Primality test for numbers of the form $(2 p)^{2^{n}}+1$

by
Yingpu Deng and Dandan Huang (Beijing)

1. Introduction. Primality testing is an important problem in computational number theory. Although it was proved to be a \mathbf{P} problem by Agrawal, Kayal and Saxena [AKS in 2004, finding more efficient algorithms for specific families of numbers does make sense. In this paper we are concerned with the numbers of the form $a^{2^{n}}+1$, with $n \geq 1, a \geq 2$, called generalized Fermat numbers by Ribenboim RB . Our main result is an efficient deterministic polynomial time algorithm for generalized Fermat numbers of the form $M=(2 p)^{2^{n}}+1$, with p an odd prime.

Let $a \geq 2$ be an integer. Prime numbers of the form $a^{n} \pm 1$, when a is fixed and $n \geq 1$ varies, have been studied for a long time. For $a^{n}-1$, it is easy to see that it suffices to consider the case when $a=2$ and $n=p$ is a prime. Numbers of the form $2^{p}-1$ are called Mersenne numbers. For Mersenne numbers, Lucas [LU] and Lehmer [LE] gave the famous LucasLehmer primality test, using the properties of Lucas sequences. Their test is as follows.

Lucas-Lehmer test. Let $M_{p}=2^{p}-1$ be a Mersenne number, where p is an odd prime. Define $u_{0}=4$ and $u_{k}=u_{k-1}^{2}-2$ for $k \geq 1$. Then M_{p} is a prime if and only if $u_{p-2} \equiv 0\left(\bmod M_{p}\right)$.

For $a^{n}+1$, it is clear that it suffices to consider the case when a is even and n is a power of 2 , which are exactly the generalized Fermat numbers. When $a=2$, the numbers of the form $2^{2^{n}}+1$ are called Fermat numbers. For these, there is also a primality test due to Pépin (see [W2]):

PÉpin test. Let $F_{n}=2^{2^{n}}+1$ be the nth Fermat number, with $n>0$. Then F_{n} is a prime if and only if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$.

One can see that Pépin's test for $F_{n}=2^{2^{n}}+1$ is deterministic and efficient with complexity $\tilde{O}\left(\left(\log _{2} F_{n}\right)^{2}\right)$. There are no deterministic and efficient

[^0]polynomial time algorithms for generalized Fermat numbers $M=(2 p)^{2^{n}}+1$, where p is an odd prime. But there are some results on this subject. Tables of generalized Fermat prime numbers are available at [WW].

Now we recall some previous results about numbers $M=(2 p)^{2^{n}}+1$, where p is an odd prime, studied by Williams, Berrizbeitia, Berry and others. Williams W1 obtained efficient primality tests for $p=3,5$ by using Lucas sequences. Additionally, these numbers are special types of numbers A. $p^{n} \pm 1$ with A and p relatively prime. By using the cubic reciprocity law, Berrizbeitia and Berry BB gave an efficient deterministic primality test for numbers $A \cdot 3^{n} \pm 1$ such that $A<3^{n}$ and A is coprime to 3 , and a prime $q \equiv 1(\bmod 3)$ is given such that $A \cdot 3^{n} \pm 1$ is not a cube modulo q. Afterwards, by using the quintic reciprocity law, Berrizbeitia, Odreman and Tena BOT] presented an efficient deterministic primality test for numbers $A \cdot 5^{n} \pm \omega_{n}$, where $0<A<5^{n}, 0<\omega_{n}<5^{n} / 2, \omega_{n}^{4} \equiv 1\left(\bmod 5^{n}\right)$, and a prime $q \equiv 1(\bmod 5)$ is given such that $A \cdot 5^{n} \pm \omega_{n}$ is not a 5 th power modulo q. Before long, by using properties of the power residue symbol, Berrizbeitia, Berry and Tena $\overline{\mathrm{BBT}}$] extended the results in $[\mathrm{BB}$ and [BOT] to numbers $G=A \cdot m^{n} \pm \omega_{n}$, where $m, n \geq 2,0<A<m^{n}, 0<\omega_{n}<m^{n} / 2, \omega_{n}^{f} \equiv 1$ $\left(\bmod m^{n}\right)$ with $f=\operatorname{ord}_{m}(G)$ and $\pi \in \mathbb{Z}\left[\zeta_{m}\right]$ is given such that the m th power residue symbol $\left(\frac{\pi}{G}\right)_{m}$ is a primitive m th root of 1 .

Recently, Deng and Lv [DL implemented the primality test related to BBT for numbers $H=A \cdot p^{n}+\omega_{n}$, where $0<A, \omega_{n}<p^{n}$ and $\omega_{n}^{p-1} \equiv 1$ $\left(\bmod p^{n}\right)$. They give the form of the corresponding sequences and, by using the Eisenstein reciprocity law, give a primality test for numbers $H=A$. $p^{n}+\omega_{n}$ such that $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ is given so that the p th power residue symbol $\left(\frac{\pi}{H}\right)_{p}$ is a primitive p th root of 1 .

By directly applying the results of DL (or BB, BBT, BOT) to generalized Fermat numbers $M=(2 p)^{2^{n}}+1$, we find that the initial terms of their recurrence sequences depend on A (i.e., $2^{2^{n}}$ here), that is, depend on n. In this paper, we will give similar recurrence sequences to decide the primality of generalized Fermat numbers $M=(2 p)^{2^{n}}+1$, but the initial terms of our sequences are common for all $n \geq 1$ (i.e., independent of n). We mainly use a certain special $2 p$ th degree reciprocity law, and the original idea is inspired by [BBT, Proposition 4.1]. What is more, we will give a common $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ for numbers $M=(2 p)^{2^{n}}+1$ such that $\left(\frac{\pi}{M}\right)_{2 p} \neq \pm 1$ for all $n \geq 1$, at least in the cases $p \leq 19$. Note that the $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ found by using the algorithm of DL] (or $\mathrm{BB}, \overline{\mathrm{BBT}}, \mathrm{BOT}$) depends on n.

This paper is organized as follows. In Section 2 we give the definition of the power residue symbol, and prove a special $2 p$ th power reciprocity law that will be used in the proof of our main theorem. In Section 3 we state and prove our main result together with the analysis of the corresponding
complexity. In Section 4, we give explicit primality tests for $M=(2 p)^{2^{n}}+1$ with odd prime numbers $p \leq 19$. In Section 5 we show the implementation and computational results for $p=3,5$.
2. Preliminaries. The material of this section may be found in IR, Chapter 14].

For a positive integer m, let $\zeta_{m}=e^{2 \pi \sqrt{-1} / m}$ be the complex primitive m th root of unity, and $D=\mathbb{Z}\left[\zeta_{m}\right]$ the ring of integers of the m th cyclotomic field $\mathbb{Q}\left(\zeta_{m}\right)$. Let \mathfrak{p} be a prime ideal of D lying over a rational prime p with $\operatorname{gcd}(p, m)=1$. For every $\alpha \in D$, the m th power residue symbol $\left(\frac{\alpha}{\mathfrak{p}}\right)_{m}$ is defined by:
(1) If $\alpha \in \mathfrak{p}$, then $\left(\frac{\alpha}{\mathfrak{p}}\right)_{m}=0$.
(2) If $\alpha \notin \mathfrak{p}$, then $\left(\frac{\alpha}{\mathfrak{p}}\right)_{m}=\zeta_{m}^{i}$ with $i \in \mathbb{Z}$, where ζ_{m}^{i} is the unique m th root of unity in D such that

$$
\alpha^{(N(\mathfrak{p})-1) / m} \equiv \zeta_{m}^{i}(\bmod \mathfrak{p})
$$

where $N(\mathfrak{p})$ is the absolute norm of the ideal \mathfrak{p}.
(3) If $\mathfrak{a} \subset D$ is an arbitrary ideal prime to m, and $\mathfrak{a}=\prod \mathfrak{p}_{i}^{n_{i}}$ is its factorization as a product of prime ideals, then

$$
\left(\frac{\alpha}{\mathfrak{a}}\right)_{m}=\prod\left(\frac{\alpha}{\mathfrak{p}_{i}}\right)_{m}^{n_{i}}
$$

We set $\left(\frac{\alpha}{D}\right)_{m}=1$.
(4) If $\beta \in D$ and β is prime to m, define $\left(\frac{\alpha}{\beta}\right)_{m}=\left(\frac{\alpha}{\beta D}\right)_{m}$.

