The sequence of fractional parts of roots

by

Kevin O'Bryant (New York)

1. Introduction. The author finds the identity (valid for any nonzero integer n)

$$
\begin{equation*}
\left\lfloor\frac{1}{e^{\sqrt{2} / n}-1}\right\rfloor=\left\lfloor\frac{n}{\sqrt{2}}-\frac{1}{2}\right\rfloor \tag{1}
\end{equation*}
$$

breathtaking. Even more perplexing is that the similar expression (see [7])

$$
\begin{equation*}
\left\lfloor\frac{1}{2^{1 / n}-1}\right\rfloor=\left\lfloor\frac{n}{\log 2}-\frac{1}{2}\right\rfloor \tag{2}
\end{equation*}
$$

holds for integers $1<n<777451915729368$, but fails at both of the given endpoints.

This identity and near-identity arise in our study of the sequence of fractional parts of roots, following Nathanson [5]. The distribution of $\left(\left\{\theta^{n}\right\}\right)_{n \geq 1}$, where $\theta>1$, has been the object of much study [1] but remains enigmatic except for a few peculiar θ. The sequence $\left(\left\{\theta^{1 / n}\right\}\right)_{n \geq 1}$ has been thought too simple to warrant study: trivially, for $\theta>1$ one has $\theta^{1 / n}>1$ and $\theta^{1 / n} \rightarrow 1$, and so $\left\{\theta^{1 / n}\right\} \rightarrow 0$. Nevertheless, Nathanson found interesting phenomena in the regularity with which this convergence takes place. He introduced and derived the basic properties of

$$
M_{\theta}(n):=\left\lfloor\frac{1}{\left\{\theta^{1 / n}\right\}}\right\rfloor,
$$

and identified symmetries that allow one to assume without loss of generality that $\theta>1$ and that the integer n is positive. Surprisingly, he proved that for any real $\theta>1$ and integer $n>\log _{2} \theta$, either $M_{\theta}(n)=\lfloor n / \log \theta-1 / 2\rfloor$ or $M_{\theta}(n)=\lfloor n / \log \theta+1 / 2\rfloor$; moreover, if $\log \theta$ is rational, then $M_{\theta}(n)=$ $\lfloor n / \log \theta-1 / 2\rfloor$ for all sufficiently large n.

[^0]We will show that the set

$$
\begin{equation*}
\left\{n \in \mathbb{N}: M_{\theta}(n) \neq\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor\right\} \tag{3}
\end{equation*}
$$

has density 0 for all $\theta>1$, and for almost all $\theta>1$ has counting function asymptotic to $\frac{\log \theta}{12} \log n$. For $\theta<e^{6} \approx 400$, we give criteria for (3) to be finite or infinite in terms of the continued fraction expansions of $1 / \log \theta$ and $2 / \log \theta$. As a consequence, we are able to give explicit θ for which (3) is empty and is infinite. As mentioned above, Nathanson proved that for $\theta=e^{p / q}$, (3) is finite; we give another proof of this below that gives an explicit bound on the size in terms of p and q.

In the final sections of this article, we discuss the two displayed equations at the beginning of this introduction, and update Nathanson's list of open problems for $M_{\theta}(n)$.
2. Conventions, results, strategy. The set of positive integers is denoted \mathbb{N}. Throughout, we assume that $\theta>1$ and that n is a positive integer. If $n>\log _{2} \theta$, then $1<\theta^{1 / n}<2$, and so $\left\{\theta^{1 / n}\right\}=\theta^{1 / n}-1$. Set

$$
M_{\theta}^{\prime}(n):=\left\lfloor\frac{1}{\theta^{1 / n}-1}\right\rfloor,
$$

so that $M_{\theta}(n)=M_{\theta}^{\prime}(n)$ if $n>\log _{2} \theta$. Although we do not use it here, this sort of expression arises [3, 6] in the following manner. $M_{\theta}^{\prime}(n)$ is the largest integer N such that $\theta N^{n} \leq(N+1)^{n}$, and $M_{\theta}^{\prime}(n)$ is the largest integer N such that $(1+1 / N)^{n} \geq \theta$. We call the elements of

$$
\mathcal{A}_{\theta}:=\left\{n \in \mathbb{N}: M_{\theta}^{\prime}(n) \neq\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor\right\}
$$

the atypical numbers, terminology which we will justify later. Nathanson proved the following result, albeit in different notation.

Theorem 1. If $n>\log _{2} \theta$, then either

$$
M_{\theta}(n)=\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor \quad \text { and } \quad n \notin \mathcal{A}_{\theta},
$$

or

$$
M_{\theta}(n)=\left\lfloor\frac{n}{\log \theta}+\frac{1}{2}\right\rfloor \quad \text { and } \quad n \in \mathcal{A}_{\theta} .
$$

This shows that understanding $M_{\theta}(n)$ for nonsmall n is equivalent to understanding \mathcal{A}_{θ}. Our results are presented as properties of \mathcal{A}_{θ}. We state the theorems here, although we define some of the terminology, such as that relating to density and continued fractions, in the proofs.

Theorem 2 (Nathanson). If $\log \theta=p / q>1$ is rational, then

$$
\mathcal{A}_{\theta} \subseteq\left[1, \frac{p^{2}}{6 q}\right)
$$

Theorem 3. For all $\theta>1, \mathcal{A}_{\theta}$ has density 0 .
Theorem 4. For almost all $\theta>1$,

$$
\left|\mathcal{A}_{\theta} \cap[1, n]\right| \sim \frac{\log \theta}{12} \log n
$$

Theorem 5. Let a_{i} be positive integers with $a_{2 k}=1$ for $k \geq 0$. Set ℓ to be the irrational number with simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, and set $\theta=e^{2 / \ell}$. Then $\mathcal{A}_{\theta}=\emptyset$. In particular, if $c \in \mathbb{N}$ and $\theta=e^{-c+\sqrt{c(c+4)}}$, then \mathcal{A}_{θ} is empty.

