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higher degree Fermat quotients
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Yoko INOUE and KaoRr1 OtA (Tokyo)

1. Introduction. In this paper, we consider indices of subfields of cy-
clotomic Z,-extensions of number fields, and show that prime factors of the
indices are only those less than the extension degree, which split completely
and are closely related to higher degree Fermat quotients.

Let k be an algebraic number field and L be a finite extension of k with
rings of integers O and Oy, respectively. We say that O, has a power basis
over Oy, if there is an element 6 of Oy, such that O = Og[f], and if this
holds for k = @Q, we simply say that O has a power basis. Many results
have been obtained to decide whether Oy has a power basis and, if the
power basis exists, to find all generators of such a basis, especially in the
case k = Q. It has been shown that there are only finitely many abelian
extensions of (Q which have power bases if the extension degree is prime to 6
(see |Gl IGr1l G2l [Gy]).

When Op, does not have a power basis over Oy, it is interesting to con-
sider common factors of the indices (Op, : O[6]) for all the integral primitive
elements 6 of L. We denote the greatest common divisor of these indices by
I(L/k) and call it the index of L/k. For indices I(L/Q), there are lots
of results in the literature; here we only mention the results of Engstrom
related to Ore’s conjecture. Ore’s conjecture states that the highest expo-
nent y of a prime ¢ dividing I(L/Q) is not in general determined by the
prime ideal decomposition of ¢Or, (cf. [Ol [DD]). Engstrom has shown that
if [L: Q] < 8, then x is completely determined by the prime ideal decom-
position of ¢Op, and that there are examples of two fields whose extension
degrees over Q are 8 and have the same decomposition type of (3) with dif-
ferent x’s for 3 (cf. [E]). In [EL Theorem 3], he has also given a formula for y

if ¢ splits completely in L, namely y = %Uq(nlgi;éjgn(i — 7)) if [L: Q] =n.
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Here v, is the g-adic valuation normalized by v,(q) = 1. Ore’s conjecture is
still attracting people interested in which arithmetic invariants determine x
completely, and in what are the exact formulas for x (cf. [Nal [SI] and [N}
Problem 22]).

Now for k = Q, the square of (Op : Z[f]) appears as the quotient
of the discriminant dg(f) of € by the discriminant d(L/Q) of L. For a
general k, there is still an analogous identity involving the ideal gener-
ated by the discriminant d(f) of 6 over k and the discriminant d(L/k)
of L/k:

(dr(0)) = m(0)* - d(L/k),

where m(#) is an integral ideal of k called the inessential divisor of dy () (cf.
[H] p. 452] or Proposition [2.2)). Therefore it is quite natural to consider the
greatest common divisor of m(6) for all the integral primitive elements 6 for
L/k. We denote it by J(L/k) and call it the index ideal of L/k. Any prime
ideal of k dividing J(L/k) has been called a common inessential discriminant
divisor of L/k in [H, p. 452]. The relation between m(6) and (Or, : Ox[6])
is

(Or = O[0]) = N(m(0)),

where 91 denotes the ideal norm, i.e., M(m(#)) = (O : m(0)) (cf. Proposi-
tion [2.5{(ii)). From this, we see that if an ideal a of k divides J(L/k), then
its norm 91(a) divides I(L/k).

It has been shown that the rings of integers of subfields of cyclotomic
Zyp-extensions of k£ do not have a power basis over Oy, if k satisfies certain
conditions, and in particular those fields over Q do not have power bases
for p > 5 (cf. [AQL Corollary 2] or Theorem [3.5)). So it is quite interesting
to find the indices of these subfields, which turn out to be closely related
to higher degree Fermat quotients. For a positive integer n, the nth degree
Fermat quotient for an integer a with respect to an odd prime p is defined,
if ="' =1 (mod p"), as
|

pn
(cf. [H]]). When n = 1, this is just the usual Fermat quotient with base a,
which was studied in relation to Fermat’s Last Theorem and is still of in-
terest in various aspects (see for example [S, [-H]). If we denote the nth
layer of the cyclotomic Zp-extension of Q by K, then we show that for a
prime ¢ smaller than the extension degree p”, ¢ divides I[(K,/Q) if and
only if ¢ splits completely in K,,. So there are no other prime factors
of I(K,/Q) than those that split completely in K,. This means that a
prime ¢ (< p") divides I(K,/Q) if and only if the nth Fermat quotient
satisfies F},,,(¢) = 0 (mod p) for p odd, which is quite interesting (The-

