 5.3. The quotient O1/O1(M ) is a cyclic group of order q + 1.

Proof. Since L/K is unramified, the quotient λ = oL/πoL is a finite field
of order q2. We consider the map

O1/O1(M )→ λ×,

[(
a b

πb′ a′

)]
7→ a mod π.
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This is easily seen to be an injective group homomorphism whose image is
the kernel of the norm map Nλ/κ. That norm map is surjective to κ×, so its

kernel has order (q2 − 1)/(q − 1) = q + 1.

Lemma 5.4. Let r ≥ 1. Then O1(M r)/O1(M r+1) is isomorphic to the
additive group of κ.

Proof. We consider the injective group homomorphisms

O1(M 2r)/O1(M 2r+1)→ λ,

[(
a b

πb′ a′

)]
7→ a− 1

πr
mod π,

O1(M 2r−1)/O1(M 2r)→ λ,

[(
a b

πb′ a′

)]
7→ b

πr−1
mod π.

The image is in both cases the kernel of the trace map trλ/κ.

We summarise the results, reformulated for number fields:

Corollary 5.5. Let k be a number field and B a quaternion algebra
over k, unramified over at least one infinite place of k. Let O ⊂ B be a
maximal order, and let p be a prime of k of norm q = pf . Let r ≥ 1 and
H = O1/O1(pr).

(i) If B is ramified at p, then H is solvable; the prime numbers appearing
as orders in its composition series are p and the prime divisors of
q + 1.

(ii) If B is unramified at p and p - 6, then H is not solvable. Its com-
position factors are: once Z/2Z, once PSL(2, q) and 3f(r− 1) times
Z/pZ.

In case (ii) for p | 6 we have to replace PSL(2, q), which is not necessarily
simple then, by its composition factors.

6. Characters for Fuchsian groups. In this section we prove a cri-
terion for two isomorphic lattices in PSL(2,R) to be conjugate:

Theorem 6.1. Let Γ be a group, and for j = 1, 2 let %j : Γ → PSL(2,R)
be an injective group homomorphism such that %j(Γ ) is a lattice. Let ∆ ⊆ Γ
be a finite index subgroup, and assume that

(3) tr2 %1(γ) = tr2 %2(γ) for all γ ∈ ∆.

Then there exists a unique a ∈ PGL(2,R) such that %2(γ) = a%1(γ)a−1 for
all γ ∈ Γ .

The proof of Theorem 6.1 rests on the following result, see [6, Proposi-
tion 1.5.2], as well as on subsequent elementary lemmas.
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Theorem 6.2 (Culler–Shalen). Let %1, %2 : Γ → SL(2,C) be two repre-
sentations such that

(4) tr %1(γ) = tr %2(γ) for every γ ∈ Γ,
and assume that %1 is irreducible. Then there exists a ∈ SL(2,C), unique up
to sign, such that %2(γ) = a%1(γ)a−1 for every γ ∈ Γ .

Lemma 6.3. Let g ∈ PSL(2,R), and let Σ ⊂ PSL(2,R) be a group
generated by two hyperbolic elements without common fixed points. Then
there exists s ∈ Σ with sg hyperbolic.

Proof. Lift g to an element G ∈ SL(2,R). First we will show that there
exists some S ∈ Σ̃ with tr(SG) 6= 0.

Assume, on the contrary, that tr(SG) = 0 for all S ∈ Σ̃. Choose two
hyperbolic elements S1, S2 ∈ Σ̃ without common fixed points; without loss
of generality we may assume that

S1 =

(
λ 0

0 λ−1

)
, S2 =

(
w x

y z

)
, G =

(
a b

c d

)
for some λ > 1 and xy 6= 0. Then

λa+ λ−1d = tr(S1G) = 0 = trG = a+ d,

hence a = d = 0 and

G =

(
0 b

c 0

)
, bc = −detG = −1, so b, c 6= 0.

