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1. Introduction. The theory of Diophantine approximation is one of
the most interesting areas in number theory in which the theory of linear
forms plays a central role. In 1966 Baker made a breakthrough by proving a
very deep result on effective lower bounds for linear forms in logarithms of
algebraic numbers (see the series of papers [1]). This result was refined by
Baker and Wüstholz [2]. After Wüstholz proved a brilliant theorem, called
the analytic subgroup theorem (see [3] or [23]), the problem of linear forms
could be considered in higher dimensions. In the literature one can find
generalizations in terms of algebraic groups, and the most general results so
far are due to Hirata-Kohno [13] and Gaudron [12].

It is natural to consider p-adic analogues of such problems. The theory
of p-adic linear forms plays indeed an important and fundamental role in
number theory. It has been applied to many questions, in particular to solve
completely a large number of Diophantine problems of different shape. One
of the points of interest comes from the problem of finding lower bounds for
linear forms in p-adic logarithm functions evaluated at algebraic points. Un-
like in the complex case, the p-adic logarithm function is only defined locally.
It is therefore more natural to study upper bounds for the p-adic valuation
of expressions αb11 · · ·αbnn − 1, where α1, . . . , αn are algebraic numbers that
are multiplicatively independent and b1, . . . , bn are rational integers, not all
zero. Such problems have been investigated by many authors (see e.g. [8])
and the most outstanding results to date are due to Yu [26–29]. In 1998 he
formulated and proved a p-adic analogue of the Baker and Wüstholz theo-
rem and afterwards in a series of papers he improved the bounds. The results
of Yu were used by Stewart and himself [20] to deal with the abc-conjecture.
In particular, Stewart and Yu in 2001 showed that there is an effectively
computable positive number c such that for all coprime positive integers
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x, y and z > 2 with x+ y = z one has

z < exp
(
cN1/3(logN)3

)
,

where N is the product of all the distinct prime divisors of xyz. Furthermore,
with the recent refinements of Yu [29] it is possible to solve completely the
generalization of a problem of Erdős to Lucas and Lehmer numbers; the
original conjecture of Erdős from 1965 states that P (2n − 1)/n → ∞ as
n → ∞, where P (m) denotes the greatest prime divisor of m for integers
m > 1.

The generalizations to linear forms in p-adic elliptic logarithms were
solved by Rémond and Urfels [18], and refined by Hirata-Kohno and Taka-
da [14]. For higher dimensions in the p-adic setting, the best results to
date are due to Bertrand and Flicker. They stated some results concerning
simple abelian varieties or abelian varieties of CM-type (see [4] and [10]).
Flicker [11] also obtained a lower bound for linear forms on general abelian
varieties, but the bound is ineffective.

The goal of this paper is to generalize the result on p-adic linear forms
when evaluating at an algebraic point of a commutative algebraic group
of positive dimension satisfying a technical condition and the condition of
semistability. To describe the main theorem, let K be a number field and G
a commutative algebraic group such that G and the additive group Ga are
disjoint over K (see Section 3.2 for the definition of this notion). There are
many commutative algebraic groups satisfying this property, for example
the direct product of any finite copies of the multiplicative group Gm or any
abelian variety. More generally, we prove that every semiabelian variety also
has the property.

Let p be a prime number and consider embeddings K ↪→ Q ↪→ Cp. De-
note by v the p-adic valuation which is the restriction of the p-adic valuation
on Cp to K and Kv the completion of K with respect to v. We embed G into
the projective space PNK for some positive integer N , and let Lie(G) denote
the Lie algebra of G. Fixing a choice of basis for the vector space Lie(G)
one can identify Lie(G) with the vector space Kn; here n is the dimension
of G. We get the normalized analytic representation of the exponential map
of G(Kv) (with respect to the basis) consisting of N functions analytic on a
certain neighbourhood of 0 in Kn

v . Let W be the hyperplane in Kn defined
over K by the linear form

l(Z1, . . . , Zn) = β1Z1 + · · ·+ βnZn,

where β1, . . . , βn are elements, not all zero, in K. Let u be an element in the
above neighbourhood such that its image in the p-adic Lie group G(Kv) is
an algebraic point γ in G(K). The problem we consider is to give a lower
bound for |l(u)|p when l(u) is non-zero; here as usual we denote by | · |p
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the p-adic absolute value on Cp. The purpose of this paper is to solve the
problem in the case when (G,W ) is semistable over Q. Here we use the con-
dition of semistability introduced in [3] over the algebraic closure Q, since
it concerns field extensions of the ground field K. Our lower bound consists
of two parts; the first one consists of effectively computable constants de-
pending only on the group G, the field K and the choice of basis for the Lie
algebra of G, and the second one is the product of the absolute logarithmic
(Weil) height of the linear form l, of the algebraic point γ and of the prime
number p.

The method used in this paper to solve the problem can certainly be
applied to get new results in transcendence theory. We leave this as a topic
for a forthcoming paper.

In Section 2 we shall state the new result in detail. In Section 3 we collect
some preliminary results including a Schwarz lemma in the p-adic domain,
simple facts on disjointness and semistability, on heights, on the analytic
representation of the exponential map and a fact about the order of vanish-
ing of analytic functions. In Section 4 we shall give the proof of the main
result of Section 2. The proof starts by embedding G into some projective
space; this involves a choice which we fix for the rest of the paper. We also
choose a basis for the hyperplane. Then we work out the standard program
in transcendence theory: we construct an auxiliary function with bounded
height and with high order vanishing at certain points. Using the Schwarz
lemma we can extrapolate and derive an upper bound. Liouville’s inequality
from Diophantine approximation gives a lower bound provided that we have
non-vanishing. Algebraic considerations (namely multiplicity estimates) give
the non-vanishing. Finally, comparing upper and lower bound gives the de-
sired result by an appropriate choice of the parameters.

2. New result. As was mentioned above, the p-adic theory of logarith-
mic forms has already been developed systematically with nice applications
in number theory. It is therefore natural and clearly motivated to generalize
the problem to the case of higher dimensions. There are several results in this
direction due to Rémond, Urfels, Hirata-Kohno, Takada, Flicker, Bertrand
and others. However, the results only deal with elliptic curves or abelian
varieties. We shall give here a new generalization to a class of commutative
algebraic groups.

Let K be a number field over Q and let OK be the ring of algebraic
integers of K. We choose an embedding K ↪→ Q. Let p be a prime number
in Z. We denote by Qp the field of p-adic numbers and by Cp the completion
of the algebraic closure of Qp. We get the embedding σ : K ↪→ Cp defined
by the composition of the embeddings K ↪→ Q and Q ↪→ Cp. We therefore
identify each element x ∈ K with σ(x) ∈ Cp. Let v be the valuation on K
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given by

v(x) := − log |x|p
log p

, ∀x ∈ K.

Denote by Kv the completion of K with respect to v. By completing the
algebraic closure we get K ↪→ Kv ↪→ Cp, which preserves the absolute
values. Let G be a commutative algebraic group defined over K of dimen-
sion n ≥ 1. According to [19] (see also [9] where explicit embeddings are
constructed using exponential and Theta-functions), G can be embedded
into some projective space PN . Let L : {1, . . . , n} → Lie(G) be a basis,
fL = (f1, . . . , fN ) the normalized analytic function of the exponential map
of G(Kv) with respect to L, and Exp the map as defined in Section 3.5.
We know that f1, . . . , fN are analytic on an open disk Λv of Kn

v (see again
Section 3.5). Let W be the hyperplane in Kn defined over OK by the linear
form

l(Z1, . . . , Zn) = β1Z1 + · · ·+ βnZn,

where β1, . . . , βn are elements, not all zero, in OK . Let u be an element in Λv
such that γ := Exp(u) is an algebraic point in G(K). Let B and H be fixed
numbers such that

B ≥ max
i=1,...,n

{3, H(βi)}, H ≥ max{3, H(γ)}.

Set b = logB and h = logH. If u = (u1, . . . , un) is not contained in
Wv := W ⊗K Kv, i.e. l(u) = β1u1 + · · · + βnun 6= 0, then a natural ques-
tion is, “What can we say about lower bounds for |l(u)|p?”. We give an
answer to this question in the case when G,Ga are disjoint over K (for ex-
ample, G is semiabelian, see Lemma 3.5) and (G,W ) is semistable over Q.
Let δL be the denominator of L which is defined in Section 3.5, and let
Bn(rp|δL|p) = {x = (x1, . . . , xn) ∈ Cnp ; |xi|p < rp|δL|p for i = 1, . . . , n},
where rp := p−1/(p−1). Then we have the following:

Theorem 2.1. Let K be a number field and G a commutative algebraic
group of dimension n ≥ 1 defined over K such that G and Ga are disjoint
over K and (G,W ) is semistable over Q. There is a positive number ωL
depending on L and there exist effectively computable positive real constants
c0 and c1 independent of b, h and p with the following property:

• If u ∈ Λv ∩ Bn(rp|δL|p) is such that Exp(u) is an algebraic point in
G(K) then l(u) = 0 or

log |l(u)|p > −c0ωLn+3bhn(log b+ log h)n+3 log p.

• If u ∈ Λv is such that Exp(u) is an algebraic point in G(K) then we
set

n(u) := max

{
0,

[
1

p− 1
− v(u)

]
+ 1

}
,
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and either l(u) = 0, or we get the lower bound

log |l(u)|p > −c1ωLn+3bhn(log b+ log h+ 2n(u) log p)n+3 log p.

Throughout the paper, constants do not depend on b, h or p. We write
A� B (resp. A� B) if there is an effectively computable positive constant
c such that A ≤ cB (resp. A ≥ cB).

