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Primality test for numbers of the form (2p)2
n
+ 1

by

Yingpu Deng and Dandan Huang (Beijing)

1. Introduction. Primality testing is an important problem in com-
putational number theory. Although it was proved to be a P problem by
Agrawal, Kayal and Saxena [AKS] in 2004, finding more efficient algorithms
for specific families of numbers does make sense. In this paper we are con-
cerned with the numbers of the form a2

n
+ 1, with n ≥ 1, a ≥ 2, called gen-

eralized Fermat numbers by Ribenboim [RB]. Our main result is an efficient
deterministic polynomial time algorithm for generalized Fermat numbers of
the form M = (2p)2

n
+ 1, with p an odd prime.

Let a ≥ 2 be an integer. Prime numbers of the form an ± 1, when a is
fixed and n ≥ 1 varies, have been studied for a long time. For an − 1, it
is easy to see that it suffices to consider the case when a = 2 and n = p
is a prime. Numbers of the form 2p − 1 are called Mersenne numbers. For
Mersenne numbers, Lucas [LU] and Lehmer [LE] gave the famous Lucas–
Lehmer primality test, using the properties of Lucas sequences. Their test
is as follows.

Lucas–Lehmer test. Let Mp = 2p − 1 be a Mersenne number, where
p is an odd prime. Define u0 = 4 and uk = u2k−1 − 2 for k ≥ 1. Then Mp is
a prime if and only if up−2 ≡ 0 (mod Mp).

For an + 1, it is clear that it suffices to consider the case when a is even
and n is a power of 2, which are exactly the generalized Fermat numbers.
When a = 2, the numbers of the form 22

n
+ 1 are called Fermat numbers.

For these, there is also a primality test due to Pépin (see [W2]):

Pépin test. Let Fn = 22
n

+ 1 be the nth Fermat number, with n > 0.
Then Fn is a prime if and only if 3(Fn−1)/2 ≡ −1 (mod Fn).

One can see that Pépin’s test for Fn = 22
n

+ 1 is deterministic and effi-
cient with complexity Õ((log2 Fn)2). There are no deterministic and efficient
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polynomial time algorithms for generalized Fermat numbers M = (2p)2
n

+1,
where p is an odd prime. But there are some results on this subject. Tables
of generalized Fermat prime numbers are available at [WW].

Now we recall some previous results about numbers M = (2p)2
n

+ 1,
where p is an odd prime, studied by Williams, Berrizbeitia, Berry and others.
Williams [W1] obtained efficient primality tests for p = 3, 5 by using Lucas
sequences. Additionally, these numbers are special types of numbers A ·
pn ± 1 with A and p relatively prime. By using the cubic reciprocity law,
Berrizbeitia and Berry [BB] gave an efficient deterministic primality test
for numbers A · 3n ± 1 such that A < 3n and A is coprime to 3, and a
prime q ≡ 1 (mod 3) is given such that A · 3n ± 1 is not a cube modulo q.
Afterwards, by using the quintic reciprocity law, Berrizbeitia, Odreman and
Tena [BOT] presented an efficient deterministic primality test for numbers
A·5n±ωn, where 0 < A < 5n, 0 < ωn < 5n/2, ω4

n ≡ 1 (mod 5n), and a prime
q ≡ 1 (mod 5) is given such that A · 5n ± ωn is not a 5th power modulo q.
Before long, by using properties of the power residue symbol, Berrizbeitia,
Berry and Tena [BBT] extended the results in [BB] and [BOT] to numbers

G = A ·mn ± ωn, where m,n ≥ 2, 0 < A < mn, 0 < ωn < mn/2, ωfn ≡ 1
(mod mn) with f = ordm(G) and π ∈ Z[ζm] is given such that the mth
power residue symbol

(
π
G

)
m

is a primitive mth root of 1.

Recently, Deng and Lv [DL] implemented the primality test related to

[BBT] for numbers H = A · pn + ωn, where 0 < A,ωn < pn and ωp−1n ≡ 1
(mod pn). They give the form of the corresponding sequences and, by using
the Eisenstein reciprocity law, give a primality test for numbers H = A ·
pn + ωn such that π ∈ Z[ζp] is given so that the pth power residue symbol(
π
H

)
p

is a primitive pth root of 1.

By directly applying the results of [DL] (or [BB, BBT, BOT]) to general-
ized Fermat numbers M = (2p)2

n
+ 1, we find that the initial terms of their

recurrence sequences depend on A (i.e., 22
n

here), that is, depend on n. In
this paper, we will give similar recurrence sequences to decide the primality
of generalized Fermat numbers M = (2p)2

n
+ 1, but the initial terms of our

sequences are common for all n ≥ 1 (i.e., independent of n). We mainly use
a certain special 2pth degree reciprocity law, and the original idea is inspired
by [BBT, Proposition 4.1]. What is more, we will give a common π ∈ Z[ζp]
for numbers M = (2p)2

n
+ 1 such that

(
π
M

)
2p
6= ±1 for all n ≥ 1, at least in

the cases p ≤ 19. Note that the π ∈ Z[ζp] found by using the algorithm of
[DL] (or [BB, BBT, BOT]) depends on n.

This paper is organized as follows. In Section 2 we give the definition of
the power residue symbol, and prove a special 2pth power reciprocity law
that will be used in the proof of our main theorem. In Section 3 we state
and prove our main result together with the analysis of the corresponding
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complexity. In Section 4, we give explicit primality tests for M = (2p)2
n

+ 1
with odd prime numbers p ≤ 19. In Section 5 we show the implementation
and computational results for p = 3, 5.

2. Preliminaries. The material of this section may be found in [IR,
Chapter 14].

For a positive integer m, let ζm = e2π
√
−1/m be the complex primitive

mth root of unity, and D = Z[ζm] the ring of integers of the mth cyclotomic
field Q(ζm). Let p be a prime ideal of D lying over a rational prime p with
gcd(p,m) = 1. For every α ∈ D, the mth power residue symbol

(
α
p

)
m

is
defined by:

(1) If α ∈ p, then
(
α
p

)
m

= 0.