Fpn(a) =
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orem [3.6). So the fact that 1093 and 3511 are the only primes p with
2 < p < 6.7 x 10'° satisfying F,1(2) = 0 (mod p) (cf. [DK]) can be re-
stated as saying that the first layers of cyclotomic Z,-extensions of Q have
odd indices for 2 < p < 6.7 x 10'® except for 1093 and 3511 (these are called
Wieferich primes). We note that if ¢ | I(kK,/Q) for some n, then F},;(¢q) =0
(mod p) for any ¢ with 1 < ¢ < n, but this does not necessarily mean
q| I(K;/Q), because for that ¢ must satisfy ¢ < p’. It may be of some inter-
est to see if there is any prime ¢ satisfying ¢ | I(K,/Q) and q|I(K,+1/Q)
for some n > 1.

Here is the outline of the paper. In Section 2, we give the notation and
recall some basic results on number fields. In Section 3, first we consider
which subfields of cyclotomic Zj-extensions of k have relative integral bases
over k by computing Steinitz classes (Proposition Corollary . Then
we determine prime factors of the indices for K, /Q and kK, /k, where k
is a Galois extension of Q with extension degree a prime different from
p (Theorems . Since these prime factors split completely, we can
use Engstrom’s formula for the highest exponents (cf. [E, Theorem 3] and
[DD]). In Section 4, we give examples of indices of K,,/Q for n =1, 2, 3. As
mentioned above, primes ¢ dividing I(K;/Q) are those less than p whose
Fermat quotients satisfy

p—1 _
Fyi(q) = T =0 (mod p).
So there is already a long list of such ¢’s in [EM], and we only list I(K;/Q)
for small p’s here.

2. Preliminaries. In this section, we give the notation and results that
are needed in subsequent sections.

Let k be a finite extension of Q, and L a finite extension of k. When
the class number of k is 1, L has a relative integral basis (RIB) over k
for any L, and in the general case, it is known that L has a RIB over k
if and only if the Steinitz class St(L/k) is trivial in the ideal class group
of k (cf. [N, §7.3]). Concerning St(L/k), we recall the following proposi-
tion.

PROPOSITION 2.1 ([A]). Let L be an extension of k of degree m, and Or,
and Oy, the rings of integers of L and k, respectively. Then:

(i) There is a basis {V1,...,Ym} for L over k and an ideal a of k such
that
OrL =0 @ ®OpYm—1 D aYm,

and the Steinitz class St(L/k) is the class [a] in the ideal class group
of k.
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(ii) Let y1,...,vm and a be as in (i). For any basis {n,...,mm} of L
over k, if the matriz A is defined by
(717 st nym) = (7717 st 777m)A7

then
d(L/k)

(dk(nlv' . 777771))

where d(L/k) and dx(n1,...,nm) denote the discriminant of L over
k and the discriminant of 1, . ..,nm over k, respectively.

Proof. (ii) follows from d(L/k) = a®(d(v1,--.,%m)) (cf. [A]). m

= (a-det A)?,

Next we introduce the notion of the index ideal for L over k, which relies
on the following proposition.

