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1. Introduction. We work within a fixed algebraic closure Q of Q
throughout this paper. We write h for the usual absolute logarithmic height
on algebraic numbers. If K is a subfield of Q, then K satisfies the Bo-
gomolov property, (B), if there exists some ε > 0 such that there is no
element α ∈ K× such that 0 < h(α) < ε. This definition was first stated
in [9]. Recall that h(α) = 0 if and only if α is a root of unity [8, Theorem
1.5.9]. We introduce the following generalization of (B) to relative exten-
sions.

Definition 1.1. Let Q ⊆ K ⊆ L ⊆ Q be fields. We say that L/K is
Bogomolov, or that L/K satisfies the relative Bogomolov property, (RB), if
there exists ε > 0 such that

{α ∈ L× | 0 < h(α) < ε} ⊆ K.
In other words, L/K satisfies (RB) if and only if there is no sequence

{αn} ⊆ L× \ K× with 0 < h(αn) → 0 as n → ∞. The following facts are
immediate from the definition.

Proposition 1.2. Suppose K ⊆ L ⊆M are subfields of Q.

(a) If K satisfies (B) (in particular if K/Q is finite), then L/K is Bo-
gomolov if and only if L satisfies (B).

(b) M/K is Bogomolov if and only if M/L and L/K are both Bogomolov.
(c) If L \ K contains a root of unity and L/K is Bogomolov, then K

satisfies (B).

Part (c) follows because multiplying an algebraic number by a root of
unity does not affect the height. Therefore, if K× contains a sequence with
positive height tending to zero, then so does L× \K×.

It has already been shown that finite extensions may not satisfy (RB).
For instance, it is demonstrated in [2, Example 5.3] that Qtr(i)/Qtr is not
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Bogomolov. Here Qtr denotes the maximal totally real extension of Q, which
satisfies (B) (see [18]). Interestingly, Pottmeyer [17] has recently stated
a bound that implies that every finite extension of Qtr(i) (the so-called
“maximal CM field”) satisfies (RB), using an archimedean estimate of
Garza [12].

One of the main aims of the present paper is simply to construct examples
of extensions L/K which satisfy (RB) even though K does not satisfy (B).
Example 4.2 is one where L/K is infinite—this construction uses our results
from Section 3. Example 4.1 shows a finite extension L/K which does not
satisfy (RB). This example is quite elementary and does not rely on other
results in this paper.

It is natural to ask what conditions can be placed on a field K of alge-
braic numbers to ensure that there exists at least one relative Bogomolov
extension L/K. In this respect we prove the following, our main result.

Theorem 1.3. Let K/Q be an algebraic extension. Assume there exists a
(finite) rational prime ` and a number field F ⊆ K such that no prime of OF
lying over ` is ramified in K/F (in particular this holds if K/Q is Galois and
some prime ` has finite ramification index in K). Then there exist relative
Bogomolov extensions L/K. These extensions can be constructed explicitly
of the form K(

√̀
α ) for appropriately chosen elements α ∈ K.

This theorem should be compared with [9, Theorem 2], which states that
a Galois extension of the rationals with a bounded local degree (ramification
index times inertial degree) has the Bogomolov property.

We briefly describe what is known on fields with the Bogomolov property
in order to put our results in context. Schinzel [18] showed in 1973 that
there is a positive lower bound on the height of totally real numbers outside
of {±1}, establishing (B) for the maximal totally real field Qtr. This can
be described as an “archimedean” height estimate, and was generalized by
Garza to a lower bound on the height of algebraic numbers with at least
one real conjugate [12]. Another common approach that has been used (for
example for the archimedean part of the argument in [13]) for archimedean
estimates is equidistribution, starting with Bilu’s theorem [7], but these
techniques will not be used in the current paper in favor of the Schinzel–
Garza inequality.

One non-archimedean strategy originates in Amoroso and Dvornicich’s
paper [3], where it is shown that (B) is enjoyed by the maximal abelian exten-
sion Qab of Q, which was generalized to relative extensions and strengthened
considerably in [4] and [5]. Their strategy involves estimating how close a
certain automorphism in a Galois group is to the action of raising an element
to a power, with respect to a place lying over some auxilliary prime. This
strategy is quite powerful and is also used in [13], the elliptic curve analogue
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of [3] (1), and in [2], where it is summarized nicely by their Lemma 2.2. The
main theorem (Theorem 1.2) of the latter paper generalizes both the results
on abelian extensions and [9, Theorem 2], which states that (B) is satisfied
by a field having bounded local degrees above some rational prime.