(2) If α /∈ p, then
(
α
p

)
m

= ζim with i ∈ Z, where ζim is the unique mth
root of unity in D such that

α(N(p)−1)/m ≡ ζim (mod p),

where N(p) is the absolute norm of the ideal p.

(3) If a ⊂ D is an arbitrary ideal prime to m, and a =
∏

pnii is its
factorization as a product of prime ideals, then(

α

a

)
m

=
∏(

α

pi

)ni
m

.

We set
(
α
D

)
m

= 1.

(4) If β ∈ D and β is prime to m, define
(
α
β

)
m

=
(
α
βD

)
m

.

We will need the following proposition:

Proposition 2.1 (see also [IR, Corollary 2, p. 218]). Suppose A,B ⊂
Z[ζm] are ideals prime to m, and A = (α) is principal with gcd(N(A), N(B))
= 1. Then (

N(B)

α

)
m

=

(
ε(α)

B

)
m

(
α

N(B)

)
m

where ε(α) = ±ζim for some i ∈ Z.

Applying Proposition 2.1, we now obtain a special 2pth power reciprocity
law, which is also a special case of Proposition 4.1 in [BOT].

Proposition 2.2. Let M > 1 be a prime with M ≡ 1 (mod 4p2), where
p is an odd prime. Let π ∈ Z[ζp] be coprime to 2pM . Then(

M

π

)
2p

=

(
π

M

)
2p

.
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Proof. Let P be a prime ideal of Z[ζp] lying over M . Since M ≡ 1
(mod 2p), we have N(P) = M . By Proposition 2.1,(

N(P)

π

)
2p

=

(
ε(π)

P

)
2p

(
π

N(P)

)
2p

,

which implies (
M

π

)
2p

=

(
ε(π)

P

)
2p

(
π

M

)
2p

.

And (
ε(π)

P

)
2p

≡ ε(π)(M−1)/2p ≡ (±ζi2p)(M−1)/2p = 1 (mod P)

because 2p | M−12p . Then
( ε(π)

P

)
2p

= 1, and the proof is complete.

3. The main result. Let D = Z[ζp] be the ring of integers of L = Q(ζp),
where p is an odd prime. Let K = Q(ζp + ζ−1p ) be the maximal real subfield
of L. Clearly [L : Q] = p− 1 and [K : Q] = (p− 1)/2.

First we give a recurrence expression for the minimal polynomial of
ζp + ζ−1p over Q, denoted by F (x). Clearly the degree of F (x) is (p− 1)/2.
We define the polynomials Gn(x) (n ≥ 0) by G0(x) = 1, G1(x) = x, and for
n ≥ 2 recursively by

Gn(x) =

{
G(n−1)/2(x)G(n+1)/2(x)− x if n is odd,

Gn/2(x)2 − 2 if n is even.
(3.1)

We have F (x) =
∑(p−1)/2

k=0 Gk(x). Indeed, Gn(x + x−1) = xn + x−n for all
n ≥ 1, and

F (ζp + ζ−1p ) = 1 +

(p−1)/2∑
k=1

Gk(ζp + ζ−1p ) = 1 +

(p−1)/2∑
k=1

(ζkp + ζ−kp ) = 0.

Suppose

F (x) =

(p−1)/2∑
j=0

(−1)jajx
(p−1)/2−j ;

clearly a0 = 1 and aj ∈ Z for 1 ≤ j ≤ (p−1)/2. Now F (x) is easy to compute
for fixed p. Also F (x) is the minimal polynomial of ζ lp + ζ−lp over Q, where
l 6≡ 0 (mod p).

Next we introduce the elementary symmetric polynomials of (p − 1)/2
indeterminates {x1, . . . , x(p−1)/2}:

S(j)(x1, . . . , x(p−1)/2) =
∑

1≤i1<···<ij≤(p−1)/2

xi1 · · ·xij , 1 ≤ j ≤ (p− 1)/2.
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Actually, F (x) =
∏(p−1)/2
i=1 [x− (ζ2i−1p + ζ1−2ip )], and thus

aj = S(j)(ζp + ζ−1p , ζ3p + ζ−3p , . . . , ζp−2p + ζ2−pp ) for 1 ≤ j ≤ (p− 1)/2.

Let G = Gal(Q(ζp)/Q) ∼= (Z/pZ)∗. For every integer c such that
gcd(c, 2p) = 1 denote by σc the element of G that sends ζp to ζcp. We know
that Gal(Q(ζp)/Q) = {σ±(2i−1) | 1 ≤ i ≤ (p − 1)/2} and Gal(K/Q) =
{σ2i−1|K | 1 ≤ i ≤ (p− 1)/2}.

For τ in the group ring Z[G] and α in L with α 6= 0, we often denote by
ατ the action of τ on α, that is,

ατ :=
∏
σ∈G

σ(α)kσ if τ =
∑
σ∈G

kσσ and kσ ∈ Z.

If τ ∈ G, we will write either ατ or τ(α). We also write σ1 = 1 in Z[G].

Now we give some notation which will be used in the main theorem. Let
π ∈ D with π /∈ R. We denote

α = (π/π̄)γ , where γ =

(p−1)/2∑
i=1

(2i− 1)σ(2i−1)−1 ∈ Z[G],

the bar indicates complex conjugation, and (2i − 1)−1 is the number such
that (2i− 1) · (2i− 1)−1 ≡ 1 (mod 2p) and 1 ≤ (2i− 1)−1 < 2p. Obviously,

αα = 1. We define (p− 1)/2 sequences {T (j)
k |k≥0}, 1 ≤ j ≤ (p− 1)/2, by

T
(j)
k = S(j)(α

(k)
1 , . . . , α

(k)
(p−1)/2),

where α
(k)
i = σ2i−1(α

(2p)k + ᾱ(2p)k), i = 1, . . . , (p− 1)/2.