We remark that although in the above theorem we only consider the case
β1, . . . , βn ∈ OK , the theorem is still true for β1, . . . , βn ∈ K. To see this, let
δi be the denominator of βi for i = 1, . . . , n, and δ the least common multiple
of δ1, . . . , δn. Set β′i := δβi for i = 1, . . . , n and l′ = δl. Then β′1, . . . , β

′
n ∈ OK

and |l(u)|p = |δ−1|p|l′(u)|p ≥ |l′(u)|p. Using Lemma 3.8 we get log δ ≤
log(δ1 · · · δn) = log δ1 + · · · + log δn � b, and this gives h(β′i) = h(δβi) � b
for all i = 1, . . . , n. Hence the statement follows by applying Theorem 2.1
to the linear form l′ and using the inequality log |l(u)|p ≥ log |l′(u)|p.

We also remark that it would be nice to remove the technical assumptions
concerning disjointness and semistability in the statement. This clearly needs
some further efforts. Since the paper is already quite long, we leave this for
future work.

3. Background and preliminaries. In this section we discuss some
basic background material which we need for the proof of the main theorem.

3.1. Some p-adic analysis. The main result of this section is a Schwarz
lemma in the p-adic domain (Proposition 3.3). For any subfield F of Cp and
for any R ≥ 0, we set BF (R) := {x ∈ F ; |x|p < R} and BF (R) := {x ∈ F ;
|x|p ≤ R}. From now on, we will skip the subscript F when F = Cp. Let
f(x) =

∑
n anx

n be an analytic function on B(r) with r > 0. We define

|f |r := sup
n
|an|prn = max

n
|an|prn.

We start with the remark that the function z−a satisfies |z−a|r = r for r > 0
and a ∈ BF (r). Indeed, by definition we have |z − a|r = max{|a|p, r} = r.

Lemma 3.1. Let f be an analytic function on BF (r) with r > 0, and s, t
real numbers such that 0 < s ≤ t ≤ r. If f has k zeros in the disk BF (s)
then

|f |s ≤
(
s

t

)k
|f |t.

Proof. The statement is trivially true if f ≡ 0. Otherwise, the Weier-
strass preparation theorem (see [16, Theorem 2.14]) says that f = P · g
with P (z) = (z − a1) · · · (z − ak) for a1, . . . , ak ∈ BF (s) and with a certain
analytic function g on BF (r). By the remark above we get

|P |s = |z − a1|s · · · |z − ak|s = sk,
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and similarly for |P |t. Hence

|f |s = sk|g|s ≤ sk|g|t =
(s
t

)k
tk|g|t =

(s
t

)k
|f |t.

Lemma 3.2. Let f be an analytic function on B(r) with r > 0, and let
0 < s ≤ t ≤ r. Let m be the number of zeros (counted with multiplicities) of
f in B(t). Then

|f |t ≤
(
t

s

)m
|f |s.

Proof. The statement is trivial if f ≡ 0 or s = t. Otherwise, let b1, . . . , bm
be the zeros of f in B(t) (counted with multiplicities) and fix t′ with

max{|b1|p, . . . , |bm|p} < t′ < t.

Let l be the number of zeros (counted with multiplicities) of f in B(s).
Without loss of generality, we may assume that b1, . . . , bl are the l zeros of f
in B(s). By the Weierstrass preparation theorem there are α1, α2 ∈ Cp and
functions g1, g2 such that g1 is analytic on B(s) and g2 is analytic on B(t),
g1(0) = g2(0) = 1, |g1|s = |g2|r = 1, and f(z) = α1(z − b1) · · · (z − bl)g1 =
α2(z − b1) · · · (z − bm)g2. Combining this with the above remark we get

|f |s = |α1|s|z − b1|s · · · |z − bl|s|g1|s = |α1|psl,
|f |t′ = |α2|t′ |z − b1|t′ · · · |z − bm|t′ |g2|t′ = |α2|pt′m.

Hence

|f |t = lim
t′→t
|f |t′ = |α2|ptm.

On the other hand, since g1(0) = g2(0) = 1 it follows that

f(0) = α1(−1)lb1 · · · bl = α2(−1)mb1 · · · bm
which leads to |α1|p = |α2|p|bl+1 · · · bm|p. This shows that

|f |t
|f |s

=
|α2|p
|α1|p

tm

sl
=
tm

sm
sm−l

|bl+1 · · · bm|p
.

Since bl+1, . . . , bm ∈ B(t) \B(s) it follows that |bl+1 · · · bm|p ≥ sm−l. Hence

|f |t
|f |s
≤ tm

sm
.

We are now able to prove the following proposition, which is called the
Schwarz lemma.

Proposition 3.3. Let t ≥ s be positive real numbers, f an analytic
function on BF (t), and Γ a finite subset of BF (s) of cardinality l ≥ 2.
Define

δ := inf{|γ − γ′|p; γ, γ′ ∈ Γ, γ 6= γ′}
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and

µ := sup{|f (n)(γ)|p; n = 0, . . . , k − 1, γ ∈ Γ}

with a positive integer k and with f (n) the nth derivative of f . Assume that
δ ≤ 1. Then

|f |s ≤ max

{(
s

t

)kl
|f |t, µ

(
s

δ

)kl−1
r−(k−1)p

}
.

Proof. The proposition is trivially true if f ≡ 0, so assume that f is
non-zero. If f has at least kl zeros in the disc B(s) then Lemma 3.1 gives

|f |s ≤
(
s

t

)kl
|f |t.

Otherwise f has at most kl − 1 zeros in B(s). By the definition of δ, the
sets B(γ, δ), γ ∈ Γ , are disjoint. In fact, suppose that there exist distinct
γ1 and γ2 in Γ such that there is x ∈ B(γ1, δ) ∩ B(γ2, δ). This leads to the
following contradiction:

|γ1 − γ2|p ≤ max{|x− γ1|p, |x− γ2|p} < δ.

Furthermore these l setsB(γ, δ), γ ∈ Γ , are subsets ofB(s) since Γ ⊂ BF (s),
and this shows that there exists γ0 ∈ Γ such that f has at most k− 1 zeros
in B(γ0, δ). Since γ0 ∈ BF (s), this gives |f(z−γ0)|r = |f(z)|r for any r such
that s ≤ r ≤ t. We may therefore assume that γ0 = 0. Let n(δ, f) be the
number of zeros (counted with multiplicities) of f in B(δ). It is clear that
n(δ, f) ≤ k − 1, and this shows that

|f |δ = sup
n≤k−1

∣∣∣∣f (n)(0)

n!

∣∣∣∣
p

δn.

On the other hand, it is known that∣∣∣∣ 1

n!

∣∣∣∣
p

≤ p
n−1
p−1 = r−(n−1)p ≤ r−(k−1)p .

Combining this with δ ≤ 1, we get

|f |δ ≤ µr−(k−1)p .

Finally, since f has at most kl − 1 zeros in B(s), Lemma 3.2 gives

|f |s ≤
(
s

δ

)kl−1
|f |δ.

3.2. Semiabelian varieties. Let G be an algebraic group defined over
a field K. It is well-known from Chevalley’s theorem that there is a unique
short exact sequence of algebraic groups

1→ H → G→ A→ 1
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with H a linear algebraic group and A an abelian variety defined over K. We
call G a semiabelian variety if H is a torus, i.e. HK

∼= (Gm ⊗K)k for some
k ≥ 0; here Gm denotes the multiplicative group. One can show that G is
semiabelian defined over K if and only if GK is semiabelian defined over K.
It is known that every semiabelian variety is commutative (see [25, Proposi-
tion 2.3]). We recall the following definition given by Masser and Wüstholz
[15]: Let G1, . . . , Gk be algebraic groups defined over K. We say that they
are (mutually) disjoint over K if every connected algebraic K-subgroup H
of G := G1×· · ·×Gk has the form H1×· · ·×Hk for algebraic K-subgroups
H1, . . . ,Hk of G1, . . . , Gk respectively.

Lemma 3.4. For S semiabelian, Hom(S,Ga) = (0).

Proof. Notice that S(K)tor is Zariski dense in S, and any homomorphism
α : S → Ga maps S(K)tor to Ga(K)tor = (0). Hence α(S) = (0).

Lemma 3.5. Every semiabelian variety defined over K and the additive
group Ga are disjoint over K.

Proof. Let H be an arbitrary algebraic K-subgroup of G := Ga × G.
By making a base change to K we may assume that K = K. We denote
by πa and π the projections of H on Ga and on G respectively. Set Ha :=
πa(H ∩ (Ga × {e})) and H := π(H ∩ ({0} ×G)). Then Ha is an algebraic
K-subgroup of Ga, and H is an algebraic K-subgroup of G. Let P be the
image of H under the projection

Ga ×G→ (Ga ×G)/(Ha ×H) ∼= (Ga/Ha)× (G/H).

Define pa and p to be the projections of (Ga/Ha) × (G/H) onto Ga/Ha

and G/H respectively. We show that P ∼= pa(P ) and P ∼= p(P ). For the
first isomorphism, since pa is surjective it is sufficient to show that the
restriction of pa to P is injective. In fact, let (x, y) ∈ H be such that
pa((x, y)(Ha × H)) = Ha, so x ∈ Ha. But Ha = πa(H ∩ (Ga × {e})), and
hence (x, e) ∈H . Combining this with (x, y) ∈H we see that (0, y) ∈H .
Thus y = π(0, y) ∈ π(H ∩ ({0} ×G)) = H, and so (x, y) ∈ Ha ×H. By the
same argument, we also get the second isomorphism.

Since G is semiabelian, G/H is semiabelian as well. It follows that P ∼=
p(P ) is semiabelian. By Lemma 3.4 we get Hom(P,Ga) = (0). Furthermore,
it is clear that Ha is either trivial or Ga, hence pa(P ) ⊆ Ga. This says that
pa ∈ Hom(P,Ga) = (0), which gives P ∼= pa(P ) = (0) and implies that
H = Ha ×H.

