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1. Introduction. The theory of Diophantine approximation is one of
the most interesting areas in number theory in which the theory of linear
forms plays a central role. In 1966 Baker made a breakthrough by proving a
very deep result on effective lower bounds for linear forms in logarithms of
algebraic numbers (see the series of papers [1]). This result was refined by
Baker and Wiistholz [2]. After Wiistholz proved a brilliant theorem, called
the analytic subgroup theorem (see [3] or [23]), the problem of linear forms
could be considered in higher dimensions. In the literature one can find
generalizations in terms of algebraic groups, and the most general results so
far are due to Hirata-Kohno [13] and Gaudron [12].

It is natural to consider p-adic analogues of such problems. The theory
of p-adic linear forms plays indeed an important and fundamental role in
number theory. It has been applied to many questions, in particular to solve
completely a large number of Diophantine problems of different shape. One
of the points of interest comes from the problem of finding lower bounds for
linear forms in p-adic logarithm functions evaluated at algebraic points. Un-
like in the complex case, the p-adic logarithm function is only defined locally.
It is therefore more natural to study upper bounds for the p-adic valuation
of expressions 0/1’1 ---ab» — 1, where a1, ..., q, are algebraic numbers that
are multiplicatively independent and by, ..., b, are rational integers, not all
zero. Such problems have been investigated by many authors (see e.g. [§])
and the most outstanding results to date are due to Yu [26-29]. In 1998 he
formulated and proved a p-adic analogue of the Baker and Wiistholz theo-
rem and afterwards in a series of papers he improved the bounds. The results
of Yu were used by Stewart and himself [20] to deal with the abe-conjecture.
In particular, Stewart and Yu in 2001 showed that there is an effectively
computable positive number ¢ such that for all coprime positive integers
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x,y and z > 2 with  + y = 2z one has
z < exp(cN1/3(logN)3),

where N is the product of all the distinct prime divisors of zyz. Furthermore,
with the recent refinements of Yu [29] it is possible to solve completely the
generalization of a problem of Erdés to Lucas and Lehmer numbers; the
original conjecture of Erdés from 1965 states that P(2" — 1)/n — oo as
n — oo, where P(m) denotes the greatest prime divisor of m for integers
m > 1.

The generalizations to linear forms in p-adic elliptic logarithms were
solved by Rémond and Urfels [18], and refined by Hirata-Kohno and Taka-
da [I4]. For higher dimensions in the p-adic setting, the best results to
date are due to Bertrand and Flicker. They stated some results concerning
simple abelian varieties or abelian varieties of CM-type (see [4] and [10]).
Flicker [I1] also obtained a lower bound for linear forms on general abelian
varieties, but the bound is ineffective.

The goal of this paper is to generalize the result on p-adic linear forms
when evaluating at an algebraic point of a commutative algebraic group
of positive dimension satisfying a technical condition and the condition of
semistability. To describe the main theorem, let K be a number field and G
a commutative algebraic group such that G and the additive group G, are
disjoint over K (see Section for the definition of this notion). There are
many commutative algebraic groups satisfying this property, for example
the direct product of any finite copies of the multiplicative group Gy, or any
abelian variety. More generally, we prove that every semiabelian variety also
has the property.

Let p be a prime number and consider embeddings K < Q < C,. De-
note by v the p-adic valuation which is the restriction of the p-adic valuation
on C, to K and K, the completion of K with respect to v. We embed G into
the projective space IP’% for some positive integer N, and let Lie(G) denote
the Lie algebra of G. Fixing a choice of basis for the vector space Lie(G)
one can identify Lie(G) with the vector space K"; here n is the dimension
of G. We get the normalized analytic representation of the exponential map
of G(K,) (with respect to the basis) consisting of N functions analytic on a
certain neighbourhood of 0 in K. Let W be the hyperplane in K" defined
over K by the linear form

l(Zla"'7Zn) :5121 ++BTZZTL7

where 51, ..., B, are elements, not all zero, in K. Let u be an element in the
above neighbourhood such that its image in the p-adic Lie group G(K,) is
an algebraic point v in G(K). The problem we consider is to give a lower
bound for |I(u)|, when [(u) is non-zero; here as usual we denote by |- |,
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the p-adic absolute value on C,. The purpose of this paper is to solve the
problem in the case when (G, W) is semistable over Q. Here we use the con-
dition of semistability introduced in [3] over the algebraic closure Q, since
it concerns field extensions of the ground field K. Our lower bound consists
of two parts; the first one consists of effectively computable constants de-
pending only on the group G, the field K and the choice of basis for the Lie
algebra of GG, and the second one is the product of the absolute logarithmic
(Weil) height of the linear form [, of the algebraic point v and of the prime
number p.

The method used in this paper to solve the problem can certainly be
applied to get new results in transcendence theory. We leave this as a topic
for a forthcoming paper.

In Section 2 we shall state the new result in detail. In Section 3 we collect
some preliminary results including a Schwarz lemma in the p-adic domain,
simple facts on disjointness and semistability, on heights, on the analytic
representation of the exponential map and a fact about the order of vanish-
ing of analytic functions. In Section 4 we shall give the proof of the main
result of Section 2. The proof starts by embedding G into some projective
space; this involves a choice which we fix for the rest of the paper. We also
choose a basis for the hyperplane. Then we work out the standard program
in transcendence theory: we construct an auxiliary function with bounded
height and with high order vanishing at certain points. Using the Schwarz
lemma we can extrapolate and derive an upper bound. Liouville’s inequality
from Diophantine approximation gives a lower bound provided that we have
non-vanishing. Algebraic considerations (namely multiplicity estimates) give
the non-vanishing. Finally, comparing upper and lower bound gives the de-
sired result by an appropriate choice of the parameters.

2. New result. As was mentioned above, the p-adic theory of logarith-
mic forms has already been developed systematically with nice applications
in number theory. It is therefore natural and clearly motivated to generalize
the problem to the case of higher dimensions. There are several results in this
direction due to Rémond, Urfels, Hirata-Kohno, Takada, Flicker, Bertrand
and others. However, the results only deal with elliptic curves or abelian
varieties. We shall give here a new generalization to a class of commutative
algebraic groups.

Let K be a number field over Q and let Ok be the ring of algebraic
integers of K. We choose an embedding K < Q. Let p be a prime number
in Z. We denote by Q,, the field of p-adic numbers and by C, the completion
of the algebraic closure of Q,. We get the embedding o : K — C,, defined
by the composition of the embeddings K < Q and Q <+ C,. We therefore
identify each element x € K with o(x) € C,. Let v be the valuation on K
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given by
_108; |2lp
logp

Denote by K, the completion of K with respect to v. By completing the
algebraic closure we get K — K, < C,, which preserves the absolute
values. Let G be a commutative algebraic group defined over K of dimen-
sion n > 1. According to [19] (see also [9] where explicit embeddings are
constructed using exponential and Theta-functions), G can be embedded
into some projective space PV. Let L : {1,...,n} — Lie(G) be a basis,
fr = (f1,..., fn) the normalized analytic function of the exponential map
of G(K,) with respect to L, and Exp the map as defined in Section
We know that fi,..., fy are analytic on an open disk A, of K’ (see again
Section . Let W be the hyperplane in K™ defined over Ok by the linear
form

v(z) = , Vxe K.

l(Zl,.--,Zn) = ﬂlzl + - +/8nZn>
where (1, ..., B, are elements, not all zero, in O . Let v be an element in A,

such that v := Exp(u) is an algebraic point in G(K). Let B and H be fixed
numbers such that

B> ':HllaX {37H(ﬁ1)}> H > max{?),H(’y)}

Set b = logB and h = logH. If w = (uy,...,u,) is not contained in
Wy =W @k Ky, ie. l(u) = Brus + -+ + Bpun # 0, then a natural ques-
tion is, “What can we say about lower bounds for |l(u)|,?”. We give an
answer to this question in the case when G, G, are disjoint over K (for ex-
ample, G is semiabelian, see Lemma and (G, W) is semistable over Q.
Let 47, be the denominator of L which is defined in Section and let
B (rploLlp) = {z = (w1,...,20) € Cp;lzilp < mpldplp for i = 1,...,n},
where 7, 1= p~1/(@=1)_ Then we have the following:

THEOREM 2.1. Let K be a number field and G a commutative algebraic
group of dimension n > 1 defined over K such that G and G, are disjoint
over K and (G, W) is semistable over Q. There is a positive number wr,
depending on L and there exist effectively computable positive real constants
co and ¢y independent of b, h and p with the following property:

o Ifue A, N B"(rpldLlp) is such that Exp(u) is an algebraic point in
G(K) then l(u) =0 or

log [1(w)], > —cowr,™Tbh™ (log b + log h)"*3 log p.
o Ifu € A, is such that Exp(u) is an algebraic point in G(K) then we

" n(u) = max {o, [1 _ v(u)] + 1},

p—1
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and either [(u) = 0, or we get the lower bound
log [1(w)], > —crwr™3bh™ (log b + log h + 2n(u) log p)" 3 log p.