Note that T
(j)
k ∈ Q. Indeed, β := α(2p)k + ᾱ(2p)k ∈ K. Let C(x) be the

characteristic polynomial of β over Q. Then

C(x) =

(p−1)/2∏
i=1

(x− α(k)
i ) := x(p−1)/2 +

(p−1)/2∑
j=1

cjx
(p−1)/2−j ∈ Q[x]

and T
(j)
k = (−1)jcj ∈ Q. What is more, there are explicit recurrence relations

from T
(j)
k to T

(j)
k+1, 1 ≤ j ≤ (p− 1)/2. We will give the details for the cases

p = 3, 5 in Sections 4 and 5 respectively.

Our main theorem is a primality test for special generalized Fermat
numbers M = (2p)2

n
+ 1 with p an odd prime:

Theorem 3.1. Let T
(j)
k and aj be as above. Let M = (2p)2

n
+ 1 with

n ≥ 1, p be an odd prime and r = 2n. Let π ∈ Z[ζp] be coprime to 2pM
such that π /∈ R and

(
M
π

)
2p
6= ±1. Suppose that if xp−1 ≡ 1 (mod pr) and

1 < x < pr, then x does not divide M . Then M is prime if and only if one
of the following holds:
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(i)
(
M
π

)
2p

= ζ lp for some l ∈ Z with l 6≡ 0 (mod p), and T
(j)
r−1 ≡ aj

(mod M) for all 1 ≤ j ≤ (p− 1)/2;

(ii)
(
M
π

)
2p

= −ζ lp for some l ∈ Z with l 6≡ 0 (mod p), and T
(j)
r−1 ≡ (−1)jaj

(mod M) for all 1 ≤ j ≤ (p− 1)/2.

Proof. We first show necessity. Suppose M is a prime. Since π is prime
to 2pM , applying Proposition 2.2 we get

(
M
π

)
2p

=
(
π
M

)
2p

. Now M ≡ 1

(mod 2p) implies that the ideal MD can be factorized into a product of
p− 1 distinct prime ideals in D. We write

MD = (pp̄)
∑(p−1)/2
i=1 σ2i−1 ,

thus(
M

π

)
2p

=

(
π

M

)
2p

=

(p−1)/2∏
i=1

(
π

(pp̄)σ2i−1

)
2p

=

(p−1)/2∏
i=1

(
(π/π̄)

(2i−1)σ(2i−1)−1

p

)
2p

=

(
(π/π̄)

∑(p−1)/2
k=1 (2i−1)σ(2i−1)−1

p

)
2p

=

(
α

p

)
2p

≡ α(M−1)/2p ≡ α(2p)r−1
(mod p).

Since p is an arbitrary prime ideal lying over M , we have(
M

π

)
2p

≡ α(2p)r−1
(mod M).

Taking the complex conjugate of every term of the last congruence, we get

α
(r−1)
1 = α(2p)r−1

+ ᾱ(2p)r−1 ≡
(
M

π

)
2p

+

(
M

π

)−1
2p

(mod M).

Also acting by the Galois group elements σ2i−1, 1 ≤ i ≤ (p− 1)/2, on both
sides of the last congruence, we obtain

α
(r−1)
i = σ2i−1(α

(2p)r−1
+ ᾱ(2p)r−1

) ≡
(
M

π

)2i−1

2p

+

(
M

π

)1−2i

2p

(mod M)

for all 1 ≤ i ≤ (p− 1)/2. Hence

T
(j)
r−1 = S(j)(α

(r−1)
1 , . . . , α

(r−1)
(p−1)/2)

≡ S(j)

((
M

π

)
2p

+

(
M

π

)−1
2p

, . . . ,

(
M

π

)p−2
2p

+

(
M

π

)2−p

2p

)
(mod M)

for 1 ≤ j ≤ (p− 1)/2.

(i) Suppose
(
M
π

)
2p

= ζ lp for some l with l 6≡ 0 (mod p). Using the

polynomial F (x), as shown before we get aj = S(j)(ζp + ζ−1p , ζ3p + ζ−3p , . . . ,
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ζp−2p + ζ2−pp ) for 1 ≤ j ≤ (p− 1)/2. Hence

T
(j)
r−1 ≡ S

(j)(ζp + ζ−1p , ζ3p + ζ−3p , . . . , ζp−2p + ζ2−pp ) = aj (mod M)

for all j = 1, . . . , (p− 1)/2.
(ii) Suppose

(
M
π

)
2p

= −ζ lp for some l with l 6≡ 0 (mod p). By the prop-

erties of elementary symmetric polynomials, we have

T
(j)
r−1 ≡ S

(j)

((
M

π

)
2p

+

(
M

π

)−1
2p

, . . . ,

(
M

π

)p−2
2p

+

(
M

π

)2−p

2p

)
= S(j)(−ζp − ζ−1p ,−ζ3p − ζ−3p , . . . ,−ζp−2p − ζ2−pp )

= (−1)jS(j)(ζp + ζ−1p , ζ3p + ζ−3p , . . . , ζp−2p + ζ2−pp )

= (−1)jaj (mod M)

for all j = 1, . . . , (p− 1)/2. This completes the proof of necessity.
Next we turn to the proof of sufficiency. Suppose q is an arbitrary

prime divisor of M . Let q be a prime ideal in the ring of integers of K
lying over q, and Q be a prime ideal of D lying over q. We denote β =

α(2p)r−1
+ ᾱ(2p)r−1 ∈ K and T

(j)
r−1 = S(j)(β, σ3(β), . . . , σp−2(β)) for 1 ≤ j ≤

(p− 1)/2.