We will need the following proposition:
Proposition 2.1 (see also [IR, Corollary 2, p. 218]). Suppose $A, B \subset$ $\mathbb{Z}\left[\zeta_{m}\right]$ are ideals prime to m, and $A=(\alpha)$ is principal with $\operatorname{gcd}(N(A), N(B))$ $=1$. Then

$$
\left(\frac{N(B)}{\alpha}\right)_{m}=\left(\frac{\varepsilon(\alpha)}{B}\right)_{m}\left(\frac{\alpha}{N(B)}\right)_{m}
$$

where $\varepsilon(\alpha)= \pm \zeta_{m}^{i}$ for some $i \in \mathbb{Z}$.
Applying Proposition 2.1, we now obtain a special $2 p$ th power reciprocity law, which is also a special case of Proposition 4.1 in [BOT].

Proposition 2.2. Let $M>1$ be a prime with $M \equiv 1\left(\bmod 4 p^{2}\right)$, where p is an odd prime. Let $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ be coprime to $2 p M$. Then

$$
\left(\frac{M}{\pi}\right)_{2 p}=\left(\frac{\pi}{M}\right)_{2 p}
$$

Proof. Let \mathfrak{P} be a prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ lying over M. Since $M \equiv 1$ $(\bmod 2 p)$, we have $N(\mathfrak{P})=M$. By Proposition 2.1,

$$
\left(\frac{N(\mathfrak{P})}{\pi}\right)_{2 p}=\left(\frac{\varepsilon(\pi)}{\mathfrak{P}}\right)_{2 p}\left(\frac{\pi}{N(\mathfrak{P})}\right)_{2 p}
$$

which implies

$$
\left(\frac{M}{\pi}\right)_{2 p}=\left(\frac{\varepsilon(\pi)}{\mathfrak{P}}\right)_{2 p}\left(\frac{\pi}{M}\right)_{2 p} .
$$

And

$$
\left(\frac{\varepsilon(\pi)}{\mathfrak{P}}\right)_{2 p} \equiv \varepsilon(\pi)^{(M-1) / 2 p} \equiv\left(\pm \zeta_{2 p}^{i}\right)^{(M-1) / 2 p}=1(\bmod \mathfrak{P})
$$

because $2 p \left\lvert\, \frac{M-1}{2 p}\right.$. Then $\left(\frac{\varepsilon(\pi)}{\mathfrak{P}}\right)_{2 p}=1$, and the proof is complete.
3. The main result. Let $D=\mathbb{Z}\left[\zeta_{p}\right]$ be the ring of integers of $L=\mathbb{Q}\left(\zeta_{p}\right)$, where p is an odd prime. Let $K=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ be the maximal real subfield of L. Clearly $[L: \mathbb{Q}]=p-1$ and $[K: \mathbb{Q}]=(p-1) / 2$.

First we give a recurrence expression for the minimal polynomial of $\zeta_{p}+\zeta_{p}^{-1}$ over \mathbb{Q}, denoted by $F(x)$. Clearly the degree of $F(x)$ is $(p-1) / 2$. We define the polynomials $G_{n}(x)(n \geq 0)$ by $G_{0}(x)=1, G_{1}(x)=x$, and for $n \geq 2$ recursively by

$$
G_{n}(x)= \begin{cases}G_{(n-1) / 2}(x) G_{(n+1) / 2}(x)-x & \text { if } n \text { is odd } \tag{3.1}\\ G_{n / 2}(x)^{2}-2 & \text { if } n \text { is even. }\end{cases}
$$

We have $F(x)=\sum_{k=0}^{(p-1) / 2} G_{k}(x)$. Indeed, $G_{n}\left(x+x^{-1}\right)=x^{n}+x^{-n}$ for all $n \geq 1$, and

$$
F\left(\zeta_{p}+\zeta_{p}^{-1}\right)=1+\sum_{k=1}^{(p-1) / 2} G_{k}\left(\zeta_{p}+\zeta_{p}^{-1}\right)=1+\sum_{k=1}^{(p-1) / 2}\left(\zeta_{p}^{k}+\zeta_{p}^{-k}\right)=0
$$

Suppose

$$
F(x)=\sum_{j=0}^{(p-1) / 2}(-1)^{j} a_{j} x^{(p-1) / 2-j} ;
$$

clearly $a_{0}=1$ and $a_{j} \in \mathbb{Z}$ for $1 \leq j \leq(p-1) / 2$. Now $F(x)$ is easy to compute for fixed p. Also $F(x)$ is the minimal polynomial of $\zeta_{p}^{l}+\zeta_{p}^{-l}$ over \mathbb{Q}, where $l \not \equiv 0(\bmod p)$.

Next we introduce the elementary symmetric polynomials of $(p-1) / 2$ indeterminates $\left\{x_{1}, \ldots, x_{(p-1) / 2}\right\}$:

$$
S^{(j)}\left(x_{1}, \ldots, x_{(p-1) / 2}\right)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq(p-1) / 2} x_{i_{1}} \cdots x_{i_{j}}, \quad 1 \leq j \leq(p-1) / 2 .
$$

Actually, $F(x)=\prod_{i=1}^{(p-1) / 2}\left[x-\left(\zeta_{p}^{2 i-1}+\zeta_{p}^{1-2 i}\right)\right]$, and thus

$$
a_{j}=S^{(j)}\left(\zeta_{p}+\zeta_{p}^{-1}, \zeta_{p}^{3}+\zeta_{p}^{-3}, \ldots, \zeta_{p}^{p-2}+\zeta_{p}^{2-p}\right) \quad \text { for } 1 \leq j \leq(p-1) / 2
$$

Let $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{*}$. For every integer c such that $\operatorname{gcd}(c, 2 p)=1$ denote by σ_{c} the element of G that sends ζ_{p} to ζ_{p}^{c}. We know that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)=\left\{\sigma_{ \pm(2 i-1)} \mid 1 \leq i \leq(p-1) / 2\right\}$ and $\operatorname{Gal}(K / \mathbb{Q})=$ $\left\{\left.\sigma_{2 i-1}\right|_{K} \mid 1 \leq i \leq(p-1) / 2\right\}$.

For τ in the group ring $\mathbb{Z}[G]$ and α in L with $\alpha \neq 0$, we often denote by α^{τ} the action of τ on α, that is,

$$
\alpha^{\tau}:=\prod_{\sigma \in G} \sigma(\alpha)^{k_{\sigma}} \quad \text { if } \quad \tau=\sum_{\sigma \in G} k_{\sigma} \sigma \text { and } k_{\sigma} \in \mathbb{Z}
$$

If $\tau \in G$, we will write either α^{τ} or $\tau(\alpha)$. We also write $\sigma_{1}=1$ in $\mathbb{Z}[G]$.
Now we give some notation which will be used in the main theorem. Let $\pi \in D$ with $\pi \notin \mathbb{R}$. We denote

$$
\alpha=(\pi / \bar{\pi})^{\gamma}, \quad \text { where } \quad \gamma=\sum_{i=1}^{(p-1) / 2}(2 i-1) \sigma_{(2 i-1)^{-1}} \in \mathbb{Z}[G]
$$

the bar indicates complex conjugation, and $(2 i-1)^{-1}$ is the number such that $(2 i-1) \cdot(2 i-1)^{-1} \equiv 1(\bmod 2 p)$ and $1 \leq(2 i-1)^{-1}<2 p$. Obviously, $\alpha \bar{\alpha}=1$. We define $(p-1) / 2$ sequences $\left\{\left.T_{k}^{(j)}\right|_{k \geq 0}\right\}, 1 \leq j \leq(p-1) / 2$, by

$$
T_{k}^{(j)}=S^{(j)}\left(\alpha_{1}^{(k)}, \ldots, \alpha_{(p-1) / 2}^{(k)}\right)
$$

where $\alpha_{i}^{(k)}=\sigma_{2 i-1}\left(\alpha^{(2 p)^{k}}+\bar{\alpha}^{(2 p)^{k}}\right), i=1, \ldots,(p-1) / 2$.
Note that $T_{k}^{(j)} \in \mathbb{Q}$. Indeed, $\beta:=\alpha^{(2 p)^{k}}+\bar{\alpha}^{(2 p)^{k}} \in K$. Let $C(x)$ be the characteristic polynomial of β over \mathbb{Q}. Then

$$
C(x)=\prod_{i=1}^{(p-1) / 2}\left(x-\alpha_{i}^{(k)}\right):=x^{(p-1) / 2}+\sum_{j=1}^{(p-1) / 2} c_{j} x^{(p-1) / 2-j} \in \mathbb{Q}[x]
$$

and $T_{k}^{(j)}=(-1)^{j} c_{j} \in \mathbb{Q}$. What is more, there are explicit recurrence relations from $T_{k}^{(j)}$ to $T_{k+1}^{(j)}, 1 \leq j \leq(p-1) / 2$. We will give the details for the cases $p=3,5$ in Sections 4 and 5 respectively.

