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1. Introduction. A binary quadratic form over Z, denoted by Q(x, y),
is an expression of the form

ax2 + bxy + cy2

with ac 6= 0 and a, b, c ∈ Z. For every integer d ≡ 0 or 1 (mod 4), the set

{ax2 + bxy + cy2 | b2 − 4ac = d}

is non-empty. We call such an integer d a discriminant. In this article, we
consider only positive definite binary quadratic forms, in other words ax2 +
bxy + cy2 satisfying a > 0 and with discriminant d < 0.

We say that two binary quadratic forms Q1(x, y) and Q2(x, y) are prop-
erly equivalent if

Q1(x, y) = Q2(αx+ βy, γx+ δy)

for some (
α β

γ δ

)
∈ SL2(Z).

The set of equivalence classes forms a finite abelian group, C(d). We follow
D. Buell [3, p. 193] and call d an idoneal discriminant if C(d) is the trivial
group or a direct sum of cyclic groups of order 2. A discriminant d is fun-
damental if it cannot be written in the form st2 where t > 1 and s is itself
a discriminant.

There are a total of 101 known idoneal discriminants, 65 of which are
fundamental (see Tables 1 and 2). Coincidentally, among these 101 idoneal
discriminants, there are exactly 65 discriminants d (Tables 2 and 4) such that
|d|/4 are integers. These integers are collectively known as Euler’s idoneal
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numbers. We refer the reader to E. Kani’s article [7] for a survey of the main
results on idoneal numbers.

Table 1. Fundamental idoneal discriminants, D ≡ 1 (mod 4)

|C(D)| D

1 −3, −7, −11, −19, −43, −67, −163

2 −15, −35, −51, −91, −115, −123,

−187, −235, −267, −403, −427

4 −195, −435, −483, −555, −595, −627,

−715, −795, −1435

8 −1155, −1995, −3003, −3315

Table 2. Fundamental idoneal discriminants, D ≡ 0 (mod 4)

|C(D)| D

1 −4, −8

2 −20, −24, −40, −52, −88, −148, −232

4 −84, −120, −132, −168, −228, −280,

−312, −340, −372, −408, −520, −532,

−708, −760, −1012

8 −420, −660, −840, −1092, −1320, −1380,

−1428, −1540, −1848

16 −5460

Table 3. Non-fundamental idoneal discriminants, d ≡ 1 (mod 4)

|C(d)| d = t2D

1 −27

2 −75, −99, −147

4 −315

Table 4. Non-fundamental idoneal discriminants, d ≡ 0 (mod 4)

|C(d)| d = t2D

1 −12, −16, −28

2 −32, −36, −48, −60, −64, −72,

−100, −112

4 −96, −160, −180, −192, −240, −288,

−352, −448, −928

8 −480, −672, −960, −1120, −1248, −1632,

−2080, −3040

16 −3360, −5280, −7392
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We define a generalized Lambert series as a series of the form

∞∑
n=1

(µ ∗ ν)(n)qn

where µ and ν are Dirichlet characters, and ∗ is the Dirichlet convolution
given by

(F ∗G)(n) =
∑
`|n

F (`)G(n/`).

In [16], P. C. Toh showed that if d is one of the 65 fundamental idoneal
discriminants, then the theta series∑

m,n∈Z
qam

2+bmn+cn2
,

with b2 − 4ac = d, can be expressed in terms of generalized Lambert series.
In the case where C(d) is trivial, this is well known [9, Theorem 204], and
explicit examples can be found in [12, pp. 121–123]. For example, when
d = −7, we have

(1.1)
∑

m,n∈Z
qm

2+mn+2n2
= 1 + 2

∞∑
k=1

∑
`|k

(
−7

`

)
qk = 1 + 2

∞∑
n=1

(
−7

n

)
qn

1− qn
,

where
(
D
·
)

is the Kronecker symbol modulo |D|.
The purpose of this article is to extend the results of [16] to the 36

non-fundamental idoneal discriminants (Tables 3 and 4). At this point, we
would like to mention that K. S. Williams and his collaborators have done
extensive work on studying the number of representations of n by binary
quadratic forms. For example, one may look at [5, 17, 15] and the refer-
ences therein. A recent work by F. Patane [11] also considers the problem
of extending results for fundamental discriminants to non-fundamental dis-
criminants. Some of the identities we will prove in this article have already
been proved in these works, but we present a different approach. We briefly
illustrate below how this is done. Using elementary series manipulations,
one can show that∑

m,n∈Z
qm

2+mn+2n2
=
∑

m,n∈Z
qm

2+7n2
+
∑

m,n∈Z
q(m+1/2)2+7(n+1/2)2(1.2)

=
∑

m,n∈Z
qm

2+7n2
+ 4

∑
m,n∈Z

m≡1 (mod 4)

q2(m
2+mn+2n2).

Note that the second theta series above is essentially identical to that of
(1.1) except for the congruence condition on m. In Section 2, we will prove
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the following analogue of (1.1):

(1.3)
∑

m,n∈Z
m≡1 (mod 4)

qm
2+mn+2n2

=
∞∑
n=1

(
−28

n

)
qn

1− qn
.

Combining (1.1)–(1.3) yields the identity associated with the non-fund-
amental discriminant d = −28:

(1.4)
∑

m,n∈Z
qm

2+7n2
= 1 + 2

∞∑
n=1

(
−7

n

)
qn

1− qn
− 4

∞∑
n=1

(
−28

n

)
q2n

1− q2n
.

Obtaining an analogous Lambert series representation of∑
m,n∈Z

m≡m1 (mod t)
n≡n1 (mod t)

qam
2+bmn+cn2

from the representation of ∑
m,n∈Z

qam
2+bmn+cn2

turns out to be a key ingredient in deriving identities associated with non-
fundamental discriminants.

In Section 2, detailed proofs of (1.4) and other similar identities asso-
ciated with d = −12 and d = −60 will be given. The discriminants −28,
−12 and −60 are the only idoneal discriminants of the form 4D where D
is an odd fundamental discriminant. There are 16 discriminants of the form
4D where D is an even fundamental idoneal discriminant. These will be
discussed in Section 3. In Section 4, we study the nine discriminants of the
form p2D for some odd prime p. The remaining eight discriminants will be
discussed in Section 5.