But then

cx+ by = tr(S2G) = 0 = tr(S1S2G) = λcx+ λ−1by,

hence cx = by = 0; however, we know that b, c, x, y 6= 0, a contradiction.
So there exists some S ∈ Σ̃ with tr(SG) 6= 0; without loss of generality

we assume that already trG 6= 0. Take some arbitrary hyperbolic T ∈ Σ̃;
by the elementary equation

(5) tr(AB) + tr(AB−1) = tr(A) · tr(B) for all A,B ∈ SL(2,C)

we then have

|tr(TNG)|+ |tr(T−NG)| ≥ |tr(TNG) + tr(T−NG)| = |tr(TN ) tr(G)|.
But the right hand side goes to ∞ as N →∞, so for sufficiently large N , at
least one of |tr(TNG)| and |tr(T−NG)| must be larger than 2.

Lemma 6.4. Let Γ ⊂ PSL(2,R) be a lattice. Then there exists a finite
generating system of Γ only consisting of hyperbolic elements.

Proof. Assume that Γ is generated by g1, . . . , gn. By [11, Exercise 2.13],
Γ contains two hyperbolic elements h1, h2 without common fixed points; let
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them generate the group S. For each 1 ≤ j ≤ n choose some sj ∈ S with
sjgj hyperbolic. Then Γ is generated by the hyperbolic elements h1, h2,
s1g1, . . . , sngn.

Lemma 6.5. Let a ∈ SL(2,C), and let Γ ⊂ SL(2,R) be a lattice with
aΓa−1 ⊂ SL(2,R). Then a ∈ C× ·GL(2,R).

Proof. As Γ is Zariski-dense in SL(2,R), we may deduce that aSL(2,R)a−1

⊆ SL(2,R). The R-vector subspace of M(2,C) generated by SL(2,R) is
M(2,R), so aM(2,R)a−1 = M(2,R). By the Skolem–Noether Theorem, the
automorphism g 7→ aga−1 of M(2,R) has to be an inner automorphism, i.e.
there exists b ∈ GL(2,R) with aga−1 = bgb−1 for all g ∈ M(2,R), and hence,
by linear extension, also for all g ∈ M(2,C). But this means that ba−1 is in
the centre of M(2,C), which is C×.

Proof of Theorem 6.1. Without loss of generality we may assume that ∆
is torsion-free by Selberg’s Lemma [26, Lemma 8], hence it has a presentation

∆ = 〈g1, . . . , gm | [g1, gn+1][g2, gn+2] · · · [gn, g2n] = 1〉 with m = 2n

(in the cocompact case), or is free on some generators g1, . . . , gm (otherwise).
By [27, Theorem 4.1] each %j |∆ can be lifted to representations %̃j : ∆ →
SL(2,R); furthermore again by that theorem we can arbitrarily prescribe
the sign of each lift of %j(gi), so we may assume that

(6) tr %̃1(gi) = tr %̃2(gi) for all 1 ≤ i ≤ m.
More generally,

tr %̃1(γ) = ε(γ) · tr %̃2(γ) for all γ ∈ ∆,
where ε is some function ∆→ {±1}. Note that ε is uniquely determined by
this equation because the traces cannot be zero since elements of %j(∆) are
not elliptic. Furthermore ε(gi) = 1 for every generator gi by (6).

We now show that ε is identically 1. The crucial step is the following
implication:

(7) If ε(γ) = ε(δ) = 1, then ε(γδ) = ε(γδ−1) = 1.

So assume that ε(γ) = ε(δ) = 1. From (5) we deduce

(8) ε(γδ) tr %̃1(γδ) + ε(γδ−1) tr %̃1(γδ
−1) = tr %̃2(γδ) + tr %̃2(γδ

−1)

= tr %̃2(γ) · tr %̃2(δ) = tr %̃1(γ) · tr %̃1(δ) = tr %̃1(γδ) + tr %̃1(γδ
−1).