ThEOREM 6. Let a_{i} be positive integers with $a_{0}=0, a_{1}=2, a_{2 k}=4$ for all $k \geq 1$. Set ℓ to be the irrational with simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, and set $\theta=e^{2 / \ell}$. Then \mathcal{A} is infinite. In particular, if $c \in \mathbb{N}$ and $\theta=e^{4-c+\sqrt{c(c+1)}}$, then \mathcal{A}_{θ} is infinite.

The last two theorems give explicit uncountable families of θ with \mathcal{A}_{θ} empty and infinite, and also draw attention to even more explicit countable subfamilies. The simplest examples are that $\mathcal{A}_{e^{\sqrt{5}-1}}$ is empty and $\mathcal{A}_{e^{2 \sqrt{5}}}$ is infinite. The actual results proved are inequalities on the partial quotients of the continued fraction, and the specific a_{i} given in these theorems are not the only a_{i} that satisfy the inequalities. Our countable families consist entirely of transcendental numbers; we do not know if there is an algebraic θ with $\mathcal{A}_{\theta}=\emptyset$, nor if there is an algebraic θ with \mathcal{A}_{θ} infinite.

We now outline our approach. We first obtain an asymptotic expansion

$$
\frac{1}{\theta^{1 / n}-1}=\frac{n}{\log \theta}-\frac{1}{2}+f\left(\frac{\log \theta}{n}\right)
$$

for a very small positive function f. The floor of the left hand side is $M_{\theta}^{\prime}(n)$, and the floor of the right hand side is $\lfloor n / \log \theta-1 / 2\rfloor$ unless $n / \log \theta-1 / 2$ is within $f((\log \theta) / n)$ of an integer. We are thus led to a nonhomogeneous diophantine approximation problem that we can partially handle with continued fractions. In particular, we will need to know the simple continued fractions of both $1 / \log \theta$ and $2 / \log \theta$. By defining θ through the continued fraction of $2 / \log \theta$ we are able to set, or at least control, the size of \mathcal{A}_{θ}.
3. Bernoulli numbers and nth roots. We use the generating function for the sequence $\left(B_{k}\right)_{k=0}^{\infty}$ of Bernoulli numbers to obtain an asymptotic
expansion of $M_{\theta}^{\prime}(n)$. For $|t|<2 \pi$,

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} t^{k}=1-\frac{1}{2} t+\frac{1}{12} t^{2}-\frac{1}{720} t^{4}+\sum_{k=3}^{\infty} \frac{B_{2 k}}{(2 k)!} t^{2 k} \tag{4}
\end{equation*}
$$

For $t>0$, we define the function

$$
\begin{equation*}
f(t)=\frac{1}{e^{t}-1}-\frac{1}{t}+\frac{1}{2} \tag{5}
\end{equation*}
$$

LEMMA 7. For $t>0$, the function $f(t)$ is strictly increasing, $\lim _{t \rightarrow 0^{+}} f(t)$ $=0$, and $\lim _{t \rightarrow \infty} f(t)=1 / 2$. If $0<t<1$, then

$$
\begin{equation*}
\frac{t}{12}-\frac{t^{3}}{720}<f(t)<\frac{t}{12} \tag{6}
\end{equation*}
$$

Proof. Observe that $f(t)$ is strictly increasing (because $f^{\prime}(t)>0$), $\lim _{t \rightarrow 0^{+}} f(t)=0$ (apply l'Hôpital's rule twice), and $\lim _{t \rightarrow \infty} f(t)=1 / 2$.

For $0<t<2 \pi$, we have the power series

$$
\begin{equation*}
f(t)=\frac{1}{12} t-\frac{1}{720} t^{3}+\sum_{k=3}^{\infty} \frac{B_{2 k}}{(2 k)!} t^{2 k-1} \tag{7}
\end{equation*}
$$

The Bernoulli numbers satisfy the classical identity ([2], [8, formula (9.1)])

$$
\frac{B_{2 k}}{(2 k)!}=\frac{2(-1)^{k-1}}{(2 \pi)^{2 k}} \sum_{n=1}^{\infty} \frac{1}{n^{2 k}}
$$

It follows that for $0<t<1$ the sequence

$$
\left(\frac{\left|B_{2 k}\right|}{(2 k)!} t^{2 k-1}\right)_{k=1}^{\infty}
$$

is strictly decreasing and tends to 0 , hence (7) is an alternating series and (6) follows.

Lemma 8. Either

$$
M_{\theta}^{\prime}(n)=\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor \quad \text { or } \quad M_{\theta}^{\prime}(n)=\left\lfloor\frac{n}{\log \theta}+\frac{1}{2}\right\rfloor,
$$

and $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta+1 / 2\rfloor$ if and only if

$$
\begin{equation*}
\frac{1}{2}-f\left(\frac{\log \theta}{n}\right) \leq\left\{\frac{n}{\log \theta}\right\}<\frac{1}{2} \tag{8}
\end{equation*}
$$

Note that Theorem 1 is a direct consequence of Lemma 8.
Proof of Lemma 8. By the definition of f, we have

$$
\begin{aligned}
\frac{1}{\theta^{1 / n}-1} & =\frac{n}{\log \theta}-\frac{1}{2}+f\left(\frac{\log \theta}{n}\right) \\
& =\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor+\left\{\frac{n}{\log \theta}-\frac{1}{2}\right\}+f\left(\frac{\log \theta}{n}\right)
\end{aligned}
$$

and so

$$
M_{\theta}^{\prime}(n)=\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor+\left\lfloor\left\{\frac{n}{\log \theta}-\frac{1}{2}\right\}+f\left(\frac{\log \theta}{n}\right)\right\rfloor .
$$