Throughout the paper, constants do not depend on b, h or p. We write
A < B (resp. A > B) if there is an effectively computable positive constant
¢ such that A < ¢B (resp. A > ¢B).

We remark that although in the above theorem we only consider the case
B, ..., Bn € Ok, the theorem is still true for 51,..., 8, € K. To see this, let
0; be the denominator of 5; for i = 1,...,n, and J the least common multiple
of 1,...,0,.8et B :=6B; fori =1,...,nand I’ = 6l. Then f1,..., 3], € Ok
and |l(u)l, = |67 p|!'(w)], > |I'(u)|p. Using Lemma we get logd <
log(d1 -+ 6,) =logdy + -+ + log d, < b, and this gives h(S]) = h(63;) < b
for all ¢ = 1,...,n. Hence the statement follows by applying Theorem
to the linear form !’ and using the inequality log |I(u)|, > log |I(w)],.

We also remark that it would be nice to remove the technical assumptions
concerning disjointness and semistability in the statement. This clearly needs
some further efforts. Since the paper is already quite long, we leave this for
future work.

3. Background and preliminaries. In this section we discuss some
basic background material which we need for the proof of the main theorem.

3.1. Some p-adic analysis. The main result of this section is a Schwarz
lemma in the p-adic domain (Proposition . For any subfield F' of C, and
for any R > 0, we set Bp(R) := {z € F; |z|, < R} and Bp(R) := {z € F}
|z|, < R}. From now on, we will skip the subscript F' when F' = C,. Let
f(z) =", anz™ be an analytic function on B(r) with 7 > 0. We define

| f]r == sup |ap|pr" = max|any|pr".
n n
We start with the remark that the function z—a satisfies |z—al, = 7 forr > 0
and a € Bp(r). Indeed, by definition we have |z — a|, = max{|al|,, 7} = 7.

LEMMA 3.1. Let f be an analytic function on Bp(r) with r > 0, and s,1
real numbers such that 0 < s <t < r. If f has k zeros in the disk Bp(s)

then i
1= (3) 1t

Proof. The statement is trivially true if f = 0. Otherwise, the Weier-
strass preparation theorem (see [16, Theorem 2.14]) says that f = P - g
with P(z) = (z —a1) - (2 — ax) for aj,...,ax € Br(s) and with a certain
analytic function g on Bp(r). By the remark above we get

\P|S:|z—a1|3---\z—ak|3:sk,
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and similarly for |P|;. Hence
s

k s\ k
s = 5lgls < slgle = () lle = (5) 171e- m

LEMMA 3.2. Let f be an analytic function on B(r) with r > 0, and let
0 <s<t<r. Let m be the number of zeros (counted with multiplicities) of

f in B(t). Then
e (2) e

Proof. The statement is trivial if f = 0 or s = £. Otherwise, let by, ..., by,
be the zeros of f in B(t) (counted with multiplicities) and fix ¢’ with
max{|bilp, ..., |bmlp} <t <t

Let [ be the number of zeros (counted with multiplicities) of f in B(s).
Without loss of generality, we may assume that by, ..., b, are the [ zeros of f
in B(s). By the Weierstrass preparation theorem there are ay, as € Cp, and
functions g1, g2 such that g; is analytic on B(s) and g9 is analytic on B(t),
91(0) = g2(0) = 1, |g1]s = |g2lr = 1, and f(2) = a1(z = b1) -+ (z = bi)gr =
az(z —b1) -+ (2 — by)g2. Combining this with the above remark we get

|f|s = |011|S|Z - b1|s s |Z - bl|s|gl|s = ‘O‘1|psl7

|fler = lazli|z = by -+ |2 = bm|w|galer = [a|pt™.
Hence

| fle = lm | fle = [az[pt™.
t'—t
On the other hand, since g1(0) = g2(0) = 1 it follows that
£(0) = ar(=1)"b1 -+ - by = az(=1)™by - - by,

which leads to |a1|, = |aalp|biy1 - - - bm|p. This shows that

[fle _ lagly t™ ™ 5™t

fls  laalp st 8™ Jorer - by’
Since byy1, ..., bm € B(t) \ B(s) it follows that |bjy1 - by, > s™ L. Hence
|fe < i

—.
|fls = s™

We are now able to prove the following proposition, which is called the
Schwarz lemma.

PROPOSITION 3.3. Let t > s be positive real numbers, f an analytic
function on Bp(t), and I' a finite subset of Bp(s) of cardinality | > 2.
Define

§ == inf{ly —Ip; v, € I, v # '}
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and

p= sup{|f"(V)p; n=0,....k— 1,y I}
with a positive integer k and with f™ the nth derivative of f. Assume that

0 <1. Then
S\ M $\ K1
| fs Smax{<t> |f|taﬂ<5> Tg;_(k_l)}

Proof. The proposition is trivially true if f = 0, so assume that f is
non-zero. If f has at least kl zeros in the disc B(s) then Lemma gives

kl
o< (5) 1

Otherwise f has at most kl — 1 zeros in B(s). By the definition of &, the
sets B(v,d), v € I', are disjoint. In fact, suppose that there exist distinct
v and 7y in I such that there is x € B(y1,0) N B(v2, ). This leads to the
following contradiction:

71 = v2lp < max{lz — Yifp, |2 — 12lp} <0
Furthermore these [ sets B(7,d),y € I', are subsets of B(s) since I' C Bp(s),
and this shows that there exists 79 € I such that f has at most k — 1 zeros
in B(v0,6). Since 79 € Br(s), this gives |f(z —70)|» = |f(2)|» for any r such
that s < r < t. We may therefore assume that vy = 0. Let n(d, f) be the
number of zeros (counted with multiplicities) of f in B(d). It is clear that
n(0, f) < k — 1, and this shows that

F™(0)

n!

o".
P

|fls = sup
n<k—1

On the other hand, it is known that
1

n!

<prt =y (D <o),
P
Combining this with § < 1, we get
|fls < pry 0,
Finally, since f has at most kIl — 1 zeros in B(s), Lemma gives

s kl—1
o< (5) s

3.2. Semiabelian varieties. Let G be an algebraic group defined over
a field K. It is well-known from Chevalley’s theorem that there is a unique
short exact sequence of algebraic groups

1-H—-G—=A4A-1
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with H a linear algebraic group and A an abelian variety defined over K. We
call G a semiabelian variety if H is a torus, i.e. Hz = (G, ® K)* for some
k > 0; here Gy, denotes the multiplicative group. One can show that G is
semiabelian defined over K if and only if G is semiabelian defined over K.
It is known that every semiabelian variety is commutative (see [25, Proposi-
tion 2.3]). We recall the following definition given by Masser and Wiistholz
[15]: Let Gy,..., Gy be algebraic groups defined over K. We say that they
are (mutually) disjoint over K if every connected algebraic K-subgroup H
of G := G1 x -+ X G} has the form Hy x --- x Hy, for algebraic K-subgroups
Hy,...,H of Gy,..., G} respectively.

LEMMA 3.4. For S semiabelian, Hom(S,G,) = (0).

Proof. Notice that S (K )tor is Zariski dense in S, and any homomorphism
a: S — G, maps S(K)ior t0 Ga(K)tor = (0). Hence a(S) = (0). m

LEMMA 3.5. FEwvery semiabelian variety defined over K and the additive
group G, are disjoint over K.