If ε(γδ) and ε(γδ−1) were both negative, (8) would entail tr %̃2(γ) · tr %̃2(δ)
= 0, which is absurd because∆ does not contain elliptic elements. If ε(γδ) = 1
and ε(γδ−1) = −1, then tr %̃2(γδ

−1) = 0, which is again absurd; the other
mixed case is ruled out in an analogous way. This proves (7).

Now we can prove that ε(γ) = 1 for every γ ∈ ∆ by using induction
on the word length `(γ): this is the number of factors g±1j needed to obtain
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γ as a product. If `(γ) = 1 then γ = g±1j ; since ε(γ) = ε(γ−1), this must
be equal to ε(gj) = 1. If ε(γ) = 1 for all γ with `(γ) ≤ n, we may use (7)
and the trivial identity ε(γ−1) = ε(γ) to show the statement for all γ with
`(γ) ≤ n+ 1. Therefore by induction, ε is identically 1, hence

tr %̃1(γ) = tr %̃2(γ) for all γ ∈ ∆.

By Theorem 6.2 this means that %̃1 is conjugate to %̃2 within SL(2,C); but
since all images are real, the conjugation must be possible within GL(2,R)
by Lemma 6.5. This in turn means %1|∆ and %2|∆ are conjugate in PGL(2,R).

We need to extend this to the entire group Γ . Without loss of generality
we may assume that %1|∆ = %2|∆. By Lemma 6.4 there exists a generating
system γ1, . . . , γm of Γ , not necessarily related in any way to that of ∆, such
that all %1(γj) are hyperbolic. But some power of each γj is contained in ∆,
and hence %1(γj)

N = %2(γj)
N . Under the assumptions on γj this entails

%1(γj) = %2(γj), that is, %1 = %2.

7. Modular embeddings. Let once again Γ ⊂ PSL(2,R) be a semi-
arithmetic lattice satisfying the trace field condition, with trace field k,
quaternion algebra B, maximal order O and algebraic group G = Resk/QH.

As explained above, Γ is a subgroup of the arithmetic group PO1. Now that
latter group naturally lives on the symmetric space of G, i.e. on G(R)/K for
a maximal compact subgroupK. This space can be described explicitly as Hr

where H is the upper half-plane and r ≤ d = [k : Q]. Let σ1, . . . , σd : k → R
be the field embeddings, where σ1 is the identity embedding. We may also
assume that the quaternion algebra B ⊗k,σi R is isomorphic to M(2,R) for
1 ≤ i ≤ r and to H for r < i ≤ d.

For each 1 ≤ i ≤ r we choose an isomorphism αi : B ⊗k,σi R→ M(2,R).
We obtain an embedding

α : O1 ↪→ SL(2,R)r, x 7→ (α1(x), . . . , αr(x)),

descending to an embedding α : PO1 ↪→ PSL(2,R)r. We denote the image
by Λ = α(PO1).

Theorem 7.1. Λ is an irreducible arithmetic lattice in PSL(2,R)r.

For the proof see e.g. [28].

Note that α(Γ ) becomes a subgroup of Λ. It has finite index precisely if
Γ is already arithmetic; in every case α(Γ ) is a Zariski-dense subgroup of Λ
by the proof of Proposition 4.4. Zariski-dense subgroups of infinite index in
arithmetic groups are called thin, and so we have shown:

Corollary 7.2. If Γ is not arithmetic itself, the embedding α : Γ → Λ
realises Γ as a thin group.
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Let PSL(2,R)r operate by component-wise Möbius transformations
on Hr; the induced action of Λ on Hr is properly discontinuous and has
a quotient of finite volume. This motivates the following definition:

Definition 7.3. A modular embedding of Γ is a holomorphic embedding
F : H→ Hr such that

F (γτ) = α(γ)F (τ)

for every γ ∈ Γ and every τ ∈ H.