Our main theorem is a primality test for special generalized Fermat numbers $M=(2 p)^{2^{n}}+1$ with p an odd prime:

TheOrem 3.1. Let $T_{k}^{(j)}$ and a_{j} be as above. Let $M=(2 p)^{2^{n}}+1$ with $n \geq 1$, p be an odd prime and $r=2^{n}$. Let $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ be coprime to $2 p M$ such that $\pi \notin \mathbb{R}$ and $\left(\frac{M}{\pi}\right)_{2 p} \neq \pm 1$. Suppose that if $x^{p-1} \equiv 1\left(\bmod p^{r}\right)$ and $1<x<p^{r}$, then x does not divide M. Then M is prime if and only if one of the following holds:
(i) $\left(\frac{M}{\pi}\right)_{2 p}=\zeta_{p}^{l}$ for some $l \in \mathbb{Z}$ with $l \not \equiv 0(\bmod p)$, and $T_{r-1}^{(j)} \equiv a_{j}$ $(\bmod M)$ for all $1 \leq j \leq(p-1) / 2$;
(ii) $\left(\frac{M}{\pi}\right)_{2 p}=-\zeta_{p}^{l}$ for some $l \in \mathbb{Z}$ with $l \not \equiv 0(\bmod p)$, and $T_{r-1}^{(j)} \equiv(-1)^{j} a_{j}$ $(\bmod M)$ for all $1 \leq j \leq(p-1) / 2$.
Proof. We first show necessity. Suppose M is a prime. Since π is prime to $2 p M$, applying Proposition 2.2 we get $\left(\frac{M}{\pi}\right)_{2 p}=\left(\frac{\pi}{M}\right)_{2 p}$. Now $M \equiv 1$ $(\bmod 2 p)$ implies that the ideal $M D$ can be factorized into a product of $p-1$ distinct prime ideals in D. We write

$$
M D=(\mathfrak{p p})^{\sum_{i=1}^{(p-1) / 2} \sigma_{2 i-1}}
$$

thus

$$
\begin{aligned}
\left(\frac{M}{\pi}\right)_{2 p} & =\left(\frac{\pi}{M}\right)_{2 p}=\prod_{i=1}^{(p-1) / 2}\left(\frac{\pi}{(\mathfrak{p} \overline{\mathfrak{p}})^{\sigma_{2 i-1}}}\right)_{2 p} \\
& =\prod_{i=1}^{(p-1) / 2}\left(\frac{(\pi / \bar{\pi})^{(2 i-1) \sigma_{(2 i-1)-1}}}{\mathfrak{p}}\right)_{2 p}=\left(\frac{(\pi / \bar{\pi})^{\sum_{k=1}^{(p-1) / 2}(2 i-1) \sigma_{(2 i-1)-1}}}{\mathfrak{p}}\right)_{2 p} \\
& =\left(\frac{\alpha}{\mathfrak{p}}\right)_{2 p} \equiv \alpha^{(M-1) / 2 p} \equiv \alpha^{(2 p)^{r-1}}(\bmod \mathfrak{p})
\end{aligned}
$$

Since \mathfrak{p} is an arbitrary prime ideal lying over M, we have

$$
\left(\frac{M}{\pi}\right)_{2 p} \equiv \alpha^{(2 p)^{r-1}}(\bmod M)
$$

Taking the complex conjugate of every term of the last congruence, we get

$$
\alpha_{1}^{(r-1)}=\alpha^{(2 p)^{r-1}}+\bar{\alpha}^{(2 p)^{r-1}} \equiv\left(\frac{M}{\pi}\right)_{2 p}+\left(\frac{M}{\pi}\right)_{2 p}^{-1}(\bmod M)
$$

Also acting by the Galois group elements $\sigma_{2 i-1}, 1 \leq i \leq(p-1) / 2$, on both sides of the last congruence, we obtain

$$
\alpha_{i}^{(r-1)}=\sigma_{2 i-1}\left(\alpha^{(2 p)^{r-1}}+\bar{\alpha}^{(2 p)^{r-1}}\right) \equiv\left(\frac{M}{\pi}\right)_{2 p}^{2 i-1}+\left(\frac{M}{\pi}\right)_{2 p}^{1-2 i}(\bmod M)
$$

for all $1 \leq i \leq(p-1) / 2$. Hence

$$
\begin{aligned}
T_{r-1}^{(j)} & =S^{(j)}\left(\alpha_{1}^{(r-1)}, \ldots, \alpha_{(p-1) / 2}^{(r-1)}\right) \\
& \equiv S^{(j)}\left(\left(\frac{M}{\pi}\right)_{2 p}+\left(\frac{M}{\pi}\right)_{2 p}^{-1}, \ldots,\left(\frac{M}{\pi}\right)_{2 p}^{p-2}+\left(\frac{M}{\pi}\right)_{2 p}^{2-p}\right)(\bmod M)
\end{aligned}
$$

for $1 \leq j \leq(p-1) / 2$.
(i) Suppose $\left(\frac{M}{\pi}\right)_{2 p}=\zeta_{p}^{l}$ for some l with $l \not \equiv 0(\bmod p)$. Using the polynomial $F(x)$, as shown before we get $a_{j}=S^{(j)}\left(\zeta_{p}+\zeta_{p}^{-1}, \zeta_{p}^{3}+\zeta_{p}^{-3}, \ldots\right.$,
$\left.\zeta_{p}^{p-2}+\zeta_{p}^{2-p}\right)$ for $1 \leq j \leq(p-1) / 2$. Hence

$$
T_{r-1}^{(j)} \equiv S^{(j)}\left(\zeta_{p}+\zeta_{p}^{-1}, \zeta_{p}^{3}+\zeta_{p}^{-3}, \ldots, \zeta_{p}^{p-2}+\zeta_{p}^{2-p}\right)=a_{j}(\bmod M)
$$

for all $j=1, \ldots,(p-1) / 2$.
(ii) Suppose $\left(\frac{M}{\pi}\right)_{2 p}=-\zeta_{p}^{l}$ for some l with $l \not \equiv 0(\bmod p)$. By the properties of elementary symmetric polynomials, we have

$$
\begin{aligned}
T_{r-1}^{(j)} & \equiv S^{(j)}\left(\left(\frac{M}{\pi}\right)_{2 p}+\left(\frac{M}{\pi}\right)_{2 p}^{-1}, \ldots,\left(\frac{M}{\pi}\right)_{2 p}^{p-2}+\left(\frac{M}{\pi}\right)_{2 p}^{2-p}\right) \\
& =S^{(j)}\left(-\zeta_{p}-\zeta_{p}^{-1},-\zeta_{p}^{3}-\zeta_{p}^{-3}, \ldots,-\zeta_{p}^{p-2}-\zeta_{p}^{2-p}\right) \\
& =(-1)^{j} S^{(j)}\left(\zeta_{p}+\zeta_{p}^{-1}, \zeta_{p}^{3}+\zeta_{p}^{-3}, \ldots, \zeta_{p}^{p-2}+\zeta_{p}^{2-p}\right) \\
& =(-1)^{j} a_{j}(\bmod M)
\end{aligned}
$$

for all $j=1, \ldots,(p-1) / 2$. This completes the proof of necessity.
Next we turn to the proof of sufficiency. Suppose q is an arbitrary prime divisor of M. Let \mathfrak{q} be a prime ideal in the ring of integers of K lying over q, and \mathfrak{Q} be a prime ideal of D lying over \mathfrak{q}. We denote $\beta=$ $\alpha^{(2 p)^{r-1}}+\bar{\alpha}^{(2 p)^{r-1}} \in K$ and $T_{r-1}^{(j)}=S^{(j)}\left(\beta, \sigma_{3}(\beta), \ldots, \sigma_{p-2}(\beta)\right)$ for $1 \leq j \leq$ $(p-1) / 2$.
(i) Suppose $T_{r-1}^{(j)} \equiv a_{j}(\bmod M)$, that is,

$$
S^{(j)}\left(\beta, \sigma_{3}(\beta), \ldots, \sigma_{p-2}(\beta)\right) \equiv a_{j}(\bmod \mathfrak{q})
$$