In our present efforts to prove that a relative extension L/K is Bo-
gomolov when K may not satisfy (B), it is not clear that the Amoroso–
Dvornicich technique can be used to produce any new results. Instead we
appeal to more classical bounds in terms of ramification. Our main tool is
the lower bound [19, Theorem 2], due to Silverman. This bound is written
in notation more similar to ours in [20, Section 3], where the author uses it
effectively to give examples of fields satisfying the closely related Northcott
property, (N). This stronger property, first defined along with (B) in [9], is
satisfied by a field K if for any T at most finitely many points in K have
height at most T . Silverman’s inequality generalizes to the relative case a
type of bound going back to Theorem 1 of Mahler [15], which is exactly the
lower bound used in [9, Theorem 2], where as mentioned before the authors
exploit the existence of a bound on local degrees above some finite rational
prime. Our Theorem 1.3 has the related hypothesis of finite ramification
above a prime—for this theorem we also require an archimedean estimate
coming from the above-stated theorem of Garza.

The rest of this paper is organized as follows. In Section 2 we intro-
duce notation and prove a criterion, Theorem 2.4, for when we can use
ramification information to conclude that a finite relative extension L/K is
Bogomolov. In Section 3 we describe how to apply these techniques to bound
below the heights of elements properly contained in an extension of the form
K(
√̀
α), using Hecke’s classical theory of ramification in Kummer extensions.

We combine this with the archimedean Schinzel–Garza inequality to prove
Theorem 1.3. Finally, in Section 4 we construct the aforementioned explicit
examples.

We conclude the introduction by mentioning a few questions for further
investigation. As mentioned above, if L \K contains a root of unity ζ and
if K does not satisfy (B), then L \K contains elements of arbitrarly small
positive height of the form ζα, with α ∈ K. If one could construct such an
extension where the only elements of small height in L \K were obtained
by multiplying elements of K by roots of unity, this would suggest a weaker
version of (RB) that could be explored. Pottmeyer has shown that all finite
extensions of the maximal CM field are Bogomolov. In this same spirit,

(1) The theorem from [3] is a result about heights on Gm(Qab) = Gm(Q(Gm,tors)).
Theorem 1 of [13] replaces the inner Gm with an elliptic curve. Another well-known
analogue of [3] is the main result of [6], which is the analogous result for A(Qab), where
A is an abelian variety.
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it would be interesting to exhibit fields K ( Q admitting no Bogomolov
extensions. One easy example of this can be found if K is the subfield of Q
fixed by complex conjugation, i.e. Q∩R (if we first embed Q ↪→ C), but one
might expect this to happen for other fields K that are sufficiently “big”,
for example pseudo-algebraically closed (a “PAC field”, a field K such that
every geometrically irreducible variety over K has a K-rational point—see
[11, Chapter 11] for more; see [2, Section 6] for speculations on PAC fields
and property (B)). If this occurs for a field K satisfying (B), this field would
be maximal with respect to the Bogomolov property.

Note added in revision. Considering the question in the previous
paragraph of whether there exists an extension L/K where L \K contains
elements of arbitrarily small height, but only elements which are elements of
K multiplied by roots of unity: during revision the author was made aware of
the following example of an extension with this property, which comes from
a recent article of Amoroso. Let K = Q(21/3, 21/9, 21/27, . . . ), choosing the
real roots, say, and let L = K(ζ3, ζ9, ζ27, . . . ), where ζn denotes a primitive
nth root of unity. According to [1, Theorem 1.3], the only elements α of L
with height less than log(3/2)/18 are those where αn is a power of 2 for some
integer n, and all such elements are roots of unity times elements of K.

2. Lower bounds and a ramification criterion for (RB). First we
establish some notation. For a finite extension of number fields M/F , we
write DM/F for the relative discriminant, DM/F for the relative different,
and NM/F for the relative ideal norm. Recall that DM/F is an ideal in the
ring of integers OF , while DM/F is an ideal of OM , and we have

DM/F = NM/F (DM/F ).