The following result which will be used later on is [25, Corollary 5]:

Proposition 7.4. Let Γ ⊂ PSL(2,R) be a semiarithmetic group which
satisfies the trace field property and admits a modular embedding, and let
k = Q(trΓ ). Let γ ∈ Γ̃ be hyperbolic and let σ : k → R be an embedding
which is not the identity inclusion. Then |σ(tr γ)| < |tr γ|.

Note that if Γ is an arithmetic group, then even |σ(tr γ)| < 2 by Propo-
sition 4.3.

8. Congruence rigidity. Let Γ ⊂ PSL(2,R) be a semiarithmetic lat-
tice satisfying the trace field condition, with trace field k = Q(trΓ ). Let
B = k[Γ̃ ] be the associated quaternion algebra and G the algebraic group
over Q with G(Q) = B1. Let O ⊂ B be a maximal order containing Γ̃ , and
let m ⊂ ok be such that a finite index subgroup of Γ is adelically dense in
PO1(m); in particular, m satisfies the conclusion of Proposition 4.5.

For the statement of the next proposition, we need to introduce some
finite sets of rational primes:

(i) Let m = lr11 · · · lrnn be the prime factorisation of m, and let `j be
the norm of the prime ideal lj . Then S(m) denotes the set of all
rational primes diving some |PSL(2, `j)| (this includes the primes
dividing `j or `j +1). Note that if m′ is an ideal which has the same
prime divisors as m, and if ` is a rational prime dividing the order
of PO1/PO1(m′), then ` ∈ S(m).

(ii) S(6) is the set consisting of 2, 3 and all prime divisors of orders of
PSL(2, q) where q is the norm of a prime ideal p in k with p | 6.

(iii) S(B) is the set of all rational primes that lie below those finite
primes of k in which B is ramified.

Then we set S(Γ ) = S(m) ∪ S(6) ∪ S(B).

Proposition 8.1. Let Γ be as above, and let q = pf be an odd prime
power which is prime to all primes in S(Γ ). Let ∆ ⊂ Γ be a normal congru-
ence subgroup such that Γ/∆ ' PSL(2, q). Then there exists a unique prime
p of norm q in k such that ∆ = Γ (p).
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Proof. There exists an ideal n such that ∆ ⊇ Γ (n) and a finite index
subgroup of ∆ is adelically dense in PO1(n). We may assume that m di-
vides n. Write n = n′ ·nm with n′ coprime to m, and nm having the same prime
divisors as m; then Γ also contains a subgroup which is adelically dense in
PO1(nm). By Proposition 4.5 this entails that Γ surjects onto PO1/PO1(n′).

Denote the quotient map modulo ∆ by

π : Γ → PSL(2, q).

Note that π is continuous in the adelic topology on Γ since it vanishes
on Γ (n).

Now Γ (n′) = Γ ∩ PO1(n′) is a normal subgroup of Γ , hence its image
under π is a normal subgroup of PSL(2, q). Since that group is simple, the
image can only be PSL(2, q) or the trivial group. Assume it were the entire
group; then in the sequence

PSL(2, q) � Γ (n′)/Γ (n) ↪→ PO1(n′)/PO1(n) ' PO1/PO1(nm)

(where the isomorphism is by Corollary 4.10) the order of the left hand side
would divide the order of the right hand side. But the former is divisible
by p, the latter only by primes in S(Γ ). This is a contradiction, hence the
image of Γ (n′) under π is the trivial group. In other words,

∆ ⊇ Γ (n′).

This implies that π descends to an epimorphism

π : Γ/Γ (n′) � PSL(2, q).

By Proposition 4.5 the inclusion Γ ⊆ PO1 induces an isomorphism

α : Γ/Γ (n′)
'→ PO1/PO1(n′).

So by composition we obtain an epimorphism π ◦ α−1 : PO1/PO1(n′) �
PSL(2, q).