Proof. Let s be an arbitrary algebraic K-subgroup of ¥ := G, x G.
By making a base change to K we may assume that K = K. We denote
by m, and 7 the projections of 5 on G, and on G respectively. Set H, :=
Ta(F N (G, X {e})) and H := 7( N ({0} x G)). Then H, is an algebraic
K-subgroup of G,, and H is an algebraic K-subgroup of G. Let P be the
image of 7 under the projection

Ga X G = (Gy X G)/(Hy x H) = (Ga/H,) x (G/H).

Define p, and p to be the projections of (G./Ha,) x (G/H) onto G,/H,
and G/H respectively. We show that P = p,(P) and P = p(P). For the
first isomorphism, since p, is surjective it is sufficient to show that the
restriction of p, to P is injective. In fact, let (z,y) € S be such that
pa((z,y)(Hy x H)) = H,, so x € H,. But H, = 7,(5 N (G, x {e})), and
hence (z,e) € .. Combining this with (x,y) € 5 we see that (0,y) € 5.
Thus y = 7(0,y) € 7( N ({0} x G)) = H, and so (z,y) € H, x H. By the
same argument, we also get the second isomorphism.

Since G is semiabelian, G/H is semiabelian as well. It follows that P 2
p(P) is semiabelian. By Lemma 3.4 we get Hom(P, G,) = (0). Furthermore,
it is clear that H, is either trivial or G,, hence p,(P) C G,. This says that
pa € Hom(P,G,) = (0), which gives P = p,(P) = (0) and implies that
H = Ha X H. =

3.3. Semistability. We recall the following notion, due to Wiistholz
[3, Chapter 6]. Let G be an algebraic group defined over a field K, and V a
K-linear subspace of the Lie algebra Lie(G) of G. We associate with (G, V)
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the index

dimV .. ..
(G, V) = { TmC if dimG > 0,
1 otherwise.

The pair (G, V) is called semistable (over K) if for any proper quotient 7 :
G — H defined over K, we have 7(G, V) < 7(H, 7.(V)) where 7, : Lie(G) —
Lie(H) is the K-linear map induced by 7. Let F'/K be a field extension. We
say that (G, V) is semistable over F if (Gp,V @k F') is semistable.

3.4. Heights. Let K be a number field of degree d over Q, and Mg
the set of places of K. For v € Mg we write K, for the completion of K
at v, and introduce the normalized absolute value |- |, as follows. If v |p we
define |p|, := p~ 5@l If v | 0o then v corresponds to the embedding 7, of

K into C, and we define |z|, := |7, (x)|"5® for any z € K,. One can show
that
II Izl =1, vze K\{o0},
vEME
and this is called the product formula. Let P € P"(K) be a point represented
by a homogeneous non-zero vector x with coordinates xg, ..., x,. We set
hi(x) = Y maxlog|a;,.
vEME ’
The absolute logarithmic (Weil) height H on P*(Q) is defined by
1
h(P):= ———hg(x
(P) = g hx(@)

where K is any number field containing P, and the absolute (Weil) height
of P is defined by H(P) := P,

Let a« € Q. We define h(a) as the absolute logarithmic height of the
point in P!(K) with projective coordinates 1, a. It is known that

h(ay---ap) < h(aq) + -+ h(ay),
h(ag + -+ ap) <logr+ h(ay) + -+ h(ay)
with » > 1 and with a1,...,0, € Q. Let x = (21,...,2,) € A*(K). We
define
|z|y := max|z;ly,, Yv€E Mk,

and

hmax(x) = Z log ||,

vEME
for & # 0, otherwise we set hmax(0) := 0. It is convenient to introduce the

function
hpa(z) == Y loglz|zz,
vEMK
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where
max; |z;ly, v non-archimedean,

’x‘L%: (ZiTv(xi)2)1/2, v real,
S o) (7;), v complex.

We write logt ¢ for max{0,logt} for any positive real number ¢, extended
by logJr 0= 0. Set

max = H max{|:c\v,1}

veEMK

hr-ir_lax( ) log H, max Z 10g+‘$’v7 h+ Z 10g+ ’x‘LQ
vEMK vEM K

These heights are related by
d d
hmax < hr2 < hmax + 3 log(n+1), hf. . < h+ <hbt . += log(n +1).

If we identify each point z = (z1,...,2z,) € A"(K) with the projective point
(1:21:...:2,) then by definition one gets hy (z) = ht . ().
One can extend the notation above to polynomials in n variables 77, ...
., T, with coefficients in K. In more detail, let P = )", a;T* be such a
polynomial with i : {1,...,n} — N a multi-index and T% = Tf(l) e T,Zl(n).
It corresponds to a point @ = (..., a;,...) in an affine space AV (K), and we
define

|P|U = ‘a|va |P|L2,v = ‘a|L2,vv
and the heights of P as 0 for P =0 and for P 75 0 as
hmax(P) = Y log|Ply,  hg2(P)= > log|P|s2,.
’UEMK ’UEMK
We shall also use
max Z 10g+ |Plo, h+ Z 10g+ ‘P’LQ

veEMg vEMK
PROPOSITION 3.6 (Siegel’s lemma, [0 Corollary 11]). Let N > M >0
be integers and let Iy, ...,y be linear forms in N variables Ty, ..., TN with
coefficients in K. Then there exists a non-trivial solution x = (x1,...,zN)
€ (’)% of the system of linear equations l1(Ty, ..., Tny)=--- =lp(T1,...,TN)

= 0 such that
1
h$ax( ) 5 log ’dlSC<K)’ +

N maXhLz(l )

where disc(K) denotes the field discriminant of K.

We recall Liouville’s inequality for number fields which is simple but has
an important role in the proof of the main theorem below.
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PRrROPOSITION 3.7 (Liouville’s inequality, [0, Corollary 2.9.2]). Let K be
a number field and let o be a non-zero element in K. Then

h()
log ||y > _[K ok Yo € Mk.

For an algebraic number a € K, the denominator § of « is defined as the
smallest positive integer for which the element d« is in O . For a polynomial
P with coefficients a;, i € I, in K, we define the denominator 6(P) of P
as the smallest positive integer for which §(P)a; € Ok for all i € I. The
following lemma gives an inequality between the height and the denominator
of an algebraic number.

LEMMA 3.8. Let « € K and d be its denominator. Then
h(@)
(K- Q'
Proof. For v € Mg \ My let p be the residue characteristic of v. By
definition

logd <

1/[Kv:Qp o
oo = 1N, g, (@) = N g, (@)}
with n, the degree of K, over Qp. Since Nk, /g, (@) € Qp and the value
group of Q,, is Z, the element

n
my 1= @ max{log |a/|,, 0}

is a non-negative integer. Let S := {(p, v); p the residue characteristic of v,
vE Mg\ M, |al, > 1}. It is a finite set. We see that

H p™a e Ok.
(p)es
This shows, by definition of the denominator of «, that
5 S H pmv’
(pv)es

and therefore

h
logd < K- Q
3.5. Analytic representation of exponential maps. Let K be a
number field and let G be an algebraic group defined over K. We denote by
G the Zariski closure of G in PV. Let U be the open affine subset defined
by GN{Xo # 0}. We know that the affine algebra I'(U, O) is stable under
the action of any element in g = Lie(G), and it is generated by &1, ..., &N,

where
X
= = i =1,...,N
& <X0> Vi

’
U
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(see [23]). We call a map L : {1,...,n} — g a basis if L(1),...,L(n) is a
basis for g. With such a basis L, one gets a system of polynomials P; 7, in
N wvariables such that

L(j)& =P r(&, .-, &n), Vi=1,...,N,Vj=1,...,n.
This means that
L; = L(j)(Oklé1,- -, &n])
is an Og-module in K[¢1,...,¢y|forany j=1,...,n.Set L=L1+ -+ L,
and define

IL = (OK[glava] E) :{te OK’ tL C OK[é.l”é.N}}

Then Zj, is an ideal of Ok and its norm Ng.g(Z) is an ideal in Z, which
has to be principal, say (d1) for some positive integer d;. We call §; the
denominator of L.