As fractional parts are between 0 and 1 while f is between 0 and $1 / 2$, we can now see that either $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta-1 / 2\rfloor$ or $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta-1 / 2\rfloor+1$, which is the first claim of this lemma. Moreover, $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta+1 / 2\rfloor$ if and only if

$$
1 \leq\left\{\frac{n}{\log \theta}-\frac{1}{2}\right\}+f\left(\frac{\log \theta}{n}\right)<2
$$

By Lemma 7, for $t>0$ we have $0<f(t)<1 / 2$, and if $1 / 2<\{t-1 / 2\}$ then $\{t-1 / 2\}=\{t\}+1 / 2$, and so

$$
\frac{1}{2}<1-f\left(\frac{\log \theta}{n}\right) \leq\left\{\frac{n}{\log \theta}-\frac{1}{2}\right\}=\left\{\frac{n}{\log \theta}\right\}+\frac{1}{2}<1
$$

This yields (8).
Conversely, inequality (8) implies that

$$
1 \leq\left\{\frac{n}{\log \theta}\right\}+\frac{1}{2}+f\left(\frac{\log \theta}{n}\right)=\left\{\frac{n}{\log \theta}-\frac{1}{2}\right\}+f\left(\frac{\log \theta}{n}\right)<\frac{3}{2}<2
$$

Lemma 9. If $0 \leq a<b \leq 1$, then

$$
\begin{aligned}
\left\{t \in \mathbb{R}: \frac{a}{2}\right. & \left.\leq\{t\}<\frac{b}{2}\right\} \\
& =\{t \in \mathbb{R}: a \leq\{2 t\}<b\} \backslash\left\{t \in \mathbb{R}: \frac{a+1}{2} \leq\{t\}<\frac{b+1}{2}\right\}
\end{aligned}
$$

Proof. If $\{t\}<1 / 2$, then $\{2 t\}=2\{t\}$ and so $a \leq\{2 t\}<b$ if and only if $a / 2 \leq\{t\}<b / 2$. If $\{t\} \geq 1 / 2$, then $\{2 t\}=2\{t\}-1$ and so $a \leq\{2 t\}<b$ if and only if $(a+1) / 2 \leq\{t\}<(b+1) / 2$. Thus,

$$
\begin{aligned}
\{t \in \mathbb{R}: a \leq & \{2 t\}<b\} \\
= & \left\{t \in \mathbb{R}:\{t\}<\frac{1}{2} \text { and } \frac{a}{2} \leq\{t\}<\frac{b}{2}\right\} \\
& \cup\left\{t \in \mathbb{R}:\{t\} \geq \frac{1}{2} \text { and } \frac{a+1}{2} \leq\{t\}<\frac{b+1}{2}\right\} \\
= & \left\{t \in \mathbb{R}: \frac{a}{2} \leq\{t\}<\frac{b}{2}\right\} \cup\left\{t \in \mathbb{R}: \frac{a+1}{2} \leq\{t\}<\frac{b+1}{2}\right\}
\end{aligned}
$$

The lemma follows from the observation that the two sets on the right side of this equation are disjoint.

Combining Lemmas 8 and 9 proves the following result.

Lemma 10. We have $n \in \mathcal{A}_{\theta}$ if and only if both

$$
\left\{\frac{2 n}{\log \theta}\right\} \geq 1-2 f\left(\frac{\log \theta}{n}\right) \quad \text { and } \quad\left\{\frac{n}{\log \theta}\right\}<1-f\left(\frac{\log \theta}{n}\right) .
$$

4. Proofs of Theorems 2, 3, and 4. Nathanson proved that $\mathcal{A}_{e^{p / q}}$ is finite; while his proof is different from the one here, it could also be pushed to give this bound.

Proof of Theorem 2. Assume that $n \geq p^{2} /(6 q)$. Then by Lemma 7 .

$$
f\left(\frac{\log \theta}{n}\right)<\frac{\log \theta}{12 n} \leq \frac{1}{2 p},
$$

and so there is no rational strictly between $1 / 2-f((\log \theta) / n)$ and $1 / 2$ with denominator p. But clearly $\{n / \log \theta\}$ has denominator p, and so Lemma 8 tells us that $n \notin \mathcal{A}_{\theta}$; that is, $\mathcal{A}_{\theta} \subseteq\left[1, p^{2} /(6 q)\right)$.

The set \mathcal{X} of positive integers has density ϵ if

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{card}(\{x \in \mathcal{X}: x \leq N\})}{N}
$$

exists and is equal to ϵ. We use the following results concerning density. If a set \mathcal{X} is a subset of a set with density ϵ for every small $\epsilon>0$, then \mathcal{X} has density 0 . Let $0 \leq a<b<1$ and let α be any irrational; the set $\{n \in \mathbb{N}: a \leq\{n \alpha\}<b\}$ has density $b-a$.

Proof of Theorem 3. If $\log \theta$ is rational, then by Theorem 2, we know that \mathcal{A}_{θ} is finite. As finite sets have density 0 , this case is handled.