(i) Suppose T
(j)
r−1 ≡ aj (mod M), that is,

S(j)(β, σ3(β), . . . , σp−2(β)) ≡ aj (mod q).
Then

0 = (β − β)(β − σ3(β)) · · · (β − σp−2(β))

= β(p−1)/2 +

(p−1)/2∑
j=1

(−1)jS(j)(β, σ3(β), . . . , σp−2(β))β(p−1)/2−j

≡ β(p−1)/2 +

(p−1)/2∑
j=1

(−1)jajβ
(p−1)/2−j = F (β) (mod q).

Since F (x+ x−1) =
∑(p−1)/2

k=0 Gk(x+ x−1) =
∑(p−1)/2

k=0 (xk + x−k), we get

0 ≡ F (α(2p)r−1
+ ᾱ(2p)r−1

)

= 1 +

(p−1)/2∑
k=1

[(α(2p)r−1
)k + (ᾱ(2p)r−1

)k] (mod Q).

We multiply both sides of the above congruence by α(2p)r−1·(p−1)/2 =
ᾱ−(2p)

r−1·(p−1)/2 to get

p−1∑
k=0

(α(2p)r−1
)k ≡ 0 (mod Q).
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Thus the image of α(2p)r−1
has order p in the multiplicative group (D/Q)∗,

and the image of α2r−1
has order pr in (D/Q)∗. Since the order of the group

(D/Q)∗ is N(Q) − 1 which divides qp−1 − 1, we have qp−1 ≡ 1 (mod pr).
By the assumption M is divisible by no solutions of the equation xp−1 ≡ 1
(mod pr) between 1 and pr, that is, q > pr >

√
(2p)r + 1 =

√
M , so clearly

M is prime.

(ii) If T
(j)
r−1 ≡ (−1)jaj (mod M), we have

S(j)(β, σ3(β), . . . , σp−2(β)) ≡ (−1)jaj (mod q)

and

0 = β(p−1)/2 +

(p−1)/2∑
j=1

(−1)jS(j)(β, σ3(β), . . . , σp−2(β))β(p−1)/2−j

≡ β(p−1)/2 +

(p−1)/2∑
j=1

ajβ
(p−1)/2−j = (−1)(p−1)/2F (−β) (mod q).

As in (i), we obtain

0 ≡ F (−α(2p)r−1 − ᾱ(2p)r−1
)

= 1 +

(p−1)/2∑
k=1

[(−α(2p)r−1
)k + (−ᾱ(2p)r−1

)k] (mod Q)

and
p−1∑
k=0

(−1)k−(p−1)/2α(2p)r−1k ≡ 0 (mod Q),

i.e.,
p−1∑
k=0

(−1)k(α(2p)r−1
)k ≡ 0 (mod Q).

That is, the image of α(2p)r−1
has order 2p in the multiplicative group

(D/Q)∗, and the image of α has order (2p)r in (D/Q)∗. As in case (i),
we get qp−1 ≡ 1 (mod (2p)r). Also using the assumption we obtain q >
pr >

√
(2p)r + 1 =

√
M , hence M is prime. This completes the proof of

sufficiency.

The assumptions of Theorem 3.1 are not difficult to check. First the
congruence equation xp−1 ≡ 1 (mod pr) is easy to solve. Secondly, the
existence of π is computable theoretically. One can see more details in [DL,
Section 4]. Actually, in the next section for M = (2p)2

n
+ 1 with fixed odd

prime p ≤ 19, we will find a common π ∈ Z[ζp] for all n ≥ 1 such that
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π
M

)
2p
6= ±1. Having π independent of n is advantageous in the primality

test.

The initial terms of the testing sequences in Theorem 3.1 are

T
(j)
0 = S(j)(α

(0)
1 , . . . , α

(0)
(p−1)/2), 1 ≤ j ≤ (p− 1)/2,

where α
(0)
i = σ2i−1(α + ᾱ) for i = 1, . . . , (p − 1)/2. Since α is independent

of n, the initial terms T
(j)
0 , 1 ≤ j ≤ (p − 1)/2, are the same for all M =

(2p)2
n

+ 1, n ∈ Z+, with fixed odd prime p, at least for p ≤ 19. The
recurrence sequences of [DL] have initial terms

T̃
(j)
0 = S(j)(α̃

(0)
1 , . . . , α̃

(0)
(p−1)/2), 1 ≤ j ≤ (p− 1)/2,

with α̃
(0)
i = σ2i−1(α̃ + ¯̃α) for i = 1, . . . , (p − 1)/2, where α̃ = α22

n

, which
does depend on n.

Computational complexity. Since T
(j)
k ∈ Q, all the computations of

the sufficient and necessary conditions in Theorem 3.1 can be done in the
residue class ring Z/MZ once a specific π is given. There are (p − 1)/2 re-

currence relations for the testing sequences {T (j)
k |k≥0}, 1 ≤ j ≤ (p − 1)/2,

from T
(j)
k to T

(j)
k+1 with 1 ≤ j ≤ (p − 1)/2, which are polynomial re-

lations in (p − 1)/2 variables with all of their degrees at most 2p. We
will give the relevant details later for p = 3, 5. The elementary symmet-
ric polynomials involved in the computation of initial terms can be ob-
tained by pre-computation. Thus the running complexity of our primality

test is Õ(12(p−1)2p log2M +(r−1) log2(2p) log2M) = Õ((p−1)2p log2M +

(log2M)2) bit operations. This estimate of computational complexity is very
crude. But still we can see that our primality test is efficient for fixed p.

4. Primality tests for p ≤ 19. We know from [WA, Chapter 11] that
Z[ζp] is a PID for p ≤ 19. In this section we will apply Theorem 3.1 to the
cases 3 ≤ p ≤ 19 with p prime. Firstly, we present Gk(x), 0 ≤ k ≤ 9, in
Table 1.