In the rest of this article, we will use D to denote fundamental idoneal
discriminants, and d or t2D to denote non-fundamental discriminants.

2. Discriminants of the form 4D where D is odd. There are only
three known idoneal discriminants of the form d = 4D where D is an odd
fundamental idoneal discriminant. These are d = −12,−28 and −60. In
these cases, |C(4D)| = |C(D)|. The main results of this section are the
following four identities.

Theorem 2.1. We have∑
m,n∈Z

qm
2+3n2

= 1 + 2

∞∑
n=1

(
−3

n

)
qn

1− qn
+ 4

∞∑
n=1

(
−3

n

)
q4n

1− q4n
,(2.1a)
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∑
m,n∈Z

qm
2+7n2

= 1 + 2

∞∑
n=1

(
−7

n

)
qn

1− qn
− 4

∞∑
n=1

(
−28

n

)
q2n

1− q2n
,(2.1b)

∑
m,n∈Z

qm
2+15n2

+
∑

m,n∈Z
q3m

2+5n2
(2.1c)

= 2 + 2

∞∑
n=1

(
−15

n

)
qn

1− qn
− 4

∞∑
n=1

(
−60

n

)
q2n

1− q2n
,∑

m,n∈Z
qm

2+15n2 −
∑

m,n∈Z
q3m

2+5n2
(2.1d)

= 2
∞∑

k,n=1

(
−3

k

)(
5

n

)
qkn + 4

∞∑
k,n=1

(
−3

k

)(
20

n

)
q2kn.

For ease of comparison, we state the identities for discriminants −3, −7
and −15 (see [16, p. 232]):∑

m,n∈Z
qm

2+mn+n2
= 1 + 6

∞∑
n=1

(
−3

n

)
qn

1− qn
,(2.2a)

∑
m,n∈Z

qm
2+mn+2n2

= 1 + 2
∞∑
n=1

(
−7

n

)
qn

1− qn
,(2.2b)

∑
m,n∈Z

qm
2+mn+4n2

+
∑

m,n∈Z
q2m

2+mn+2n2
= 2 + 2

∞∑
n=1

(
−15

n

)
qn

1− qn
,(2.2c)

∑
m,n∈Z

qm
2+mn+4n2 −

∑
m,n∈Z

q2m
2+mn+2n2

= 2
∞∑

k,n=1

(
−3

k

)(
5

n

)
qkn.(2.2d)

As mentioned in Section 1, the key to proving Theorem 2.1 lies in the
following lemma.

Lemma 2.2. We have∑
m,n∈Z

m≡1 (mod 4)

qm
2+mn+n2

= 2
∞∑
n=1

(
−12

n

)
qn

1− q2n
,(2.3a)

∑
m,n∈Z

m≡1 (mod 4)

qm
2+mn+2n2

=
∞∑
n=1

(
−28

n

)
qn

1− qn
,(2.3b)

∑
m,n∈Z

m≡1 (mod 4)

qm
2+mn+4n2

+
∑

m,n∈Z
m≡1 (mod 4)

q2m
2+mn+2n2

=
∞∑
n=1

(
−60

n

)
qn

1− qn
,(2.3c)
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m,n∈Z

m≡1 (mod 4)

qm
2+mn+4n2 −

∑
m,n∈Z

m≡1 (mod 4)

q2m
2+mn+2n2

(2.3d)

=

∞∑
k,n=1

(
−3

k

)(
20

n

)
qkn.

Before we proceed with the proof of Lemma 2.2, we note that identities
(2.3x) and (2.2x) where x = a, b, c, d are very similar. We emphasize that by
inserting the condition “m ≡ 1 (mod 4)” on the left hand side of (2.2x) and
multiplying 4 into the numerator of the Kronecker symbol (or one of the
Kronecker symbols in the case of (2.3d)) on the right hand side of (2.2x),
we obtain expressions that appear in (2.3x). Thus, it is easy to record the
identities (2.3x) if we have the knowledge of (2.2x). It is also this observation
that gives us a hint as to the type of generalized Lambert series we could
use to represent series associated with binary quadratic forms with non-
fundamental discriminants.

Proof. For the proof of (2.3a), we note that 2O3 is inert in

O3 = Z[(1 +
√
−3)/2].

The series on the left hand side of (2.3a) is essentially

(2.4)
∑
a⊂O3
(2,a)=1

qN(a).

For if

a =

(
m+ n

1 +
√
−3

2

)
and (2, a) = 1,

then at least one of m or n must be odd. Now using the transformation
(m,n) 7→ (−m,m+ n) we see that∑

m,n∈Z
m odd,n odd

qm
2+mn+n2

=
∑

m,n∈Z
m odd,n even

qm
2+mn+n2

=
1

2

∑
m,n∈Z
m odd

qm
2+mn+n2

=
∑

m,n∈Z
m≡1 (mod 4)

qm
2+mn+n2

.

The corresponding Dirichlet series of (2.4) has Euler product∏
p

p6=2O3

(
1− 1

N(p)s

)−1
.
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Note that this last product can be written as(
1− 1

3s

)−1 ∏
p is inert

p 6=2

(
1− 1

p2s

)−1 ∏
p splits

(
1− 1

ps

)−2

=

(
1− 1

2s

)
ζ(s)L

((
−12

·

)
, s

)
.

The inverse Mellin transform of the above Dirichlet series is a constant
multiple of the right hand side of (2.3a). The absence of the prime 2 in the
product is indicated by the Kronecker symbol

(−12
·
)
.

The proof of (2.3b) is essentially the same as that of (2.3a) except that in
this case, 2O7 splits completely, where O7 = Z[(1+

√
−7)/2]. Let 2O7 = ss′.

The left hand side of (2.3b) is then a constant multiple of∑
a⊂O7
(s,a)=1

qN(a).

Now, the corresponding Dirichlet series is(
1− 1

2s

)−1(
1− 1

7s

)−1 ∏
p is inert

(
1− 1

p2s

)−1 ∏
p splits
p 6=2

(
1− 1

ps

)−2

= ζ(s)L

((
−28

·

)
, s

)
.