Denote by 04, ..., 0y the canonical basis of Lie(K') defined as 0jz; = &;;
forall 7 =1,...,n and for all j = 1,..., N, where J;; is Kronecker’s delta
and z; are the coordinate functions of K. We define the isomorphisms

0: K! = Lie(K]), x=(x1,...,25) — 2101 + -+ + 2,0n,
and
v : Lie(K,') — Lie(G(Ky)), ¢(01) = L(1),...,u(dn) = L(n).

We now consider the set G(K,) of K,-points of G. It is known that G(K,)
is a Lie group over K,. By [7, Chapter III, §7], there is a map exp (the expo-
nential map) defined and locally analytic on an open disk U, of Lie(G(K,)).
The functions
fi=&oExp, ¢=1,...,N,

are analytic on A, := (10 9)~}(U,) in K, where Exp = expo .0 0.

Let Og(k,)» Ou,» Oaa,) and Oy, be the sheaves of analytic functions
on G(Ky), Uy, 0(A,) and A, respectively. So we get commutative diagrams

Oc(k,) L R — Oa(AU)L)OAU
lL(j) laj
Oc(k.) i OS(AU)LO/%

for all 7 =1,...,n. This leads to
(8j ° EXp*)(éz) = (EXp* o L(]))(fz)7 Vi=1,...,N,
ie.
0j(fi) = L(j)(&) o Exp = P, 1(j5(&1,- -+, &n) o Exp = P 1,5 (f1,- -+, fN)
foranyi=1,...,Nand j=1,...,n.
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The map fr = (f1,..., fn) : Ay = KX is called the normalized analytic

representation of the exponential map exp with respect to the basis L. We
define

dr = H%E;Xdeg Py, eL:= v(0r), hr:= rrzu}x h(PiyL(j))

and
wr, := max{1l,er}(hr + logdr + logdr);
here by convention, logdy = 0 if d;, = 0.
We fix the following notation. For m = (m1,...,m;) € NF with 0 <
k < n, we write

O™ = O A L™= L™ - ()™, |m|i=ma + -+ my

LEMMA 3.9. Let L : {1,...,n} — g be a basis and P(T1,...,TN) a
polynomial in N variables with coefficients in K of total degree < D. LetT be
a non-negative integer and t = (t1,...,t,) € N" be such that T = t1+- - -+ty,.
There exists a polynomial P, € K[T1,...,Ty| such that

OP(fi,.. fn) = P fr,- - ),
satisfying
o deg P, < D+ T(dy, — 1),
e log|P|, < log|P|, + T(hr +log(D +Tdy)) for allv € M.

Proof. We use induction on T = |t|. The lemma is trivially true for
|t| = 0. Assume that it is true for any ¢ € N with || = 7" > 0. Let now
t = (t1,...,t,) € N be such that t; +--- + ¢, = T + 1. We may assume
that ¢; > 1. Set 7 = (t1 — 1,...,ty). By induction hypothesis,

aTP(f17-'-7fN):PT(fla'--afN)
with
D;:=deg P, < D+ Tdy, log|P:|, <log|P|,+ T(hr +log(D + Tdp)).

We write
P, = Z a(my,...,my)Ty" - TN :Za(m)Tlml--‘T;L""
mi+-+my<D- m
and
Py = Z a(mii,... ,17”L,~7]\/)T1mi’1 .- ~T]7\7,”’N

mg 1+ +my N<dr

with a(m;1,...,m;n) € K for all 1 <i < N. This gives

Ofi= Z a(miq,...,man)fi o f, Vi=1,...,N.

mg 1+-+m; Ny <dr,
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Since ' = 9,071 9tn = 9,07 it follows that
EP(f1y .. fN) = 0107 P(f1, ..., fn) = O P(f1y. ., fN)

N
=Y atm) > mi( T14) £ 01
m i=1 i

which is expanded as

N
Z Z Z mia(m)a(m; 1, ..., mi,N) ( H f]ijrmi,j) fimi+m¢,ifl

m =1 m;1+-+m; N<df, J#i
This shows that 0'P(f1,..., fn) = P:(f1,..., fn) for a certain polynomial

P(Ty,...,Tn) = Y q)T{ - TR
l
with ¢(l) = > mja(m)a(m;1,...m;n); here the sum is taken over the set
{(m1,...,mn,i,m;1,.. mzN) mj +m;j = lj for j # i and m; +m;; =
li+1,1<i:<N, mi71+ ~+my v <d, m1+ -+ 4+ my < D;} such that

deg P, <max(mi+---+mny+my1+---+myn — 1)
<D,+d,—1<D+T(d—1)+d,—1<D+(T+1)(d —1).
Furthermore,
lq(l |U<Zmz]a Nola(mi,...,min)|e<(dr + 1)V D, |P; \Umax| 5 L) o
This shows that
log |g(0)|» < Nlog(dr +1) +1log D- +log |Pr|y + At
< log|P|, + T(hL + log(D + TlogdL)) + Nlog(dr + 1)+ hr
< log|Ply + (T + 1) (hr + log(D + (T + 1)dz))
for all v € Mk, and the lemma follows.

Let k be a non-negative integer. We define £(k) as the sum of the images
of Okl&1,...,&n] under all differentials of order < k, i.e.

ﬁ(k) = Z Lt(OK[€177§N])

teZgO, [t|<k

Let Z(k) be the ideal (Ok[&1,...,€N] : L(k)) in Ok.
LEMMA 3.10.
(k) D (Ip)*, VkeN.

Proof. We use induction on k. If & = 0, the lemma is trivially true.
Assume it is true for K = m > 0. One has to show that

a1 am L&) € Ok &y, . .., EN]
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fori = 1,...,n, for ai,...,am+1 € I, and for t = (t1,...,t,) € N* with
|t| = m + 1. There is at least one j € {1,...,n} such that ¢; > 1. Set
T=(t1,...,tj—1,t; — L, tj41,...,tn). We see that

ar - am1 L&) = a1+ - am L7 (am11 L(5) (&)

Since apy41 € Iy, it follows that
aerlL(j)(gi):Q’i,j(gl?"'agN)’ vj:l?"'an

for some polynomials Q; ;(T1, ..., Tn) with coefficients in Og. By induction
with |7| = m, we have a1 - - - ay, € Z7* C Z(m). In particular,

ar - amL7(Qi (&1 €N)) € Ok &1, EN]. =
LEMMA 3.11. Fort = (t1,...,t,) € N" with |[t| = T and for a polynomial
P(Ty,...,Tn) € Ok|Th,...,Tn] we have
5L0'P(f1,..., fn) € Oklfi,..., fn]-
Hence 619! f;(0) € Ok fori=1,...,N.

Proof. There exists a polynomial P;(71,...,Tx) with coefficients in K
such that

LtP(Ela'-' 7£N) = Pt(glv"' 76]\7)
By Lemma the polynomial 67 P, has coefficients in Og. Note that

O'P(f1,....fn) = Pi(f1,-.., fn),
and so
SLO'P(f1, .-, [n) € Oklf1, .-, ).
Finally, since f;(0) =0 for i = 1,..., N it follows that
6Lt £;(0) = P(f1(0),...,fn(0) € Ok, Vi=1,...,N.u
ProprosITION 3.12. The functions f; satisfy
[filx)lp <1, Yz € B"([oL|prp).

Proof. This follows from the previous lemma and by considering the
Taylor expansion of f; at 0 together with the fact |n!|, > r;}_l for all positive
integers n. m

3.6. The order of vanishing of analytic functions. In this sec-
tion let I’ denote a complete subfield of C,. Let V' be a vector subspace
of Lie(G(F)), and f a non-zero p-adic analytic function on a neighbor-
hood of z € F™. We say that f has a zero at z of order > T along V if
(v1---vf)(z) =0 for any 0 < k < T and for any vy,...,v; € V; and f has
a zero at z of exact order T' along V if it has order > T at z along V and
furthermore there are wy, ..., wr in V such that (w; ---wrf)(z) # 0.
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ProposiTIiON 3.13. With notation as above, let d be the dimension of
V and let Aq,...,Aq be a basis for V. Then f has a zero at z of order
> T along V if and only if (A% ... Aﬁ;‘f)(z) =0 for (t1,...,tq) € N% with
ti1+---+tg <T; and f has a zero at z of exact order T along V if it has order
> T at z along V and furthermore there is a d-tuple T = (11,...,74) € N?
such that |7| =T and (AT ... A} f)(z) # 0.