Let n′ = pr11 · · · prnn with distinct prime ideals pj , and let rad(n′) =
p1 · · · pn. Then PO1(rad(n′))/PO1(n′) is a solvable normal subgroup of
PO1/PO1(n′) by Lemma 5.2, so its image by π ◦ α−1 has to be a solv-
able normal subgroup of PSL(2, q), i.e. trivial. Therefore π ◦ α−1 factors
through PO1/PO1(rad(n′)); we summarise this in a diagram:

(9)

Γ/Γ (n′)
'
α
//

π
'' ''

PO1/PO1(n′) // //

����

PO1/PO1(rad(n′))

uuuu

PSL(2, q)

Now the rightmost entry projects onto

(10) PO1/PO1(p1)× · · · × PO1/PO1(pn),
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and by Corollary 4.8 the kernel of this projection is an abelian normal sub-
group, which is therefore mapped to the identity element by the dashed
arrow in (9). Hence that dashed arrow is defined on (10); by Lemma 3.4 it
actually has to factor through the projection onto one of them, composed
with an isomorphism. We hence obtain

Γ/Γ (n′)
'
α
//

π
'' ''

PO1/PO1(n′) // //

����

PO1/PO1(pj)

'
vv

PSL(2, q)

for some 1 ≤ j ≤ n. We may shorten this to

(11)

Γ/Γ (pj)
'
α′

//

π′
&& &&

PO1/PO1(pj)

'
ww

PSL(2, q)

with α′ again induced by the inclusion Γ ⊆ PO1. In this diagram π′ is
obviously an isomorphism, therefore ∆ = kerπ is equal to Γ (pj). The dashed
isomorphism in (11) shows that the norm of pj is q.

Remark 8.2. We note that this proposition enables us to reconstruct the
splitting behaviour of almost all primes in k from Γ and its congruence sub-
groups: Let p /∈ S(Γ ) be a rational prime in Γ . Then there exist only finitely
many normal congruence subgroups ∆ / Γ such that Γ/∆ ' PSL(2, q) for
some power q of p. Let these be ∆1, . . . ,∆n, and let the corresponding quo-
tients be PSL(2, pf1), . . . ,PSL(2, pfn).

On the other hand consider the prime decomposition (p) = p1 · · · pm
in k. Then n = m, and up to renumeration ∆j = Γ (pj) and N(pj) = pfj .
In particular we can reconstruct [k : Q] = f1 + · · ·+ fn from the knowledge
of Γ and its congruence subgroups.

Proof of Theorem A. By Theorem 6.1 we may replace Γj by finite in-
dex subgroups corresponding to each other under f . Hence we may assume
that each Γj is torsion-free and satisfies the trace field condition. Again by
Theorem 6.1 it suffices to show that tr2 f(γ) = tr2 γ ∈ R for each γ ∈ Γ1.

Denote the trace field of Γj by kj . Each number a ∈ okj has a charac-
teristic polynomial χa(x) ∈ Z[x] which can be described as follows:

• it is the characteristic polynomial of the map kj → kj , v 7→ av, inter-
preted as a Q-linear map;
• it is equal to

∏
σ(x − σ(a)); here σ runs through a system of repre-

sentatives of Gal(Lj/Q) modulo Gal(Lj/kj) where Lj is the Galois
closure of kj .
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Now let p be a rational prime not in S(Γ1) ∪ S(Γ2). By Remark 8.2 we can
decompose pokj into prime ideals

pok1 = p1 · · · pn, pok2 = q1 · · · qn
in such a way that

(12) f(Γ1(pj)) = Γ2(qj) and ok1/pj ' ok2/qj .

Then

(13) ok1/pok1 ' ok1/p1 × · · · × ok1/pd

is a finite-dimensional Fp-algebra, and we may similarly define the charac-
teristic polynomial χb(x) ∈ Fp[x] of an element b ∈ ok1/pok1 as the char-
acteristic polynomial of the Fp-linear endomorphism of ok1/pok1 given by
multiplication by b. Then for a ∈ ok1 clearly

(14) χa(x) mod p = χamod p(x) ∈ Fp[x].