The inverse Mellin transform of the above is a constant multiple of the
right hand side of (2.3b). Note that identities (2.3a) and (2.3b) differ in
the denominator of the Lambert series and this is due to the extra factor
(1− 1/2s), which results in

∞∑
n=1

(
−12

n

)
qn

1− qn
−
∞∑
n=1

(
−12

n

)
q2n

1− q2n
=

∞∑
n=1

(
−12

n

)
qn

1− q2n
.

The proof of (2.3c) and (2.3d) is the same as that of (2.3b), since the
prime ideal 2O15 splits completely. The computations are similar to those
in [16] except that the Euler product is short of one copy of (1 − 1/2s)−1,
and this results in the Dirichlet series

L

((
−d1
·

)
, s

)
L

((
−4d2
·

)
, s

)
instead of

L

((
−d1
·

)
, s

)
L

((
−d2
·

)
, s

)
.
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We establish another three lemmas that are necessary for the proof of
Theorem 2.1.

Lemma 2.3. If ` = (|D|+ 1)/4, then∑
m,n∈Z

qm
2+mn+`n2

=
∑

m,n∈Z
qm

2+|D|n2
+
∑

m,n∈Z
q(m+1/2)2+|D|(n+1/2)2 .

Proof. Summing over even and odd values of n, we get∑
m,n∈Z

qm
2+mn+`n2

=
∑

m,k∈Z
qm

2+2mk+4`k2 +
∑

m,k∈Z
qm

2+m+2mk+`(4k2+4k+1)

=
∑

m,k∈Z
q(m+k)2+|D|k2 +

∑
m,k∈Z

q(m+k+1/2)2+|D|(k+1/2)2 .

It remains to use the transformation (m+ k, k) 7→ (m,n).

Lemma 2.4. We have∑
m,n∈Z

q2m
2+mn+2n2

=
∑

m,n∈Z
q5m

2+3n2
+
∑

m,n∈Z
q5(m+1/2)2+3(n+1/2)2 .

Proof. We sum the series on the left of the identity over even and odd
values of both m and n to get∑
j,k∈Z

q8j
2+8k2+4jk+

∑
j,k∈Z

q8j
2+10j+8k2+10k+4jk+5+2

∑
j,k∈Z

q8j
2+8j+8k2+2k+4jk+2

=
∑
j,k∈Z

q5(j+k)2+3(j−k)2 +
∑
j,k∈Z

q5(j+k+1)2+3(j−k)2

+
∑
j,k∈Z

q5(j+k)2+5(j+k)+3(j−k)2+3(j−k)+2

+
∑
k,j∈Z

q5(k+j−1)2+5(k+j−1)+3(k−j)2+3(k−j)+2.

We then apply ∑
m,n∈Z

Cm,n =
∑
j,k∈Z

Cj+k,j−k +
∑
j,k∈Z

Cj+k+1,j−k

to establish the lemma.

Lemma 2.5. We have
∞∑
n=1

(
−3

n

)
qn

1− qn
=
∞∑
n=1

(
−12

n

)
qn

1− q2n
+
∞∑
n=1

(
−3

n

)
q4n

1− q4n
.
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Proof. We sum over n modulo 4 to get

∞∑
n=1

(
−3

n

)
qn

1− qn

=
∞∑
n=1
n odd

(
−3

n

)
qn

1− qn
+

∞∑
n=1
n odd

(
−3

2n

)
q2n

1− q2n
+
∞∑
n=1

(
−3

4n

)
q4n

1− q4n

=
∞∑
n=1

(
−12

n

)
qn

1− qn
−

∞∑
n=1
n odd

(
−3

n

)
q2n

1− q2n
+
∞∑
n=1

(
−3

n

)
q4n

1− q4n

=
∞∑
n=1

(
−12

n

)
qn + q2n

1− q2n
−
∞∑
n=1

(
−12

n

)
q2n

1− q2n
+
∞∑
n=1

(
−3

n

)
q4n

1− q4n
.

Proof of Theorem 2.1. Lemmas 2.3 and 2.4 show that the theta series in
each identity of (2.2) can be decomposed into the theta series in (2.1) plus
another theta series of the form∑

m,n∈Z
qa(m+1/2)2+b(n+1/2)2 .

We shall proceed to show that these latter theta series have Lambert series
representations via Lemma 2.2.

Summing over odd and even n, we obtain∑
n∈Z

qn(n+1) = 2
∑
n∈Z

q4n
2+2n.

So∑
m,n∈Z

q(m+1/2)2+7(n+1/2)2 = 4
∑

m,n∈Z
q4m

2+2m+28n2+14n+2

= 4
∑
j,k∈Z

q4(j+k)2+2(j+k)+28k2+14k+2 = 4
∑
j,k∈Z

q4j
2+8jk+2j+32k2+16k+2

= 4
∑
j,k∈Z

q2(2j
2+j(4k+1)+(4k+1)2) = 4

∞∑
n=1

(
−28

n

)
q2n

1− q2n
.

This completes the proof of (2.1b). Similarly, we have∑
m,n∈Z

q(m+1/2)2+15(n+1/2)2 = 4
∑
j,k∈Z

q2(2j
2+j(4k+1)+2(4k+1)2),

∑
m,n∈Z

q3(m+1/2)2+5(n+1/2)2 = 4
∑
j,k∈Z

q2(4j
2+j(4k+1)+(4k+1)2)

which establishes (2.1c) and (2.1d).
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Finally, we can also show that∑
m,n∈Z

q(m+1/2)2+3(n+1/2)2 = 2
∑
j,k∈Z

qj
2+j(4k+1)+(4k+1)2

= 4

∞∑
n=1

(
−12

n

)
qn

1− q2n
.

This means that∑
m,n∈Z

qm
2+3n2

= 1 + 6
∞∑
n=1

(
−3

n

)
qn

1− qn
− 4

∞∑
n=1

(
−12

n

)
qn

1− q2n

= 1 + 2

∞∑
n=1

(
−3

n

)
qn

1− qn
+ 4

∞∑
n=1

(
−3

n

)
q4n

1− q4n
,

where we have used Lemma 2.5.