Then

$$
\begin{aligned}
0 & =(\beta-\beta)\left(\beta-\sigma_{3}(\beta)\right) \cdots\left(\beta-\sigma_{p-2}(\beta)\right) \\
& =\beta^{(p-1) / 2}+\sum_{j=1}^{(p-1) / 2}(-1)^{j} S^{(j)}\left(\beta, \sigma_{3}(\beta), \ldots, \sigma_{p-2}(\beta)\right) \beta^{(p-1) / 2-j} \\
& \equiv \beta^{(p-1) / 2}+\sum_{j=1}^{(p-1) / 2}(-1)^{j} a_{j} \beta^{(p-1) / 2-j}=F(\beta)(\bmod \mathfrak{q})
\end{aligned}
$$

Since $F\left(x+x^{-1}\right)=\sum_{k=0}^{(p-1) / 2} G_{k}\left(x+x^{-1}\right)=\sum_{k=0}^{(p-1) / 2}\left(x^{k}+x^{-k}\right)$, we get

$$
\begin{aligned}
0 & \equiv F\left(\alpha^{(2 p)^{r-1}}+\bar{\alpha}^{(2 p)^{r-1}}\right) \\
& =1+\sum_{k=1}^{(p-1) / 2}\left[\left(\alpha^{(2 p)^{r-1}}\right)^{k}+\left(\bar{\alpha}^{(2 p)^{r-1}}\right)^{k}\right](\bmod \mathfrak{Q}) .
\end{aligned}
$$

We multiply both sides of the above congruence by $\alpha^{(2 p)^{r-1} \cdot(p-1) / 2}=$ $\bar{\alpha}^{-(2 p)^{r-1} \cdot(p-1) / 2}$ to get

$$
\sum_{k=0}^{p-1}\left(\alpha^{(2 p)^{r-1}}\right)^{k} \equiv 0(\bmod \mathfrak{Q})
$$

Thus the image of $\alpha^{(2 p)^{r-1}}$ has order p in the multiplicative group $(D / \mathfrak{Q})^{*}$, and the image of $\alpha^{2^{r-1}}$ has order p^{r} in $(D / \mathfrak{Q})^{*}$. Since the order of the group $(D / \mathfrak{Q})^{*}$ is $N(\mathfrak{Q})-1$ which divides $q^{p-1}-1$, we have $q^{p-1} \equiv 1\left(\bmod p^{r}\right)$. By the assumption M is divisible by no solutions of the equation $x^{p-1} \equiv 1$ $\left(\bmod p^{r}\right)$ between 1 and p^{r}, that is, $q>p^{r}>\sqrt{(2 p)^{r}+1}=\sqrt{M}$, so clearly M is prime.
(ii) If $T_{r-1}^{(j)} \equiv(-1)^{j} a_{j}(\bmod M)$, we have

$$
S^{(j)}\left(\beta, \sigma_{3}(\beta), \ldots, \sigma_{p-2}(\beta)\right) \equiv(-1)^{j} a_{j}(\bmod \mathfrak{q})
$$

and

$$
\begin{aligned}
0 & =\beta^{(p-1) / 2}+\sum_{j=1}^{(p-1) / 2}(-1)^{j} S^{(j)}\left(\beta, \sigma_{3}(\beta), \ldots, \sigma_{p-2}(\beta)\right) \beta^{(p-1) / 2-j} \\
& \equiv \beta^{(p-1) / 2}+\sum_{j=1}^{(p-1) / 2} a_{j} \beta^{(p-1) / 2-j}=(-1)^{(p-1) / 2} F(-\beta)(\bmod \mathfrak{q}) .
\end{aligned}
$$

As in (i), we obtain

$$
\begin{aligned}
0 & \equiv F\left(-\alpha^{(2 p)^{r-1}}-\bar{\alpha}^{(2 p)^{r-1}}\right) \\
& =1+\sum_{k=1}^{(p-1) / 2}\left[\left(-\alpha^{(2 p)^{r-1}}\right)^{k}+\left(-\bar{\alpha}^{(2 p)^{r-1}}\right)^{k}\right](\bmod \mathfrak{Q})
\end{aligned}
$$

and

$$
\sum_{k=0}^{p-1}(-1)^{k-(p-1) / 2} \alpha^{(2 p)^{r-1} k} \equiv 0(\bmod \mathfrak{Q}),
$$

i.e.,

$$
\sum_{k=0}^{p-1}(-1)^{k}\left(\alpha^{(2 p)^{r-1}}\right)^{k} \equiv 0(\bmod \mathfrak{Q}) .
$$

That is, the image of $\alpha^{(2 p)^{r-1}}$ has order $2 p$ in the multiplicative group $(D / \mathfrak{Q})^{*}$, and the image of α has order $(2 p)^{r}$ in $(D / \mathfrak{Q})^{*}$. As in case (i), we get $q^{p-1} \equiv 1\left(\bmod (2 p)^{r}\right)$. Also using the assumption we obtain $q>$ $p^{r}>\sqrt{(2 p)^{r}+1}=\sqrt{M}$, hence M is prime. This completes the proof of sufficiency.

The assumptions of Theorem 3.1 are not difficult to check. First the congruence equation $x^{p-1} \equiv 1\left(\bmod p^{r}\right)$ is easy to solve. Secondly, the existence of π is computable theoretically. One can see more details in DL, Section 4. Actually, in the next section for $M=(2 p)^{2^{n}}+1$ with fixed odd prime $p \leq 19$, we will find a common $\pi \in \mathbb{Z}\left[\zeta_{p}\right]$ for all $n \geq 1$ such that
$\left(\frac{\pi}{M}\right)_{2 p} \neq \pm 1$. Having π independent of n is advantageous in the primality test.

The initial terms of the testing sequences in Theorem 3.1 are

$$
T_{0}^{(j)}=S^{(j)}\left(\alpha_{1}^{(0)}, \ldots, \alpha_{(p-1) / 2}^{(0)}\right), \quad 1 \leq j \leq(p-1) / 2
$$

where $\alpha_{i}^{(0)}=\sigma_{2 i-1}(\alpha+\bar{\alpha})$ for $i=1, \ldots,(p-1) / 2$. Since α is independent of n, the initial terms $T_{0}^{(j)}, 1 \leq j \leq(p-1) / 2$, are the same for all $M=$ $(2 p)^{2^{n}}+1, n \in \mathbb{Z}^{+}$, with fixed odd prime p, at least for $p \leq 19$. The recurrence sequences of [DL] have initial terms

$$
\tilde{T}_{0}^{(j)}=S^{(j)}\left(\tilde{\alpha}_{1}^{(0)}, \ldots, \tilde{\alpha}_{(p-1) / 2}^{(0)}\right), \quad 1 \leq j \leq(p-1) / 2
$$

with $\tilde{\alpha}_{i}^{(0)}=\sigma_{2 i-1}(\tilde{\alpha}+\overline{\tilde{\alpha}})$ for $i=1, \ldots,(p-1) / 2$, where $\tilde{\alpha}=\alpha^{2^{2^{n}}}$, which does depend on n.

Computational complexity. Since $T_{k}^{(j)} \in \mathbb{Q}$, all the computations of the sufficient and necessary conditions in Theorem 3.1 can be done in the residue class ring $\mathbb{Z} / M \mathbb{Z}$ once a specific π is given. There are $(p-1) / 2$ recurrence relations for the testing sequences $\left\{\left.T_{k}^{(j)}\right|_{k \geq 0}\right\}, 1 \leq j \leq(p-1) / 2$, from $T_{k}^{(j)}$ to $T_{k+1}^{(j)}$ with $1 \leq j \leq(p-1) / 2$, which are polynomial relations in $(p-1) / 2$ variables with all of their degrees at most $2 p$. We will give the relevant details later for $p=3,5$. The elementary symmetric polynomials involved in the computation of initial terms can be obtained by pre-computation. Thus the running complexity of our primality test is $\tilde{O}\left(\frac{1}{2}(p-1) 2^{p} \log _{2} M+(r-1) \log _{2}(2 p) \log _{2} M\right)=\tilde{O}\left((p-1) 2^{p} \log _{2} M+\right.$ $\left.\left(\log _{2} M\right)^{2}\right)$ bit operations. This estimate of computational complexity is very crude. But still we can see that our primality test is efficient for fixed p.
4. Primality tests for $p \leq 19$. We know from [WA, Chapter 11] that $\mathbb{Z}\left[\zeta_{p}\right]$ is a PID for $p \leq 19$. In this section we will apply Theorem 3.1 to the cases $3 \leq p \leq 19$ with p prime. Firstly, we present $G_{k}(x), 0 \leq k \leq 9$, in Table 1.