3.3. Semistability. We recall the following notion, due to Wüstholz
[3, Chapter 6]. Let G be an algebraic group defined over a field K, and V a
K-linear subspace of the Lie algebra Lie(G) of G. We associate with (G,V )
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the index

τ(G,V ) :=

{
dimV

dimG
if dimG > 0,

1 otherwise.
The pair (G,V ) is called semistable (over K) if for any proper quotient π :
G→ H defined overK, we have τ(G,V ) ≤ τ(H,π∗(V )) where π∗ : Lie(G)→
Lie(H) is the K-linear map induced by π. Let F/K be a field extension. We
say that (G,V ) is semistable over F if (GF , V ⊗K F ) is semistable.

3.4. Heights. Let K be a number field of degree d over Q, and MK

the set of places of K. For v ∈ MK we write Kv for the completion of K
at v, and introduce the normalized absolute value | · |v as follows. If v | p we
define |p|v := p−[Kv :Qp]. If v |∞ then v corresponds to the embedding τv of
K into C, and we define |x|v := |τv(x)|[Kv :R] for any x ∈ Kv. One can show
that ∏

v∈MK

|x|v = 1, ∀x ∈ K \ {0},

and this is called the product formula. Let P ∈ Pn(K) be a point represented
by a homogeneous non-zero vector x with coordinates x0, . . . , xn. We set

hK(x) :=
∑
v∈MK

max
i

log |xi|v.

The absolute logarithmic (Weil) height H on Pn(Q) is defined by

h(P ) :=
1

[K : Q]
hK(x)

where K is any number field containing P , and the absolute (Weil) height
of P is defined by H(P ) := eh(P ).

Let α ∈ Q. We define h(α) as the absolute logarithmic height of the
point in P1(K) with projective coordinates 1, α. It is known that

h(α1 · · ·αr) ≤ h(α1) + · · ·+ h(αr),

h(α1 + · · ·+ αr) ≤ log r + h(α1) + · · ·+ h(αr)

with r ≥ 1 and with α1, . . . , αr ∈ Q. Let x = (x1, . . . , xn) ∈ An(K). We
define

|x|v := max
i
|xi|v, ∀v ∈MK ,

and
hmax(x) :=

∑
v∈MK

log |x|v

for x 6= 0, otherwise we set hmax(0) := 0. It is convenient to introduce the
function

hL2(x) :=
∑
v∈MK

log |x|L2,v
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where

|x|L2,v =


maxi |xi|v, v non-archimedean,

(
∑

i τv(xi)
2)1/2, v real,∑

i τv(xi)τv(xi), v complex.

We write log+ t for max{0, log t} for any positive real number t, extended
by log+ 0 = 0. Set

H+
max :=

∏
v∈MK

max{|x|v, 1},

h+max(x) := logH+
max(x) =

∑
v∈MK

log+ |x|v, h+
L2(x) =

∑
v∈MK

log+ |x|L2,v.

These heights are related by

hmax ≤ hL2 ≤ hmax +
d

2
log(n+ 1), h+max ≤ h+L2 ≤ h+max +

d

2
log(n+ 1).

If we identify each point x = (x1, . . . , xn) ∈ An(K) with the projective point
(1 : x1 : . . . : xn) then by definition one gets hK(x) = h+max(x).

One can extend the notation above to polynomials in n variables T1, . . .
. . . , Tn with coefficients in K. In more detail, let P =

∑
i aiT

i be such a

polynomial with i : {1, . . . , n} → Nn a multi-index and T i = T
i(1)
1 · · ·T i(n)n .

It corresponds to a point a = (. . . , ai, . . .) in an affine space AN (K), and we
define

|P |v := |a|v, |P |L2,v := |a|L2,v,

and the heights of P as 0 for P = 0 and for P 6= 0 as

hmax(P ) =
∑
v∈MK

log |P |v, hL2(P ) =
∑
v∈MK

log |P |L2,v.

We shall also use

h+max(P ) =
∑
v∈MK

log+ |P |v, h+
L2(P ) =

∑
v∈MK

log+ |P |L2,v.

Proposition 3.6 (Siegel’s lemma, [6, Corollary 11]). Let N > M > 0
be integers and let l1, . . . , lM be linear forms in N variables T1, . . . , TN with
coefficients in K. Then there exists a non-trivial solution x = (x1, . . . , xN )
∈ ONK of the system of linear equations l1(T1, . . . , TN )= · · · = lM (T1, . . . , TN )
= 0 such that

h+max(x) ≤ 1

2
log |disc(K)|+ M

N −M
max
i
hL2(li)

where disc(K) denotes the field discriminant of K.

We recall Liouville’s inequality for number fields which is simple but has
an important role in the proof of the main theorem below.
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Proposition 3.7 (Liouville’s inequality, [5, Corollary 2.9.2]). Let K be
a number field and let α be a non-zero element in K. Then

log |α|v ≥ −
h(α)

[K : Q]
, ∀v ∈MK .

For an algebraic number α ∈ K, the denominator δ of α is defined as the
smallest positive integer for which the element δα is in OK . For a polynomial
P with coefficients ai, i ∈ I, in K, we define the denominator δ(P ) of P
as the smallest positive integer for which δ(P )ai ∈ OK for all i ∈ I. The
following lemma gives an inequality between the height and the denominator
of an algebraic number.

Lemma 3.8. Let α ∈ K and δ be its denominator. Then

log δ ≤ h(α)

[K : Q]
.

Proof. For v ∈ MK \M∞K let p be the residue characteristic of v. By
definition

|α|v = |NKv/Qp(α)|1/[Kv :Qp]p = |NKv/Qp(α)|1/nvp

with nv the degree of Kv over Qp. Since NKv/Qp(α) ∈ Qp and the value
group of Qp is Z, the element

mv :=
nv

log p
max{log |α|v, 0}

is a non-negative integer. Let S := {(p, v); p the residue characteristic of v,
v ∈MK \M∞K , |α|v > 1}. It is a finite set. We see that∏

(p,v)∈S

pmvα ∈ OK .

This shows, by definition of the denominator of α, that

δ ≤
∏

(p,v)∈S

pmv ,

and therefore

log δ ≤ h(α)

[K : Q]
.

3.5. Analytic representation of exponential maps. Let K be a
number field and let G be an algebraic group defined over K. We denote by
G the Zariski closure of G in PN . Let U be the open affine subset defined
by G∩{X0 6= 0}. We know that the affine algebra Γ (U,OG) is stable under
the action of any element in g = Lie(G), and it is generated by ξ1, . . . , ξN ,
where

ξi :=

(
Xi

X0

)∣∣∣∣
U

, ∀i = 1, . . . , N
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(see [23]). We call a map L : {1, . . . , n} → g a basis if L(1), . . . , L(n) is a
basis for g. With such a basis L, one gets a system of polynomials Pi,L(j) in
N variables such that

L(j)ξi = Pi,L(j)(ξ1, . . . , ξN ), ∀i = 1, . . . , N, ∀j = 1, . . . , n.

This means that

Lj := L(j)(OK [ξ1, . . . , ξN ])

is an OK-module in K[ξ1, . . . , ξN ] for any j = 1, . . . , n. Set L = L1+ · · ·+Ln
and define

IL := (OK [ξ1, . . . , ξN ] : L) = {t ∈ OK ; tL ⊂ OK [ξ1, . . . , ξN ]}.
Then IL is an ideal of OK and its norm NK:Q(IL) is an ideal in Z, which
has to be principal, say (δL) for some positive integer δL. We call δL the
denominator of L.

Denote by ∂1, . . . , ∂n the canonical basis of Lie(Kn
v ) defined as ∂ixj = δij

for all i = 1, . . . , n and for all j = 1, . . . , N , where δij is Kronecker’s delta
and xi are the coordinate functions of Kn

v . We define the isomorphisms

∂ : Kn
v → Lie(Kn

v ), x = (x1, . . . , xn) 7→ x1∂1 + · · ·+ xn∂n,

and

ι : Lie(Kn
v )→ Lie(G(Kv)), ι(∂1) = L(1), . . . , ι(∂n) = L(n).

We now consider the set G(Kv) of Kv-points of G. It is known that G(Kv)
is a Lie group over Kv. By [7, Chapter III, §7], there is a map exp (the expo-
nential map) defined and locally analytic on an open disk Uv of Lie(G(Kv)).
The functions

fi := ξi ◦ Exp, i = 1, . . . , N,

are analytic on Λv := (ι ◦ ∂)−1(Uv) in Kn
v , where Exp = exp ◦ ι ◦ ∂.

Let OG(Kv), OUv , O∂(Λv) and OΛv be the sheaves of analytic functions
on G(Kv), Uv, ∂(Λv) and Λv respectively. So we get commutative diagrams

OG(Kv)

L(j)

��

exp∗ // OUv
ι∗ // O∂(Λv)

∂∗ // OΛv
∂j

��
OG(Kv)

exp∗ // OUv
ι∗ // O∂(Λv)

∂∗ // OΛv
for all j = 1, . . . , n. This leads to

(∂j ◦ Exp∗)(ξi) = (Exp∗ ◦ L(j))(ξi), ∀i = 1, . . . , N,

i.e.

∂j(fi) = L(j)(ξi) ◦ Exp = Pi,L(j)(ξ1, . . . , ξN ) ◦ Exp = Pi,L(j)(f1, . . . , fN )

for any i = 1, . . . , N and j = 1, . . . , n.
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The map fL = (f1, . . . , fN ) : Λv → KN
v is called the normalized analytic

representation of the exponential map exp with respect to the basis L. We
define

dL := max
i,j

degPi,L(j), eL := v(δL), hL := max
i,j

h(Pi,L(j))

and

ωL := max{1, eL}(hL + log δL + log dL);

here by convention, log dL = 0 if dL = 0.