We end this section with some remarks. Identities (2.1a) to (2.1c) were
previously studied by S. Ramanujan and proved by B. C. Berndt [2, Chap-
ter 17, Entry 8(iv), p. 114, Chapter 19, Entry 17(ii), p. 302 and Chapter 20,
Entry 10(vi), p. 379]. K. S. Williams [17] has also provided alternative proofs
of (2.1a) to (2.1c). The pair of identities (2.1c) and (2.1d) were studied in-
dependently by A. Berkovich and H. Yesilyurt [1] and S. Cooper [4]. Our
approach appears to be new.

3. Discriminants of the form 4D where D is even. There are 16
known idoneal discriminants (Table 5) of the form d = 4D where D is
an even idoneal fundamental discriminant. With the exception of d = −16
where |C(−16)| = |C(−4)| = 1, the remaining cases all satisfy |C(4D)| =
2|C(D)|. Thus, in addition to considering ideals relatively prime to 2OK ,
we require another operation, namely replacing q by

√
−1 q, to obtain the

full set of identities. We shall use the following theorem to illustrate this
computation for discriminants d = −32p, p = 3, 5, 11 or 29.

Table 5. Non-fundamental idoneal discriminants, d = 4D,
where D is even, fundamental and idoneal

|C(d)| Theorem d

1 3.2 −16

2 3.3 −32

4 3.1 −96, −160, −352, −928

8 3.4 −480, −672,−1248, −1632

8 3.5 −1120, −2080, −3040

16 3.6 −3360, −5280, −7392
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Theorem 3.1. Let p = 3, 5, 11 or 29, and set ε =
(−1

p

)
. Define

S1 =
∑

m,n∈Z
qm

2+8pn2
, S2 =

∑
m,n∈Z

q8m
2+pn2

,

S3 =
∑

m,n∈Z
q(p+2)m2+2(p−2)mn+(p+2)n2

,

S4 =
∑

m,n∈Z
q(2p+1)m2+2(2p−1)mn+(2p+1)n2

.

Then

S1 + S2 + S3 + S4 = 4 + 2

∞∑
k,n=1

(
4

k

)(
−8p

n

)
qkn + 4

∞∑
k,n=1

(
−8p

n

)
q4kn,

S1 − S2 − S3 + S4 = 2
∞∑

k,n=1

(
4pε

k

)(
−8ε

n

)
qkn + 4

∞∑
k,n=1

(
pε

k

)(
−8ε

n

)
q4kn,

S1 + εS2 − εS3 − S4 = 2

∞∑
k,n=1

(
−4

k

)(
8p

n

)
qkn,

S1 − εS2 + εS3 − S4 = 2

∞∑
k,n=1

(
−4pε

k

)(
8ε

n

)
qkn.

We remark that it is possible to isolate each of Si and write it as a sum
of Lambert series.

Proof of Theorem 3.1. For D = −8p, p = 3, 5, 11 or 29, we have |C(D)|
= 2 and it is known [16, p. 232] that∑

m,n∈Z
qm

2+2pn2
+
∑

m,n∈Z
qpm

2+2n2
= 2 + 2

∞∑
k,n=1

(
−8p

n

)
qkn,(3.1a)

∑
m,n∈Z

qm
2+2pn2 −

∑
m,n∈Z

qpm
2+2n2

= 2
∞∑

k,n=1

(
pε

k

)(
−8ε

n

)
qkn.(3.1b)

In these cases, the ideal 2OK is ramified, and if we sum over all ideals
relatively prime to 2OK , we obtain∑

m,n∈Z
m≡1 (mod 4)

qm
2+2pn2

+
∑

m,n∈Z
m≡1 (mod 4)

qpm
2+2n2

=
∞∑

k,n=1

(
4

k

)(
−8p

n

)
qkn,(3.2a)

∑
m,n∈Z

m≡1 (mod 4)

qm
2+2pn2 −

∑
m,n∈Z

m≡1 (mod 4)

qpm
2+2n2

=
∞∑

k,n=1

(
4pε

k

)(
−8ε

n

)
qkn.(3.2b)



342 H. H. Chan and P. C. Toh

The moduli of the characters in the above Lambert series both have a factor
of 4 because the corresponding Dirichlet series are characterized by the
absence of the prime 2.

Comparing (3.1a) and (3.2a), we can see that the first two identities in
the theorem are equivalent to

2
∑

m,n∈Z
m≡1 (mod 4)

qm
2+2pn2

+ 2
∑

m,n∈Z
q4(m

2+2pn2) = S1 + S4,(3.3a)

2
∑

m,n∈Z
m≡1 (mod 4)

qpm
2+2n2

+ 2
∑

m,n∈Z
q4(pm

2+2n2) = S2 + S3.(3.3b)

Since the proofs are virtually identical, we will only establish (3.3a). The
left hand side equals∑
m,n∈Z
m odd

qm
2+2pn2

+ 2
∑

m,n∈Z
m,n even

qm
2+2pn2

=
∑

m,n∈Z
m odd
n even

qm
2+2pn2

+
∑

m,n∈Z
m even
n even

qm
2+2pn2

+
∑

m,n∈Z
m odd
n odd

qm
2+2pn2

+
∑

m,n∈Z
m even
n even

qm
2+2pn2

=
∑

m,n∈Z
n even

qm
2+2pn2

+
∑
a,b∈Z

q(a−b)
2+2p(a+b)2 = S1 + S4.

Note that the identity ∑
m,n∈Z

m≡n (mod 2)

Cm,n =
∑
j,k∈Z

Cj−k,j+k

was used in the penultimate equality.

For the third and fourth identities of Theorem 3.1, we observe that since
we are only summing over odd values of k and n on the right of (3.2a), if
we replace q by iq (where i =

√
−1), we get

i
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqm
2+2pn2

+ ip
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqpm
2+2n2

=
∞∑

k,n=0

(
4

2k + 1

)(
−8p

2n+ 1

)
(iq)4kn+2k+2n+1

= i

∞∑
k,n=0

(−1)k+n

(
4

2k + 1

)(
−8p

2n+ 1

)
q4kn+2k+2n+1
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= i

∞∑
k,n=0

(
−4

2k + 1

)(
8p

2n+ 1

)
q4kn+2k+2n+1.