Now suppose that $\log \theta$ is irrational. Take small $\epsilon>0$, and take $n_{0}=$ $(\log \theta) /(12 \epsilon)$ so that for all $n>n_{0}$ we have $f((\log \theta) / n)<(\log \theta) /(12 n)<\epsilon$. Lemma 8 now implies that

$$
\mathcal{A}_{\theta} \subseteq\left\{n \in \mathbb{N}: \frac{1}{2}-\epsilon \leq\left\{\frac{n}{\log \theta}\right\}<\frac{1}{2}\right\} .
$$

Since $\log \theta$ is irrational, $\{n / \log \theta\}$ is uniformly distributed, and so \mathcal{A}_{θ} is contained in a set with density ϵ. As ϵ was arbitrary, it follows that \mathcal{A}_{θ} has density 0 .

The main tool for Theorem 4 is a result of Schmidt [10, Theorem 1], a special case of which we state below. Let $\llbracket P \rrbracket$ be 1 if P is true, and 0 if P is false, and let $|I|$ be the length of the interval I.

Theorem (Schmidt). Let $I_{1} \supseteq I_{2} \supseteq \cdots$ be a nested sequence of subintervals of $[0,1), \epsilon>0$. Then for almost all α,

$$
\sum_{k=1}^{n} \llbracket\{k \alpha\} \in I_{k} \rrbracket=\sum_{k=1}^{n}\left|I_{k}\right|+O\left(\left(\sum_{k=1}^{n}\left|I_{k}\right|\right)^{1 / 2+\epsilon}\right) .
$$

Proof of Theorem 4. We apply Schmidt's theorem with α replaced by $1 / \log \theta$, take $x>1$ and intervals

$$
I_{k}=\left[\frac{1}{2}-f\left(\frac{\log x}{k}\right), \frac{1}{2}\right)
$$

which are properly nested since $f(t)$ is increasing for $t>0$. Since $f(t)=$ $t / 12+O\left(t^{3}\right)($ as $t \rightarrow 0)$, as $n \rightarrow \infty$ we have

$$
\sum_{k=1}^{n}\left|I_{k}\right|=\sum_{k=1}^{n} f\left(\frac{\log x}{k}\right)=\sum_{k=1}^{n}\left(\frac{\log x}{12 k}+O\left(1 / k^{3}\right)\right)=\frac{\log x}{12} \log n+O(1)
$$

By Lemma 8, for $\theta<x$,

$$
\begin{aligned}
\mathcal{A}_{\theta} & =\left\{k:\left\{\frac{k}{\log \theta}\right\} \in\left[\frac{1}{2}-f\left(\frac{\log \theta}{k}\right), \frac{1}{2}\right)\right\} \\
& \subseteq\left\{k:\left\{\frac{k}{\log \theta}\right\} \in\left[\frac{1}{2}-f\left(\frac{\log x}{k}\right), \frac{1}{2}\right)\right\}=\left\{k:\left\{\frac{k}{\log \theta}\right\} \in I_{k}\right\},
\end{aligned}
$$

and so

$$
\left|A_{\theta} \cap[1, n]\right| \leq \sum_{k=1}^{n} \llbracket\left\{\frac{k}{\log \theta}\right\} \in I_{k} \rrbracket
$$

Similarly, for $\theta>x$,

$$
\left|A_{\theta} \cap[1, n]\right| \geq \sum_{k=1}^{n} \llbracket\left\{\frac{k}{\log \theta}\right\} \in I_{k} \rrbracket
$$

Set

$$
g(\theta):=\limsup _{n \rightarrow \infty} \frac{\left|A_{\theta} \cap[1, n]\right|}{\log n},
$$

which must be Lebesgue measurable since its definition makes no appeal to the axiom of choice. One may verify the measurability of g more directly by observing that, for fixed n, the preimages of $\theta \mapsto A_{\theta} \cap[1, n]$ are unions of half-open intervals, and so each $\theta \mapsto\left|A_{\theta} \cap[1, n]\right| / \log n$ is a simple measurable function, hence $g(\theta)$ is the limsup of a sequence of simple measurable functions, and therefore is itself measurable.

Schmidt's theorem implies: for all $x>1$, almost all $\theta<x$ satisfy

$$
g(\theta) \leq \frac{\log x}{12}
$$

and almost all $\theta>x$ satisfy

$$
g(\theta) \geq \frac{\log x}{12}
$$

Now consider the integral

$$
\begin{equation*}
\int_{1}^{x}\left(g(\theta)-\frac{\log \theta}{12}\right) d \theta \tag{9}
\end{equation*}
$$

Let $1=x_{0}<x_{1}<\cdots<x_{N}=x$ be evenly spaced from 1 to x. We have

$$
\begin{aligned}
\int_{1}^{x}\left(g(\theta)-\frac{\log \theta}{12}\right) d \theta & =\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}}\left(g(\theta)-\frac{\log \theta}{12}\right) d \theta \\
& \leq \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}}\left(\frac{\log x_{i+1}}{12}-\frac{\log \theta}{12}\right) d \theta
\end{aligned}
$$

which goes to 0 as $N \rightarrow \infty$ since $(\log \theta) / 12$ is Riemann integrable over $[1, x]$. Similarly, we find that (9) is at least 0 , whence $g(\theta)=(\log \theta) / 12$ for almost all θ less than x, and x is arbitrary.

We note that LeVeque [4] constructed α with

$$
\limsup _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \llbracket\{k \alpha\}<1 / k \rrbracket=\infty
$$

showing that the "almost all" in Schmidt's theorem cannot be improved to "all". While LeVeque's construction, using continued fractions, does not immediately carry over to intervals that do not contain 0 , we believe that the same phenomenon affects us. That is, we believe that for any function $g(n) \rightarrow 0$, there is a θ such that $\left|A_{\theta} \cap[1, n]\right|>n g(n)$ for infinitely many n.
5. Continued fractions and the proofs of Theorems 5 and 6. The continued fraction algorithm produces a positive integer from a real number $\alpha>1$ by taking the integer part of the reciprocal of the fractional part of α. This is exactly how the function $M_{\theta}(n)$ operates on the nth root of a real number $\theta>1$, so it is perhaps not surprising that there is a relationship between continued fractions and the fractional parts of roots.