Table 1. Gk(x), 0 ≤ k ≤ 9

k Gk(x) k Gk(x)

0 1 5 x5 − 5x3 + 5x

1 x 6 x6 − 6x4 + 9x2 − 2

2 x2 − 2 7 x7 − 7x5 + 14x3 − 7x

3 x3 − 3x 8 x8 − 8x6 + 20x4 − 16x2 + 2

4 x4 − 4x2 + 2 9 x9 − 9x7 + 27x5 − 30x3 + 9x
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We denote by Fp(x), 3 ≤ p ≤ 19 with p prime, the minimal polynomial
of ζp + ζ−1p over Q. We list these Fp(x) in Table 2.

Table 2. Fp(x), 3 ≤ p ≤ 19 and p prime

p Fp(x)

3 x+ 1

5 x2 + x− 1

7 x3 + x2 − 2x− 1

11 x5 + x4 − 4x3 − 3x2 + 3x+ 1

13 x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1

17 x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x+ 1

19 x9 + x8 − 8x7 − 7x6 + 21x5 + 15x4 − 20x3 − 10x2 + 5x+ 1

Next we give all π occurring in Theorem 3.1 for odd primes p ≤ 19 in
Table 3. We will find that these π are suitable for the primality tests in the
proof of the following propositions. Indeed, the fact that Z[ζp] is a PID for
p ≤ 19 is crucial during the process of specific computations with the help
of Magma [BCP].

Table 3. Values of π in Z[ζp]

p π p π

3 2 + 3ζ3 13 1 + ζ213 + ζ513

5 1− ζ5 − ζ35 17 1 + ζ217 + ζ917

7 1− ζ7 + ζ47
19 −1− ζ219 + ζ1519

11 1 + ζ711 + ζ811

The primality tests for M = (2p)2
n

+ 1 with odd prime numbers p ≤ 19
are contained in the following propositions.

Proposition 4.1. Let M = 62
n

+1, n ≥ 1 and r = 2n. Let π = 2+3ζ3 ∈
Z[ζ3] and α = π/π̄. Define T0 = α+ ᾱ and Tk+1 = T 6

k − 6T 4
k + 9T 2

k − 2 for
k ≥ 0. Then M is prime if and only if Tr−1 ≡ −1 (mod M).

Proof. Let L = Q(ζ3). Then NormL/Q(π) = ππ̄ = (2+3ζ3)(−1−3ζ3) = 7.

Since M ≡ 2 (mod 7), we get
(
M
π

)
6
≡ M (7−1)/6 = M ≡ 2 ≡ ζ23 (mod π),

and so
(
M
π

)
6

= ζ23 . Let Tk = α6k + ᾱ6k , k ≥ 0. We can verify that Tk satisfies
the recurrence relation in the assumption (or refer to Section 5 for the case
p = 5). We have F3(x) = x+1, that is, a1 = −1. Applying the necessity part
of Theorem 3.1 we deduce that if M is prime then Tr−1 ≡ −1 (mod M).
This completes the proof of necessity.

By the proof of the sufficiency part of Theorem 3.1, if Tr−1 ≡ −1
(mod M), then 3r divides q2 − 1 for every prime divisor q of M , i.e.,
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3r divides only one of q + 1 and q − 1 because of gcd(q + 1, q − 1) = 2.
Hence q ≥ 3r − 1 >

√
6r + 1 =

√
M , and so M is prime. This completes the

proof of sufficiency.

Proposition 4.2. Let M = 102
n

+ 1, n ≥ 1 and r = 2n. Let π =

1− ζ5 − ζ35 ∈ Z[ζ5] and α = (π/π̄)1+3σ−3. Define T
(1)
k = α

(k)
1 + α

(k)
2 , T

(2)
k =

α
(k)
1 · α

(k)
2 , k ≥ 0, where α

(k)
1 = α10k + ᾱ10k , α

(k)
2 = σ3(α

(k)
1 ). Suppose that

if x4 ≡ 1 (mod 5r) and 1 < x < 5r then x does not divide M . Then M is

prime if and only if T
(1)
r−1 ≡ 1 ≡ −T (2)

r−1 (mod M).

Proof. Let L = Q(ζ5). Then NormL/Q(π) = (ππ̄)1+σ3 = 11. Since M ≡ 2

(mod 11), we get
(
M
π

)
10
≡ M (11−1)/10 = M ≡ 2 ≡ −ζ5 (mod π), and so(

M
π

)
10

= −ζ5. We notice that here F5(x) = x2+x−1, which implies a1 = −1
and a2 = −1. Thus all the assumptions of Theorem 3.1 are satisfied, giving
the desired necessity and sufficiency.

Remark. (i) The explicit recurrence formula obtained for M = 62
n

+ 1
in Proposition 4.1 is similar to the ones of Williams [W1] and of Berrizbeitia
and Berry [BB]. The degree of the recurrence formula in [BB] is lower than

ours. However, the seed of their test is Q0 = α22
n

+ ᾱ22
n

, which depends
on n while ours does not (due to T0 = α + ᾱ in Proposition 4.1). Anyway,
these three primality tests for M = 62

n
+ 1 have the same computational

complexity of Õ((log2M)2).

(ii) In Proposition 4.2 we did not give the explicit recurrence relations
for M = 102

n
+ 1 since they are a bit long. But we will state them in

Section 5 by using the same method as in [BOT]. One can see that our
recurrence sequences are similar to the ones in [BOT] and [W1]. All the three
primality tests for M = 102

n
+ 1 have the same computational complexity

of Õ((log2M)2). For the same reason as in the previous remark the seeds of
our test improve those of [BOT].

(iii) As to the recurrence sequences in the cases 7 ≤ p ≤ 19 with p prime,
we will not give their explicit forms in this paper. We still have improved
seeds compared to [DL] in all these cases.

Finally, we introduce the remaining five primality tests of the special
generalized Fermat numbers (2p)2

n
+ 1 for p ≤ 19.