ProposITION 2.2 ([H, p. 452]). For each integral primitive element 0
for L/k, there is an ideal m(0) of k such that

(2.1) (d4(68)) = m(6)% - d(L/k),
where di(0) denotes the discriminant of 0 over k.
DEFINITION 2.3. The index ideal J(L/k) of L/k is defined by
J(L/k) = gcd{m(0) | 6 is an integral primitive element for L/k},
and the index I(L/k) of L/k is defined by
I(L/k) = ged{(Of : Og[f]) | 0 is an integral primitive element for L/k}.
Also, if (O, : Og[#]) = 1 for some integral primitive element 6 for L/k,
we say that Op has a power basis over Op. When k = Q, we simply say
that Oy, has a power basis. From this definition, if O;, has a power basis

over Oy, then I(L/k) = 1, but the opposite does not hold in general (cf.
Section 4).

The next theorem is the key to finding prime divisors of J(L/k).

THEOREM 2.4 ([H, p. 456]). A prime ideal q of k does not divide I(L/k)
if and only if, for every positive integer f, the number rq(f) of prime ideals
9 of L lying above q of residual degree fq = [ satisfies the inequality

s (Dt
rlf) < mlf) = f%u<d>‘ﬁ(q) ,

where N(q) denotes the norm of the ideal q, p(-) is the Mébius function and
the summation is taken over all positive divisors of f.

The size of prime factors of J(L/k) and the relation between J(L/k) and
I(L/k) are given by the next proposition.
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PropoOSITION 2.5. The following hold:

(i) If a prime ideal q of k divides I(L/k), then N(q) < [L : k]. Moreover,
if q splits completely in L, then

q|I(L/k) if and only if N(q) < [L: k].

(ii) For an integral primitive element 0 for L/k, we have |Ny(dy(0)| =

N(d(L/k))(Or : O[0])?, so
(2.2) (Or = Ox[f]) = N(m(0)),

where Ny denotes the norm from k to Q, and m(0) is the ideal of k
in (2.1). Hence, if a | I(L/k) for an ideal a of k, then N(a) | I(L/k).

Proof. For (i), we refer to [H, p. 456], or we can derive it easily from
Theorem 2.4

For (i), let = [k : Q) and n = [L : k], and let {\1,..., A} be an integral
basis of k over Q. By calculating the discriminant dg({};6 | 1 <j <r, 0<
i <n—1})in two ways, we can obtain the identities

(23)  do({N0'}) = d(L/Q)(Or : Ox[0])* = Ni(di(0))d(k/Q) .

For the first identity, we only need to note that

r n—1

Oule) = { 3D eirt’ | i € 2.

j=1i=0

To get the second identity, let L be the Galois closure of L over Q, and let
G = Gal(L/Q), H; = Gal(L/k) and Hy = Gal(L/L) be the corresponding
Galois groups. Then we have coset decompositions

T n
G = UHlTj and H1 = UHQUi,
=1

j=1
SO
' n
G = U U HQUiTj.
j=li=1
Here {r,..., 7} are the conjugate maps of k over Q, {o1,...,0,} are the

conjugate maps of L over k, and {o;7; | 1 < j <r, 1 <1i < n} are conjugate
maps of L over Q. We set

Y1 = /\1, Y2 = )\19, Y3 = /\102, B )\19n_1,
Vntl = A2,  VYnt+2 = A2b, ..., Yo = )\29”71, co.and g = )\Tenil.
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Then
do({X;0'}) = do(n, -+ Yrn)
)\li'lTl ()\19)017'1
)\(1727'1 ()\10)027'1
)\117nT1 ()\19)%7'1
)\C171T2 ()\19)017'2
)\117nT2 ()\19)0”7'2
)\(1777,7—7‘ ()\19)0'»”7'7-
If we set
1 @°1 (07),—1)0’1
=
1 @°n (en—l)on
then
AT T
AP
do(V1,- -+, Ym) =
PV
I 0
0 I™
0 0
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(Alen—l)aln )\517'1 ()\29)017'1
(/\lgnfl)agn /\ggﬁ (/\29>027'1
(Alen—l)ann )\gnﬁ ()\29)ann
(/\lgnfl)crsz /\3172 (/\29>017'2
(Alen—l)anm )\gnﬁ ()\29)0n7'2
(Alen—l)ann )\gnn ()\29)0'n7'r
1 @o17i (Qn—l)alﬁ
and 7=
1 @onTi (en—l)ann
AT AT
AR AT
Ay ™ AT
2
0 AT L, ADUIL, AT,
0 AP, API, AT,
I | | AL, AT, AT T,
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where I,, is the identity matrix of size n. Since |I'"| = |I'|" for all 7, we have
|7 I = Ni(IT?) = Ni(di(0)).