We summarize the above calculation as
∞∑

k,n=1

(
−4

k

)(
8p

n

)
qkn(3.4a)

=
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqm
2+2pn2

+ ε
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqpm
2+2n2

,

∞∑
k,n=1

(
−4pε

k

)(
8ε

n

)
qkn(3.4b)

=
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqm
2+2pn2 − ε

∑
m,n∈Z

m≡1 (mod 4)

(−1)nqpm
2+2n2

.

It remains to use similar manipulations to show that

2
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqm
2+2pn2

= S1 − S4,

2
∑

m,n∈Z
m≡1 (mod 4)

(−1)nqpm
2+2n2

= S2 − S3.

There is a more succinct way to represent Theorem 3.1. We first define

χA(x) =

{
1 if x = A,

0 otherwise.

Now let p take on one of the values 3, 5, 11 or 29. Set D = −8p and ε =
(−1

p

)
.

We further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - D. For example, when
p = 3, we can pick m2 = 11, m3 = 5 and m4 = 7. Then for dp = D or
dp = −8ε we have

4∑
j=1

(
dp
mj

)
Sj = 4χD(dp) + 2

∞∑
k,n=1

(
4D/dp
k

)(
dp
n

)
qkn(3.5a)

+ 4
∞∑

k,n=1

(
D/dp
k

)(
dp
n

)
q4kn,

4∑
j=1

(
−dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4D/dp

k

)(
−dp
n

)
qkn.(3.5b)
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The rest of the results in this section can all be proved in a similar
manner, so we just record them without proofs.

Theorem 3.2. Let D = −4. Then∑
m,n∈Z

qm
2+4n2

= 1 + 2

∞∑
k,n=1

(
4

k

)(
D

n

)
qkn + 4

∞∑
k,n=1

(
D

n

)
q4kn.

Theorem 3.3. Let D = −8 and define

S1 =
∑

m,n∈Z
qm

2+8n2
and S2 =

∑
m,n∈Z

q3m
2+2mn+3n2

.

Then

S1 + S2 = 2 + 2

∞∑
k,n=1

(
4

k

)(
D

n

)
qkn + 4

∞∑
k,n=1

(
D

n

)
q4kn,

S1 − S2 = 2
∞∑

k,n=1

(
−4

k

)(
−D
n

)
qkn.

Theorem 3.4. Let p = 5, 7, 13 or 17, D = −24p and set ε =
(−1

p

)
.

Define

S1 =
∑

m,n∈Z
qm

2+24pn2
, S2 =

∑
m,n∈Z

q3m
2+8pn2

, S3 =
∑

m,n∈Z
qpm

2+24n2
,

S4 =
∑

m,n∈Z
q8m

2+3pn2
, S5 =

∑
m,n∈Z

q(6p+1)m2+2(6p−1)mn+(6p+1)n2
,

S6 =
∑

m,n∈Z
q(3p+2)m2+2(3p−2)mn+(3p+2)n2

,

S7 =
∑

m,n∈Z
q(2p+3)m2+2(2p−3)mn+(2p+3)n2

,

S8 =
∑

m,n∈Z
q(p+6)m2+2(p−6)mn+(p+6)n2

.

For each p, define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - D. Then for dp = D, 8ε,
8p,−24ε, we have

8∑
j=1

(
dp
mj

)
Sj = 8χD(dp) + 2

∞∑
k,n=1

(
4D/dp
k

)(
dp
n

)
qkn(3.6a)

+ 4
∞∑

k,n=1

(
D/dp
k

)(
dp
n

)
q4kn,
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8∑
j=1

(
−dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4D/dp

k

)(
−dp
n

)
qkn.(3.6b)

Theorem 3.5. Let p = 7, 13 or 19, D = −40p, and set ε =
(−1

p

)
. Define

S1 =
∑

m,n∈Z
qm

2+40pn2
, S2 =

∑
m,n∈Z

q5m
2+8pn2

, S3 =
∑

m,n∈Z
qpm

2+40n2
,

S4 =
∑

m,n∈Z
q8m

2+5pn2
, S5 =

∑
m,n∈Z

q(10p+1)m2+2(10p−1)mn+(10p+1)n2
,

S6 =
∑

m,n∈Z
q(5p+2)m2+2(5p−2)mn+(5p+2)n2

,

S7 =
∑

m,n∈Z
q(2p+5)m2+2(2p−5)mn+(2p+5)n2

,

S8 =
∑

m,n∈Z
q(p+10)m2+2(p−10)mn+(p+10)n2

.

For each p, define m1 = 1 and let mj be a prime that is represented by
the quadratic form associated with Sj such that mj - D. Then for dp =
D,−8ε,−8p,−40ε, we have

8∑
j=1

(
dp
mj

)
Sj = 8χD(dp) + 2

∞∑
k,n=1

(
4D/dp
k

)(
dp
n

)
qkn(3.7a)

+ 4

∞∑
k,n=1

(
D/dp
k

)(
dp
n

)
q4kn,

8∑
j=1

(
−dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4D/dp

k

)(
−dp
n

)
qkn.(3.7b)

Theorem 3.6. Let (p, `) = (5, 7), (5, 11) or (7, 11), D = −24p`, and set
ε =

(−1
p

)
. Define

S1 =
∑

m,n∈Z
qm

2+24p`n2
, S2 =

∑
m,n∈Z

q3m
2+8p`n2

, S3 =
∑

m,n∈Z
qpm

2+24`n2
,

S4 =
∑

m,n∈Z
q`m

2+24pn2
, S5 =

∑
m,n∈Z

q8m
2+3p`n2

, S6 =
∑

m,n∈Z
q3pm

2+8`n2
,

S7 =
∑

m,n∈Z
q3`m

2+8pn2
, S8 =

∑
m,n∈Z

q24m
2+p`n2

,

S9 =
∑

m,n∈Z
q4m

2+4mn+(6p`+1)n2
, S10 =

∑
m,n∈Z

q8m
2+8mn+(3p`+2)n2

,
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S11 =
∑

m,n∈Z
q12m

2+12mn+(2p`+3)n2
, S12 =

∑
m,n∈Z

q4pm
2+4pmn+(6`+p)n2

,

S13 =
∑

m,n∈Z
q4`m

2+4`mn+(6p+`)n2
, S14 =

∑
m,n∈Z

q24m
2+24mn+(p`+6)n2

,

S15 =
∑

m,n∈Z
q8pm

2+8pmn+(2p+3`)n2
, S16 =

∑
m,n∈Z

q8`m
2+8`mn+(2`+3p)n2

.