We now claim that the characteristic polynomials of tr2 γ and tr2 f(γ)
are congruent modulo p. To see this we use the abstract version of squared
traces on finite groups introduced in Section 3. For each 1 ≤ j ≤ n, using
(12) we obtain an isomorphism of finite groups f̄ : Γ1/Γ1(pj) → Γ2/Γ2(qj).
By the remark after Definition 3.3, tr2 γ mod pj and tr2 f(γ) mod qj are
Galois-conjugate elements of the finite field Fq ' ok1/pj ' ok2/qj . Hence
there exists an isomorphism of Fp-algebras

αj : ok1/pj
'→ ok2/qj

with αj(tr
2 γ mod pj) = tr2 f(γ) mod qj . Gluing these together component-

wise in (13) yields an isomorphism of Fp-algebras α : ok1/pok1 → ok2/pok2
with α(tr2 γ mod p) = tr2 f(γ) mod p. Since characteristic polynomials are
stable under algebra isomorphisms, we obtain

χtr2 γ mod p(x) = χtr2 f(γ)mod p(x) ∈ Fp[x].

By (14), this means

χtr2 γ(x) ≡ χtr2 f(γ)(x) mod p.

But this holds for infinitely many p, so

χtr2 γ(x) = χtr2 f(γ)(x) ∈ Z[x].

Since we assumed Γ1 to be torsion-free, γ cannot be elliptic. If it is
parabolic, then tr2 γ = 4 and therefore χtr2 γ(x) = (x− 4)d. Hence also the

characteristic polynomial of f(γ) is (x− 4)d, and since tr2 f(γ) is a zero of
this polynomial, tr2 f(γ) = 4, so f(γ) is parabolic as well.

Finally assume that γ is hyperbolic. Then f(γ) must also be hyperbolic
because it cannot be parabolic (else γ would be parabolic by the inverse
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of the previous argument). By Proposition 7.4, tr2 γ is the largest zero of
χtr2 γ(x), similarly for tr2 f(γ). Therefore tr2 γ = tr2 f(γ).

9. An example. In our proof of Theorem A we did not use the full
assumption that all congruence subgroups are mapped to congruence sub-
groups by the given isomorphism. We spell out in a concrete example how
far an isomorphism between non-conjugate arithmetic groups can be from
preserving congruence subgroups.

In [32] we find a complete list of all arithmetic groups of signature (1; 2),
i.e. whose associated Riemann surfaces have genus one and which have one
conjugacy class of elliptic elements, these elements being of order two. In
particular all these groups are abstractly isomorphic, and we may just pick
the first two of them: Γ ′1 is generated by the two Möbius transformations

α1 = ±

(
1+
√
5

2 0

0 −1+
√
5

2

)
and β1 = ±

(√
3
√

2√
2
√

3

)
,

and Γ ′2 by the two Möbius transformations

α2 = ±
(√

2 + 1 0

0
√

2− 1

)
and β2 = ±1

2

(√
6
√

2√
2
√

6

)
.

These are, respectively, generators satisfying the relation (αjβjα
−1
j β−1j )2

= 1. So there exists a group isomorphism f : Γ ′1 → Γ ′2 with f(α1) = α2

and f(β1) = β2. The Γ ′j do not satisfy the trace field condition, but the

Γj = (Γ ′j)
(2) (between which f also induces an isomorphism) do; in both

cases the invariant trace field is Q.
Then, with finitely many exceptions, Γ1/Γ1(p) ' PSL(2, p) ' Γ2/Γ2(p)

for rational primes p; nevertheless, the proof of Theorem A shows that there
can only be finitely many p such that f(Γ1(p)) is a congruence subgroup
(and hence only finitely many p with f(Γ1(p)) = Γ2(p)).