Hence

which gives the second identity of ({2.3]).

From (2.3) and the transitivity property of differents, ©(L/Q) =
D(L/k)D(k/Q), we get

(2.4) [Ni(dr(6)] = N(A(L/K))(Or = O[6]).

Hence from (2.1]), we obtain (2.2]). =
Note that when k& = Q, the index ideal J(L/Q) is generated by I(L/Q).

3. Indices of subfields of cyclotomic Z,-extensions. In this section,
we study the indices of subfields of cyclotomic Z,-extensions, which turn out
to be closely related to Fermat quotients.

First, we consider which subfields of cyclotomic Z,-extensions of number
fields have relative integral bases. Let p be a prime, k& an extension of Q of
degree r, and K, the nth layer of the cyclotomic Z,-extension of Q as in
the Introduction. Then we can easily prove the following proposition about
Steinitz classes.

ProrosiTiON 3.1. Set L, = kK,,. If
pOy, = pit-- -p;g with p; a prime ideal of k and e; > 1 for each i

is the factorization of pOy into primes and (e;,p) = 1 for each i, then the
Steinitz class of L, /k is given by

g n g N (pt—1)/2
St(Ly/k) = [Hpi—(ei—l)(l? —1)/2} _ { [( i=1 pi) ] Jor p # 2,
=1

(TE 72271 Jor p=2.
Proof. First we note that L,, is the nth layer of the cyclotomic Z,-ext-
ension of k, for kN K; = Q under our assumptions. Let {\;,..., A\yn} be an

integral basis of K. Then {A1,...,\pn} is a basis for L,, over k. So from
Proposition [2.1f(ii), we have

d(Ln/k) 2
= (a-det A
(di(A1,. .05 Apn)) ( )
for some ideal a of k and a matrix A with entries in k. Since di(A1, ..., Apn) =
do(A1, ..., Apn) = d(K,/Q), we get
d(Ln/k) >
————— = (a-det A)".
(a, /) — (et

Now the Steinitz class is given by [a], so we need to compute the left hand
side.
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Let pOy = p7*--- pgg be the factorization of pOj into primes as in the
statement of the proposition. Then from the assumption (e;,p) = 1, p; is
totally ramified in L,, and divides d(L,/k) for each i. Also d(L,,/ k) does
not have other prime factors than pq,...,p, by the basic properties of Z,-
extensions. From the relation between the (global) discriminant and the
local ones, we have

(Ln/k) = Hdm Ln/k)  with  dy,(Ln/k) = d((Ln)sp; /K.,

where B; is the unique prime ideal of L,, lying above p;, and (L, )q, and ky,
are completions of L,, and k with respect to 3; and p;, respectively.

To compute the local discriminant, take a prime ideal p = p; of k lying
above p with ramification index e and residual degree f, and take the unique
prime ideal P of L,, lying above p and the unique prime ideal Q of K, lying
above p, respectively. We consider completions of Q, k, K, and L, with
respect to p, p, Q and B, and denote them by Q,, kp, (K,)q and (Ly)yp,
respectively. If we write the valuation of each discriminant by d, then we
have

d((Ln)yp/Qp) = p" - d(ky/Qp) + f - d(fL )/ k)

=€f' (( Kn)a/Qp) + d((Lyn)yp/(Kn)a),

d((Ln)p/ky) — € d((Kn)a/Qp) = *{J((Ln)m/(Kn)n)—p"~J(kp/@p)}-

From (e, p) = 1, we know that d(ky/Qp) = d((Ln)p/(Kn)a) = f(e —1). So
if we set d((Ly)g/kp) =1 and d((K,)a/Qp) = s, then we get

d(La)p/kp) = €+ d((Kn)a/Qp) =1~ es = —(e = D)(p" — 1),
which gives the exponent of p = p; in d(L,/k)/(d(K,,/Q)).