We fix the following notation. For m = (m1, . . . ,mk) ∈ Nk with 0 ≤
k ≤ n, we write

∂m := ∂m1
1 · · · ∂

mk
k , Lm := L(1)m1 · · ·L(k)mk , |m| := m1 + · · ·+mk.

Lemma 3.9. Let L : {1, . . . , n} → g be a basis and P (T1, . . . , TN ) a
polynomial in N variables with coefficients in K of total degree ≤ D. Let T be
a non-negative integer and t = (t1, . . . , tn) ∈ Nn be such that T = t1+· · ·+tn.
There exists a polynomial Pt ∈ K[T1, . . . , TN ] such that

∂tP (f1, . . . , fN ) = Pt(f1, . . . , fN ),

satisfying

• degPt ≤ D + T (dL − 1),
• log |Pt|v � log |P |v + T (hL + log(D + TdL)) for all v ∈MK .

Proof. We use induction on T = |t|. The lemma is trivially true for
|t| = 0. Assume that it is true for any t ∈ Nn with |t| = T ≥ 0. Let now
t = (t1, . . . , tn) ∈ Nn be such that t1 + · · · + tn = T + 1. We may assume
that t1 ≥ 1. Set τ = (t1 − 1, . . . , tn). By induction hypothesis,

∂τP (f1, . . . , fN ) = Pτ (f1, . . . , fN )

with

Dτ := degPτ ≤ D + TdL, log |Pτ |v � log |P |v + T (hL + log(D + TdL)).

We write

Pτ =
∑

m1+···+mN≤Dτ

a(m1, . . . ,mN )Tm1
1 · · ·TmNN =

∑
m

a(m)Tm1
1 · · ·Tmnn

and

Pi,L(1) =
∑

mi,1+···+mi,N≤dL

a(mi,1, . . . ,mi,N )T
mi,1
1 · · ·Tmi,NN

with a(mi,1, . . . ,mi,N ) ∈ K for all 1 ≤ i ≤ N . This gives

∂1fi =
∑

mi,1+···+mi,N≤dL

a(mi,1, . . . ,mi,N )f
mi,1
1 · · · fmi,NN , ∀i = 1, . . . , N.
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Since ∂t = ∂1∂
t1−1
1 · · · ∂tnn = ∂1∂

τ it follows that

∂tP (f1, . . . , fN ) = ∂1∂
τP (f1, . . . , fN ) = ∂1Pτ (f1, . . . , fN )

=
∑
m

a(m)

N∑
i=1

mi

(∏
j 6=i

f
mj
j

)
fmi−1i ∂1fi,

which is expanded as∑
m

N∑
i=1

∑
mi,1+···+mi,N≤dL

mia(m)a(mi,1, . . . ,mi,N )
(∏
j 6=i

f
mj+mi,j
j

)
f
mi+mi,i−1
i .

This shows that ∂tP (f1, . . . , fN ) = Pt(f1, . . . , fN ) for a certain polynomial

Pt(T1, . . . , TN ) =
∑
l

q(l)T l11 · · ·T
lN
N

with q(l) =
∑
mia(m)a(mi,1, . . .mi,N ); here the sum is taken over the set

{(m1, . . . ,mN , i,mi,1, . . . ,mi,N ); mj + mi,j = lj for j 6= i and mi + mi,i =
li + 1, 1 ≤ i ≤ N , mi,1 + · · ·+mi,N ≤ dL, m1 + · · ·+mN ≤ Dτ} such that

degPt ≤ max
i

(m1 + · · ·+mN +mi,1 + · · ·+mi,N − 1)

≤ Dτ + dL − 1 ≤ D + T (dL − 1) + dL − 1 ≤ D + (T + 1)(dL − 1).

Furthermore,

|q(l)|v≤
∑

mi|a(m)|v|a(mi,1, . . . ,mi,N )|v≤(dL + 1)NDτ |Pτ |v max
i,j
|Pi,L(j)|v.

This shows that

log |q(l)|v ≤ N log(dL + 1) + logDτ + log |Pτ |v + hL

� log |P |v + T
(
hL + log(D + T log dL)

)
+N log(dL + 1) + hL

� log |P |v + (T + 1)
(
hL + log(D + (T + 1)dL)

)
for all v ∈MK , and the lemma follows.

Let k be a non-negative integer. We define L(k) as the sum of the images
of OK [ξ1, . . . , ξN ] under all differentials of order ≤ k, i.e.

L(k) :=
∑

t∈Zn≥0, |t|≤k

Lt(OK [ξ1, . . . , ξN ]).

Let I(k) be the ideal (OK [ξ1, . . . , ξN ] : L(k)) in OK .

Lemma 3.10.

I(k) ⊃ (IL)k, ∀k ∈ N.
Proof. We use induction on k. If k = 0, the lemma is trivially true.

Assume it is true for k = m ≥ 0. One has to show that

a1 · · · am+1L
t(ξi) ∈ OK [ξ1, . . . , ξN ]
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for i = 1, . . . , n, for a1, . . . , am+1 ∈ IL and for t = (t1, . . . , tn) ∈ Nn with
|t| = m + 1. There is at least one j ∈ {1, . . . , n} such that tj ≥ 1. Set
τ = (t1, . . . , tj−1, tj − 1, tj+1, . . . , tn). We see that

a1 · · · am+1L
t(ξi) = a1 · · · amLτ (am+1L(j)(ξi)).

Since am+1 ∈ IL it follows that

am+1L(j)(ξi) = Qi,j(ξ1, . . . , ξN ), ∀i = 1, . . . , N,

for some polynomials Qi,j(T1, . . . , TN ) with coefficients in OK . By induction
with |τ | = m, we have a1 · · · am ∈ ImL ⊂ I(m). In particular,

a1 · · · amLτ (Qi,j(ξ1, . . . , ξN )) ∈ OK [ξ1, . . . , ξN ].

Lemma 3.11. For t = (t1, . . . , tn) ∈ Nn with |t| = T and for a polynomial
P (T1, . . . , TN ) ∈ OK [T1, . . . , TN ] we have

δTL∂
tP (f1, . . . , fN ) ∈ OK [f1, . . . , fN ].

Hence δTL∂
tfi(0) ∈ OK for i = 1, . . . , N .

Proof. There exists a polynomial Pt(T1, . . . , TN ) with coefficients in K
such that

LtP (ξ1, . . . , ξN ) = Pt(ξ1, . . . , ξN ).

By Lemma 3.10, the polynomial δTLPt has coefficients in OK . Note that

∂tP (f1, . . . , fN ) = Pt(f1, . . . , fN ),

and so

δTL∂
tP (f1, . . . , fN ) ∈ OK [f1, . . . , fN ].

Finally, since fi(0) = 0 for i = 1, . . . , N it follows that

δTL∂
tfi(0) = Pt(f1(0), . . . , fN (0)) ∈ OK , ∀i = 1, . . . , N.

Proposition 3.12. The functions fi satisfy

|fi(x)|p < 1, ∀x ∈ Bn(|δL|prp).

Proof. This follows from the previous lemma and by considering the
Taylor expansion of fi at 0 together with the fact |n!|p ≥ rn−1p for all positive
integers n.

3.6. The order of vanishing of analytic functions. In this sec-
tion let F denote a complete subfield of Cp. Let V be a vector subspace
of Lie(G(F )), and f a non-zero p-adic analytic function on a neighbor-
hood of z ∈ Fn. We say that f has a zero at z of order ≥ T along V if
(v1 · · · vkf)(z) = 0 for any 0 ≤ k < T and for any v1, . . . , vk ∈ V ; and f has
a zero at z of exact order T along V if it has order ≥ T at z along V and
furthermore there are w1, . . . , wT in V such that (w1 · · ·wT f)(z) 6= 0.
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Proposition 3.13. With notation as above, let d be the dimension of
V and let ∆1, . . . ,∆d be a basis for V . Then f has a zero at z of order
≥ T along V if and only if (∆t1

1 . . . ∆
td
d f)(z) = 0 for (t1, . . . , td) ∈ Nd with

t1+· · ·+td < T ; and f has a zero at z of exact order T along V if it has order
≥ T at z along V and furthermore there is a d-tuple τ = (τ1, . . . , τd) ∈ Nd
such that |τ | = T and (∆τ1

1 . . . ∆τd
d f)(z) 6= 0.

Proof. We prove the first statement. In fact, it suffices to show that if
(∆t1

1 · · ·∆
td
d f)(z) = 0 for any (t1, . . . , td) ∈ Nd with t1 + · · ·+ td < T , then f

has a zero at z of order ≥ T along V . Let k be an integer with 0 ≤ k < T ,
and let v1, . . . , vk ∈ V . For i = 1, . . . , k one can write vi = ai1∆1+· · ·+aid∆d

with ai1, . . . , aid ∈ F . For t = (t1, . . . , td) ∈ Nd with |t| < T , we expand

(v1 · · · vkf)(z) =
( k∏
i=1

(ai1∆1+ · · ·+aid∆d)f
)

(z) =
∑
α∈I

aα(∆α1
1 · · ·∆

αd
d f)(z).

Since k < T it follows that |α| = α1+· · ·+αd < T for every α ∈ I. Hence the
sum vanishes, and this shows the first statement. It is clear that the second
statement follows at once from the definition and the first statement.

4. Proofs

4.1. Proof of the second statement of Theorem 2.1. We shall
show that the first assertion of the theorem implies the second one. Let
u ∈ Λv be such that Exp(u) is an algebraic point in G(K). We define

n(u) := max
{

0,
[ 1

p− 1
− v(u)

]
+ 1
}

and u′ := pn(u)u.