Table 1. $G_{k}(x), 0 \leq k \leq 9$

k	$G_{k}(x)$	k	$G_{k}(x)$
0	1	5	$x^{5}-5 x^{3}+5 x$
1	x	6	$x^{6}-6 x^{4}+9 x^{2}-2$
2	$x^{2}-2$	7	$x^{7}-7 x^{5}+14 x^{3}-7 x$
3	$x^{3}-3 x$	8	$x^{8}-8 x^{6}+20 x^{4}-16 x^{2}+2$
4	$x^{4}-4 x^{2}+2$	9	$x^{9}-9 x^{7}+27 x^{5}-30 x^{3}+9 x$

We denote by $F_{p}(x), 3 \leq p \leq 19$ with p prime, the minimal polynomial of $\zeta_{p}+\zeta_{p}^{-1}$ over \mathbb{Q}. We list these $F_{p}(x)$ in Table 2 .

Table 2. $F_{p}(x), 3 \leq p \leq 19$ and p prime

p	$F_{p}(x)$
3	$x+1$
5	$x^{2}+x-1$
7	$x^{3}+x^{2}-2 x-1$
11	$x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$
13	$x^{6}+x^{5}-5 x^{4}-4 x^{3}+6 x^{2}+3 x-1$
17	$x^{8}+x^{7}-7 x^{6}-6 x^{5}+15 x^{4}+10 x^{3}-10 x^{2}-4 x+1$
19	$x^{9}+x^{8}-8 x^{7}-7 x^{6}+21 x^{5}+15 x^{4}-20 x^{3}-10 x^{2}+5 x+1$

Next we give all π occurring in Theorem 3.1 for odd primes $p \leq 19$ in Table 3. We will find that these π are suitable for the primality tests in the proof of the following propositions. Indeed, the fact that $\mathbb{Z}\left[\zeta_{p}\right]$ is a PID for $p \leq 19$ is crucial during the process of specific computations with the help of Magma BCP].

Table 3. Values of π in $\mathbb{Z}\left[\zeta_{p}\right]$

p	π	p	π
3	$2+3 \zeta_{3}$	13	$1+\zeta_{13}^{2}+\zeta_{13}^{5}$
5	$1-\zeta_{5}-\zeta_{5}^{3}$	17	$1+\zeta_{17}^{2}+\zeta_{17}^{9}$
7	$1-\zeta_{7}+\zeta_{7}^{4}$	19	$-1-\zeta_{19}^{2}+\zeta_{19}^{15}$
11	$1+\zeta_{11}^{7}+\zeta_{11}^{8}$		

The primality tests for $M=(2 p)^{2^{n}}+1$ with odd prime numbers $p \leq 19$ are contained in the following propositions.

Proposition 4.1. Let $M=6^{2^{n}}+1, n \geq 1$ and $r=2^{n}$. Let $\pi=2+3 \zeta_{3} \in$ $\mathbb{Z}\left[\zeta_{3}\right]$ and $\alpha=\pi / \bar{\pi}$. Define $T_{0}=\alpha+\bar{\alpha}$ and $T_{k+1}=T_{k}^{6}-6 T_{k}^{4}+9 T_{k}^{2}-2$ for $k \geq 0$. Then M is prime if and only if $T_{r-1} \equiv-1(\bmod M)$.

Proof. Let $L=\mathbb{Q}\left(\zeta_{3}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=\pi \bar{\pi}=\left(2+3 \zeta_{3}\right)\left(-1-3 \zeta_{3}\right)=7$. Since $M \equiv 2(\bmod 7)$, we get $\left(\frac{M}{\pi}\right)_{6} \equiv M^{(7-1) / 6}=M \equiv 2 \equiv \zeta_{3}^{2}(\bmod \pi)$, and so $\left(\frac{M}{\pi}\right)_{6}=\zeta_{3}^{2}$. Let $T_{k}=\alpha^{6^{k}}+\bar{\alpha}^{6^{k}}, k \geq 0$. We can verify that T_{k} satisfies the recurrence relation in the assumption (or refer to Section 5 for the case $p=5$). We have $F_{3}(x)=x+1$, that is, $a_{1}=-1$. Applying the necessity part of Theorem 3.1 we deduce that if M is prime then $T_{r-1} \equiv-1(\bmod M)$. This completes the proof of necessity.

By the proof of the sufficiency part of Theorem 3.1, if $T_{r-1} \equiv-1$ $(\bmod M)$, then 3^{r} divides $q^{2}-1$ for every prime divisor q of M, i.e.,
3^{r} divides only one of $q+1$ and $q-1$ because of $\operatorname{gcd}(q+1, q-1)=2$. Hence $q \geq 3^{r}-1>\sqrt{6^{r}+1}=\sqrt{M}$, and so M is prime. This completes the proof of sufficiency.

Proposition 4.2. Let $M=10^{2^{n}}+1, n \geq 1$ and $r=2^{n}$. Let $\pi=$ $1-\zeta_{5}-\zeta_{5}^{3} \in \mathbb{Z}\left[\zeta_{5}\right]$ and $\alpha=(\pi / \bar{\pi})^{1+3 \sigma_{-3}}$. Define $T_{k}^{(1)}=\alpha_{1}^{(k)}+\alpha_{2}^{(k)}, T_{k}^{(2)}=$ $\alpha_{1}^{(k)} \cdot \alpha_{2}^{(k)}, k \geq 0$, where $\alpha_{1}^{(k)}=\alpha^{10^{k}}+\bar{\alpha}^{10^{k}}, \alpha_{2}^{(k)}=\sigma_{3}\left(\alpha_{1}^{(k)}\right)$. Suppose that if $x^{4} \equiv 1\left(\bmod 5^{r}\right)$ and $1<x<5^{r}$ then x does not divide M. Then M is prime if and only if $T_{r-1}^{(1)} \equiv 1 \equiv-T_{r-1}^{(2)}(\bmod M)$.

Proof. Let $L=\mathbb{Q}\left(\zeta_{5}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{1+\sigma_{3}}=11$. Since $M \equiv 2$ $(\bmod 11)$, we get $\left(\frac{M}{\pi}\right)_{10} \equiv M^{(11-1) / 10}=M \equiv 2 \equiv-\zeta_{5}(\bmod \pi)$, and so $\left(\frac{M}{\pi}\right)_{10}=-\zeta_{5}$. We notice that here $F_{5}(x)=x^{2}+x-1$, which implies $a_{1}=-1$ and $a_{2}=-1$. Thus all the assumptions of Theorem 3.1 are satisfied, giving the desired necessity and sufficiency.

REmARK. (i) The explicit recurrence formula obtained for $M=6^{2^{n}}+1$ in Proposition 4.1 is similar to the ones of Williams [W1] and of Berrizbeitia and Berry $[\mathrm{BB}]$. The degree of the recurrence formula in $[\mathrm{BB}]$ is lower than ours. However, the seed of their test is $Q_{0}=\alpha^{2^{2^{n}}}+\bar{\alpha}^{2^{2^{n}}}$, which depends on n while ours does not (due to $T_{0}=\alpha+\bar{\alpha}$ in Proposition 4.1). Anyway, these three primality tests for $M=6^{2^{n}}+1$ have the same computational complexity of $\tilde{O}\left(\left(\log _{2} M\right)^{2}\right)$.
(ii) In Proposition 4.2 we did not give the explicit recurrence relations for $M=10^{2^{n}}+1$ since they are a bit long. But we will state them in Section 5 by using the same method as in [BOT]. One can see that our recurrence sequences are similar to the ones in [BOT] and [W1]. All the three primality tests for $M=10^{2^{n}}+1$ have the same computational complexity of $\tilde{O}\left(\left(\log _{2} M\right)^{2}\right)$. For the same reason as in the previous remark the seeds of our test improve those of BOT].
(iii) As to the recurrence sequences in the cases $7 \leq p \leq 19$ with p prime, we will not give their explicit forms in this paper. We still have improved seeds compared to [DL] in all these cases.

Finally, we introduce the remaining five primality tests of the special generalized Fermat numbers $(2 p)^{2^{n}}+1$ for $p \leq 19$.