We shall consider infinite continued fractions of the form $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ with partial quotients $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{N}$ for all $k \in \mathbb{N}$. Then $\alpha=$ $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is a real irrational number whose k th convergent is the rational number

$$
\frac{A_{k}}{B_{k}}=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]
$$

where A_{k} and B_{k} are relatively prime positive integers. Also, set

$$
\lambda_{k}:=\left[0 ; a_{k-1}, a_{k-2}, \ldots, a_{1}\right]+\left[a_{k} ; a_{k+1}, a_{k+2}, \ldots\right] .
$$

We follow the notation of Rockett and Szüsz [9], and use some results that are found there but not in the other standard references. The sequence of denominators, sometimes called continuants, satisfies $B_{k} \geq F_{k+1}$, where F_{k+1} is the $(k+1)$ th Fibonacci number. Further,

$$
\begin{equation*}
\frac{A_{2 k-2}}{B_{2 k-2}}<\frac{A_{2 k}}{B_{2 k}}<\alpha<\frac{A_{2 k+1}}{B_{2 k+1}}<\frac{A_{2 k-1}}{B_{2 k-1}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha-\frac{A_{k}}{B_{k}}=\frac{(-1)^{k}}{B_{k}^{2} \lambda_{k+1}} \tag{11}
\end{equation*}
$$

This is often used in conjunction with the trivial bounds

$$
a_{k+1}<\lambda_{k+1}<a_{k+1}+2
$$

If m and n are positive integers and

$$
\begin{equation*}
\left|\alpha-\frac{m}{n}\right| \leq \frac{1}{2 n^{2}} \tag{12}
\end{equation*}
$$

then [9, Theorem II.5.1] there are integers $k \geq 0, c \geq 1$ such that $m=c A_{k}$, $n=c B_{k}$, and $\lambda_{k+1}>2 c^{2}$.

LEMMA 11. Let $1<\theta<e^{3}$ with $\log \theta$ irrational, and $a_{k}, B_{k}, \lambda_{k}$ be associated to the continued fraction of $2 / \log \theta$. For each $n \in \mathcal{A}_{\theta}$, there exist positive integers c, k such that $n=c B_{2 k-1}$ and $\lambda_{2 k}>6 c^{2} / \log \theta$.

Proof. Let $n \in \mathcal{A}_{\theta}$, i.e., $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta+1 / 2\rfloor$. By Lemma 10 ,

$$
1-2 f\left(\frac{\log \theta}{n}\right) \leq\left\{\frac{2 n}{\log \theta}\right\}<1
$$

Let $m=1+\lfloor 2 n / \log \theta\rfloor$. Applying the upper bound in Lemma 7 with $t=$ $(\log \theta) / n$, we obtain

$$
0<1-\left\{\frac{2 n}{\log \theta}\right\}=m-\frac{2 n}{\log \theta} \leq 2 f\left(\frac{\log \theta}{n}\right)<\frac{\log \theta}{6 n}<\frac{1}{2 n}
$$

and so

$$
0<\frac{m}{n}-\frac{2}{\log \theta}<\frac{1}{2 n^{2}}
$$

Properties (10) and (12) of continued fractions imply that m / n is an odd convergent to $2 / \log \theta$. Thus, there exist positive integers k and c with $\lambda_{2 k}>2 c^{2}$ such that $m=c A_{2 k-1}$ and $n=c B_{2 k-1}$. It follows from (11) that

$$
\frac{1}{B_{2 k-1}^{2} \lambda_{2 k}}=\frac{A_{2 k-1}}{B_{2 k-1}}-\frac{2}{\log \theta}<\frac{\log \theta}{6 c^{2} B_{2 k-1}^{2}}
$$

and so $\lambda_{2 k}>6 c^{2} / \log \theta$, which makes the earlier restriction $\lambda_{2 k}>2 c^{2}$ redundant.

Proof of Theorem 5. Let $a_{0} \geq 1$ and $a_{2 k} \leq 3 a_{0}-2$ for $k \geq 1$, $\ell=$ $\left[a_{0} ; a_{1}, a_{2}, \ldots\right], \theta=e^{2 \ell \ell}$. Then $0<\log \theta<2 / a_{0} \leq 2$, and so θ satisfies the hypotheses of Lemma 11. Consequently, for each $n \in \mathcal{A}_{\theta}$, there are positive integers c, k such that $n=c B_{2 k-1}$ and $\lambda_{2 k}>6 c^{2} / \log \theta$. But

$$
\lambda_{2 k}=\left[0 ; a_{2 k-1}, a_{2 k-2}, \ldots, a_{1}\right]+\left[a_{2 k} ; a_{2 k+1}, a_{2 k+2} \ldots\right]<a_{2 k}+2 \leq 3 a_{0}
$$

while

$$
\frac{6 c^{2}}{\log \theta}=3 c^{2} \ell \geq 3 a_{0}
$$

Therefore, there are no n in \mathcal{A}_{θ}.
Set $a_{2 k}=1$ for $k \geq 0$, and let the $a_{2 k-1}$ be arbitrary positive integers, to see the first family stated in Theorem 5. Set $a_{2 k+1}=c$, an arbitrary positive integer, for $k \geq 0$ to get

$$
\ell=[1 ; c, 1, c, 1, \ldots]=\frac{c+\sqrt{c(c+4)}}{2 c} \quad \text { and } \quad \theta=e^{-c+\sqrt{c(c+4)}}
$$