Proof. We prove the first statement. In fact, it suffices to show that if
(Al --Aﬁldf)(z) =0 for any (t1,...,tq) € N® with t; +---4t4 < T, then f
has a zero at z of order > T along V. Let k be an integer with 0 < k < T,
andlet vy,...,v € V.Fori=1,...,k one can write v; = a;1 A1+ - -+a;qg
with a;1,...,a,q € F. For t = (t1,...,t3) € N¢ with |t| < T, we expand

k
(o1 0ef)(2) = (TT(andi++ +aadn) f) () = 3 aa(AF - AT F)(2),
i=1 acl
Since k < T it follows that |a| = a1+ - -+aq < T for every a € I. Hence the
sum vanishes, and this shows the first statement. It is clear that the second
statement follows at once from the definition and the first statement. =

4. Proofs

4.1. Proof of the second statement of Theorem [2.1. We shall
show that the first assertion of the theorem implies the second one. Let
u € A, be such that Exp(u) is an algebraic point in G(K). We define

n(u) := max {O, [pil - v(u)} + 1} and o = p" Wy,

Then v’ € A, and

L*U u)—nlu
'] = |pn(u) Iplulp = pin(u)iv(u) =pr! ()=l )Tp < Tp.

Moreover, if I[(u) # 0 then I(u') = p"™Wi(u) # 0, and applying the first
statement of Theorem [2.1/to «’ in A, N B™(rp|dL|p) one gets

log [l(u)], > —cowr" bk (log b + log 1) log p;
here b’ := max{1, h(y')} with 4/ := Exp(«/) = p"WExp(u) = " where
v := Exp(u). By [19, Prop. 5] one has
(7" ") < (p")2h(y) < p*" @,
and this implies that ' < p2*(W}. Hence
n(u) log p + log |l(u)|, > —cowr, " ™2bh™ (log b + log h 4 2n(u) log p)" > log p.
Therefore
log |I(u)|, > —c1wr " T3bh"™ (log b + log h + 2n(u) log p)" > log p

for some positive constant c;.
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4.2. A projective embedding. Following [19] (cf. also [9] and [24]),
there exist a positive integer N and an embedding ¢ : G < PV with G as
in the statement of Theorem [2.1) which is defined over a number field K
of degree m. Without loss of generality, we may assume that the identity
element e € G(K) under ¢ has coordinates (1:0:...:0) in PV,

LEMMA 4.1. There exists an embedding ¢ : G — PN defined over a
number field of degree m(N + 1) such that ¢(e) = (1 : 0 : ... : 0) and
Xo(¥(g)) # 0 for all g € G(K), where Xo denotes the first projective coor-
dinate on PN .

Proof. We choose a field extension K; of K of degree NV + 1, and a basis
€0,...,€n of K1 over K. The degree of the extension K1 O Q is therefore
m(N + 1). It is clear that the vectors

(60,0,...,0), (—61,60,0,...,0), ceey (—EN,O,...,O,E())

form a basis of K {V +1

, which gives rise to a unique element in GLy41(K7)
mapping this basis to the standard basis of K {V *1 This linear isomorphism
is expressed explicitly by the matrix

-1 =2 -2
€g €9 €1 ... €y €N

0 ' ... O
A= 0
0 0 ... e
We let ¢ be the composition of A with the embedding ¢ as above. Then
¥ (e) has projective coordinates (1 : 0 : ... : 0), and Xo(¢(g)) # 0 for all
g € G(K). Indeed, let (xg : =1 : ... : xy) be the projective coordinates

of ¢(g). By the construction of ¢, we obtain

¥(g) = (6611‘0 + 662611‘1 + e —}-6526]\[3:1\/ : ealxl Dol eglxN)

= (eoxo+ €1T1+ -+ ENTN : €T1 ... €QTN).

Thus ¥(e) = (1 :0:...:0). In addition, since €,...,ex is a basis of K}
over K and xg,...,zy are in K and not all zero, it follows that X¢(¢(g))
is non-zero. Note that the embedding 1 is defined over K. m

We shall fix the embedding ¢ : G — PV for the rest of the paper,
and identify each g € G with its image 9(g) in PV. By [23, Section 2],
there is a finite field extension K5 of K (the degree of this extension is a
positive constant) with the following property: There exist bihomogeneous
polynomials Ey, ..., Exyin Zy, ..., Zyn and Xy, ..., Xy of bidegree (b, b) with
coefficients in Ko and with heights bounded above by a positive constant,
and a Zariski open set U C G x G containing I'(y) x I'(y) such that for
(9,¢") € U the homogeneous coordinates of g + ¢’ are (Eo(g,¢") : ... :
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En(g,9')); here I'(v) denotes the subgroup generated by ~ in G(K) with
v := Exp(u). The degree of K5 over K is also a positive constant. We may
therefore assume, without loss of generality, that K is already equal to Ks
and has degree d over Q. We call (Ey,..., Ey) an addition formula for G,
and from now on we fix such an addition formula F = (F1,..., En).

4.3. Basis of the hyperplane. We define the linear form in n + 1
variables
L(Zo, 21y ..y Zn) =2y — U 20y, Zn).
This gives the vector space
W= {(20, 21, 2n) € K" 29 =1(21,...,2,)} € K",
Let e1,..., e, be the basis for # defined by

e1 = (p1,1,0,...,0), ex=1(52,0,1,0,...,0), ..., e, = (5pn,0,...,0,1).
This gives differential operators (corresponding to the isomorphism 0 intro-

duced in Section
Ay=0(e1)=p100 + 01, Ay =0(e2) =P200 + 02, ..., Ap=0(en) =Pn0o + On;

here Oy, . . ., O, is the standard basis for Lie(K*1). Let ug := (0, u1, ..., u,)
and u := (ug, u1,. .., u,) be vectors in K1 with ug := [(u). Then

u=uye; + -+ Unen,
and this shows that u € 7. We furthermore see that
u—ug = ({(u),0,...,0).

Define
Al = Al Al for t = (.., t,) € NP

4.4. The auxiliary function. In this section we shall construct an
auxiliary polynomial by using Siegel’s lemma. Let ¢ := G, x G. The expo-
nential map of the Lie group ¥(K,) is expy(k,) = idg, x exp. Note that
for v € A, we have Xo(Exp(u)) # 0; here Exp : 4, — G(K,) is defined in
Section [3.5l We introduce the function

WP = <1de X EXp)*P<Y, 1, )X(;, ceey ))?(\)[)
for each polynomial P in N + 2 variables Y, Xg, ..., Xy. This means that
Up(w) = P(y, 1, fi(z1,...,xn),..., fn(z1,...,2,)) is analytic on K, x A7,
where w = (y,z) € K" with x = (21,...,7,) € A%

We define the order ordg P of P at g = (idg, x Exp)(w) along # to
be infinity if ¥p is identically zero in a neighborhood of x, and to be the
order of ¥p at w along # otherwise.

Let Sp, Do, D,T be positive integers. We apply Siegel’s lemma to con-
struct a polynomial P in N + 2 variables with coefficients in O such that



p-adic linear forms 133

P does not vanish identically on ¢ and has height h(P) bounded above
by a quantity depending on L, Sy, Do, D,T,b, h. We further require that
ordgy,,w ¥p > T for all 0 < s < Sp.

PROPOSITION 4.2. There are positive constants ca and cs such that if
DoD"™ > coSgT™ there is a polynomial P in N + 2 variables Y, Xy ..., XN
with coefficients in Ok, homogeneous in Xo, ..., XN of degree D, and with
deg Py < Dgy such that

(1) P does not vanish identically on ¢,
(2) (AtWP)(SUO) = 0; 0 <s< SO; t= (tla ve 7tn)7 0 < tl, s atn < 2T7
(3) h(P) < e3(T(hr, 4 logdy, + log(D + Tlogdy)) + Db+ DS2h).