(This is often taken as the definition of the discriminant.) It is an elementary
result [16, Theorem 4.16] that DM/F is generated by the set of differents
δM/F (β) of integral generators β of the extension M/F . Here if β ∈ OM
and M = F (β), the different δM/F (β) is defined to be f ′(β), where f is the
minimal polynomial for β over F . For a tower of number fields M ′/M/F we
will make use of the well-known identity

DM ′/F = D
[M ′:M ]
M/F NM/F (DM ′/M ) [16, Proposition 4.15].

A prime p of F will mean a prime ideal in the ring of integers OF ,
with corresponding non-archimedean valuation vp. If π is a uniformizing
parameter for the associated place v, and if p divides the rational prime `,

we normalize the absolute value | · |v so that |π|[F :Q]
v = `f , where f is the

associated residue class degree.
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The absolute logarithmic height of an algebraic number α is given by

h(α) =
∑
v

log+ |α|v,

the sum being taken over the places of any number field containing α. We
define the multiplicative height H(α) = exph(α). We will often use basic
facts about the height such as [8, Lemma 1.5.18 and Proposition 1.5.15]
without specific reference.

Let F be a number field of degree d over Q, and let K/F be an algebraic
extension. We define

ρ(K/F ) = lim sup{δ(M)/[M : F ] | F ⊆M ⊆ K, [M : F ] <∞},
where δ(M) denotes the number of archimedean places of M . In this con-
text the limit superior is taken over the directed set of finite subextensions
of K/F . In other words, ρ(K/F ) is the least real number ρ such that for any
finite extension M/F contained in K, there is a finite extension M ′/M with
M ′ ⊆ K such that δ(M ′)/[M ′ : F ] ≤ ρ. Note that d/2 ≤ ρ(K/F ) ≤ d, and
that ρ(L/F ) ≤ ρ(K/F ) for any tower L/K/F . Of course if K/F is finite,
then ρ(K/F ) = δ(K)/[K : F ].

We will apply the following inequality of Silverman [19, Theorem 2] (cf.
[20, Section 3]) to produce a ramification criterion for (RB).

Theorem 2.1 (Silverman). If γ generates a relative extension of number
fields B/M , where [B : M ] = s and [M : Q] = m, then

H(γ) ≥ s−
δ(M)

2m(s−1)NM/Q(DB/M )
1

2ms(s−1) .

This is a relative field discriminant version of a bound of Mahler [15,
Theorem 10]. Widmer exploited the dependence only on relative ramifica-
tion in this bound to produce a ramification criterion for the Northcott
property [20]. The following proposition illustrates our use of Silverman’s
inequality.

Proposition 2.2. Let M/F/Q be a tower of finite extensions, and let
d = [F : Q] and e = [M : F ]. Assume α generates an extension F ′/F
and that F ′ and M are linearly disjoint over F . Let M ′ = M(α). Suppose
γ ∈M ′× \M×. Let B = M(γ), C = B ∩F ′, and s = [B : M ] = [C : F ]. We
have

H(γ) ≥ s−
ρ(M/F )
2d(s−1)NF/Q

( De
C/F

gcd(De
C/F , D

s
M/F )

) 1
2des(s−1)

.(2.1)

In particular, if no prime ramifying in F ′/F is ramified in M/F , then

H(γ) ≥ s−
ρ(M/F )
2d(s−1)NF/Q(DC/F )

1
2ds(s−1) .(2.2)
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Fig. 2.3. Diagram of the fields described in Proposition 2.2

Proof. We apply Silverman’s inequality to the extension B/M . Since
M/F is finite, we have δ(M)/e = ρ(M/F ), and thus we obtain

H(γ) ≥ s−
ρ(M/F )
2d(s−1)NM/Q

(
DB/M

) 1
2des(s−1) .(2.3)

Using basic properties of relative norms and discriminants, we get

NM/Q(DB/M ) = NF/Q(NM/F (DB/M )) = NF/Q

(
DB/F

Ds
M/F

)
.

Since DB/F is divisible by both De
C/F and Ds

M/F , we now have

NM/Q(DB/M ) ≥ NF/Q

( lcm(De
C/F , D

s
M/F )

Ds
M/F

)
= NF/Q

( De
C/F

gcd(De
C/F , D

s
M/F )

)
.