Then u′ ∈ Λv and

|u′|p = |pn(u)|p|u|p = p−n(u)−v(u) = p
1
p−1
−v(u)−n(u)

rp < rp.

Moreover, if l(u) 6= 0 then l(u′) = pn(u)l(u) 6= 0, and applying the first
statement of Theorem 2.1 to u′ in Λv ∩Bn(rp|δL|p) one gets

log |l(u′)|p > −c0ωLn+3bh′n(log b+ log h′)n+3 log p;

here h′ := max{1, h(γ′)} with γ′ := Exp(u′) = pn(u)Exp(u) = γp
n(u)

where
γ := Exp(u). By [19, Prop. 5] one has

h(γp
n(u)

) ≤ (pn(u))2h(γ) ≤ p2n(u)h,
and this implies that h′ ≤ p2n(u)h. Hence

n(u) log p+ log |l(u)|p > −c0ωLn+3bhn(log b+ log h+ 2n(u) log p)n+3 log p.

Therefore

log |l(u)|p > −c1ωLn+3bhn(log b+ log h+ 2n(u) log p)n+3 log p

for some positive constant c1.
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4.2. A projective embedding. Following [19] (cf. also [9] and [24]),
there exist a positive integer N and an embedding ϕ : G ↪→ PN with G as
in the statement of Theorem 2.1, which is defined over a number field K
of degree m. Without loss of generality, we may assume that the identity
element e ∈ G(K) under ϕ has coordinates (1 : 0 : . . . : 0) in PN .

Lemma 4.1. There exists an embedding ψ : G → PN defined over a
number field of degree m(N + 1) such that ψ(e) = (1 : 0 : . . . : 0) and
X0(ψ(g)) 6= 0 for all g ∈ G(K), where X0 denotes the first projective coor-
dinate on PN .

Proof. We choose a field extension K1 of K of degree N + 1, and a basis
ε0, . . . , εN of K1 over K. The degree of the extension K1 ⊇ Q is therefore
m(N + 1). It is clear that the vectors

(ε0, 0, . . . , 0), (−ε1, ε0, 0, . . . , 0), . . . , (−εN , 0, . . . , 0, ε0)
form a basis of KN+1

1 , which gives rise to a unique element in GLN+1(K1)

mapping this basis to the standard basis of KN+1
1 . This linear isomorphism

is expressed explicitly by the matrix

A =


ε−10 ε−20 ε1 . . . ε−20 εN

0 ε−10 . . . 0
...

...
. . .

...

0 0 . . . ε−10

 .

We let ψ be the composition of A with the embedding ϕ as above. Then
ψ(e) has projective coordinates (1 : 0 : . . . : 0), and X0(ψ(g)) 6= 0 for all
g ∈ G(K). Indeed, let (x0 : x1 : . . . : xN ) be the projective coordinates
of ϕ(g). By the construction of ψ, we obtain

ψ(g) = (ε−10 x0 + ε−20 ε1x1 + · · ·+ ε−20 εNxN : ε−10 x1 : . . . : ε−10 xN )

= (ε0x0 + ε1x1 + · · ·+ εNxN : ε0x1 : . . . : ε0xN ).

Thus ψ(e) = (1 : 0 : . . . : 0). In addition, since ε0, . . . , εN is a basis of K1

over K and x0, . . . , xN are in K and not all zero, it follows that X0(ψ(g))
is non-zero. Note that the embedding ψ is defined over K1.

We shall fix the embedding ψ : G ↪→ PN for the rest of the paper,
and identify each g ∈ G with its image ψ(g) in PN . By [23, Section 2],
there is a finite field extension K2 of K1 (the degree of this extension is a
positive constant) with the following property: There exist bihomogeneous
polynomials E0, . . . , EN in Z0, . . . , ZN andX0, . . . , XN of bidegree (b, b) with
coefficients in K2 and with heights bounded above by a positive constant,
and a Zariski open set U ⊂ G × G containing Γ (γ) × Γ (γ) such that for
(g, g′) ∈ U the homogeneous coordinates of g + g′ are (E0(g, g

′) : . . . :
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EN (g, g′)); here Γ (γ) denotes the subgroup generated by γ in G(K) with
γ := Exp(u). The degree of K2 over K is also a positive constant. We may
therefore assume, without loss of generality, that K is already equal to K2

and has degree d over Q. We call (E1, . . . , EN ) an addition formula for G,
and from now on we fix such an addition formula E = (E1, . . . , EN ).

4.3. Basis of the hyperplane. We define the linear form in n + 1
variables

L (Z0, Z1, . . . , Zn) := Z0 − l(Z1, . . . , Zn).

This gives the vector space

W := {(z0, z1, . . . , zn) ∈ Kn+1
v ; z0 = l(z1, . . . , zn)} ⊂ Kn+1

v .

Let e1, . . . , en be the basis for W defined by

e1 = (β1, 1, 0, . . . , 0), e2 = (β2, 0, 1, 0, . . . , 0), . . . , en = (βn, 0, . . . , 0, 1).

This gives differential operators (corresponding to the isomorphism ∂ intro-
duced in Section 3.5)

∆1=∂(e1)=β1∂0 + ∂1, ∆2=∂(e2)=β2∂0 + ∂2, . . . ,∆n=∂(en)=βn∂0 + ∂n;

here ∂0, . . . , ∂n is the standard basis for Lie(Kn+1
v ). Let u0 := (0, u1, . . . , un)

and u := (u0, u1, . . . , un) be vectors in Kn+1
v with u0 := l(u). Then

u = u1e1 + · · ·+ unen,

and this shows that u ∈ W . We furthermore see that

u− u0 = (l(u), 0, . . . , 0).

Define
∆t := ∆t1

1 · · ·∆
tn
n for t = (t1, . . . , tn) ∈ Nn.

4.4. The auxiliary function. In this section we shall construct an
auxiliary polynomial by using Siegel’s lemma. Let G := Ga ×G. The expo-
nential map of the Lie group G (Kv) is expG (Kv) = idKv × exp . Note that
for u ∈ Λv we have X0(Exp(u)) 6= 0; here Exp : Λv → G(Kv) is defined in
Section 3.5. We introduce the function

ΨP := (idKv × Exp)∗P

(
Y, 1,

X1

X0
, . . . ,

XN

X0

)
for each polynomial P in N + 2 variables Y,X0, . . . , XN . This means that
ΨP (w) = P (y, 1, f1(x1, . . . , xn), . . . , fN (x1, . . . , xn)) is analytic on Kv × Λnv ,
where w = (y, x) ∈ Kn+1

v with x = (x1, . . . , xn) ∈ Λnv .
We define the order ordg,W P of P at g = (idKv × Exp)(w) along W to

be infinity if ΨP is identically zero in a neighborhood of x, and to be the
order of ΨP at w along W otherwise.

Let S0, D0, D, T be positive integers. We apply Siegel’s lemma to con-
struct a polynomial P in N + 2 variables with coefficients in OK such that
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P does not vanish identically on G and has height h(P ) bounded above
by a quantity depending on L, S0, D0, D, T, b, h. We further require that
ordsu0,W ΨP � T for all 0 ≤ s < S0.

Proposition 4.2. There are positive constants c2 and c3 such that if
D0D

n ≥ c2S0T
n there is a polynomial P in N + 2 variables Y,X0 . . . , XN

with coefficients in OK , homogeneous in X0, . . . , XN of degree D, and with
degPY ≤ D0 such that

(1) P does not vanish identically on G ,
(2) (∆tΨP )(su0) = 0, 0 ≤ s < S0, t = (t1, . . . , tn), 0 ≤ t1, . . . , tn < 2T ,
(3) h(P ) ≤ c3(T (hL + log δL + log(D + T log dL)) +D0b+DS2

0h).

Proof. Since the dimension of G is n, we may assume that X0, . . . , Xn are
algebraically independent modulo the ideal of G. We shall construct a non-
zero polynomial P in n+2 variables Y and X0, . . . , Xn which is homogeneous
in X0, . . . , Xn of degree D (and therefore satisfies (1) of the proposition) such
that degY P ≤ D0 and such that (2) and (3) of the proposition are satisfied.
Such a polynomial can be written in the form

P (Y,X) =

D0∑
i=0

D1∑
j=1

pijY
iMj(X0, . . . , Xn),

where D1 is the number of homogeneous monomials of degree D in the
n + 1 variables X0, . . . , Xn, and M1, . . . ,MD1 are all these monomials. An
easy computation shows that D1 =

(
D+n
n

)
. For short, we write Ψ for ΨP .

Let E = (E1, . . . , EN ) be the addition formula for G as above. By abuse of
notation, we set

Ei(z, x) := Ei(1, f1(z), . . . , fN (z), 1, f1(x), . . . , fN (x))

for z, x in Λv. For y ∈ Kv we also define

Ψs(y, x) := Ψ(y, su+ x)E0(su, x)D.

Set

I := {(s, t); 0 ≤ s < S0, t = (t1, . . . , tn), 0 ≤ t1, . . . , tn < 2T}.

For any (s, t) ∈ I we shall determine the coefficients pij such that

(∆tΨs)(0, 0) = 0, ∀(s, t) ∈ I.

By the property of the addition formula E, for any x in a neighbourhood
of 0 small enough that E(su, x) 6= 0, one gets

fi(su+ x) =
Ei(su, x)

E0(su, x)
, i = 1, . . . , N.
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This leads to

Mj(1, f1(su+ x), . . . , fn(su+ x)) = Mj

(
1,
E1(su, x)

E0(su, x)
, . . . ,

En(su, x)

E0(su, x)

)
= E0(su, x)−DMj(E0(su, x), . . . , En(su, x)).