Proof. Since the dimension of G is n, we may assume that Xg, ..., X, are
algebraically independent modulo the ideal of G. We shall construct a non-
zero polynomial P in n+2 variables Y and Xy, ..., X, which is homogeneous
in Xo, ..., X, of degree D (and therefore satisfies (1) of the proposition) such
that degy. P < Dy and such that (2) and (3) of the proposition are satisfied.
Such a polynomial can be written in the form

Do D
PY,X) =) > piY'Mj(Xo,...,Xn),
i=0 j=1

where D;p is the number of homogeneous monomials of degree D in the
n + 1 variables Xy, ..., X,, and My,..., Mp, are all these monomials. An
easy computation shows that D; = (D Z") For short, we write ¥ for ¥p.
Let E = (E4,..., EyN) be the addition formula for G as above. By abuse of
notation, we set

Ei(z,z) == Ei(1, f1(2),..., IN(2), 1, fi(2), ..., fn(2))
for z,x in A,. For y € K,, we also define
W, (y,x) == ¥ (y, su + x)Eo(su, z)".
Set
Ii={(5,t); 0<s< S, t =(t1,...,tn), 0<ty,...,t, < 2T}.
For any (s,t) € I we shall determine the coefficients p;; such that
(A',)(0,0) =0, V(s,t) €l

By the property of the addition formula F, for any x in a neighbourhood
of 0 small enough that E(su,z) # 0, one gets
E; (3u7 .’L')

; =—_—-, 1=1,...,N.
Rt ) = By uay T
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This leads to

My (0 i), ol ) = 00y (1 e )
= Eo(su, ) P M;(Eo(su,2),..., Ey(su, ).
Therefore
T, (y,x) = U(y, su+ x)Eo(su, z)P = ZpijyiMj(Eo(su, x), ..., Ey(su,x)).
1,

On the other hand, for each s, we can express E;(su,x) as

Ei(su,z) = Fi(fi(z),..., fn(x)), i=0,...,n,
where F; are polynomials in N variables with polynomials (which have co-
efficients in K) in the fi(su),..., fn(su) as coeflicients. Since

~v¥ =Exp(su) = (1: fi(su):...: fn(su))
and since h(vy*) < s2h (see [19, Prop. 5]), we may estimate the heights,
h(F;) < s%h for i = 0,...,n. One can therefore choose a common denom-
inator dy < s2h for the polynomials Fy, ..., F),. Since M; is a monomial
of degree D, there is a polynomial ();s in IV variables of degree < D with
log |Qj.slv < Ds?h for v € Mg such that

Mj(Eo(Su,w), ) En(3u7$)) = Qj,s(fl(x)v e afN(x))
for each j =1,...,D;. Then
12
which gives

(Atw sz] ngs (f1,---,/n)))(0,0).

Define '
ajj == (A'(Y'Qjs(fi,- -, f)))(0,0)
for i =0,...,Dp, 7 =1,...,D1 and (s,t) € I. Note that dy = 9/9y. We
expand
afl; = (AV - AR (Y'Qjs(f1,- -5 [N)))(0,0)
= ((B190 + 01)™ -+ (Bn0o + 9p)'" (¥' Qs (f1, - - -, [N)))(0,0)

= Zl: Z<t1> ( )/3'51 ... gla=in

11=0 in=0

) (1t ttn)—(i1++in) . .
. <<8y> o 3 (Y Qe frs - ,fN))> (0,0)
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B - (e

’Ll =0 1_0

. <(§y)<t1+...+tn)—(i1+..-+in>yi> (0) (A -~ 9 (Qj.s(f1s- - FN))) (0).

For m € N”, Lemma yields
0"™(Qjs(f1s---s IN)) = Qism(f1,-- -5 fn)
for some polynomial Q; s, in N variables with
10g |Qjis,mlv <108 |Qjslv + [m|(hr +log(D + |m|dL))
< |m|(hy +log(D + |m|dy)) + Ds*h, Vv € Mk.

This means that

log [(0™(Qjs(f1,- -+ fa)))(0)], < |m|(hr, +log(D + |m|dL)) + Ds*h
for v € Mg. In particular,

< T(hy +1log(D +Tdyp)) + Ds*h, Vv € M.

Furthermore,

o (t1t-+tn)—(i1++in)
() /o

{0 if (144 tn) = (I 4 +in) # 4,
il i (4 ty) = (G i) =4

In other words,

9\ rtttn)—(ittin)
() "o

We deduce that
log |at]y < T(hg, +log(D + Tdy)) + Ds*h, Vv € M.

Since h(f;) < bfori=1,...,n, log|Bi|, < b for v € Mg. By noting that
d 5L‘ ‘stm has coefﬁments in Ok, we find that d (5L2”T f]t is also in O
and

log |ds6.>" agt|, < Dob + T(log 61, + hy, + log(D + Tlogdy)) + DSGh

for (s,t) € I and for v € Mz°. We now consider the linear forms in
ng := DDy variables Tj;,
st — ZbStﬂjv

log < log(T") < T'logT, Yve Mg.

(2
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where bfjt = d35L2”Taf]t~ for all (s,t) € I. Let mgy be the number of these
linear forms; then my <« SpT™ and ng = DoDy, = Dy (D;rn) > DgD". Since
bfjt € Ok we get

hmax (Ist g log max bSt
veMpe

< Dob + T(hy, +logdz, + log(D + Tlogdy)) + DS2h.

We now apply Siegel’s lemma: under the condition DgD™ > SoT™ there is
a non-zero vector pg = (p;;) with coordinates in O such that [y (pg) = 0
and

mo
< — .
h(po) < L hia(lst)

But using hr2(lst) < hmax(lst) + logng gives
h(P) < Dob+ T(hy, +log 1, +log(D + Tdy,)) + DSGh.

It remains to show that (AW)(sug) = 0. In fact, since I (py) = 0 one gets
(AYW4)(0,0) = 0 for (s,t) € I. Set

Uy, x) = W(y,su+x), FEsz):= Eo(su,z)’;
then ¥} = W,E D, Therefore, by Leibniz’ rule,
(A')(sug) = (A'P)(0, su) = (A)(0,0) = (A (¥, B 7))(0,0) = 0.
This completes the proof. m

From now on until Section we shall fix a polynomial P as in Propo-
sition .2 and let ¥ = ¥p be the analytic function associated with P.

4.5. Extrapolation. In this section we use the p-adic Schwarz lemma
to give an upper bound for |(A'W¥)(su)l, (with |t] < T'). We need

LEMMA 4.3. Let Q be a polynomial in k + 1 variables Xy, ..., X with
coefficients in the ring O, of algebraic integers of K, and degy, Q@ <1 with
leN,1>1. Then

_ < [
Qe 2) = Q0. < u ool

for any xg € K, and x € OF.

Proof. We define the polynomial Q,(X) := Q(X,z) in one variable X.
By assumption and by the ultrametric inequality, Q. has coefficients in O,,.
We write Q. (X) = X' + --- + ag with ag, ...,a; € O,. Then

|Qz(z0) — Qz(0)[, = |alxé + o+ arzolp < n<1ax |al$0|p < Igafl |930’;r L]

LEMMA 4.4. For 0 < s < S and fort = (t1,...,t,) € N" such that
0<ty,...,t, < 2T we have

(A" (su) — (AW)(suo)lp < |07 [1(w)p-
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Proof. We can write again

P(Y,Xo, c. ,XN) = ZpiniMj(X(), c. ,XN).
,J
Set Rj(x) = M;(1, fi(z),..., fn(x)); then
AW = " pi(A'(y'Ry)) = Zpij((ﬂlao +01)" -+ (BuBo + 0n)" (¥'Ry))

‘7]‘

t1
t ( i
_ZPUZ Z(l) < ),Btl 1., 5tn n
b =0 in=0
9\ (it Ftn)=(irttin) in (i
((2) o0 ') )

t1 tn
:sz]ZZ(tl><i )Btl i, 5tn_ln

7 =0 im0 \U
8 (t1+"'+tn)_(i1+""‘l‘in) . i .
{(5) V)0,
Using the fact that
< ) >(t1+~--+tn)—(i1+-~+in) .

dy Y =0 if (- A ty) = (i i) >,

and that 8{1 -+ 9in Rjisapolynomialin f1, ..., fy with denominator bounded
above by 5|Lt| by Lemma we deduce that