Proposition 4.3. Let M = 142
n

+ 1, n > 1 and r = 2n. Let π = 1− ζ7
+ζ47 ∈ Z[ζ7] and α = (π/π̄)1+3σ5+5σ3. Define T

(1)
k = α

(k)
1 +α

(k)
2 +α

(k)
3 , T

(2)
k =

S(2)(α
(k)
1 , α

(k)
2 , α

(k)
3 ), T

(3)
k = α

(k)
1 α

(k)
2 α

(k)
3 , k ≥ 0, where α

(k)
1 = α14k + ᾱ14k ,

α
(k)
2 = σ3(α

(k)
1 ), α

(k)
3 = σ5(α

(k)
1 ). Suppose that if x6 ≡ 1 (mod 7r) and

1 < x < 7r then x does not divide M . Then M is prime if and only if one
of the following holds:



312 Y. P. Deng and D. D. Huang

(i) M ≡ ±8 (mod 29) and T
(1)
r−1 ≡ 1 ≡ −T (3)

r−1 (mod M), T
(2)
r−1 ≡ −2

(mod M);

(ii) M ≡ −5 (mod 29) and T
(1)
r−1 ≡ −1 ≡ −T (3)

r−1 (mod M), T
(2)
r−1 ≡ −2

(mod M).

Proof. Let L = Q(ζ7). Then NormL/Q(π) = (ππ̄)1+σ3+σ5 = 29. Since

M ≡ ±8 or −5 (mod 29), n > 1, we have
(
M
π

)
14
≡ M (29−1)/14 = M2 ≡ 6

or −4 ≡ −ζ37 or ζ7 (mod π), and
(
M
π

)
14

= −ζ37 or ζ7 6= ±1. Notice that

F7(x) = x3 + x2− 2x− 1, which implies a1 = −1, a2 = −2, a3 = 1. Thus all
the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.4. Let M = 222
n

+ 1, n ≥ 1 and r = 2n. Let π =
1+ζ711+ζ811 ∈ Z[ζ11] and α = (π/π̄)τ , where τ = 1+3σ−7+5σ9+7σ−3+9σ5.

Define T
(j)
k = S(j)(α

(k)
1 , . . . , α

(k)
5 ), k ≥ 0, 1 ≤ j ≤ 5, where α

(k)
1 = α22k+ᾱ22k

and α
(k)
i = σ2i−1(α

(k)
1 ), 2 ≤ i ≤ 5. Suppose that if x10 ≡ 1 (mod 11r) and

1 < x < 11r then x does not divide M . Then M is prime if and only if

T
(1)
r−1 ≡ −1 ≡ T

(5)
r−1 (mod M), T

(2)
r−1 ≡ −4 (mod M) and T

(3)
r−1 ≡ 3 ≡ T

(4)
r−1

(mod M).

Proof. Let L = Q(ζ11). Then NormL/Q(π) = (ππ̄)
∑5
i=1 σ2i−1 = 23. Since

M ≡ 2 (mod 23), n ≥ 1, we get
(
M
π

)
22
≡ M (23−1)/22 = M ≡ 2 ≡ ζ211

(mod π), and so
(
M
π

)
22

= ζ211. Also notice that F11(x) = x5 + x4 − 4x3 −
3x2+3x+1, which implies a1 = −1, a2 = −4, a3 = 3, a4 = 3, a5 = −1. Thus
all the assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.5. Let M = 262
n
+1, n > 1 and r = 2n. Let π = 1+ζ213+

ζ513 ∈ Z[ζ13] and α = (π/π̄)τ , where τ = 1+3σ9+5σ−5+7σ−11+9σ3+11σ−7.

Define T
(j)
k = S(j)(α

(k)
1 , . . . , α

(k)
6 ), k ≥ 0, 1 ≤ j ≤ 6, where α

(k)
1 = α26k+ᾱ26k

and α
(k)
i = σ2i−1(α

(k)
1 ), 2 ≤ i ≤ 6. Suppose that if x12 ≡ 1 (mod 13r) and

1 < x < 13r then x does not divide M . Then M is prime if and only if one
of the following holds:

(i) M ≡ 25,±16,−6, 11,−24,−5,−10 or 17 (mod 53) and, modulo M ,

T
(1)
r−1 ≡ −1 ≡ T (6)

r−1, T
(2)
r−1 ≡ −5, T

(3)
r−1 ≡ 4, T

(4)
r−1 ≡ 6 and T

(5)
r−1 ≡ −3;

(ii) M ≡ 14,−8 or −3 (mod 53) and, modulo M , T
(1)
r−1 ≡ 1 ≡ −S(6)

r−1,

T
(2)
r−1 ≡ −5, T

(3)
r−1 ≡ −4, T

(4)
r−1 ≡ 6 and T

(5)
r−1 ≡ 3.

Proof. Let L = Q(ζ13). Then NormL/Q(π) = (ππ̄)
∑6
i=1 σ2i−1 = 53. Since

M ≡ 25,±16,−6, 11,−24,−5,−10, 17, 14,−8 or −3 (mod 53), n > 1, we
have

(
M
π

)
26
≡M (53−1)/26 =M2 ≡ −11,−9,−17, 15,−7, 25,−6, 24,−16, 11, 9

≡ ζ313, ζ
4
13, ζ

5
13, ζ

6
13, ζ

7
13, ζ

8
13, ζ

9
13, ζ

10
13 ,−ζ213,−ζ313,−ζ413 (mod π) respectively,

and
(
M
π

)
26

= ζ313, ζ
4
13, ζ

5
13, ζ

6
13, ζ

7
13, ζ

8
13, ζ

9
13, ζ

10
13 , −ζ213, −ζ313,−ζ413 6= ±1
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respectively. Notice that F13(x) = x6 +x5− 5x4− 4x3 + 6x2 + 3x− 1, which
implies a1 = −1, a2 = −5, a3 = 4, a4 = 6, a5 = −3, a6 = −1. Thus all the
assumptions of Theorem 3.1 are satisfied, giving the conclusion.