Therefore

Ψs(y, x) = Ψ(y, su+ x)E0(su, x)D =
∑
i,j

pijy
iMj(E0(su, x), . . . , En(su, x)).

On the other hand, for each s, we can express Ei(su, x) as

Ei(su, x) = Fi(f1(x), . . . , fN (x)), i = 0, . . . , n,

where Fi are polynomials in N variables with polynomials (which have co-
efficients in K) in the f1(su), . . . , fN (su) as coefficients. Since

γs = Exp(su) = (1 : f1(su) : . . . : fN (su))

and since h(γs) � s2h (see [19, Prop. 5]), we may estimate the heights,
h(Fi) � s2h for i = 0, . . . , n. One can therefore choose a common denom-
inator ds � s2h for the polynomials F0, . . . , Fn. Since Mj is a monomial
of degree D, there is a polynomial Qj,s in N variables of degree � D with
log |Qj,s|v � Ds2h for v ∈MK such that

Mj(E0(su, x), . . . , En(su, x)) = Qj,s(f1(x), . . . , fN (x))

for each j = 1, . . . , D1. Then

Ψs(y, x) =
∑
i,j

pijy
iQj,s(f1(x), . . . , fN (x)),

which gives

(∆tΨs)(0, 0) =
∑
i,j

pij(∆
t(yiQj,s(f1, . . . , fN )))(0, 0).

Define

astij := (∆t(yiQj,s(f1, . . . , fN )))(0, 0)

for i = 0, . . . , D0, j = 1, . . . , D1 and (s, t) ∈ I. Note that ∂0 = ∂/∂y. We
expand

asti,j =
(
∆t1

1 · · ·∆
tn
n (yiQj,s(f1, . . . , fN ))

)
(0, 0)

=
(
(β1∂0 + ∂1)

t1 · · · (βn∂0 + ∂n)tn(yiQj,s(f1, . . . , fN ))
)
(0, 0)

=

t1∑
i1=0

· · ·
tn∑
in=0

(
t1
i1

)
· · ·
(
tn
in

)
βt1−i11 · · ·βtn−inn

·
((

∂

∂y

)(t1+···+tn)−(i1+···+in)
∂i11 · · · ∂

in
n (yiQj,s(f1, . . . , fN ))

)
(0, 0)
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=

t1∑
i1=0

· · ·
tn∑
in=0

(
t1
i1

)
· · ·
(
tn
in

)
βt1−i11 · · ·βtn−inn

·
((

∂

∂y

)(t1+···+tn)−(i1+···+in)
yi
)

(0)
(
∂i11 · · · ∂

in
n (Qj,s(f1, . . . , fN ))

)
(0).

For m ∈ Nn, Lemma 3.9 yields

∂m(Qj,s(f1, . . . , fN )) = Qj,s,m(f1, . . . , fN )

for some polynomial Qj,s,m in N variables with

log |Qj,s,m|v � log |Qj,s|v + |m|(hL + log(D + |m|dL))

� |m|(hL + log(D + |m|dL)) +Ds2h, ∀v ∈MK .

This means that

log
∣∣(∂m(Qj,s(f1, . . . , fn)))(0)

∣∣
v
� |m|(hL + log(D + |m|dL)) +Ds2h

for v ∈MK . In particular,

log
∣∣(∂i11 · · · ∂inn (Qj,s(f1, . . . , fN ))

)
(0)
∣∣
v

� T (hL + log(D + TdL)) +Ds2h, ∀v ∈MK .

Furthermore,((
∂

∂y

)(t1+···+tn)−(i1+···+in)
yi
)

(0)

=

{
0 if (t1 + · · ·+ tn)− (i1 + · · ·+ in) 6= i,

i! if (t1 + · · ·+ tn)− (i1 + · · ·+ in) = i.

In other words,

log

∣∣∣∣(( ∂

∂y

)(t1+···+tn)−(i1+···+in)
yi
)

(0)

∣∣∣∣
v

� log(T !)� T log T, ∀v ∈M∞K .

We deduce that

log |astij |v � T (hL + log(D + TdL)) +Ds2h, ∀v ∈M∞K .
Since h(βi) ≤ b for i = 1, . . . , n, log |βi|v ≤ b for v ∈ MK . By noting that
dsδL

|m|Qj,s,m has coefficients in OK , we find that dsδL
2nTastij is also in OK

and

log |dsδL2nTastij |v � D0b+ T (log δL + hL + log(D + T log dL)) +DS2
0h

for (s, t) ∈ I and for v ∈ M∞K . We now consider the linear forms in
n0 := D0D1 variables Tij ,

lst :=
∑
i,j

bstijTij ,
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where bstij := dsδL
2nTastij for all (s, t) ∈ I. Let m0 be the number of these

linear forms; then m0 � S0T
n and n0 = D0D1 = D0

(
D+n
n

)
� D0D

n. Since
bstij ∈ OK we get

hmax(lst) =
∑

v∈M∞K

log max
i,j
|bstij |v

� D0b+ T (hL + log δL + log(D + T log dL)) +DS2
0h.

We now apply Siegel’s lemma: under the condition D0D
n � S0T

n there is
a non-zero vector p0 = (pij) with coordinates in OK such that lst(p0) = 0
and

h(p0) ≤
m0

n0 −m0
max
s,t

hL2(lst).

But using hL2(lst)� hmax(lst) + log n0 gives

h(P )� D0b+ T (hL + log δL + log(D + TdL)) +DS2
0h.

It remains to show that (∆tΨ)(su0) = 0. In fact, since lst(p0) = 0 one gets
(∆tΨs)(0, 0) = 0 for (s, t) ∈ I. Set

Ψ∗s (y, x) := Ψ(y, su+ x), Es(x) := E0(su, x)D;

then Ψ∗s = ΨsE
−D
s . Therefore, by Leibniz’ rule,

(∆tΨ)(su0) = (∆tΨ)(0, su) = (∆tΨ∗s )(0, 0) = (∆t(ΨsE
−D
s ))(0, 0) = 0.

This completes the proof.

From now on until Section 4.8, we shall fix a polynomial P as in Propo-
sition 4.2 and let Ψ = ΨP be the analytic function associated with P .

4.5. Extrapolation. In this section we use the p-adic Schwarz lemma
to give an upper bound for |(∆tΨ)(su)|p (with |t| < T ). We need

Lemma 4.3. Let Q be a polynomial in k + 1 variables X0, . . . , Xk with
coefficients in the ring Ov of algebraic integers of Kv and degX0

Q ≤ l with
l ∈ N, l ≥ 1. Then

|Q(x0, x)−Q(0, x)|p ≤ max
1≤i≤l

|x0|ip

for any x0 ∈ Kv and x ∈ Okv .

Proof. We define the polynomial Qx(X) := Q(X,x) in one variable X.
By assumption and by the ultrametric inequality, Qx has coefficients in Ov.
We write Qx(X) = alX

l + · · ·+ a0 with a0, . . . , al ∈ Ov. Then

|Qx(x0)−Qx(0)|p = |alxl0 + · · ·+ a1x0|p ≤ max
1≤i≤l

|aixi0|p ≤ max
1≤i≤l

|x0|ip.

Lemma 4.4. For 0 ≤ s < S and for t = (t1, . . . , tn) ∈ Nn such that
0 ≤ t1, . . . , tn < 2T we have

|(∆tΨ)(su)− (∆tΨ)(su0)|p ≤ |δ−1L |
2nT
p |l(u)|p.
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Proof. We can write again

P (Y,X0, . . . , XN ) =
∑
i,j

pijY
iMj(X0, . . . , XN ).

Set Rj(x) = Mj(1, f1(x), . . . , fN (x)); then

∆tΨ =
∑
i,j

pij(∆
t(yiRj)) =

∑
i,j

pij
(
(β1∂0 + ∂1)

t1 · · · (βn∂0 + ∂n)tn(yiRj)
)

=
∑
i,j

pij

t1∑
i1=0

· · ·
tn∑
in=0

(
t1
i1

)
· · ·
(
tn
in

)
βt1−i11 · · ·βtn−inn

·
((

∂

∂y

)(t1+···+tn)−(i1+···+in)
∂i11 · · · ∂

in
n (yiRj)

)
=
∑
i,j

pij

t1∑
i1=0

· · ·
tn∑
in=0

(
t1
i1

)
· · ·
(
tn
in

)
βt1−i11 · · ·βtn−inn

·
((

∂

∂y

)(t1+···+tn)−(i1+···+in)
yi
)

(∂i11 · · · ∂
in
n Rj).

Using the fact that(
∂

∂y

)(t1+···+tn)−(i1+···+in)
yi = 0 if (t1 + · · ·+ tn)− (i1 + · · ·+ in) > i,

and that ∂i11 · · · ∂inn Rj is a polynomial in f1, . . . , fN with denominator bounded

above by δ
|t|
L by Lemma 3.11, we deduce that

δ
|t|
L β

t1−i1
1 · · ·βtn−inn

((
∂

∂y

)(t1+···+tn)−(i1+···+in)
yi
)

(∂i11 · · · ∂
in
n Rj)

is a polynomial in y, f1, . . . , fN with coefficients in OK . On the other hand,
the coefficients pij are in OK , and this implies that

δL
|t|(∆tΨ) = Qt(y, f1, . . . , fN )

for some polynomial Qt(Y,X1, . . . , XN ) with coefficients in OK , and with
degY Qt ≤ D0. This means that

|(∆tΨ)(su)− (∆tΨ)(su0)|p
= |δL|−|t|p |Qt(su0, f1(su), . . . , fN (su))−Qt(0, f1(su), . . . , fN (su))|p.