Combining this inequality with (2.3) completes the proof of (2.1). Inequality
(2.2) follows immediately.

Now we move from the case of a finite extension M/F to that of an infi-
nite extension K/F , which leads to a criterion for a finite relative extension
to satisfy (RB).

Theorem 2.4. Let K/Q be an infinite algebraic extension, and let L =
K(α) be a finite extension of K. Let f(x) denote the minimal polynomial
for α over K. Let F be a number field such that F ⊆ K and [F (α) : F ] =
[L : K] (2). Let d = [F : Q], ρ = ρ(K/F ), and F ′ = F (α). Assume that F ′

and K are linearly disjoint over F , and that no prime ramifying in F ′/F is

(2) This is satisfied, for example, if F contains the coefficients of f(x).
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ramified in K/F . If γ ∈ L× \K×, then

(2.4) H(γ) ≥ min{(NF/Q(DC/F )s−ρs)
1

2ds(s−1) |
F ( C ⊂ F ′, s = s(C) = [C : F ]}.

In particular, if for each field C with F ( C ⊆ F ′ we have

NF/Q
(
DC/F

)
> sρs,(2.5)

where s = [C : F ] and ρ = ρ(K/F ), then L/K is Bogomolov.

L = K(α)

K

K(γ)

M(γ)

M

M ′= M(α)

F ′ = F (α)

C

F

Q

s

s

s

∞

finite

d

Fig. 2.5. Diagram of the fields involved in the proof of Theorem 2.4

Proof. Let M/F be a finite extension with M ⊆ K and [M(γ) : M ] =
[K(γ) : K]; for example, we may create M by adjoining to F the coefficients
of the minimal polynomial for γ over K. Notice that, since no prime rami-
fying in F ′/F is ramified in K/F , none of these primes is ramified in M/F
either. Let C = M(γ) ∩ F ′. Then Proposition 2.2 gives

H(γ) ≥ s−
ρ(M/F )
2d(s−1)NF/Q(DC/F )

1
2ds(s−1) ,

and since ρ(M/F ) ≤ ρ, inequality (2.4) follows. Moreover, if inequality (2.5)
is satisfied for all fields C with F ( C ⊆ F ′, then the lower bound in
(2.4) is greater than 1 and depends only on K and L, and therefore L/K is
Bogomolov

Remark 2.6. Notice that the lower bound in Theorem 2.4 depends on
the choice of a primitive element α. In fact α could be replaced by any
collection of elements which generate the finite extension L/K.
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3. Adjoining `th roots and the proof of Theorem 1.3. Exten-
sions formed by adjoining an `th root of an element, where ` is a prime, are
an easy source of examples in which we can successfully apply the bounds
of the previous section. An extension of prime degree has no intermediate
extensions, so application of Theorem 2.4 becomes much cleaner. Further-
more, the discriminants of such extensions when the base field contains a
primitive `th root of unity (Kummer extensions) are completely understood
thanks to classical work of Hecke (see [14, §39]; cf. [10, Section 10.2.3]). We
now illustrate how we can exploit this theory. We begin with the follow-
ing very general elementary lemma, which we will need to apply Hecke’s
theory to extensions where the base field may not contain an `th root of
unity. For understanding the statement and proof of this lemma we refer
the reader to the beginning of the previous section for relevant notation and
definitions.

Lemma 3.1. Let F1 and F2 be finite extensions of a number field F , and
assume that m = [F1 : F ] and n = [F2 : F ] are relatively prime. Let F3

denote the compositum F1F2. If a is an ideal of OF such that

(3.1) aOF2 |DF3/F2
,

then a |DF1/F .

Proof. Since m and n are relatively prime, we know that F1 ∩ F2 = F .
Any element β ∈ OF1 which generates the extension F1/F , i.e. such that
F1 = F (β), is also a primitive generator of the extension F3/F2, and has
the same minimal polynomial over F2 as over F . Since DF1/F is gener-
ated as an ideal of OF1 by the differents of all such integral generators,
and DF3/F2

is likewise generated by the differents of the integral elements
which generate the field extension F3/F2, we immediately conclude that
DF1/FOF3 ⊆ DF3/F2

, or equivalently

(3.2) DF3/F2
| DF1/FOF3 .