Proposition 4.3. Let $M=14^{2^{n}}+1$, $n>1$ and $r=2^{n}$. Let $\pi=1-\zeta_{7}$ $+\zeta_{7}^{4} \in \mathbb{Z}\left[\zeta_{7}\right]$ and $\alpha=(\pi / \bar{\pi})^{1+3 \sigma_{5}+5 \sigma_{3}}$. Define $T_{k}^{(1)}=\alpha_{1}^{(k)}+\alpha_{2}^{(k)}+\alpha_{3}^{(k)}, T_{k}^{(2)}=$ $S^{(2)}\left(\alpha_{1}^{(k)}, \alpha_{2}^{(k)}, \alpha_{3}^{(k)}\right), T_{k}^{(3)}=\alpha_{1}^{(k)} \alpha_{2}^{(k)} \alpha_{3}^{(k)}, k \geq 0$, where $\alpha_{1}^{(k)}=\alpha^{14^{k}}+\bar{\alpha}^{14^{k}}$, $\alpha_{2}^{(k)}=\sigma_{3}\left(\alpha_{1}^{(k)}\right), \alpha_{3}^{(k)}=\sigma_{5}\left(\alpha_{1}^{(k)}\right)$. Suppose that if $x^{6} \equiv 1\left(\bmod 7^{r}\right)$ and $1<x<7^{r}$ then x does not divide M. Then M is prime if and only if one of the following holds:
(i) $M \equiv \pm 8(\bmod 29)$ and $T_{r-1}^{(1)} \equiv 1 \equiv-T_{r-1}^{(3)}(\bmod M), T_{r-1}^{(2)} \equiv-2$ $(\bmod M)$;
(ii) $M \equiv-5(\bmod 29)$ and $T_{r-1}^{(1)} \equiv-1 \equiv-T_{r-1}^{(3)}(\bmod M), T_{r-1}^{(2)} \equiv-2$ $(\bmod M)$.
Proof. Let $L=\mathbb{Q}\left(\zeta_{7}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{1+\sigma_{3}+\sigma_{5}}=29$. Since $M \equiv \pm 8$ or $-5(\bmod 29), n>1$, we have $\left(\frac{M}{\pi}\right)_{14} \equiv M^{(29-1) / 14}=M^{2} \equiv 6$ or $-4 \equiv-\zeta_{7}^{3}$ or $\zeta_{7}(\bmod \pi)$, and $\left(\frac{M}{\pi}\right)_{14}=-\zeta_{7}^{3}$ or $\zeta_{7} \neq \pm 1$. Notice that $F_{7}(x)=x^{3}+x^{2}-2 x-1$, which implies $a_{1}=-1, a_{2}=-2, a_{3}=1$. Thus all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.4. Let $M=22^{2^{n}}+1, n \geq 1$ and $r=2^{n}$. Let $\pi=$ $1+\zeta_{11}^{7}+\zeta_{11}^{8} \in \mathbb{Z}\left[\zeta_{11}\right]$ and $\alpha=(\pi / \bar{\pi})^{\tau}$, where $\tau=1+3 \sigma_{-7}+5 \sigma_{9}+7 \sigma_{-3}+9 \sigma_{5}$. Define $T_{k}^{(j)}=S^{(j)}\left(\alpha_{1}^{(k)}, \ldots, \alpha_{5}^{(k)}\right), k \geq 0,1 \leq j \leq 5$, where $\alpha_{1}^{(k)}=\alpha^{22^{k}}+\bar{\alpha}^{22^{k}}$ and $\alpha_{i}^{(k)}=\sigma_{2 i-1}\left(\alpha_{1}^{(k)}\right), 2 \leq i \leq 5$. Suppose that if $x^{10} \equiv 1\left(\bmod 11^{r}\right)$ and $1<x<11^{r}$ then x does not divide M. Then M is prime if and only if $T_{r-1}^{(1)} \equiv-1 \equiv T_{r-1}^{(5)}(\bmod M), T_{r-1}^{(2)} \equiv-4(\bmod M)$ and $T_{r-1}^{(3)} \equiv 3 \equiv T_{r-1}^{(4)}$ $(\bmod M)$.

Proof. Let $L=\mathbb{Q}\left(\zeta_{11}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{\sum_{i=1}^{5} \sigma_{2 i-1}}=23$. Since $M \equiv 2(\bmod 23), n \geq 1$, we get $\left(\frac{M}{\pi}\right)_{22} \equiv M^{(23-1) / 22}=M \equiv 2 \equiv \zeta_{11}^{2}$ $(\bmod \pi)$, and so $\left(\frac{M}{\pi}\right)_{22}=\zeta_{11}^{2}$. Also notice that $F_{11}(x)=x^{5}+x^{4}-4 x^{3}-$ $3 x^{2}+3 x+1$, which implies $a_{1}=-1, a_{2}=-4, a_{3}=3, a_{4}=3, a_{5}=-1$. Thus all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.5. Let $M=26^{2^{n}}+1, n>1$ and $r=2^{n}$. Let $\pi=1+\zeta_{13}^{2}+$ $\zeta_{13}^{5} \in \mathbb{Z}\left[\zeta_{13}\right]$ and $\alpha=(\pi / \bar{\pi})^{\tau}$, where $\tau=1+3 \sigma_{9}+5 \sigma_{-5}+7 \sigma_{-11}+9 \sigma_{3}+11 \sigma_{-7}$. Define $T_{k}^{(j)}=S^{(j)}\left(\alpha_{1}^{(k)}, \ldots, \alpha_{6}^{(k)}\right), k \geq 0,1 \leq j \leq 6$, where $\alpha_{1}^{(k)}=\alpha^{26^{k}}+\bar{\alpha}^{26^{k}}$ and $\alpha_{i}^{(k)}=\sigma_{2 i-1}\left(\alpha_{1}^{(k)}\right), 2 \leq i \leq 6$. Suppose that if $x^{12} \equiv 1\left(\bmod 13^{r}\right)$ and $1<x<13^{r}$ then x does not divide M. Then M is prime if and only if one of the following holds:
(i) $M \equiv 25, \pm 16,-6,11,-24,-5,-10$ or $17(\bmod 53)$ and, modulo M, $T_{r-1}^{(1)} \equiv-1 \equiv T_{r-1}^{(6)}, T_{r-1}^{(2)} \equiv-5, T_{r-1}^{(3)} \equiv 4, T_{r-1}^{(4)} \equiv 6$ and $T_{r-1}^{(5)} \equiv-3$;
(ii) $M \equiv 14,-8$ or $-3(\bmod 53)$ and, modulo $M, T_{r-1}^{(1)} \equiv 1 \equiv-S_{r-1}^{(6)}$, $T_{r-1}^{(2)} \equiv-5, T_{r-1}^{(3)} \equiv-4, T_{r-1}^{(4)} \equiv 6$ and $T_{r-1}^{(5)} \equiv 3$.
Proof. Let $L=\mathbb{Q}\left(\zeta_{13}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{\sum_{i=1}^{6} \sigma_{2 i-1}}=53$. Since $M \equiv 25, \pm 16,-6,11,-24,-5,-10,17,14,-8$ or $-3(\bmod 53), n>1$, we have $\left(\frac{M}{\pi}\right)_{26} \equiv M^{(53-1) / 26}=M^{2} \equiv-11,-9,-17,15,-7,25,-6,24,-16,11,9$ $\equiv \zeta_{13}^{3}, \zeta_{13}^{4}, \zeta_{13}^{5}, \zeta_{13}^{6}, \zeta_{13}^{7}, \zeta_{13}^{8}, \zeta_{13}^{9}, \zeta_{13}^{10},-\zeta_{13}^{2},-\zeta_{13}^{3},-\zeta_{13}^{4}(\bmod \pi)$ respectively, and $\left(\frac{M}{\pi}\right)_{26}=\zeta_{13}^{3}, \zeta_{13}^{4}, \zeta_{13}^{5}, \zeta_{13}^{6}, \zeta_{13}^{7}, \zeta_{13}^{8}, \zeta_{13}^{9}, \zeta_{13}^{10},-\zeta_{13}^{2},-\zeta_{13}^{3},-\zeta_{13}^{4} \neq \pm 1$
respectively. Notice that $F_{13}(x)=x^{6}+x^{5}-5 x^{4}-4 x^{3}+6 x^{2}+3 x-1$, which implies $a_{1}=-1, a_{2}=-5, a_{3}=4, a_{4}=6, a_{5}=-3, a_{6}=-1$. Thus all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