Proposition 4.6. Let M = 342
n

+ 1, n ≥ 1 and r = 2n. Let π =
1 + ζ217 + ζ917 ∈ Z[ζ17], α = (π/π̄)τ , where τ = 1 + 3σ−11 + 5σ7 + 7σ5 +

9σ−15 + 11σ−3 + 13σ−13 + 15σ−9. Define T
(j)
k = S(j)(α

(k)
1 , . . . , α

(k)
8 ), k ≥ 0,

1 ≤ j ≤ 8, where α
(k)
1 = α34k + ᾱ34k and α

(k)
i = σ2i−1(α

(k)
1 ), 2 ≤ i ≤ 8.

Suppose that if x16 ≡ 1 (mod 17r) and 1 < x < 17r then x does not divide M .
Then M is prime if and only if one of the following holds:

(i) M ≡ −21 or 15 (mod 103) and, modulo M , T
(1)
r−1 ≡ −1 ≡ −T (8)

r−1,

T
(2)
r−1 ≡ −7, T

(3)
r−1 ≡ 6, T

(4)
r−1 ≡ 15, T

(5)
r−1 ≡ −10 ≡ T (6)

r−1 and T
(7)
r−1 ≡ 4;

(ii) M ≡ 35, 24,−2,−9, 10 or −30 (mod 103) and, modulo M , T
(1)
r−1 ≡

1 ≡ T
(8)
r−1, T

(2)
r−1 ≡ −7, T

(3)
r−1 ≡ −6, T

(4)
r−1 ≡ 15, T

(5)
r−1 ≡ 10 ≡ −T (6)

r−1
and T

(7)
r−1 ≡ −4.

Proof. Let L = Q(ζ17). Then NormL/Q(π) = (ππ̄)
∑8
i=1 σ2i−1 = 103. Since

M ≡ −21, 15, 35, 24,−2,−9, 10 or −30 (mod 103), n ≥ 1, we get
(
M
π

)
34
≡

M (103−1)/34 = M3 ≡ 9,−24, 27, 22,−8,−30,−14 ≡ ζ217, ζ
7
17,−ζ317,−ζ417,

−ζ617, −ζ1017 , −ζ1317 (mod π) respectively. Notice that (−2)3 ≡ (−9)3 ≡ −8
(mod 103), which leads to the combination of −2 and −9 in the second
congruence. Thus

(
M
π

)
34

= ζ217, ζ
7
17, −ζ317, −ζ417, −ζ617, −ζ1017 , −ζ1317 6= ±1

respectively. Now F17(x) = x8 +x7−7x6−6x5 +15x4 +10x3−10x2−4x+1
implies that a1 = −1, a2 = −7, a3 = 6, a4 = 15, a5 = −10, a6 = −10,
a7 = 4, a8 = 1. Hence all the assumptions of Theorem 3.1 are satisfied,
giving the conclusion.

Proposition 4.7. Let M = 382
n

+ 1, n > 1 and r = 2n. Let π =
−1 − ζ219 + ζ1519 ∈ Z[ζ19], α = (π/π̄)τ , where τ = 1 + 3σ13 + 5σ−15 + 7σ11 +

9σ17 +11σ7 +13σ3 +15σ−5 +17σ9. Define T
(j)
k = S(j)(α

(k)
1 , . . . , α

(k)
9 ), k ≥ 0,

1 ≤ j ≤ 9, where α
(k)
1 = α38k + ᾱ38k and α

(k)
i = σ2i−1(α

(k)
1 ), 2 ≤ i ≤ 9.

Suppose that if x18 ≡ 1 (mod 19r) and 1 < x < 19r then x does not divide M .
Then M is prime if and only if one of the following holds:

(i) M ≡ −48,−44, 15,−4, 56,−55,−45,−61, 26 or 49 (mod 229) and,

modulo M , T
(1)
r−1 ≡ −1 ≡ T

(9)
r−1, T

(2)
r−1 ≡ −8, T

(3)
r−1 ≡ 7, T

(4)
r−1 ≡ 21,

T
(5)
r−1 ≡ −15, T

(6)
r−1 ≡ −20, T

(7)
r−1 ≡ 10 and T

(8)
r−1 ≡ 5;

(ii) M ≡ −98, 38, 92,−69, 112,−35,−77 or −32 (mod 229) and, mod-

ulo M , T
(1)
r−1 ≡ 1 ≡ T

(9)
r−1, T

(2)
r−1 ≡ −8, T

(3)
r−1 ≡ −7, T

(4)
r−1 ≡ 21,

T
(5)
r−1 ≡ 15, T

(6)
r−1 ≡ −20, T

(7)
r−1 ≡ −10 and T

(8)
r−1 ≡ 5.
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Proof. Let L = Q(ζ19). Then NormL/Q(π) = (ππ̄)
∑9
i=1 σ2i−1 = 229. Since

M ≡ −48,−44, 15,−4, 56,−55,−45,−61, 26, 49,−98, 38, 92,−69, 112,−35,
−77 or −32 (mod 229), n > 1, we get

(
M
π

)
38
≡ M (229−1)/38 = M6 ≡

−4, 16,−64,−26, 42,−15, 60,−68, 43, 4, −42, 15,−60,−44,−53,−17 ≡ ζ19,
ζ219, ζ

3
19, ζ

6
19, ζ

8
19, ζ

10
19 , ζ

11
19 , ζ

16
19 , ζ

17
19 , −ζ19, −ζ819,−ζ1019 ,−ζ1119 ,−ζ1319 , −ζ1419 , −ζ1519

(mod π) respectively. Notice that 266 ≡ 496 ≡ 43 (mod 229) and 386 ≡
926 ≡ −42 (mod 229), which leads to the combination of 26 and 49, 38 and
92 respectively in the second congruence. So

(
M
π

)
38

= ζ19, ζ
2
19, ζ

3
19, ζ

6
19, ζ

8
19,

ζ1019 , ζ
11
19 , ζ

16
19 , ζ

17
19 , −ζ19, −ζ819, −ζ1019 , −ζ1119 ,−ζ1319 ,−ζ1419 ,−ζ1519 6= ±1 respec-

tively. Here F19(x) = x9+x8−8x7−7x6+21x5+15x4−20x3−10x2+5x+1,
that is, a1 = −1, a2 = −8, a3 = 7, a4 = 21, a5 = −15, a6 = −20, a7 = 10,
a8 = 5, a9 = −1. Hence all the assumptions of Theorem 3.1 are satisfied,
giving the conclusion.