For each (p, `), define m1 = 1 and let mj be a prime that is represented
by the quadratic form associated with Sj such that mj - D. Then for dp =
D,−8ε,−8p,−24`ε, 8`ε, 24p, 24ε, 8p`, we have

16∑
j=1

(
dp
mj

)
Sj = 16χD(dp) + 2

∞∑
k,n=1

(
4D/dp
k

)(
dp
n

)
qkn(3.8a)

+ 4

∞∑
k,n=1

(
D/dp
k

)(
dp
n

)
q4kn,

16∑
j=1

(
−dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4D/dp

k

)(
−dp
n

)
qkn.(3.8b)

4. Discriminants of the form d = p2D where p is an odd prime.
There are nine idoneal discriminants of the form d = p2D, where p is an odd
prime and D is also idoneal. They are d = −27,−36,−72,−75,−99,−100,
−147,−180 and −315. As the proofs are similar, we will provide the details
only for the case d = −99 after stating the identities.

Theorem 4.1. Let D = −3. Then

(4.1)
∑

m,n∈Z
qm

2+mn+7n2
= 1 + 2

∞∑
k,n=1

(
9

k

)(
D

n

)
qkn + 6

∞∑
k,n=1

(
D

n

)
q9kn.

Theorem 4.2. Let D = −8 and define

S1 =
∑

m,n∈Z
qm

2+18n2
and S2 =

∑
m,n∈Z

q2m
2+9n2

.

Then

S1 + S2 = 2 + 2
∞∑

k,n=1

(
9

k

)(
9D

n

)
qkn + 4

∞∑
k,n=1

(
D

n

)
q9kn,(4.2a)

S1 − S2 = 2

∞∑
k,n=1

(
−3

k

)(
−3D

n

)
qkn.(4.2b)
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Theorem 4.3. Let D = −11 and define

S1 =
∑

m,n∈Z
qm

2+mn+25n2
and S2 =

∑
m,n∈Z

q5m
2+11mn+11n2

.

Then

S1 + S2 = 2 + 2
∞∑

k,n=1

(
9

k

)(
9D

n

)
qkn + 4

∞∑
k,n=1

(
D

n

)
q9kn,(4.3a)

S1 − S2 = 2

∞∑
k,n=1

(
−3

k

)(
−3D

n

)
qkn.(4.3b)

Theorem 4.4. Let p = 3 or 5, D = −4, and set ε =
(−1

p

)
. Define

S1 =
∑

m,n∈Z
qm

2+p2n2
and S2 =

∑
m,n∈Z

q2m
2+2mn+( p

2+1
2

)n2
.

Then

S1 + S2 = 2 + 2
∞∑

k,n=1

(
p2

k

)(
p2D

n

)
qkn + 8

∞∑
k,n=1

(
D

n

)
qp

2kn,(4.4a)

S1 − S2 = 2

∞∑
k,n=1

(
εp

k

)(
εpD

n

)
qkn.(4.4b)

Theorem 4.5. Let p = 5 or 7, D = −3, and set ε =
(−1

p

)
. Define

S1 =
∑

m,n∈Z
qm

2+mn+( 3p
2+1
4

)n2
and S2 =

∑
m,n∈Z

q3m
2+3mn+( p

2+3
4

)n2
.

Then

S1 + S2 = 2 + 2
∞∑

k,n=1

(
p2

k

)(
p2D

n

)
qkn + 12

∞∑
k,n=1

(
D

n

)
qp

2kn,(4.5a)

S1 − S2 = 2

∞∑
k,n=1

(
εp

k

)(
εpD

n

)
qkn.(4.5b)

Theorem 4.6. Let D = −20 and define

S1 =
∑

m,n∈Z
qm

2+45n2
, S2 =

∑
m,n∈Z

q5m
2+9n2

,

S3 =
∑

m,n∈Z
q2m

2+2mn+23n2
, S4 =

∑
m,n∈Z

q7m
2+4mn+7n2

.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - 3D. Then for dp = D,−4,
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we have
4∑

j=1

(
dp
mj

)
Sj = 4χD(dp) + 2

∞∑
k,n=1

(
9D/dp
k

)(
9dp
n

)
qkn(4.6a)

+ 4

∞∑
k,n=1

(
D/dp
k

)(
dp
n

)
q9kn,

4∑
j=1

(
−3dp
mj

)
Sj = 2

∞∑
k,n=1

(
−3D/dp

k

)(
−3dp
n

)
qkn.(4.6b)

Theorem 4.7. Let D = −35 and define

S1 =
∑

m,n∈Z
qm

2+mn+79n2
, S2 =

∑
m,n∈Z

q5m
2+5mn+17n2

,

S3 =
∑

m,n∈Z
q7m

2+7mn+13n2
, S4 =

∑
m,n∈Z

q9m
2+9mn+11n2

.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - 3D. Then for dp = D,−7,
we have

4∑
j=1

(
dp
mj

)
Sj = 4χD(dp) + 2

∞∑
k,n=1

(
9D/dp
k

)(
9dp
n

)
qkn(4.7a)

+ 4

∞∑
k,n=1

(
D/dp
k

)(
dp
n

)
q9kn,

4∑
j=1

(
−3dp
mj

)
Sj = 2

∞∑
k,n=1

(
−3D/dp

k

)(
−3dp
n

)
qkn.(4.7b)

We end this section with the proof of the case d = −99.