Thus if we denote e and [ for each p; and B; by e; and [;, respectively,
then we have

d(Ln/k) o TT limeis — TT e (ei-D@" 1)
m—(a-det/l) —i[[lpi —L[lpi :

So the Steinitz class is given by

stz = = [T 707 2).

When p # 2, since [[[7_; p{’] = 1, we obtain the desired form. When p = 2,
e; is odd for each i, and we obtain the result. m
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COROLLARY 3.2. Let the notation and assumptions be as in Proposition
3.1, and further assume that g = 1, i.e., pOy = pi'. Then St(L,/k) =1 if
and only if the order of [p1] in the ideal class group of k divides (p" — 1)/2
forp#2 and 2™ — 1 for p = 2. So in that case, L, has a RIB over k.

Proof. We only note that when p = 2 and St(L,,/k) = 1, the order v
of [p1] in the ideal class group of k divides both e; and “51(2" — 1). So
v|2™ — 1. The rest is trivial. m

REMARK 3.3. (i) From Proposition if p is unramified in k, then L,
has a RIB over k. This can also be seen from O, = OOk, , which holds
under our assumptions.

(ii) In Corollary [3.2] if e, divides (p™ — 1)/2 for p # 2 or 2" —1 for p = 2,
then St(L,/k) =1 and L, has a RIB over k.

Now we consider the indices of K, /Q and L, /k. For that, we need to
generalize Fermat quotients to higher degree.

DEFINITION 3.4 ([HI]). Let n be a positive integer and a an integer
coprime to p odd. If a?~! = 1 (mod p"), we set
|

pn
and call it the nth degree Fermat quotient of a with respect to p. For n =1,
this is the usual Fermat quotient with base a. We note that the definition of
F), . (a) a priori assumes that a satisfies the congruence a?~! =1 (mod p").

Also, notice that for an odd prime ¢, F},,,(¢) = 0 (mod p) if and only if ¢
splits completely in K.

Fpn(a) =

)

THEOREM 3.5 (JAOL Corollary 2]). Let k be an extension of Q of de-
gree v such that either p is unramified in k, or k is Galois over Q, and
define L, = kK,. If (p,r) = 1 and p — 1 1 2r, then Or, does not have a
power basis over Oy. In particular, O, does not have a power basis for
p=>95.

From this, it is meaningful to consider the indices I(L, /k) and I(K,,/Q),
and for I(K,/Q) we have the following:

THEOREM 3.6. Let q be a prime. Then for p > 5,
q|I(K,/Q) if and only if 2 <q <p" and F,,(q) =0 (mod p).
In this case, the highest exponent X of q dividing 1(K,,/Q) is given by

;si+ 1 . "
(3.1) A= si{p" - qzb’;‘} with  s; = [pl]
, q
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Proof. Suppose that the prime ideal Q of K, lying above ¢ (# p) has
the residual degree f,(Q) = p* with & > 1. Then the prime Q' of K,
lying above ¢ has f, 1(Q') = p*~1, so ¢ ) =1 (mod p™). Hence

qpkil(P_l) > pn’
which implies, with the same notation as in Theorem

mo(fa(D) - fa(@) =" —
> 1) 220"~ 1) 2 "
= Tq(fn(Q» : fn(Q)a
50 Te(fn(Q)) > 1¢(fn(Q)). Hence ¢ does not divide I(K,/Q). For ¢ = p,
fn(Q) =1 for all n and r,(1) = 1 in Theorem so p does not divide
I(K,/Q). Hence the prime ¢ that divides I(K,/Q) has to split completely

in K,, which implies Fp,(¢) = 0 (mod p). Hence from Proposition [2.5(1),
for a prime gq,

q|I(K,/Q) ifand only if 2 < ¢ <p" and F},,(¢) =0 (mod p).