Notice that

NF3/F (DF3/F2
) = NF2/F (NF3/F2

(DF3/F2
)) = NF2/F (DF3/F2

),

while

NF3/F (DF1/FOF3) = NF1/F (NF3/F1
(DF1/FOF3))

= NF1/F (D[F3:F1]
F1/F

) = Dn
F1/F

.

Therefore taking the norm NF3/F of each side of (3.2) preserves this
divisibility condition and yields

(3.3) NF2/F (DF3/F2
) |Dn

F1/F
.
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Now we take the norm NF2/F of both sides of (3.1) and apply (3.3) to achieve

an |NF2/F (DF3/F2
) |Dn

F1/F
;

the lemma follows.

Our next lemma illustrates how we can apply Hecke’s theory and will be
used in our proof of Theorem 1.3.

Lemma 3.2. Let F be a number field, ` a rational prime, and let π be
an element of OF such that vp(π) = 1 for all primes p of F lying over `. Let
π1/` denote a root of the polynomial f(x) = x` − π, and set F ′ = F (π1/`).
Then

``OF | DF ′/F .

Proof. The polynomial f(x) ∈ O[x] is irreducible, since by construction
it is Eisenstein with respect to any prime p lying over `. Let F2 = F (ζ`),
where ζ` is a primitive `th root of unity, and let F3 = F2F

′. Let p be any
prime of F lying over `, and note that p is totally ramified in F2/F . We
let P denote the prime of F2 lying over p, so we have pOF2 = Pn, where
n = [F2 : F ]. Note that n | (`− 1), so n is relatively prime to ` = [F ′ : F ].

We wish to apply Hecke’s theorem, as stated in [10, Theorem 10.2.9],
to the extension F3 = F2(π1/`) and the prime P. Let e(p|`) and e(P|`)
denote respectively the absolute ramification indices of p and P, so that
e(P|`) = ne(p|`). Since vP(π) = n is not divisible by `, we are in case (1) of
the mentioned theorem, and we have

vP(DF3/F2
) = `− 1 + `e(P|`) = `− 1 + `ne(p|`) ≥ `ne(p|`).

This means that P`ne(p|`) = p`e(p|`)OF2 divides DF3/F2
. By Lemma 3.1 (with

F1 = F ′) we then have p`e(p|`) |DF ′/F . Combining this for each prime p lying
over `, we get

DF ′/F ⊆
∏
p|`

p`e(p|`) = ``OF .

Proof of Theorem 1.3. Let K/Q be an algebraic extension, and let ` be
a rational prime. Let F be a number field such that F ⊆ K and no primes
of F lying over ` are ramified in K/F , and set d = [F : Q]. Let π be an
element of OF such that vp(π) = 1 for each prime p of F lying over `. Such
an element exists by the Chinese Remainder Theorem (see for example [16,
Corollary 2 of Proposition 1.14]). We let F ′ = F (π1/`) for some choice of
the root. We note as in the proof of Lemma 3.2 that [F ′ : F ] = `, since the
polynomial x` − π is irreducible over F . Lemma 3.2 tells us that

``OF |DF ′/F ,
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and therefore

NF/Q(DF ′/F ) ≥ ``d.

Let L = K(π1/`). We want to show that L/K is Bogomolov. If p is a
prime of F lying over `, we know p is unramified in K/F and totally ramified
in F ′/F , so K and F ′ are linearly disjoint over F .

First suppose that ρ(K/Q) < 1, so that ρ := ρ(K/F ) < d. Our construc-
tion now gives

NF/Q(DF ′/F ) ≥ `d` > `ρ`,(3.4)

and therefore L/K is Bogomolov by Theorem 2.4. (Note that there are no
intermediate fields between F and F ′, since [F ′ : F ] = `.) More specifically,
let γ ∈ L \K, so that ` = [K(γ) : K]. Then, combining (2.4) and (3.4) we
obtain

H(γ) ≥ {NF/Q(DF ′/F )`−ρ·`}
1

2d`(`−1)(3.5)

≥ {`d``−ρ·`}
1

2d`(`−1) ≥ `
d−ρ

2d(`−1) > 1,

and in this case we are done using only our ramification criterion.