Set

$$
\mathcal{Q}_{\theta}:=\left\{c B_{2 i-1}: i \text { and } c \text { positive integers, } 2 c^{2}<\lambda_{2 i}\right\}
$$

where B_{i}, λ_{i} correspond to the continued fraction of $1 / \log \theta($ not of $2 / \log \theta)$. By properties (11) and $\sqrt[12]{ }$ of continued fractions,

$$
\mathcal{Q}_{\theta}=\left\{n: n \geq 1, \text { there exists an integer } m \text { with } 0<m-\frac{n}{\log \theta}<\frac{1}{2 n}\right\}
$$

In particular, \mathcal{Q}_{θ} is a set of good denominators for approximating $1 / \log \theta$.
Our next lemma identifies continuants of $2 / \log \theta$ that are either also good denominators for $1 / \log \theta$ or are exceptional. When we apply the lemma in the proof of Theorem 6, we will have additional constraints that prevent the continuants from also being good denominators for $1 / \log \theta$, and thereby force them to be exceptional.

Lemma 12. Let $1<\theta<e^{6}$ with $\log \theta$ irrational, and $a_{k}, B_{k}, \lambda_{k}$ be associated to the continued fraction of $2 / \log \theta$. For $0<\delta<\log \theta$, choose $k_{0}=k_{0}(\delta) \geq 3$ such that

$$
\begin{equation*}
B_{2 k-1}^{2}>\frac{(\log \theta)^{3}}{60 \delta} \tag{13}
\end{equation*}
$$

for all $k \geq k_{0}$. If $k \geq k_{0}$ and

$$
\begin{equation*}
\lambda_{2 k} \geq \frac{6}{\log \theta-\delta} \tag{14}
\end{equation*}
$$

then $B_{2 k-1} \in \mathcal{Q}_{\theta} \cup \mathcal{A}_{\theta}$.
Proof. As $k \geq 3$, we have $B_{2 k-1} \geq B_{5} \geq 8$ and $0<\log \theta / B_{2 k-1} \leq$ $6 / 8<1$. Relations 10 and (11) give

$$
0<\frac{A_{2 k-1}}{B_{2 k-1}}-\frac{2}{\log \theta}=\frac{1}{\lambda_{2 k} B_{2 k-1}^{2}}
$$

whence, with $\lambda_{2 k}>a_{2 k} \geq 1$,

$$
0<A_{2 k-1}-\frac{2 B_{2 k-1}}{\log \theta}=\frac{1}{\lambda_{2 k} B_{2 k-1}}<\frac{1}{8}
$$

It follows that $2 B_{2 k-1} / \log \theta$ is slightly less than an integer, and therefore

$$
\begin{equation*}
\left\{\frac{2 B_{2 k-1}}{\log \theta}\right\}=1-\frac{1}{\lambda_{2 k} B_{2 k-1}} \tag{15}
\end{equation*}
$$

Assuming that $\lambda_{2 k}$ and $B_{2 k-1}$ satisfy (13) and (14), we have

$$
\begin{aligned}
\frac{1}{\lambda_{2 k} B_{2 k-1}} & \leq \frac{1}{B_{2 k-1}} \frac{\log \theta-\delta}{6}=\frac{(\log \theta) / B_{2 k-1}}{6}-\frac{60 \delta B_{2 k-1}^{2}}{(\log \theta)^{3}} \frac{\left((\log \theta) / B_{2 k-1}\right)^{3}}{360} \\
& <\frac{(\log \theta) / B_{2 k-1}}{6}-\frac{\left((\log \theta) / B_{2 k-1}\right)^{3}}{360} \\
& =2\left(\frac{(\log \theta) / B_{2 k-1}}{12}-\frac{\left((\log \theta) / B_{2 k-1}\right)^{3}}{720}\right)<2 f\left(\frac{\log \theta}{B_{2 k-1}}\right)
\end{aligned}
$$

where the last inequality uses the lower bound in Lemma 7 with $t=$ $(\log \theta) / B_{2 k-1}$. Combining this with (15) gives

$$
\left\{\frac{2 B_{2 k-1}}{\log \theta}\right\}>1-2 f\left(\frac{\log \theta}{B_{2 k-1}}\right)
$$

If, further, $\left\{B_{2 k-1} / \log \theta\right\}<1-f\left((\log \theta) / B_{2 k-1}\right)$, then by Lemma 10 we have $B_{2 k-1} \in \mathcal{A}_{\theta}$. We therefore assume that

$$
\begin{equation*}
\left\{\frac{B_{2 k-1}}{\log \theta}\right\} \geq 1-f\left(\frac{\log \theta}{B_{2 k-1}}\right) \tag{16}
\end{equation*}
$$

and need to show that $B_{2 k-1} \in \mathcal{Q}_{\theta}$. Define b_{i} through

$$
\frac{1}{\log \theta}=\left[b_{0} ; b_{1}, b_{2}, \ldots\right]
$$

denote the convergents of $1 / \log \theta$ by R_{i} / S_{i}, and set

$$
\tau_{k}=\left[0 ; b_{k-1}, b_{k-2}, \ldots, b_{1}\right]+\left[b_{k} ; b_{k+1}, b_{k+2}, \ldots\right] .
$$

We need to prove that $B_{2 k-1}=c S_{2 i-1}$ for some $c, i \in \mathbb{N}$ and $2 c^{2}<\tau_{2 i}$.
Inequality 16) implies that

$$
0<1-\left\{\frac{B_{2 k-1}}{\log \theta}\right\} \leq f\left(\frac{\log \theta}{B_{2 k-1}}\right)<\frac{\log \theta}{12 B_{2 k-1}}
$$

Let $r=1+\left\lfloor B_{2 k-1} / \log \theta\right\rfloor$. Then

$$
0<r-\frac{B_{2 k-1}}{\log \theta}<\frac{\log \theta}{12 B_{2 k-1}}<\frac{1}{2 B_{2 k-1}}
$$

because $\log \theta<6$, and so

$$
0<\frac{r}{B_{2 k-1}}-\frac{1}{\log \theta}<\frac{1}{2 B_{2 k-1}^{2}}
$$

This implies that $r / B_{2 k-1}$ is an oddth convergent to $1 / \log \theta$, i.e., there are positive integers c, i with $B_{2 k-1}=c S_{2 i-1}$ and $2 c^{2}<\tau_{2 i}$. This completes the proof of Lemma 12 .