k—1

As for the highest exponent A of ¢ dividing (K, /Q), we refer to the
result of Engstrom [El Theorem 3], for ¢ splits completely in K,,. =

REMARK 3.7. In the proof of Theorem we have shown the results
without the assumption p > 5. Since I(K,,/Q) = 1 for p = 3, this implies
that for any positive integer n there are no primes ¢ satisfying ¢ < 3" and
q®> =1 (mod 3"*1), but this is of course obvious from Proposition (1)

As for I(L,,/k), we have the following:

THEOREM 3.8. Let k/Q be a Galois extension of degree r with r a prime
satisfying r # p, and L, = kK,. For a prime q, we have:

() 1 a| I(La/k), then q| 1(Kn/Q).
(ii) Suppose q|I(K,/Q). Then the following hold:

(a) When q splits completely in k, we have q|I(L,/k). In this case,
the highest exponent x of q diwviding I(Ly/k) is x = r\ .

(b) When q is a prime in k, we have q|I(L,/k) only if ¢" < p". In
this case, x =1\ .

(c) When q is ramified in k, we have q| I(Ly/k). In this case, x=\'.

Here X' is the highest exponent dividing 3(Ly/k) of a prime ideal q
of k lying above q, which is given by

(3.2) N = ;s;{pn _ (m(q))isli;l} with s, — [m?:)]
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Proof. Let 6 be an integral primitive element of K, over Q, so K,, = Q(0)
and L, = k(0). If we set N(d(L,/k)) = p?, then from (2.4) we have

| Ni(dr(8))] = N(d(Ln/K)) (O, : Olf])* = p*(Or, : Ol6])*.
On the other hand, if we set d(K,/Q) = p%, then

dy(0) = do(9) = d(Kn/Q)(Ox, : Z[F))* = p™ (Ox, : Z[0))?,
so we obtain
(3-3) (O, : Oxl8])* = p" Ok, : ZI9)*

for any integral primitive element 6 of K, over Q.

For the proof of (i), take a prime ¢ satisfying q|I(Ly/k). Assume first
g # p. Then from (3.3), ¢|(Ok, : Z[f]) for any 6, which means that
q|I(K,/Q). Assume next ¢ = p. If p is unramified in k, the unique prime
ideal 9Q of K, lying above p is also unramified in L,. From the relation
D(L,/k)D(k/Q) = D(Ly/K,)D(K,/Q) among differents, we have rdy = d,
so p| (Ok,, : Z]0]) for any 6, which means p | I(K,,/Q). This contradicts The-
orem 3.6. If p is ramified in k, let p be the unique prime ideal of k£ lying
above p. Then p is totally ramified in L,, so the number 7,(f) of prime
ideals in L,, lying above p of residual degree f is given by

1t f=1,
74"(f)_{0 it F> 1

Hence from Theorem p t 3(L,/k), which implies p t I(Ly,/k) by (2.2).
So this does not happen either, and we finish the proof of (i).

For the proof of (ii), suppose q|I(K,/Q). So 2 < ¢ < p™ and ¢ splits
completely in K, by Theorem [3.6] Let q be a prime ideal of k lying above g.
Then q splits completely in L,,. Hence from Proposition (i), we have

(3.4) q|3(Ln/k) if and only if 9(q) = ¢f° < p™,

where fy is the residual degree of q over ¢. For the formula for the
highest exponent X of q dividing J(L,,/k), we refer to the proof of Theorem 2
in [DD], or we can show it similarly to the case of K, /Q, since q splits
completely in L,, (cf. [Hn| and [E, Theorem 3]). In fact, X' is equal to

jng:[méV}

=1 I1>1

For cases (b) and (c), q is the only prime ideal of k lying above ¢. So

from ([2.2)) we have
0" | 3(Ln/k) if and only if ¢™X || I(Ln/k),
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where a* || b means that a* |b and a**! { b for a prime or a prime ideal a.