Proof of Theorem 4.3. As in all the previous cases, we begin with the
identity for the fundamental discriminant D = −11, namely,∑

m,n∈Z
qm

2+mn+3n2
= 1 + 2

∞∑
k,n=1

(
−11

n

)
qkn.(4.8)

In O11 = Z[(1 +
√
−11)/2], we know that 3O11 splits into ss′. We now

sum qN(a) over all non-zero ideals a that are relatively prime to both s and s′.
This gives us the sum∑

m,n∈Z
m≡1 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

+
∑

m,n∈Z
m≡1 (mod 3)
n≡1 (mod 3)

qm
2+mn+3n2

,
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whose corresponding Dirichlet series is characterized by the absence of the
prime factor 3, i.e.(

1− 1

11s

)−1 ∏
p is inert

(
1− 1

p2s

)−1 ∏
p splits
p 6=3

(
1− 1

ps

)−2

= L

((
9

·

)
, s

)
L

((
−99

·

)
, s

)
.

We thus have the identity

(4.9)
∑

m,n∈Z
m≡1 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

+
∑

m,n∈Z
m≡1 (mod 3)
n≡1 (mod 3)

qm
2+mn+3n2

=
∞∑

k,n=1

(
9

k

)(
−99

n

)
qkn.

We can extract more information from (4.9) by observing that the exponents
of q in the first and second sums are congruent respectively to 1 and 2 mod-
ulo 3. This means that∑

m,n∈Z
m≡1 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

=

∞∑
i,j=0

(
9

3i+ 1

)(
−99

3j + 1

)
q(3i+1)(3j+1)(4.10)

+
∞∑

i,j=0

(
9

3i+ 2

)(
−99

3j + 2

)
q(3i+2)(3j+2)

=
∞∑

i,j=0

(
−3

3i+ 1

)(
33

3j + 1

)
q(3i+1)(3j+1)

+

∞∑
i,j=0

(
−3

3i+ 2

)(
33

3j + 2

)
q(3i+2)(3j+2).

Similarly, ∑
m,n∈Z

m≡1 (mod 3)
n≡1 (mod 3)

qm
2+mn+3n2

=

∞∑
i,j=0

(
9

3i+ 1

)(
−99

3j + 2

)
q(3i+1)(3j+2)(4.11)

+

∞∑
i,j=0

(
9

3i+ 2

)(
−99

3j + 1

)
q(3i+2)(3j+1)

= −
∞∑

i,j=0

(
−3

3i+ 1

)(
33

3j + 2

)
q(3i+1)(3j+2)

−
∞∑

i,j=0

(
−3

3i+ 2

)(
33

3j + 1

)
q(3i+2)(3j+1).
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Combining (4.10) and (4.11), we arrive at the companion identity of (4.9),

(4.12)∑
m,n∈Z

m≡1 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2 −

∑
m,n∈Z

m≡1 (mod 3)
n≡1 (mod 3)

qm
2+mn+3n2

=
∞∑

k,n=1

(
−3

k

)(
33

n

)
qkn.

It remains to use elementary series manipulations to show that

(4.13a)
∑

m,n∈Z
qm

2+mn+25n2

=
∑

m,n∈Z
m≡0 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

+ 2
∑

m,n∈Z
m≡1 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

,

(4.13b)
∑

m,n∈Z
q5m

2+11mn+11n2

=
∑

m,n∈Z
m≡0 (mod 3)
n≡0 (mod 3)

qm
2+mn+3n2

+ 2
∑

m,n∈Z
m≡1 (mod 3)
n≡1 (mod 3)

qm
2+mn+3n2

,

thereafter to replace the theta series on the right with the appropriate Lam-
bert series using (4.9) and (4.12).

5. The eight remaining non-fundamental discriminants. In this
final section, we discuss the four discriminants of the form d = 16D, namely
d = −48,−64,−112,−240, the three discriminants of the form d = 64D,
namely d = −192,−448,−960, and the discriminant d = −288. For these
discriminants, our methods of proof given in the previous sections would not
work. However, we are able to “guess” the identities associated with these
discriminants using similar generalized Lambert series we discovered in the
previous sections. Once we derive these “identities”, we can provide a proof
(or more accurately a verification) using the theory of modular forms. More
precisely, we note from [6, Theorem 10.9] that the theta series∑

m,n∈Z
q2am

2+2bmn+2cn2

is a modular form on Γ0(|d|) of weight 1 and multiplier
(
d
·
)
, where d =

b2− 4ac is the discriminant. Consequently, it is also a modular form of level
m|d|, some multiple of the discriminant. On the other hand, Theorem 4.7.1
of [10] can be used to show that each of the generalized Lambert series given
below is also a modular form of the same weight and level with the same
multiplier as the corresponding theta series. Thus these “identities” can be
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verified by checking that the coefficients of q of the modular forms on both
sides agree beyond the Sturm bound (see [13, Corollary 9.20], [8, Theorem
3.13] or [14]). For example, in the proof of Theorem 5.3, which is associated
with the discriminant d = −240, each of S1 to S4 and the Lambert series
given in (5.3) are of level N = 4|d| = 960. The required Sturm bound is
given by

1

12

(
N
∏
p|N

(
1 +

1

p

))
= 192.

The respective levels and Sturm bounds for all the identities in this section
are given in Table 6.

Table 6. Sturm bounds for identities proved via modular forms

d Theorem level Sturm bound

−48 5.1 192 32

−112 5.1 448 64

−64 5.2 256 32

−240 5.3 960 192

−192 5.4 768 128

−448 5.4 1792 256

−960 5.5 3840 768

−288 5.6 5184 864

Theorem 5.1. Let p = 3 or 7, D = −p, and set N3 = 6, N7 = 2. Define

S1 =
∑

m,n∈Z
qm

2+4pn2
and S2 =

∑
m,n∈Z

q4m
2+pn2

.