Proof of Theorem 6. Set $a_{0}=0, a_{1}=2, a_{2 k}=4$ for all $k \geq 1$, and let the $a_{2 k+1}$ be arbitrary positive integers, giving us uncountably many options; the choices $a_{2 k+1}=c$ lead to $\theta=e^{4-c+\sqrt{c(c+1)}}$. Define θ through

$$
\frac{2}{\log \theta}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right],
$$

which is clearly irrational, and let B_{k} be its continuants. Now,

$$
[0 ; 2,4]<\frac{2}{\log \theta}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=\left[0 ; 2,4, a_{3}, 4, a_{5}, \ldots\right]<[0 ; 2]
$$

and so $e^{4}<\theta<e^{9 / 2}<e^{6}$. We take $\delta=2$, and since

$$
\frac{(\log \theta)^{3}}{60 \delta}<1,
$$

we may take $k_{0}=3$. As

$$
\lambda_{2 k}>a_{2 k}=4>\frac{6}{4-2}>\frac{6}{\log \theta-2},
$$

Lemma 12 tells us that $B_{2 k-1}($ for $k \geq 3)$ is in $\mathcal{Q}_{\theta} \cup \mathcal{A}_{\theta}$. We will show that $B_{2 k-1}$ is not in \mathcal{Q}_{θ}, and this will prove that \mathcal{A}_{θ} is infinite.

Let S_{k} denote the k th convergent to $1 / \log \theta$. Since $a_{2 k}$ is always even, we have

$$
\frac{1}{\log \theta}=\frac{1}{2} \frac{2}{\log \theta}=\frac{1}{2}\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=\left[\frac{a_{0}}{2} ; 2 a_{1}, \frac{a_{2}}{2}, 2 a_{3}, \ldots\right],
$$

that is, the simple continued fraction of $1 / \log \theta$ is $\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$ where $b_{0}=0$, $b_{1}=4, b_{2 k}=2$, and $b_{2 k+1}=2 a_{2 k+1}$ for $k \geq 1$. We have $S_{0}=B_{0}=1$, $S_{1}=2 B_{1}=4, S_{2}=B_{2}=9$, and the recursion relations for $k \geq 2$:

$$
\begin{aligned}
B_{2 k} & =4 B_{k-1}+B_{k-2}, & S_{2 k} & =2 S_{2 k-1}+S_{2 k-2}, \\
B_{2 k-1} & =a_{2 k-1} B_{2 k-2}+B_{2 k-3}, & S_{2 k-1} & =2 a_{2 k-1} S_{2 k-2}+S_{2 k-3} .
\end{aligned}
$$

These imply that $B_{2 k}=S_{2 k}$ and $2 B_{2 k+1}=S_{2 k+1}$ for all $k \geq 0$.
If $B_{2 k-1} \in \mathcal{Q}_{\theta}$, then there are positive integers c, i with $B_{2 k-1}=c S_{2 i-1}$ and $\tau_{2 i}>2 c^{2}$, where

$$
\tau_{i}:=\left[0, b_{i-1}, b_{i-2}, \ldots, b_{1}\right]+\left[b_{i} ; b_{i+1}, b_{i+2}, \ldots\right] .
$$

Clearly, $\tau_{2 i}<b_{2 i}+2=4$, so that necessarily $c=1$. If $k \geq 3$ and $B_{2 k-1}=$ $S_{2 i-1}$ for some $i \geq 1$, then $B_{2 k-1}=S_{2 i-1}=2 B_{2 i-1}$ and so $i<k$. But then

$$
\begin{aligned}
2 B_{2 i-1}=B_{2 k-1} & >B_{2 k-2}+B_{2 k-3}=\left(4 B_{2 k-3}+B_{2 k-4}\right)+B_{2 k-3} \\
& >5 B_{2 k-3} \geq 5 B_{2 i-1},
\end{aligned}
$$

which is absurd. Therefore, there are no such c, i, and so $B_{2 k-1} \notin \mathcal{Q}_{\theta}$.
6. The identities stated in the first paragraph, $\theta=2$ and $\theta=e^{\sqrt{2}}$. Set $\theta=e^{\sqrt{2}}$. Because

$$
\frac{2}{\log \theta}=\sqrt{2}=[1 ; 2,2,2, \ldots]
$$

and for all $k \geq 1$,

$$
\lambda_{2 k}<4<3 \sqrt{2}=\frac{6}{\log \theta}
$$

Lemma 11 tells us that \mathcal{A}_{θ} is empty. By definition, $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta-1 / 2\rfloor$ for all $n \in \mathbb{N}$, and $M_{\theta}(n)=\lfloor n / \log \theta-1 / 2\rfloor$ for all $n \geq 3>\log _{2} \theta=$ $\sqrt{2} / \log 2$.