It gt = g\ et~ N
6L /811_21 - Bfln_ln <(ay> yl> (ail - ({X[LRJ)

is a polynomial in y, fi1,..., f;v with coefficients in Og. On the other hand,
the coefficients p;; are in O, and this implies that

sl AW) = Qu(y, f1, ..., fn)

for some polynomial Q:(Y, X1,...,Xn) with coefficients in O, and with
degy @y < Dg. This means that

|(A"P)(su) — (A'P)(sup),

= |6L|;‘t|‘Qt(Su0a fl(su)7 oo 7fN(SU’)) - Qt(07 f1<SU>7 R 7fN(SU))‘p'

Since u € A, N B™(rp|dLlp), we get |fi(su)lp, ..., |fn(su)[, <1 by Proposi-
tion and taking into account that rp[dz|, < 1 and fi,..., B, € Ok, we
find that

|suglp = |spluolp < |uolp = [Brur + -+ + Buunlp < 1.
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By Lemma [4.3] we obtain

t t —2nT i
(A1) (sw) — (A (sl < 1011, mas [suol,

< 167 5 uolp = |07 3™ [1(w) |-

PROPOSITION 4.5. For 0 < s < Sy and for t = (t1,...,t,) € N such

that 0 < ty,...,t, < 2T we have
(AW (su)lp < |07 3 1(w)p-

Proof. By Proposition for 0 < s < Sy and for t = (¢1,...,t,) € N

with 0 <tq,...,t, < 2T one has
(A7) (su) — (AW)(su0)lp < |07 (3" [1(w)]p-
Moreover by Proposition for 0 < s < Sy and for t = (t1,...,t,) € N”
with 0 < ty,...,t, < 2T we have
(A7) (sug) = 0.

This gives the desired conclusion. =

For each n-tuple ¢t € N" such that |t| < T we introduce the function

f(z) = (A"P)(zu)

in the variable z. It is analytic on B(1). Our next step is to apply Proposition

to the function f. We shall prove an upper bound for the derivatives of
f on a certain finite set. Thanks to Proposition one gets

PROPOSITION 4.6. For 7,5 € Z such that 0 <7 < T and 0 < s < Sy we
have

F D)l < 16 BT ().
Proof. By recalling that u = uje; +- - -+une, and using the composition
rule for derivatives we get

FD ) = ((udo + - -+ + 1, 0,)" AW) (2u)
= ((Biur + -+ + Bn)do + w101 + - -+ + 1 0p) " AW) (2u)
= ((u1(B190 + D) + - -+ + un(Br00 + 9,)) " A'W) (2u)
= ((u1A1 4+ 4 unAn)TAtLD) (zu).

Since |u;]p, < 1 for ¢ = 1,...,n, the multinomial expansion together with
the ultrametric inequality gives
D) < max (A} -~ A AW ().

= 0<ityyin<Ti i1+ in=T
Since 7 and |t| are < T, the assertion follows from Proposition .
LEMMA 4.7. Let a # 0 in K, be such that |a|, < p~/®=Y. Then

(@) 1 S 1
v(a) — —— > —.
p—17 2d?2
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Proof. We know that v(K)) = (1/dy)Z with d, := [K, : Qp]. Since
lal, = pv(@) < p=l/(P=1 there is a positive integer a such that

a 1

U(a):d—v>ﬁ.
This implies that a(p — 1) —d, > 1. If p— 1 > 2d,, then
R R T S T T
p—1"dy, p—1~2d, = 2d = 24%

Otherwise, if p — 1 < 2d,, then
1 _a(p—l)—dv> 1 1 1
P11 -1 Cdp-1) 2&° 2P
From now on we set € := 1/(3d?). Combining Lemmamand Proposition
together with Proposition we will get

PROPOSITION 4.8. Fors € N andt = (t1,...,t,) € N" such that |t| <T
we have

|(At£0)(su)\p < pf(eSQfeL)T maX{Lp((2n71)eL+ESo+Til)TS6§0T‘l(u) ’p}

Proof. As above, we consider the function f(z) = (A"W%)(zu), and apply
the p-adic Schwarz lemma to f. We first show that f is analytic on B(R),
where R := p¢. It suffices to show that zu; € B(r,|dL|,) for 2 € B(R) and

v(a) -

i =1,...,n. In fact, if u; = 0 then this is trivially true. Otherwise, since
167 gl < p~ Y@=V it follows from Lemma [4.7| that
1 1
—1
Hence

_ 1 _ 1 1 1
“@W”*:.4+waw‘w4‘wﬂ>pq’

which leads to

“lui)—e — _
RIOT pluilp = pp~ o(0z ) = p~ (V0L )= < =1/ (=),

or equivalently to R|u;|, < 7rp[dr|p. This means that zu; € B(rp|d[,) for
z € B(R). Next we establish an upper bound for |f|r. As in the proof of
Proposition there is a polynomial Q(Y, X1, ..., Xy) with coefficients in
Op such that degy Q < Dy and

flz) = 5ZTQ(zu0, filzu), ..., fn(zu)).
We note that

|zuglp = |Brzur + -+ - 4 Bnzunlp < |zu1 + -+ 4 zun|p
< max{|zuilp, ..., |zunlp} <1,
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and deduce from Proposition that |fi(zu)|, < 1fori=1,...,N and
for z € B(R). This gives |Q(zug, f1(zu), ..., fx(zu))|, < 1, which leads to

@)y <1655, vz € B(R).
In other words,
-1|T
’f‘R < ’(SL |p .

Finally, let I := {s € Z; 0 < s < Sp} and let ¢ be the minimum of |s — §'|,
for s # ¢’ in I'. The cardinality of I" is Sy and we have § < 1. We define

W= sup{|f(7)(s)]p; 0<7<T,sel}.

Using Lemma, we get p < lézl\gnT\l(uﬂp. We apply Proposition to
obtain

[l < max{(1/R)*T ||, p(1/8) 71, -1y
< max {p= S0 9 [ Hlyd= 0T, )
S max {p_ESOTpeLT’p pr- 1(5 (SoT— 1)|l | }

S max {p7(6507€L)T,p(2neL+p 1)T(5 (SoT 1 |l ’ }

2neLT

Moreover, for s,s’ € I' such that s # s’ one has
1 1

> .
|ls—s'| = So
This gives 6~! < Sy. Thus we obtain

1f]1 < max{p~(€So=er)T pGnert gt T gSoT |y 4

((Qn—l)eL+€SO+T£1)T5690T|Z(U) lp}-

s =5l >

= p~ S max(1,p

The proposition therefore follows from the fact that |(A'W)(su)|, = |f(s)],
< |f|1 for all integers s > 0. m

PROPOSITION 4.9. There is a positive constant cq4 such that if

log |1(u)|p —04<(S’0+pil+eL)Tlogp+SngogSo)
then
log |(A"W)(suo)|, < —(eSo — er)T logp
fort € N™ with |t| <T and for s € N.
Proof. By Lemma [.4]
(A% (sw) — (AD)(sug)ly < 67 2711wl = p2"2T i),
and by Proposition

(A (su)|, < p=(So=er)T max (1, p(Er-DerteSot 72T gSoT ()| .



p-adic linear forms 141

Hence
(AW (sup)], < max{|(AW)(su)|y, |(AW)(su) — (AW)(suo)|,}
< p e mac {1, (B VST G ),
plEn=Der+eSoT 14|}
< T (1 DS ST ST ) )
On the other hand,
Pl Der+eSot )T ST )| < 1

if and only if
\l(u)]p < p*((2"*1)6L+650+Til)TSO—SOT.

In other words, if
1
log [l(u)], < — <(2n —1)er, +€So + p_1>Tlogp — SoT log So,
then
|(A'P)(sug)[, < p~(Fomer)T,

This means that there is a positive constant ¢4 such that if

1
log |l(u)], < —C4<(So + =] + eL>Tlogp + SoT log So)
then
log |(A"%)(sug)|, < —(eSo — er)Tlogp. =
4.6. A lower bound. Using Liouville’s inequality, we derive the fol-
lowing result that will be crucial in the proof of the main result.