Then

S1 + S2 = 2 + 2

∞∑
k,n=1

(
4

k

)(
4D

n

)
qkn(5.1a)

+ 4

∞∑
k,n=1

(
4

k

)(
4D

n

)
q4kn + 2Np

∞∑
k,n=1

(
D

n

)
q16kn,

S1 − S2 = 2

∞∑
k,n=1

(
−4

k

)(
−4D

n

)
qkn.(5.1b)

Theorem 5.2. Let D = −4 and define

S1 =
∑

m,n∈Z
qm

2+16n2
and S2 =

∑
m,n∈Z

q4m
2+4mn+5n2

.
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Then

S1 + S2 = 2 + 2
∞∑

k,n=1

(
4

k

)(
4D

n

)
qkn(5.2a)

+ 4

∞∑
k,n=1

(
4

k

)(
4D

n

)
q4kn + 8

∞∑
k,n=1

(
D

n

)
q16kn,

S1 − S2 = 2

∞∑
k,n=1

(
−2

k

)(
−2D

n

)
qkn.(5.2b)

Theorem 5.3. Let D = −15 and define

S1 =
∑

m,n∈Z
qm

2+60n2
, S2 =

∑
m,n∈Z

q3m
2+20n2

,

S3 =
∑

m,n∈Z
q4m

2+15n2
, S4 =

∑
m,n∈Z

q5m
2+12n2

.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - D. Then for dp = D, 5, we
have

4∑
j=1

(
dp
mj

)
Sj = 4χD(dp) + 2

∞∑
k,n=1

(
4D/dp
k

)(
4dp
n

)
qkn(5.3a)

+ 4

∞∑
k,n=1

(
4D/dp
k

)(
4dp
n

)
q4kn

+ 4
∞∑

k,n=1

(
D/dp
k

)(
dp
n

)
q16kn,

4∑
j=1

(
−dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4D/dp

k

)(
−4dp
n

)
qkn.(5.3b)

Theorem 5.4. Let p = 3 or 7, D = −p, and set N3 = 6 and N7 = 2.
Define

S1 =
∑

m,n∈Z
qm

2+16pn2
, S2 =

∑
m,n∈Z

qpm
2+16n2

,

S3 =
∑

m,n∈Z
q4m

2+4mn+(4p+1)n2
, S4 =

∑
m,n∈Z

q(p+4)m2+2(p−4)mn+(p+4)n2
.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - D. Then
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(5.4a)
4∑

j=1

(
D

mj

)
Sj = 4 + 2

∞∑
k,n=1

(
4

k

)(
4D

n

)
qkn + 4

∞∑
k,n=1

(
4

k

)(
4D

n

)
q4kn

+ 8
∞∑

k,n=1

(
4

k

)(
4D

n

)
q16kn + 4Np

∞∑
k,n=1

(
D

n

)
q64kn,

(5.4b)

4∑
j=1

(
−4D

mj

)
Sj

= 2
∞∑

k,n=1

(
−4

k

)(
−4D

n

)
qkn + 4

∞∑
k,n=1

(
−4

k

)(
−4D

n

)
q4kn,

4∑
j=1

(
2

mj

)
Sj = 2

∞∑
k,n=1

(
2

k

)(
2D

n

)
qkn,(5.4c)

4∑
j=1

(
−2

mj

)
Sj = 2

∞∑
k,n=1

(
−2

k

)(
−2D

n

)
qkn.(5.4d)

Theorem 5.5. Let D = −15 and define

S1 =
∑

m,n∈Z
qm

2+240n2
, S2 =

∑
m,n∈Z

q3m
2+80n2

, S3 =
∑

m,n∈Z
q4m

2+4mn+61n2
,

S4 =
∑

m,n∈Z
q5m

2+48n2
, S5 =

∑
m,n∈Z

q12m
2+12mn+23n2

, S6 =
∑

m,n∈Z
q15m

2+16n2
,

S7 =
∑

m,n∈Z
q16m

2+16mn+19n2
, S8 =

∑
m,n∈Z

q17m
2+14mn+17n2

.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - D. Then for dp = D, 5, we
have

8∑
j=1

(
dp
mj

)
Sj = 8χD(dp) + 2

∞∑
k,n=1

(
4dp
k

)(
4D/dp
n

)
qkn(5.5a)

+ 4

∞∑
k,n=1

(
4dp
k

)(
4D/dp
n

)
q4kn

+ 8
∞∑

k,n=1

(
4dp
k

)(
4D/dp
n

)
q16kn

+ 8
∞∑

k,n=1

(
dp
k

)(
D/dp
n

)
q64kn,
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8∑
j=1

(
−4dp
mj

)
Sj = 2

∞∑
k,n=1

(
−4dp
k

)(
−4D/dp

n

)
qkn(5.5b)

+ 4
∞∑

k,n=1

(
−4dp
k

)(
−4D/dp

n

)
q4kn,

8∑
j=1

(
2dp
mj

)
Sj = 2

∞∑
k,n=1

(
2dp
k

)(
2D/dp
n

)
qkn,(5.5c)

8∑
j=1

(
−2dp
mj

)
Sj = 2

∞∑
k,n=1

(
−2dp
k

)(
−2D/dp

n

)
qkn.(5.5d)

Theorem 5.6. Let H = −32 and define

S1 =
∑

m,n∈Z
qm

2+72n2
, S2 =

∑
m,n∈Z

q4m
2+4mn+19n2

,

S3 =
∑

m,n∈Z
q8m

2+9n2
, S4 =

∑
m,n∈Z

q8m
2+8mn+11n2

.

Further define m1 = 1 and let mj be a prime that is represented by the
quadratic form associated with Sj such that mj - 3H. Then for dp = 4, we
have

4∑
j=1

(
dp
mj

)
Sj = 4 + 2

∞∑
k,n=1

(
9H/dp
k

)(
9dp
n

)
qkn(5.6a)

+ 4

∞∑
k,n=1

(
H/dp
k

)(
dp
n

)
q9kn

+ 4
∞∑

k,n=1

(
9H/dp
k

)(
9dp/4

n

)
q4kn

+ 8

∞∑
k,n=1

(
H/dp
k

)(
dp/4

n

)
q36kn,

4∑
j=1

(
−3dp
mj

)
Sj = 2

∞∑
k,n=1

(
−3H/dp

k

)(
−3dp
n

)
qkn(5.6b)

+ 4

∞∑
k,n=1

(
−3H/dp

k

)(
−3dp/4

n

)
q4kn.
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For dp = −4, we have

4∑
j=1

(
dp
mj

)
Sj = 2

∞∑
k,n=1

(
9H/dp
k

)(
9dp
n

)
qkn(5.6c)

+ 4
∞∑

k,n=1

(
H/dp
k

)(
dp
n

)
q9kn,

4∑
j=1

(
−3dp
mj

)
Sj = 2

∞∑
k,n=1

(
−3H/dp

k

)(
−3dp
n

)
qkn.(5.6d)
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