PROPOSITION 4.6. Let $M=34^{2^{n}}+1, n \geq 1$ and $r=2^{n}$. Let $\pi=$ $1+\zeta_{17}^{2}+\zeta_{17}^{9} \in \mathbb{Z}\left[\zeta_{17}\right], \alpha=(\pi / \bar{\pi})^{\tau}$, where $\tau=1+3 \sigma_{-11}+5 \sigma_{7}+7 \sigma_{5}+$ $9 \sigma_{-15}+11 \sigma_{-3}+13 \sigma_{-13}+15 \sigma_{-9}$. Define $T_{k}^{(j)}=S^{(j)}\left(\alpha_{1}^{(k)}, \ldots, \alpha_{8}^{(k)}\right), k \geq 0$, $1 \leq j \leq 8$, where $\alpha_{1}^{(k)}=\alpha^{34^{k}}+\bar{\alpha}^{34^{k}}$ and $\alpha_{i}^{(k)}=\sigma_{2 i-1}\left(\alpha_{1}^{(k)}\right), 2 \leq i \leq 8$. Suppose that if $x^{16} \equiv 1\left(\bmod 17^{r}\right)$ and $1<x<17^{r}$ then x does not divide M. Then M is prime if and only if one of the following holds:
(i) $M \equiv-21$ or $15(\bmod 103)$ and, modulo $M, T_{r-1}^{(1)} \equiv-1 \equiv-T_{r-1}^{(8)}$, $T_{r-1}^{(2)} \equiv-7, T_{r-1}^{(3)} \equiv 6, T_{r-1}^{(4)} \equiv 15, T_{r-1}^{(5)} \equiv-10 \equiv T_{r-1}^{(6)}$ and $T_{r-1}^{(7)} \equiv 4$;
(ii) $M \equiv 35,24,-2,-9,10$ or $-30(\bmod 103)$ and, modulo $M, T_{r-1}^{(1)} \equiv$ $1 \equiv T_{r-1}^{(8)}, T_{r-1}^{(2)} \equiv-7, T_{r-1}^{(3)} \equiv-6, T_{r-1}^{(4)} \equiv 15, T_{r-1}^{(5)} \equiv 10 \equiv-T_{r-1}^{(6)}$ and $T_{r-1}^{(7)} \equiv-4$.
Proof. Let $L=\mathbb{Q}\left(\zeta_{17}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{\sum_{i=1}^{8} \sigma_{2 i-1}}=103$. Since $M \equiv-21,15,35,24,-2,-9,10$ or $-30(\bmod 103), n \geq 1$, we get $\left(\frac{M}{\pi}\right)_{34} \equiv$ $M^{(103-1) / 34}=M^{3} \equiv 9,-24,27,22,-8,-30,-14 \equiv \zeta_{17}^{2}, \zeta_{17}^{7},-\zeta_{17}^{3},-\zeta_{17}^{4}$, $-\zeta_{17}^{6},-\zeta_{17}^{10},-\zeta_{17}^{13}(\bmod \pi)$ respectively. Notice that $(-2)^{3} \equiv(-9)^{3} \equiv-8$ (mod 103), which leads to the combination of -2 and -9 in the second congruence. Thus $\left(\frac{M}{\pi}\right)_{34}=\zeta_{17}^{2}, \zeta_{17}^{7},-\zeta_{17}^{3},-\zeta_{17}^{4},-\zeta_{17}^{6},-\zeta_{17}^{10},-\zeta_{17}^{13} \neq \pm 1$ respectively. Now $F_{17}(x)=x^{8}+x^{7}-7 x^{6}-6 x^{5}+15 x^{4}+10 x^{3}-10 x^{2}-4 x+1$ implies that $a_{1}=-1, a_{2}=-7, a_{3}=6, a_{4}=15, a_{5}=-10, a_{6}=-10$, $a_{7}=4, a_{8}=1$. Hence all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.7. Let $M=38^{2^{n}}+1$, $n>1$ and $r=2^{n}$. Let $\pi=$ $-1-\zeta_{19}^{2}+\zeta_{19}^{15} \in \mathbb{Z}\left[\zeta_{19}\right], \alpha=(\pi / \bar{\pi})^{\tau}$, where $\tau=1+3 \sigma_{13}+5 \sigma_{-15}+7 \sigma_{11}+$ $9 \sigma_{17}+11 \sigma_{7}+13 \sigma_{3}+15 \sigma_{-5}+17 \sigma_{9}$. Define $T_{k}^{(j)}=S^{(j)}\left(\alpha_{1}^{(k)}, \ldots, \alpha_{9}^{(k)}\right), k \geq 0$, $1 \leq j \leq 9$, where $\alpha_{1}^{(k)}=\alpha^{38^{k}}+\bar{\alpha}^{38^{k}}$ and $\alpha_{i}^{(k)}=\sigma_{2 i-1}\left(\alpha_{1}^{(k)}\right), 2 \leq i \leq 9$. Suppose that if $x^{18} \equiv 1\left(\bmod 19^{r}\right)$ and $1<x<19^{r}$ then x does not divide M. Then M is prime if and only if one of the following holds:
(i) $M \equiv-48,-44,15,-4,56,-55,-45,-61,26$ or $49(\bmod 229)$ and, modulo $M, T_{r-1}^{(1)} \equiv-1 \equiv T_{r-1}^{(9)}, T_{r-1}^{(2)} \equiv-8, T_{r-1}^{(3)} \equiv 7, T_{r-1}^{(4)} \equiv 21$, $T_{r-1}^{(5)} \equiv-15, T_{r-1}^{(6)} \equiv-20, T_{r-1}^{(7)} \equiv 10$ and $T_{r-1}^{(8)} \equiv 5$;
(ii) $M \equiv-98,38,92,-69,112,-35,-77$ or $-32(\bmod 229)$ and, modulo $M, T_{r-1}^{(1)} \equiv 1 \equiv T_{r-1}^{(9)}, T_{r-1}^{(2)} \equiv-8, T_{r-1}^{(3)} \equiv-7, T_{r-1}^{(4)} \equiv 21$, $T_{r-1}^{(5)} \equiv 15, T_{r-1}^{(6)} \equiv-20, T_{r-1}^{(7)} \equiv-10$ and $T_{r-1}^{(8)} \equiv 5$.

Proof. Let $L=\mathbb{Q}\left(\zeta_{19}\right)$. Then $\operatorname{Norm}_{L / \mathbb{Q}}(\pi)=(\pi \bar{\pi})^{\sum_{i=1}^{9} \sigma_{2 i-1}}=229$. Since $M \equiv-48,-44,15,-4,56,-55,-45,-61,26,49,-98,38,92,-69,112,-35$, -77 or $-32(\bmod 229), n>1$, we get $\left(\frac{M}{\pi}\right)_{38} \equiv M^{(229-1) / 38}=M^{6} \equiv$ $-4,16,-64,-26,42,-15,60,-68,43,4,-42,15,-60,-44,-53,-17 \equiv \zeta_{19}$, $\zeta_{19}^{2}, \zeta_{19}^{3}, \zeta_{19}^{6}, \zeta_{19}^{8}, \zeta_{19}^{10}, \zeta_{19}^{11}, \zeta_{19}^{16}, \zeta_{19}^{17},-\zeta_{19},-\zeta_{19}^{8},-\zeta_{19}^{10},-\zeta_{19}^{11},-\zeta_{19}^{13},-\zeta_{19}^{14},-\zeta_{19}^{15}$ $(\bmod \pi)$ respectively. Notice that $26^{6} \equiv 49^{6} \equiv 43(\bmod 229)$ and $38^{6} \equiv$ $92^{6} \equiv-42(\bmod 229)$, which leads to the combination of 26 and 49,38 and 92 respectively in the second congruence. So $\left(\frac{M}{\pi}\right)_{38}=\zeta_{19}, \zeta_{19}^{2}, \zeta_{19}^{3}, \zeta_{19}^{6}, \zeta_{19}^{8}$, $\zeta_{19}^{10}, \zeta_{19}^{11}, \zeta_{19}^{16}, \zeta_{19}^{17},-\zeta_{19},-\zeta_{19}^{8},-\zeta_{19}^{10},-\zeta_{19}^{11},-\zeta_{19}^{13},-\zeta_{19}^{14},-\zeta_{19}^{15} \neq \pm 1$ respectively. Here $F_{19}(x)=x^{9}+x^{8}-8 x^{7}-7 x^{6}+21 x^{5}+15 x^{4}-20 x^{3}-10 x^{2}+5 x+1$, that is, $a_{1}=-1, a_{2}=-8, a_{3}=7, a_{4}=21, a_{5}=-15, a_{6}=-20, a_{7}=10$, $a_{8}=5, a_{9}=-1$. Hence all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.
5. Implementation and computational results. In this section we will verify the correctness of the algorithms related to Propositions 4.1 and 4.2. We denote $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1$. First we make some preparations for the case $p=5$. When $k \geq 0$, the recurrence sequences $T_{k+1}^{(j)}, j=1,2$, involved in Proposition 4.2 can be obtained as follows.