Since u ∈ Λv ∩ Bn(rp|δL|p), we get |f1(su)|p, . . . , |fN (su)|p < 1 by Proposi-
tion 3.12, and taking into account that rp|δL|p < 1 and β1, . . . , βn ∈ OK , we
find that

|su0|p = |s|p|u0|p ≤ |u0|p = |β1u1 + · · ·+ βnun|p < 1.
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By Lemma 4.3 we obtain

|(∆tΨ)(su)− (∆tΨ)(su0)|p ≤ |δL|−2nTp max
1≤i≤D0

|su0|ip

≤ |δ−1L |
2nT
p |u0|p = |δ−1L |

2nT
p |l(u)|p.

Proposition 4.5. For 0 ≤ s < S0 and for t = (t1, . . . , tn) ∈ Nn such
that 0 ≤ t1, . . . , tn < 2T we have

|(∆tΨ)(su)|p ≤ |δ−1L |
2nT
p |l(u)|p.

Proof. By Proposition 4.4, for 0 ≤ s < S0 and for t = (t1, . . . , tn) ∈ Nn
with 0 ≤ t1, . . . , tn < 2T one has

|(∆tΨ)(su)− (∆tΨ)(su0)|p ≤ |δ−1L |
2nT
p |l(u)|p.

Moreover by Proposition 4.2, for 0 ≤ s < S0 and for t = (t1, . . . , tn) ∈ Nn
with 0 ≤ t1, . . . , tn < 2T we have

(∆tΨ)(su0) = 0.

This gives the desired conclusion.

For each n-tuple t ∈ Nn such that |t| < T we introduce the function

f(z) := (∆tΨ)(zu)

in the variable z. It is analytic on B(1). Our next step is to apply Proposition
3.3 to the function f . We shall prove an upper bound for the derivatives of
f on a certain finite set. Thanks to Proposition 4.5, one gets

Proposition 4.6. For τ, s ∈ Z such that 0 ≤ τ < T and 0 ≤ s < S0 we
have

|f (τ)(s)|p ≤ |δ−1L |
2nT
p |l(u)|p.

Proof. By recalling that u = u1e1+ · · ·+unen and using the composition
rule for derivatives we get

f (τ)(z) =
(
(u0∂0 + · · ·+ un∂n)τ∆tΨ

)
(zu)

=
(
((β1u1 + · · ·+ βnun)∂0 + u1∂1 + · · ·+ un∂n)τ∆tΨ

)
(zu)

=
(
(u1(β1∂0 + ∂1) + · · ·+ un(βn∂0 + ∂n))τ∆tΨ

)
(zu)

=
(
(u1∆1 + · · ·+ un∆n)τ∆tΨ

)
(zu).

Since |ui|p < 1 for i = 1, . . . , n, the multinomial expansion together with
the ultrametric inequality gives

|f (τ)(z)|p ≤ max
0≤i1,...,in≤τ ; i1+···+in=τ

|(∆i1
1 · · ·∆

in
n ∆

tΨ)(zu)|p.

Since τ and |t| are < T , the assertion follows from Proposition 4.5.

Lemma 4.7. Let α 6= 0 in Kv be such that |α|p < p−1/(p−1). Then

v(α)− 1

p− 1
≥ 1

2d2
.
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Proof. We know that v(K×v ) = (1/dv)Z with dv := [Kv : Qp]. Since
|α|p = p−v(α) < p−1/(p−1), there is a positive integer a such that

v(α) =
a

dv
>

1

p− 1
.

This implies that a(p− 1)− dv ≥ 1. If p− 1 ≥ 2dv then

v(α)− 1

p− 1
≥ 1

dv
− 1

p− 1
≥ 1

2dv
≥ 1

2d
≥ 1

2d2
.

Otherwise, if p− 1 < 2dv then

v(α)− 1

p− 1
=
a(p− 1)− dv
dv(p− 1)

≥ 1

dv(p− 1)
>

1

2d2v
≥ 1

2d2
.

From now on we set ε := 1/(3d2). Combining Lemma 4.7 and Proposition
4.6 together with Proposition 3.3, we will get

Proposition 4.8. For s ∈ N and t = (t1, . . . , tn) ∈ Nn such that |t| < T
we have

|(∆tΨ)(su)|p ≤ p−(εS0−eL)T max{1, p((2n−1)eL+εS0+
1
p−1

)T
SS0T
0 |l(u)|p}.

Proof. As above, we consider the function f(z) = (∆tΨ)(zu), and apply
the p-adic Schwarz lemma to f . We first show that f is analytic on B(R),
where R := pε. It suffices to show that zui ∈ B(rp|δL|p) for z ∈ B(R) and
i = 1, . . . , n. In fact, if ui = 0 then this is trivially true. Otherwise, since
|δ−1L ui|p < p−1/(p−1), it follows from Lemma 4.7 that

v(δ−1L ui)−
1

p− 1
≥ 1

2d2
.

Hence

v(δ−1L ui)− ε =
1

p− 1
+

(
v(δ−1L ui)−

1

p− 1
− 1

3d2

)
>

1

p− 1
,

which leads to

R|δ−1L |p|ui|p = pεp−v(δ
−1
L ui) = p−(v(δ

−1
L ui)−ε) < p−1/(p−1),

or equivalently to R|ui|p < rp|δL|p. This means that zui ∈ B(rp|δL|p) for
z ∈ B(R). Next we establish an upper bound for |f |R. As in the proof of
Proposition 4.4, there is a polynomial Q(Y,X1, . . . , XN ) with coefficients in
OK such that degY Q ≤ D0 and

f(z) = δ−TL Q(zu0, f1(zu), . . . , fN (zu)).

We note that

|zu0|p = |β1zu1 + · · ·+ βnzun|p ≤ |zu1 + · · ·+ zun|p
≤ max{|zu1|p, . . . , |zun|p} < 1,
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and deduce from Proposition 3.12 that |fi(zu)|p < 1 for i = 1, . . . , N and
for z ∈ B(R). This gives |Q(zu0, f1(zu), . . . , fN (zu))|p ≤ 1, which leads to

|f(z)|p ≤ |δ−1L |
T
p , ∀z ∈ B(R).

In other words,

|f |R ≤ |δ−1L |
T
p .

Finally, let Γ := {s ∈ Z; 0 ≤ s < S0} and let δ be the minimum of |s− s′|p
for s 6= s′ in Γ . The cardinality of Γ is S0 and we have δ ≤ 1. We define

µ := sup{|f (τ)(s)|p; 0 ≤ τ < T, s ∈ Γ}.
Using Lemma 4.6 we get µ ≤ |δ−1L |2nTp |l(u)|p. We apply Proposition 3.3 to
obtain

|f |1 ≤ max{(1/R)S0T |f |R, µ(1/δ)S0T−1r−(T−1)p }

≤ max
{
p−εS0T |δ−1L |

T
p , |δ−1L |

2nT
p |l(u)|pδ−(S0T−1)r−Tp

}
≤ max

{
p−εS0T peLT , p2neLT p

T
p−1 δ−(S0T−1)|l(u)|p

}
≤ max

{
p−(εS0−eL)T , p

(2neL+
1
p−1

)T
δ−(S0T−1)|l(u)|p

}
.

Moreover, for s, s′ ∈ Γ such that s 6= s′ one has

|s− s′|p ≥
1

|s− s′|
>

1

S0
.

This gives δ−1 < S0. Thus we obtain

|f |1 ≤ max{p−(εS0−eL)T , p
(2neL+

1
p−1

)T
SS0T
0 |l(u)|p}

= p−(εS0−eL)T max{1, p((2n−1)eL+εS0+
1
p−1

)T
SS0T
0 |l(u)|p}.

The proposition therefore follows from the fact that |(∆tΨ)(su)|p = |f(s)|p
≤ |f |1 for all integers s ≥ 0.

Proposition 4.9. There is a positive constant c4 such that if

log |l(u)|p ≤ −c4
((

S0 +
1

p− 1
+ eL

)
T log p+ S0T logS0

)
then

log |(∆tΨ)(su0)|p ≤ −
(
εS0 − eL)T log p

for t ∈ Nn with |t| < T and for s ∈ N.

Proof. By Lemma 4.4,

|(∆tΨ)(su)− (∆tΨ)(su0)|p ≤ |δ−1L |
2nT
p |l(u)|p = p2neLT |l(u)|p,

and by Proposition 4.8,

|(∆tΨ)(su)|p ≤ p−(εS0−eL)T max{1, p((2n−1)eL+εS0+
1
p−1

)T
SS0T
0 |l(u)|p}.
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Hence

|(∆tΨ)(su0)|p ≤ max{|(∆tΨ)(su)|p, |(∆tΨ)(su)− (∆tΨ)(su0)|p}

≤ p−(εS0−eL)T max{1, p((2n−1)eL+εS0+
1
p−1

)T
SS0T
0 |l(u)|p,

p((2n−1)eL+εS0)T |l(u)|p}

≤ p−(εS0−eL)T max{1, p((2n−1)eL+εS0+
1
p−1

)T
SS0T
0 |l(u)|p}.

On the other hand,

p
((2n−1)eL+εS0+

1
p−1

)T
SS0T
0 |l(u)|p ≤ 1

if and only if

|l(u)|p ≤ p−((2n−1)eL+εS0+
1
p−1

)T
S−S0T
0 .

In other words, if

log |l(u)|p ≤ −
(

(2n− 1)eL + εS0 +
1

p− 1

)
T log p− S0T logS0,

then

|(∆tΨ)(su0)|p ≤ p−(εS0−eL)T .

This means that there is a positive constant c4 such that if

log |l(u)|p ≤ −c4
((

S0 +
1

p− 1
+ eL

)
T log p+ S0T logS0

)
then

log |(∆tΨ)(su0)|p ≤ −
(
εS0 − eL)T log p.

4.6. A lower bound. Using Liouville’s inequality, we derive the fol-
lowing result that will be crucial in the proof of the main result.