5. Implementation and computational results. In this section we
will verify the correctness of the algorithms related to Propositions 4.1 and
4.2. We denote Gn = 62

n
+ 1 and Hn = 102

n
+ 1. First we make some

preparations for the case p = 5. When k ≥ 0, the recurrence sequences

T
(j)
k+1, j = 1, 2, involved in Proposition 4.2 can be obtained as follows.

By the definition of α
(k)
1 and α

(k)
2 , we have

α
(k+1)
1 = (α

(k)
1 )10 − 10(α

(k)
1 )8 + 35(α

(k)
1 )6 − 50(α

(k)
1 )4 + 25(α

(k)
1 )2 − 2,

α
(k+1)
2 = σ3(α

(k+1)
1 )

= (α
(k)
2 )10 − 10(α

(k)
2 )8 + 35(α

(k)
2 )6 − 50(α

(k)
2 )4 + 25(α

(k)
2 )2 − 2.

From the expressions for T
(1)
k and T

(2)
k in Proposition 4.2, after some com-

putations we get

T
(1)
k+1 = (T

(1)
k )10 − 10(T

(1)
k )8T

(2)
k + 35(T

(1)
k )6(T

(2)
k )2 − 50(T

(1)
k )4(T

(2)
k )3

+ 25(T
(1)
k )2(T

(2)
k )4 − 10(T

(1)
k )8 + 80(T

(1)
k )6T

(2)
k − 200(T

(1)
k )4(T

(2)
k )2

+ 160(T
(1)
k )2(T

(2)
k )3 − 20(T

(2)
k )4 + 35(T

(1)
k )6 − 210(T

(1)
k )4T

(2)
k

+ 315(T
(1)
k )2(T

(2)
k )2 − 70(T

(2)
k )3 − 50(T

(1)
k )4 + 200(T

(1)
k )2T

(2)
k

− 100(T
(2)
k )2 − 2(T

(2)
k )5 + 25(T

(1)
k )2 − 50T

(2)
k − 4

and

T
(2)
k+1 = (T

(2)
k )10 + 20(T

(2)
k )9 − 10(T

(1)
k )2(T

(2)
k )8 + 170(T

(2)
k )8

− 140(T
(1)
k )2(T

(2)
k )7 + 800(T

(2)
k )7 + 35(T

(1)
k )4(T

(2)
k )6

− 800(T
(1)
k )2(T

(2)
k )6 + 2275(T

(2)
k )6 + 300(T

(1)
k )4(T

(2)
k )5
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− 2400(T
(1)
k )2(T

(2)
k )5 + 4004(T

(2)
k )5 − 50(T

(1)
k )6(T

(2)
k )4

+ 1000(T
(1)
k )4(T

(2)
k )4 − 4050(T

(1)
k )2(T

(2)
k )4 + 4290(T

(2)
k )4

− 200(T
(1)
k )6(T

(2)
k )3 + 1600(T

(1)
k )4(T

(2)
k )3 − 3820(T

(1)
k )2(T

(2)
k )3

+ 2640(T
(1)
k )3 + 25(T

(1)
k )8(T

(2)
k )2 − 320(T

(1)
k )6(T

(2)
k )2

+ 1275(T
(1)
k )4(T

(2)
k )2 − 1880(T

(1)
k )2(T

(2)
k )2 + 825(T

(2)
k )2

+ 20(T
(1)
k )8T

(2)
k − 160(T

(1)
k )6T

(2)
k + 420(T

(1)
k )4T

(2)
k

− 400(T
(1)
k )2T

(2)
k − 2(T

(1)
k )10 + 20(T

(1)
k )8 − 70(T

(1)
k )6

+ 100(T
(1)
k )4 − 50(T

(1)
k )2 + 100T

(2)
k + 4.

With the above two recurrence formulas, we can easily obtain an explicit
primality test for Hn.

We implemented two algorithms related to the special generalized Fermat
numbers Gn and Hn in Magma [BCP] respectively. Our program was run
on a personal computer with Intel Core i5-3470 3.20GHz CPU and 4GB
memory.

We verified the correctness of our program by comparing with the re-
sults in [RE] and with some known facts for generalized Fermat numbers
[WW]. Since Gn and Hn grow very fast with n, when n ≥ 15 our personal
computer ran out of memory. If we deal with a better and more efficient
representation of larger integers, we may test the primality of larger Gn
or Hn. However, this is not the focus of this paper. Finally we verified the
numbers Gn and Hn related to the cases p = 3 and p = 5 respectively in the
range 1 ≤ n < 15 and found no mistakes (see Tables 4 and 5). Note that
the assumption on the congruence equation x4 ≡ 1 (mod 5r) in Proposition
4.2 holds for Hn, 1 ≤ n < 15, by applying the corresponding algorithm
of [DL].

Table 4. Primality of Gn = 62
n

+ 1 (p = 3)

n Gn Primality Time (sec.)

1 37 yes 0.011

2 1297 yes 0.015

3 to 10 - no 0.921

11 - no 3.931

12 - no 23.228

13 - no 139.293

14 - no 738.805
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Table 5. Primality of Hn = 102
n

+ 1 (p = 5)

n Hn Primality Time (sec.)

1 101 yes 0.015

2 to 10 - no 7.909

11 - no 37.004

12 - no 204.579

13 - no 1180.226

14 - no 6576.924
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