By the definition of $\alpha_{1}^{(k)}$ and $\alpha_{2}^{(k)}$, we have

$$
\begin{aligned}
\alpha_{1}^{(k+1)} & =\left(\alpha_{1}^{(k)}\right)^{10}-10\left(\alpha_{1}^{(k)}\right)^{8}+35\left(\alpha_{1}^{(k)}\right)^{6}-50\left(\alpha_{1}^{(k)}\right)^{4}+25\left(\alpha_{1}^{(k)}\right)^{2}-2 \\
\alpha_{2}^{(k+1)} & =\sigma_{3}\left(\alpha_{1}^{(k+1)}\right) \\
& =\left(\alpha_{2}^{(k)}\right)^{10}-10\left(\alpha_{2}^{(k)}\right)^{8}+35\left(\alpha_{2}^{(k)}\right)^{6}-50\left(\alpha_{2}^{(k)}\right)^{4}+25\left(\alpha_{2}^{(k)}\right)^{2}-2
\end{aligned}
$$

From the expressions for $T_{k}^{(1)}$ and $T_{k}^{(2)}$ in Proposition 4.2, after some computations we get

$$
\begin{aligned}
T_{k+1}^{(1)}= & \left(T_{k}^{(1)}\right)^{10}-10\left(T_{k}^{(1)}\right)^{8} T_{k}^{(2)}+35\left(T_{k}^{(1)}\right)^{6}\left(T_{k}^{(2)}\right)^{2}-50\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{3} \\
& +25\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{4}-10\left(T_{k}^{(1)}\right)^{8}+80\left(T_{k}^{(1)}\right)^{6} T_{k}^{(2)}-200\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{2} \\
& +160\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{3}-20\left(T_{k}^{(2)}\right)^{4}+35\left(T_{k}^{(1)}\right)^{6}-210\left(T_{k}^{(1)}\right)^{4} T_{k}^{(2)} \\
& +315\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{2}-70\left(T_{k}^{(2)}\right)^{3}-50\left(T_{k}^{(1)}\right)^{4}+200\left(T_{k}^{(1)}\right)^{2} T_{k}^{(2)} \\
& -100\left(T_{k}^{(2)}\right)^{2}-2\left(T_{k}^{(2)}\right)^{5}+25\left(T_{k}^{(1)}\right)^{2}-50 T_{k}^{(2)}-4
\end{aligned}
$$

and

$$
\begin{aligned}
T_{k+1}^{(2)}= & \left(T_{k}^{(2)}\right)^{10}+20\left(T_{k}^{(2)}\right)^{9}-10\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{8}+170\left(T_{k}^{(2)}\right)^{8} \\
& -140\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{7}+800\left(T_{k}^{(2)}\right)^{7}+35\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{6} \\
& -800\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{6}+2275\left(T_{k}^{(2)}\right)^{6}+300\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& -2400\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{5}+4004\left(T_{k}^{(2)}\right)^{5}-50\left(T_{k}^{(1)}\right)^{6}\left(T_{k}^{(2)}\right)^{4} \\
& +1000\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{4}-4050\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{4}+4290\left(T_{k}^{(2)}\right)^{4} \\
& -200\left(T_{k}^{(1)}\right)^{6}\left(T_{k}^{(2)}\right)^{3}+1600\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{3}-3820\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{3} \\
& +2640\left(T_{k}^{(1)}\right)^{3}+25\left(T_{k}^{(1)}\right)^{8}\left(T_{k}^{(2)}\right)^{2}-320\left(T_{k}^{(1)}\right)^{6}\left(T_{k}^{(2)}\right)^{2} \\
& +1275\left(T_{k}^{(1)}\right)^{4}\left(T_{k}^{(2)}\right)^{2}-1880\left(T_{k}^{(1)}\right)^{2}\left(T_{k}^{(2)}\right)^{2}+825\left(T_{k}^{(2)}\right)^{2} \\
& +20\left(T_{k}^{(1)}\right)^{8} T_{k}^{(2)}-160\left(T_{k}^{(1)}\right)^{6} T_{k}^{(2)}+420\left(T_{k}^{(1)}\right)^{4} T_{k}^{(2)} \\
& -400\left(T_{k}^{(1)}\right)^{2} T_{k}^{(2)}-2\left(T_{k}^{(1)}\right)^{10}+20\left(T_{k}^{(1)}\right)^{8}-70\left(T_{k}^{(1)}\right)^{6} \\
& +100\left(T_{k}^{(1)}\right)^{4}-50\left(T_{k}^{(1)}\right)^{2}+100 T_{k}^{(2)}+4 .
\end{aligned}
$$

With the above two recurrence formulas, we can easily obtain an explicit primality test for H_{n}.

We implemented two algorithms related to the special generalized Fermat numbers G_{n} and H_{n} in Magma BCP respectively. Our program was run on a personal computer with Intel Core $\mathrm{i} 5-34703.20 \mathrm{GHz} \mathrm{CPU}$ and 4 GB memory.

We verified the correctness of our program by comparing with the results in RE] and with some known facts for generalized Fermat numbers WW]. Since G_{n} and H_{n} grow very fast with n, when $n \geq 15$ our personal computer ran out of memory. If we deal with a better and more efficient representation of larger integers, we may test the primality of larger G_{n} or H_{n}. However, this is not the focus of this paper. Finally we verified the numbers G_{n} and H_{n} related to the cases $p=3$ and $p=5$ respectively in the range $1 \leq n<15$ and found no mistakes (see Tables 4 and 5). Note that the assumption on the congruence equation $x^{4} \equiv 1\left(\bmod 5^{r}\right)$ in Proposition 4.2 holds for $H_{n}, 1 \leq n<15$, by applying the corresponding algorithm of DL].

Table 4. Primality of $G_{n}=6^{2^{n}}+1(p=3)$

n	G_{n}	Primality	Time (sec.)
1	37	yes	0.011
2	1297	yes	0.015
3 to 10	-	no	0.921
11	-	no	3.931
12	-	no	23.228
13	-	no	139.293
14	-	no	738.805

Table 5. Primality of $H_{n}=10^{2^{n}}+1(p=5)$

n	H_{n}	Primality	Time (sec.)
1	101	yes	0.015
2 to 10	-	no	7.909
11	-	no	37.004
12	-	no	204.579
13	-	no	1180.226
14	-	no	6576.924

Acknowledgements. This work was supported by the NNSF of China (grant no. 11471314), 973 Project (2011CB302401) and the National Center for Mathematics and Interdisciplinary Sciences, CAS.

References

[AKS] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Ann. of Math. 160 (2004), 781-793.
[BB] P. Berrizbeitia and T. G. Berry, Cubic reciprocity and generalized Lucas-Lehmer tests for primality of $A \cdot 3^{n} \pm 1$, Proc. Amer. Math. Soc. 127 (1999), 1923-1925.
[BBT] P. Berrizbeitia, T. G. Berry and J. Tena, A generalization of Proth's theorem, Acta Arith. 110 (2003), 107-115.
[BOT] P. Berrizbeitia, M. Odreman and J. Tena, Primality test for numbers M with a large power of 5 dividing $M^{4}-1$, Theoret. Computer Sci. 297 (2003), 25-36.
[BCP] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
[DL] Y. Deng and C. Lv, Primality test for numbers of the form $A p^{n}+w_{n}$, J. Discrete Algorithms 33 (2015), 81-92.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Grad. Texts in Math. 84, Springer, New York, 1990.
[LE] D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, J. London Math. Soc. 10 (1935), 162-165.
[LU] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
[RB] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996.
[RE] H. Riesel, Some factors of the numbers $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1$, Math. Comp. 23 (1969), 413-415; Corrigenda, ibid. 24 (1970), 243.
[WA] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997.
[W1] H. C. Williams, A note on the primality of $6^{2^{n}}+1$ and $10^{2^{n}}+1$, Fibonacci Quart. 26 (1988), 296-305.
[W2] H. C. Williams, Édouard Lucas and Primality Testing, Canad. Math. Soc. Ser. Monogr. Adv. Texts 22, Wiley, New York, 1998.
[WW] http://www.prothsearch.net/GFNfacs.html.
Yingpu Deng, Dandan Huang (corresponding author)
Key Laboratory of Mathematics Mechanization, NCMIS
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
100190, Beijing, P.R. China
E-mail: dengyp@amss.ac.cn hdd@amss.ac.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11A51; Secondary 11 Y11.
 Key words and phrases: primality test, generalized Fermat numbers, reciprocity law, computational complexity.