Proposition 4.10. Let s be an integer such that 0 ≤ s < S. Assume
that Ψ has a zero at su0 of exact order T ′ along W for some positive inte-
ger T ′. Let t ∈ Zn≥0 with |t| = T ′ be such that (∆tΨ)(su0) 6= 0. Then

log |(∆tΨ)(su0)|p > −c5
(
T ′(hL + log δL + log(D + T ′dL)) +D0b+DS2h

)
for some positive constant c5.

Proof. As in the proof of Proposition 4.2, for y ∈ Kv and x ∈ Λnv we
define

Ψ∗s (y, x) := Ψ(y, su+x), Es(x) := E0(su, x), Ψs(y, x) := Ψ∗s (y, x)Es(x)D.

By our assumption

0 = (∆τΨ)(su0) = (∆τΨ)(0, su) = (∆τΨ∗s )(0, 0)

for τ ∈ Nn with |τ | < T ′. Leibniz’ rule gives

(∆τΨs)(0, 0) = (∆τ (Ψ∗sE
D
s ))(0, 0) = 0.
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Using Leibniz’ rule again, one gets

(∆tΨ)(su0) = (∆t(ΨsE
−D
s ))(0, 0) = (∆tΨs)(0, 0)E−Ds (0).

The same arguments as in the proof of Proposition 4.2 (just replace S0 by S)
show that

h((∆tΨs)(0, 0))� T ′(hL + log δL + log(D + T ′ log dL)) +D0b+DS2h.

Furthermore,

h(E−Ds (0)) = h(E0(su, 0)−D) = Dh(E0(su, 0))� DS2h.

Since (∆tΨ)(su0) 6= 0, Liouville’s inequality gives

log |(∆tΨ)(su0)|p � −h((∆tΨ)(su0)) = −h
(
(∆tΨs)(0, 0)Es(0)−D

)
� −

(
T ′(hL + log δL + log(D + T ′dL)) +D0b+DS2h

)
,

and the proposition follows.

4.7. Multiplicity estimates. Another crucial point for proving the
theorem is the following lemma. For the proof we use [17], but we also
refer to [21] (and to [22], where the multiplicity estimates part has been
published); the result of [17] is a modification of the multiplicity estimate
part of the habilitation thesis [21].

Lemma 4.11. Let η := (0, γ) and Γ (η) := {ηi; i ∈ N}. Let H(H ;D0, D)
and H(G ;D0, D) be the Hilbert–Samuel functions associated with the ideals
of H and G respectively. If Ψ vanishes at any point of {su0; 0 ≤ s < S}
along W of order ≥ T , then there are a connected algebraic subgroup H
defined over K distinct from G and a positive constant c6 such that(

T + codimWpWp ∩ TH

codimWpWp ∩ TH

)
card((Γ (η) + H )/H )H(H ;D0, D)

≤ c6H(G ;D0, D),

where Wp := W ⊗Kv Cp and TH = Lie(H )⊗K Cp.

Proof. We associate with P the bihomogeneous polynomial P h in N + 2
variables Y0, Y1, X0, . . . , XN of degree D0 in Y0, Y1 and degree D in X0, . . .
. . . , XN defined by

P h(Y0, Y1, X0, . . . , XN ) := Y D0
0 P (Y1/Y0, X0, . . . , XN ).

Since ordsu0,W Ψ ≥ T , the order at any point su0 along W of the analytic
function P h(1, y, 1, f1(x), . . . , fN (x)) is at least T . This also means that the
order of P h(1, y, 1, f1(x), . . . , fN (x)) along Wp at any point su0 is at least T .
Therefore the lemma follows immediately from [17, Theorem 2.1].
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4.8. Choice of parameters and proof of Theorem 2.1. We choose
parameters as follows. Let c be a large enough positive constant and

S0 = [cωL(log b+ log h)], S = [c2S0],

D0 = [c5n+1Sn+1
0 hn], D = [c5n+1Sn0 bh

n−1], T = [c5n+6Sn+1
0 bhn],

where [·] denotes the integer part. Our parameters satisfy D0D
n ≥ c2S0Tn.

Proposition 4.2 gives a polynomial P in N + 2 variables Y,X0 . . . , XN

with coefficients in OK , homogeneous in X0, . . . , XN of degree D, and with
degPY ≤ D0, such that

• P does not vanish identically on G ,
• (∆tΨ)(su0) = 0 for all 0 ≤ s < S0 and t = (t1, . . . , tn), 0 ≤ t1, . . . , tn
< 2T ,
• h(P ) ≤ c3(T (hL + log δL + log(D + TdL)) +D0b+DS2

0h);

here we write Ψ for ΨP .

Lemma 4.12.

log |l(u)|p > −c4
((

S0 +
1

p− 1
+ eL

)
T log p+ S0T logS0

)
.

Proof. On assuming that

log |l(u)|p ≤ −c4
((

S0 +
1

p− 1
+ eL

)
T log p+ S0T logS0

)
Proposition 4.9 gives

log |(∆tΨ)(su0)|p ≤ −
(
εS0 − eL)T log p.

We shall show that the order of Ψ along W at any point of {su0; 0 ≤ s < S}
is at least T . Otherwise there is some point s0u0 with 0 ≤ s0 < S at which
the exact order along W is T0 < T . This means that there exists τ ∈ Nn
such that |τ | = T0 and (∆τΨ)(s0u0) 6= 0. We apply Proposition 4.10 to get

log |(∆τΨ)(s0u0)|p > −c5
(
T0(hL + log δL + log(D + T0dL)) +D0b+DS2h

)
.

The comparison with the lower bound above implies that

−(εS0 − eL)T log p ≥ −c5
(
T (hL + log δL + log(D + TdL)) +D0b+DS2h

)
.

This yields

(εS0 − eL)T log p ≤ c5
(
T (hL + log δL + log(D + TdL)) +D0b+DS2h

)
and shows that(

1

3d2
log 2

)
T (S0 − eL)

≤ c5
(
T (hL + log δL + log(D + TdL)) +D0b+DS2h

)
.
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This means that there is a positive constant c7 satisfying

T (S0 − eL) ≤ c7
(
T (hL + log δL + log(D + TdL)) +D0b+DS2h

)
.

We get a contradiction because this cannot hold if c is sufficiently large.
Therefore Ψ vanishes at any point of {su0; 0 ≤ s < S} of order at least
T along W . By Lemma 4.11, there is a connected algebraic subgroup H
defined over K distinct from G and such that(

T + codimWpWp ∩ TH

codimWpWp ∩ TH

)
card((Γ (η) + H )/H )H(H ;D0, D)

≤ c6H(G ;D0, D).

Since G and Ga are disjoint, there are subgroups Ha of Ga and H of G
(defined over K) such that H = Ha × H. Let na be the dimension of Ha

and n′ be the dimension of H. We know that H(H ;D0, D)� Dna
0 Dn′ and

H(G ;D0, D)� D0D
n. The above inequality gives(

T + codimWpWp ∩ TH

codimWpWp ∩ TH

)
card((Γ (η) + H )/H )� D1−na

0 Dn−n′ .

We shall show that H must be the trivial group {e}. Indeed, if not, then we
get a proper quotient π : G → G/H inducing a linear map π∗ : g → g/h of
Lie algebras which maps the hyperplane W onto (W + h)/h; here g and h
denote the Lie algebras of G and H respectively. Furthermore, τ(G,W ) =
(n− 1)/n, and since (G,W ) is semistable over Q, it is also semistable overK.
This gives

τ(G,W ) ≤ τ(G/H, π∗(W )) =
dim(W + h)− dim h

dimG− dimH

=
dim(W + h)− n′

n− n′
.

But

n− 1 = dimW ≤ dim(W + h) ≤ n,

and this shows that dim(W + h) = n, i.e. dim(Wp + TH ) = n. This gives

codimWpWp ∩ TH = dim(Wp + TH )− dimTH = n+ 1− na − n′,

and shows that (
T + n+ 1− na − n′

n+ 1− na − n′

)
� D1−na

0 Dn−n′ .

We deduce that

Tn+1−na−n′ ≤ c8D1−na
0 Dn−n′

for some positive constant c8, a contradiction to T > cD0, cD. Thus H={e},
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and therefore TH ∩Wp must be trivial. One gets

codimWpWp ∩ TH = dim Wp = n.

Moreover, Γ (γ) ∩H must also be trivial and hence

card((Γ (γ) + H )/H ) = cardΓ (η) = S.

We obtain (
T + n

n

)
S � D1−na

0 Dn ≤ D0D
n.

This shows that TnS ≤ c9D0D
n for some positive constant c9, and again

gives a contradiction because of the choice of the parameters.

In order to finish the proof of the theorem, we use the above lemma and
the fact that log r−1p = log p

p−1 < 2 to get

log |l(u)|p > −c10(S0T log p+ S0T logS0 + TeL log p)

> −c11(Sn+2
0 bhn log p+ Sn+2

0 (logS0)bh
n) > −c12Sn+3

0 bhn log p

for some positive constants c10, c11 and c12. In other words, there is a positive
constant c0 independent of b, h, p such that

log |l(u)|p > −c0ωn+3
L bhn(log b+ log h)n+3 log p.

The first assertion of the theorem is thus proved; together with Section 2.2,
this completes the proof.

Acknowledgements. The authors are grateful to Professor G. Wüstholz
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brique commutatif, C. R. Math. Acad. Sci. Paris 333 (2001), 1059–1064; Invent.
Math. 162 (2005), 137–188.
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the View from Baker’s Garden, G. Wüstholz (ed.), Cambridge Univ. Press, 2002,
11–25.

[29] K. Yu, p-adic logarithmic forms and a problem of Erdős, Acta Math. 211 (2013),
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