So from (3.4)), we have
q|I(Ln/k) if and only if M(q) = ¢ < p~,

which finishes the proof of (b) and (c).

For (a), let gOr = q1 - - - q, be the factorization of Oy into primes in k.
Since M(q;) = ¢ < p”, from we have q; |J(L,/k) for each i. Hence
q|I(Ly/k) from Proposition [2.5(ii). Let x be the highest exponent of ¢
dividing I(L,/k). Since q) || 3(L,/k) for each i, we have ¢* | 3( Ly, /k), which
implies M((¢*)) = ¢ [I(L,/k) by Proposition (ii). Hence r\ < .
Now ) = X in and ¢* || I(K,/Q), so there is an integral primitive
element 6 for K, /Q such that ¢* || (Ok.,, : Z[f]). Then from (3.3)), we have
¢ || (Or, : Oxlfo]), which gives x < rX =r), so x = r\. This completes
the proof of (ii). m

4. Examples. In this section, we give some examples of indices of K, /Q
for n =1, 2, 3. From Theorem (3.6, we know that primes ¢ dividing I(K,,/Q)
are those satisfying

2<g<p" and F,,(q) =0 (mod p).

For n = 1, there is a long list of these primes in [EM]|, so here we only
list those p’s in 5 < p < 2700 with I(K;/Q) > 1. Also we list those
inbh < p < 2800 and in 5 < p < 500 for n = 2 and n = 3, respec-
tively.

Table 1. p and I(K;/Q) (> 1) for 5 < p < 2700

p  I(Ki/Q)| »p I1(K1/Q) p 1(K1/Q) p 1(K1/Q)

11 317 43 1920 59 536 71 11198

79 3195 97 5344 103 4377 137 19427

263 79318 331 71614 349 2232631732 | 359 2570233178
421 251170 | 433 34984 487 307180 523 241323
653 197777 | 659 503156 743 467276 859 643216
863 132999 | 907 12727937616 | 919 457467 983 419799
1069 487577 | 1087 617470 1091 691400 1093 2591387
1163 2417242 | 1223 997226 1229 821408 1279 683596
1381  653%0% | 1483 421'92310614%2 | 1499 941558 1549 1069489
1657 1481'7¢ | 1663 7091199 1667 4632223 1697 4612325857810
1747 1153594 | 1777 138139 1787 631681 1789 4497673
1877 1091786 | 1993 277%1951747246 | 2011 199318 2213 367°°7L
2221 659279 | 2251 15115659 2281 1657624 2309 8232491453856
2371 1493%7% | 2393 4315590 2473 1787086 2671 2063°08
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Table 2. p and I(K2/Q) (> 1) for 5 < p < 2800

p 1(K2/Q) p I(K2/Q) p 1(K2/Q)

7 19* 37 691°7® 79 1523%734
101 494307 107 5573017 167 17987%90
193 3101923 251 33767°9%3%54973%9%% | 293 333017'7%°
337 24733200946 383 6619292951 761 25270910011
761 363767215354 769 500413%0918 919 478273300288
1049 403079%1°0°668179*%2%%2 | 1213 864503°00%6¢ 1249 2383971293099
1277 536621172461 1373 1923175311896 1429 37623790009
1447 416849216310 1487 12932031799 1567 166322379220
1667 1113401221757 1811 2843213200 2083 1360067437026
2111 3513612000969 2341 1937557714791 12389 2421743419413
2549 4505707199169 2593 4316051°4°7%° | 2777  6351629'%°°1%°

Table 3. p and I(K3/Q) (> 1) for 5 < p < 500

P I(K3/Q) P I(K3/Q) P 1(K3/Q)

491 6969592948674842

13 2399018 19 2819201 107 119551%67512°
137 59898729542 | 281 5774911%1914657 | 467  38870627570%3247
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