10. Concluding remarks

Remark 10.1. In Theorem A, the assumption that f preserves congru-
ence subgroups is necessary, even in the arithmetic case. For example (7), let
∆ be the triangle group of signature (2, 3, 7). This is an arithmetic group,
and since it is generated by elements of odd finite orders, ∆ = ∆(2). There-
fore, ∆ satisfies the trace field condition with trace field k = Q(cos 2π/7),
and the associated quaternion order is maximal and unramified at all finite
primes of k. The rational prime 13 decomposes as (13) = p1p2p3 in k, with
three Galois-conjugate primes pj of norm 13.

(7) This example was suggested to the author by the referee.
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We set Γj = ∆(pj). These groups still satisfy the trace field condition,
and from the standard presentation of ∆ we see that all non-trivial normal
subgroups of ∆ are torsion-free. A simple Euler characteristic calculation
using ∆/Γj ' PSL(2, 13) shows that the Γj are cocompact surface groups of
genus 14. Hence there exists some group isomorphism f : Γ1 → Γ2, say. But
there are various ways to see the Γj cannot be conjugate in PGL(2,R), for
example by studying the action of Gal(Q/Q) on the algebraic curves Γj \H
(see [29]), or by exploiting the fact that ∆ is a maximal discrete subgroup
of PSL(2,R), hence the normaliser of Γj in PSL(2,R) is ∆. So, arguing as
in Section 9 we see that only finitely many of the f(Γ1(`)), where ` runs
through the rational primes inert in k, can be congruence subgroups again.

For more information on the principal congruence subgroups of ∆ and
proofs of the above-mentioned facts see [7].

Remark 10.2. The assumption that both groups admit a modular em-
bedding is crucial, although it only enters in the very last step of the proof.
If Γ is a semiarithmetic lattice with invariant trace field k and σ : k → R
a field embedding, we obtain in a natural way a group iσ(Γ ) ⊂ PSL(2,R)
(see [25, Remark 4]). There exist semiarithmetic lattices Γ with non-trivial
Galois conjugates iσ(Γ ) that are again lattices, and then the isomorphism
Γ → iσ(Γ ) preserves congruence subgroups but not traces. For an explicit
construction see e.g. [1] referring to [3, Proposition 4.11]. But if Γ admits
a modular embedding, then none of the non-trivial Galois conjugates iσ(Γ )
can be discrete by [25, Theorem 3].

Note that the existence of a modular embedding enters the proof via
Proposition 7.4 which is its only genuinely non-algebraic ingredient: it is a
consequence of the Schwarz Lemma.

One may still ask whether a weakened version of our main theorem holds
in the general case: if f : Γ1 → Γ2 is an isomorphism between semiarithmetic
lattices in PSL(2,R) respecting congruence subgroups, is it the composition
of an inner automorphism of PGL(2,R) with a Galois conjugation of the
trace field?

Remark 10.3. There exist arithmetic Fuchsian groups with different
trace fields but whose congruence completions are isomorphic away from a
finite set of primes. To see this, start with the polynomial in the remark
after [15, Theorem 5.1]: the splitting field of this polynomial is a totally
real Galois extension of Q with Galois group PSL(2, 7). By the discussion
in [22, pp. 358–359] such a field contains two subfields k1, k2 which are not
isomorphic but have the same Dedekind zeta function. Then there exists
a finite set S of rational primes such that ASk1 ' ASk2 . From this we can
easily construct arithmetic Fuchsian groups over k1 and k2 with isomorphic
prime-to-S congruence completion.
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There also exist non-isomorphic number fields with isomorphic finite
adele rings (at all primes) (see [12]). But no construction seems to be known
where these fields are totally real.
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References

[1] I. Agol, mathoverflow answer to: Can Galois conjugates of lattices in SL(2,R) be dis-
crete?, 2014, http://mathoverflow.net/questions/155798/can-galois-conjugates-of-
lattices-in-sl2-r-be-discrete.
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