In the first sentence of this paper, we claimed $M_{\theta}^{\prime}(n)=\lfloor n / \log \theta-1 / 2\rfloor$ for all nonzero n, which we deduce now from the positive n case. Assume $n>0$. Since $\lfloor-x\rfloor=-\lfloor x\rfloor-1$ for positive nonintegers x, we get

$$
\begin{aligned}
M_{\theta}^{\prime}(-n) & =\left\lfloor\frac{1}{\theta^{1 /-n}-1}\right\rfloor=\left\lfloor\frac{-\theta^{1 / n}}{\theta^{1 / n}-1}\right\rfloor \\
& =\left\lfloor\frac{-\theta^{1 / n}}{\theta^{1 / n}-1}+\frac{\theta^{1 / n}-1}{\theta^{1 / n}-1}-1\right\rfloor \\
& =\left\lfloor-\frac{1}{\theta^{1 / n}-1}\right\rfloor-1=-\left\lfloor\frac{1}{\theta^{1 / n}-1}\right\rfloor-2=-M_{\theta}^{\prime}(n)-2,
\end{aligned}
$$

making use of the Gelfand-Schneider theorem to be certain that

$$
\frac{1}{\theta^{1 / n}-1}=\frac{1}{e^{\sqrt{2} / n}-1}
$$

is not an integer. Continuing, we find

$$
\begin{aligned}
M_{\theta}^{\prime}(-n) & =-M_{\theta}^{\prime}(n)-2=-\left\lfloor\frac{n}{\log \theta}-\frac{1}{2}\right\rfloor-2 \\
& =\left\lfloor-\left(\frac{n}{\log \theta}-\frac{1}{2}\right)\right\rfloor-1 \\
& =-\left\lfloor\frac{-n}{\log \theta}-\frac{1}{2}\right\rfloor
\end{aligned}
$$

where we have used the value and irrationality of $\log \theta=\sqrt{2}$ to guarantee that $n / \log \theta-1 / 2$ is positive and not an integer. This establishes (1) for negative n.

Now, set $\theta=2$, and take n such that $n \in \mathcal{A}_{\theta}$. As $\log 2$ is irrational and $2 / \log 2<3$, we can apply Lemma 11 to deduce that there are positive integers c, k such that $n=c B_{2 k-1}$ and $\lambda_{2 k}>6 c^{2} / \log 2$ (where B_{i}, λ_{i} correspond to the continued fraction of $2 / \log 2$). It is not difficult to compute $\lambda_{2}, \lambda_{4}, \ldots, \lambda_{34}$ and find that only λ_{2} is greater than $6 / \log 2$. Therefore, our only candidate for \mathcal{A}_{2} less than $B_{35}=777451915729368$ is $B_{1}=1$ (we
have to consider the multiples $c B_{1}$ with $8.73>\lambda_{2}>6 c^{2} / \log 2>8.65 c^{2}$, that is, $c=1$). Direct calculation shows that in fact B_{1} and B_{35} are both in \mathcal{A}_{θ}. This completes our justification of the claims made in our opening paragraph. This is essentially the same as the computation of the sequence A129935 in the OEIS [7].
7. More problems. Nathanson [5, Section 5] gives a list of problems concerning $M_{\theta}(n)$. Several of these are solved (explicitly or implicitly) in the current work, but those concerning small n or letting θ vary are not addressed here. To his list, we add the following problems:
(1) Is $\mathcal{A}_{e^{e}}$ infinite?
(2) Are there θ, τ with both \mathcal{A}_{θ} and \mathcal{A}_{τ} infinite, but the symmetric difference $\mathcal{A}_{\theta} \triangle \mathcal{A}_{\tau}$ finite?
(3) For every θ_{0}, are there uncountably many $\theta>\theta_{0}$ with \mathcal{A}_{θ} finite?
(4) What is the Hausdorff dimension of $\left\{\theta>1: \mathcal{A}_{\theta}\right.$ is finite $\}$?
(5) Is there any algebraic θ for which \mathcal{A}_{θ} can be proved finite? Infinite?

Acknowledgements. This work grew out of discussions with Melvyn B. Nathanson, to whom I am profoundly grateful for his problems, advice, and ideas.

Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York.

References

[1] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[2] L. Euler, De summis serierum reciprocarum, Comment. Acad. Sci. Petropolitanae 7 (1740), 123-134; http://eulerarchive.maa.org/pages/E041.html.
[3] S. W. Golomb and A. W. Hales, Hypercube tic-tac-toe, in: More Games of No Chance (Berkeley, CA, 2000), Math. Sci. Res. Inst. Publ. 42, Cambridge Univ. Press, Cambridge, 2002, 167-182; http://library.msri.org/books/Book42/files/golomb.pdf.
[4] W. J. LeVeque, On the frequency of small fractional parts in certain real sequences. IV, Acta Arith. 31 (1976), 231-237.
[5] M. B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly 120 (2013), 409-429.
[6] M. B. Nathanson, Shatrovskiu's construction of thin bases, arXiv:0906.1241 (2009).
[7] OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, 2012, http:// oeis.org/
[8] H. Rademacher, Topics in Analytic Number Theory, Grundlehren Math. Wiss. 169, Springer, New York, 1973.
[9] A. M. Rockett and P. Szüsz, Continued Fractions, World Sci., River Edge, NJ, 1992.
[10] W. M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. 110 (1964), 493-518.

Kevin O'Bryant
Department of Mathematics
College of Staten Island (CUNY)
Staten Island, NY 10314, U.S.A.
and
CUNY Graduate Center
New York, NY 10016, U.S.A.
E-mail: obryant@gmail.com

Received on 11.10.2014
and in revised form on 27.2.2015

[^0]: 2010 Mathematics Subject Classification: Primary 11B83, 11J99, 11J70.
 Key words and phrases: fractional parts of roots, uniform distribution, continued fractions.