If ρ = d, we will have to use the following archimedean estimate of Garza.

Theorem 3.3 (Garza [12]). Let K be a number field of degree d over Q
with r real places and r′ complex places. If K = Q(γ), then

H(γ) ≥
(
2−d/r +

√
1 + 4−d/r

) r
2d .(3.6)

Now we fix an arbitrary real number θ ∈
(

2`−1
2` , 1

)
. If ρ(M/Q) ≤ θ, then

as in (3.5) we have

H(γ) > `
1−θ

2(`−1) > 1.(3.7)

On the other hand, if ρ(M/Q) > θ, let r and s denote the number of real
and complex archimedean places of M , respectively. Notice that M(γ) =
M(
√̀
α) has r real places and r(`− 1)/2 + s` complex places. This means

that

ρ(Q(γ)/Q) ≥ ρ(M(γ)/Q) =
r + r(`− 1)/2 + s`

`[M : Q]

= ρ(M/Q)− rm

[M : Q]

(
`− 1

2`

)
> θ − `− 1

2`
.

If Q(γ) has r′ real places and s′ complex places, then

r′

d′
= 2ρ(Q(γ)/Q)− 1 > 2θ − 1− `− 1

`
> 0

by our choice of θ > 2`−1
2` .
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Now we may bound below the height of γ by an absolute constant using
(3.6). Explicitly, writing φ = 2θ − 1− (`− 1)/`, we have

H(γ) ≥
(
2−1/φ +

√
1 + 4−1/φ

)φ/2
> 1.(3.8)

Either (3.7) or (3.8) must hold. Taking the minimum of these bounds, we
see that H(γ) is bounded below by a constant greater than 1 which depends
only on `, and our proof of Theorem 1.3 is complete.

4. Examples. After establishing the following two examples, it is clear
that, even if K does not satisfy (B), an extension L/K may or may not
satisfy (RB), independent of whether L/K is finite or infinite.

Example 4.1 (L/K not Bogomolov). Let b be a non-square rational
number and let K = Q(b1/2, b1/4, b1/8, . . . ), for any choices of the roots.
Notice that b1/3 6∈ K, and let L = K(b1/3). The extension L/K is not
Bogomolov. To see this, consider the elements b1/3bx ∈ L \ K, where x is
a rational number close to −1/3 with denominator a power of 2. Notice
that h(b1/3bx) = h(bx+1/3) = (x + 1/3)h(b) → 0 as x → −1/3. Many simi-
lar examples can be constructed easily, including of course infintie relative
extensions.

Example 4.2 (L/K Bogomolov). Let K = Q(31/3, 31/9, 31/27, . . . ),
and note that 3 is the only rational prime that ramifies in K. Let 3 <
p1 < p2 < · · · be an infinite sequence of primes congruent to 3 (mod 4). Set
K0 = K, and for each n ≥ 1 set Kn = Kn−1(

√
pn). For a given n ≥ 1,

we wish to apply Proposition 2.2 to estimate the height of an element
γ ∈ K×n \ Kn−1. To match the notation of Proposition 2.2 we set F = Q
and choose M ⊆ Kn−1 to be a number field containing

√
p1, . . . ,

√
pn−1

and the coefficients for the minimal polynomial of γ over Kn. We use
C = F ′ = Q(

√
pn). Note that in this case NF/Q(DC/F ) is simply the dis-

criminant of the quadratic field, which in this case is pn. We have the trivial
estimate ρ(M/F ) ≤ d, so applying (2.2), we get

H(γ) ≥ 2−1/2p1/4
n =

(
pn
4

)1/4

≥
(
p1

4

)1/4

.

Letting L =
⋃
nKn, we now see that L/K is an infinite Bogomolov exten-

sion, and in fact L can be constructed so that the lower bound on the height
of an element of L× \K× is arbitrarily large.

If the roots 31/3i are chosen in a compatible way (e.g. if we fix an em-
bedding Q ↪→ C and impose that the roots are all real), then K has the
property that all of its proper subfields are finite extensions of Q. (The in-

terested reader will verify that the only subfields of Q(31/3n) are Q(31/3i),
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0 ≤ i ≤ n.) Therefore, not only does K fail to satisfy (B), but it is not a
Bogomolov extension of any subfield.
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