PROPOSITION 4.10. Let s be an integer such that 0 < s < S. Assume

that ¥ has a zero at sug of exact order T' along W for some positive inte-
ger T'. Let t € 7%, with [t| = T" be such that (A"W)(sug) # 0. Then

log |(A"W)(sug)|, > —c5(T"(hr, + log &1, + log(D + T'dy)) + Dob + DS*h)
for some positive constant cs.

Proof. As in the proof of Proposition for y € K, and z € A? we
define

Uy, x) =V (y,su+x), Es(z):=FEo(su,z), Wy, z):=V(y,z)Es(x)P.
By our assumption
0= (A™P)(sug) = (A™¥)(0, su) = (AT¥)(0,0)
for 7 € N with |7| < T". Leibniz’ rule gives
(A72)(0,0) = (AT(ZE]))(0,0) = 0.
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Using Leibniz’ rule again, one gets
(AW)(suo) = (A" (FE,))(0,0) = (A'%)(0,0)E;P(0).
The same arguments as in the proof of Proposition (just replace Sp by 5)
show that
h((A")(0,0)) < T'(hr, + log éz, + log(D + T'logdr,)) + Dob + DS?h.
Furthermore,

h(E;P(0)) = h(Ey(su,0)~ ) = Dh(Ey(su,0)) < DS?h.

Since (A'W)(sug) # 0, Liouville’s inequality gives
log |(A%)(suo), > —h((A"W)(suo)) = —h((A"¥;)(0,0)Es(0)~7)
> —(T'(hg +1logdy, + log(D + T"dy,)) + Dob + DS?h),

and the proposition follows. =

4.7. Multiplicity estimates. Another crucial point for proving the
theorem is the following lemma. For the proof we use [I7], but we also
refer to [21] (and to [22], where the multiplicity estimates part has been
published); the result of [I7] is a modification of the multiplicity estimate
part of the habilitation thesis [21].

LEMMA 4.11. Letn := (0,7) and I'(n) := {n%; i € N}. Let H(¢; Dy, D)
and H(9; Dy, D) be the Hilbert—Samuel functions associated with the ideals
of A and &G respectively. If ¥ vanishes at any point of {sug; 0 < s < S}
along W of order > T, then there are a connected algebraic subgroup
defined over K distinct from & and a positive constant cg such that

T+ codim%% N Ty
r H(#¢: Dy, D
( codimy, #;, N Ty card((I'(n) + )/ A )H(H; Do, D)

S CGH(%, D07 D)a
where Wy =W Qk, Cp, and Ty = Lie(H) @k C,.

Proof. We associate with P the bihomogeneous polynomial P* in N + 2
variables Yy, Y1, Xg, ..., Xy of degree Dy in Yy, Y7 and degree D in Xo,...
..., Xy defined by

P"(Yy, Y1, X0, ..., XN) = YO P(Y1 /Y0, X0, ..., XN).

Since ordgy,»¥ > T, the order at any point sug along % of the analytic
function P*(1,y,1, fi(z),..., fx(x)) is at least T. This also means that the
order of P"(1,y,1, fi(z),..., fn(z)) along #,, at any point suy is at least T'.
Therefore the lemma follows immediately from [I7, Theorem 2.1]. =
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4.8. Choice of parameters and proof of Theorem We choose
parameters as follows. Let ¢ be a large enough positive constant and

So = [ewr(logh+logh)], S =[c*Sy],
DO — [C5n+158+1hn]7 D= [C5n+1561bhn71]7 T — [c5n+65[r)L-|-1bhn]7

where [-] denotes the integer part. Our parameters satisfy DoD™ > c2SoT™.
Proposition gives a polynomial P in N + 2 variables Y, Xy..., Xy
with coefficients in Ok, homogeneous in Xy, ..., Xy of degree D, and with
deg Py < Dy, such that

e P does not vanish identically on ¢,

o (AW)(sug) =0 forall 0 < s < Spand t = (t1,...,t), 0 <ty,...,ty
< 2T,

o h(P) < c3(T(hy +logdyr +log(D + Tdy)) + Dob + DSZh);

here we write ¥ for ¥p.

LEMMA 4.12.
1
log |l(u)|p > —ca ( (So + p—1 + eL>Tlogp + SoT log So> .
Proof. On assuming that

1
log [I(u)]p < —C4(<SO + p—1 + eL)TIng + SoT log SO)

Proposition [£.9] gives
log [(A"W)(sug)], < —(eSo — er)T log p.

We shall show that the order of ¥ along # at any point of {sup; 0 < s < S}
is at least T'. Otherwise there is some point squg with 0 < sg < S at which
the exact order along # is Ty < T. This means that there exists 7 € N”
such that |7| = Ty and (A™¥)(spug) # 0. We apply Proposition to get

log |(AT%)(souo)|p > —c5(To(hr + log 61, + log(D + Tydr)) + Dob + DS?h).
The comparison with the lower bound above implies that
—(eSo — er)Tlogp > —c5(T(hy + log 61, + log(D + Tdy)) + Dob + DS?h).
This yields

(eSo — er)Tlogp < e5(T'(hy + logdy, + log(D + Tdy)) + Dob + DS?h)

and shows that

1

< e5(T(hr, +1og 61, + log(D + Tdy)) + Dob + DS?h).
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This means that there is a positive constant c7 satisfying
T(So—er) < C7(T(hL +log oy, + log(D + Tdy)) + Dob + DSZh).

We get a contradiction because this cannot hold if ¢ is sufficiently large.
Therefore ¥ vanishes at any point of {sug; 0 < s < S} of order at least
T along #. By Lemma there is a connected algebraic subgroup 7%
defined over K distinct from ¢ and such that

T+ codim%% NTy
r H(: Dy, D
( coditny, Wy Ty ) X0+ HV AV (A3 Do, D)

< csH(9; Do, D).

Since G and G, are disjoint, there are subgroups H, of G, and H of G
(defined over K) such that s = H, x H. Let n, be the dimension of H,
and n’ be the dimension of H. We know that H(.#; Dy, D) > Dy» D™ and
H(¥4; Dy, D) < DyD™. The above inequality gives

<T + codimy, #, N Ty

1-na n—n'
codimy, #;, 0 Ty > card((I'(n) + )/ ) < Dy~ "D~

We shall show that H must be the trivial group {e}. Indeed, if not, then we
get a proper quotient 7w : G — G/H inducing a linear map 7, : g — g/b of
Lie algebras which maps the hyperplane W onto (W + §)/b; here g and b
denote the Lie algebras of G and H respectively. Furthermore, 7(G, W) =
(n — 1)/n, and since (G, W) is semistable over Q, it is also semistable over K.
This gives
dim(W +b) — dim b
T(G,W) < 7(G/H,n.(W)) = TG — A
_ dim(W +b) —n’

n—mn'

But
n—1=dmW < dim(W + ) <n,

and this shows that dim(W + b) = n, i.e. dim(%#}, + T ) = n. This gives
codimy, #), N Ty = dim(#) + Ty) — dim Ty =n + 1 —n, — 1/,

and shows that
n+1-—n,—n 0 '

We deduce that
Tn-i—l—na—n’ < CgD(l)_naDn_n/

for some positive constant cg, a contradiction to T' > c¢Dg, cD. Thus H ={e},
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and therefore T7;» N #,, must be trivial. One gets
codimy, #) N T = dim #), = n.
Moreover, I'(7y) N7 must also be trivial and hence
card((I'(y) + )/ ) = card I'(n) = S.
We obtain

T
( + ") S < D" pn < DyD™.
n
This shows that T™S < cgDgD™ for some positive constant cg, and again
gives a contradiction because of the choice of the parameters. »

In order to finish the proof of the theorem, we use the above lemma and
the fact that logr, ' = 1;%119 < 2 to get

log [I(u)|p > —c10(SoT log p + SoT log Sp + T'er, log p)
> —c11(SPT2bh™ log p + S§ 2 (log Sp)bh™) > —c1255*bh™ log p

for some positive constants cqg, ¢11 and ¢12. In other words, there is a positive
constant ¢g independent of b, h, p such that

log [I(u)|, > —cow T3bh™ (log b + log 1) log p.

The first assertion of the theorem is thus proved; together with Section 2.2,
this completes the proof.
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