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1. Introduction. In 1941, R. J. Duffin and A. C. Schaeffer [DS] made a
conjecture on a Diophantine approximation problem. The conjecture states
that the inequality

(1.1)

∣∣∣∣α− m

n

∣∣∣∣ < ψ(n)

n
, (m,n) = 1,

has infinitely many solutions in positive integers m and n for almost all
real numbers α if and only if

∑∞
n=2 φ(n)ψ(n)n−1 = ∞. If this series con-

verges, then we can easily see that (1.1) has only finitely many solutions
in positive integers m and n for almost all α. So the only difficulty is
proving that (1.1) has infinitely many solutions for almost all α whenever∑∞

n=2 φ(n)ψ(n)n−1 =∞. R. J. Duffin and A. C. Schaeffer also gave a suffi-
cient condition on ψ(n) for (1.1) to have infinitely many solutions a.e., which
is called the Duffin–Schaeffer theorem. In 1950, J. W. S. Cassels [C] showed
that the inequality |α −m/n| < ψ(n)/n without the condition (m,n) = 1
has infinitely many solutions for either almost all α or almost no α. Then
in 1961, P. X. Gallagher [G] added the condition (m,n) = 1, and proved
that (1.1) has infinitely many solutions for either almost all α or almost
no α. In 1970, P. Erdős [E] showed that if ψ(n) = 0 or ψ(n) = εn−1 for all
n ∈ N and some ε > 0, then (1.1) has infinitely many solutions in positive
integers m and n for almost all α if

∑∞
n=2 φ(n)ψ(n)n−1 diverges. In 1978,

J. D. Vaaler [V] gave a more general result following P. Erdős’ idea. More
precisely, he proved that (1.1) has infinitely many solutions in positive in-
tegers m and n for almost all α if ψ(n) = O(n−1) and

∑∞
n=2 φ(n)ψ(n)n−1

diverges.
Diophantine approximation of complex numbers was first considered in

1887 by A. Hurwitz [Hu], who discussed Diophantine approximation by con-
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tinued fractions over the quadratic fields Q(
√
−1) and Q(

√
−3). Since then,

a number of papers on this subject have appeared, such as [F], [P] and [N].
In 1982, D. Sullivan [S] gave a metric result on Diophantine approximation
over an imaginary quadratic field under a condition similar to the condition
of the Duffin–Schaeffer theorem. In 1991, H. Nakada and G. Wagner [NW]
proved a Duffin–Schaeffer type theorem over an imaginary quadratic field,
as well as a Gallagher type theorem.

In this paper, we discuss a further development of the metric theory
of Diophantine approximation over an imaginary quadratic field. Our main
result indicates that the difficulty of the complex number version of the
Duffin–Schaeffer conjecture is similar to that of the one-dimensional real
case. Indeed, we will show that a Vaaler type theorem holds in this case,
and then we find the same difficulty as in the case of real numbers for proving
the complex version of the Duffin–Schaeffer conjecture. We refer to [HPV]
and [BHHV] for the recent developments on the original Duffin–Schaeffer
conjecture.

For a given square-free negative integer d, we consider

Q(
√
d) = {p+ q

√
d : p, q ∈ Q}

and its maximal order

Z[ω] = {m+ nω : m,n ∈ Z}
where

ω =

{
(1 +

√
d)/2 if d ≡ 1 (mod 4),√

d if d ≡ 2, 3 (mod 4).

In order to avoid the problem of different prime factor decompositions of
an integer in Z[ω], we consider ideals to get the uniqueness of prime factor
decomposition. For a ∈ Z[ω], we denote by (a) the principal ideal generated
by a. Then we can give a complex number version of the Duffin–Schaeffer
conjecture as follows: the inequality

(1.2)

∣∣∣∣z − a

r

∣∣∣∣ < Ψ((r))

|r|
, (r, a) = (1),

has infinitely many solutions in r, a ∈ Z[ω] for almost all z ∈ C if and only
if
∑
Φ((r))Ψ2((r))|r|−2 =∞. Here (r, a) denotes the ideal in Z[ω] generated

by r and a, and (r, a) = (1) means that r and a are coprime in terms of
ideals. We set

F = {z ∈ C : z = x+ yω, x, y ∈ R, 0 ≤ x, y < 1}.
Without loss of generality, we discuss our problems for almost all z ∈ F
instead of z ∈ C. The function Ψ((r)) is a non-negative real-valued function
defined on the set of principal ideals of Z[ω]. The function Φ((r)) is a complex
number version of Euler’s function over Z[ω], which counts the number of
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integers a ∈ Z[ω] relatively prime to r and a/r ∈ F, and it equals the
number of residue classes modulo the principal ideal (r). Then we have
Φ((r)) = |r|2

∏
P |(r)(1−N−1(P )), where P denotes prime ideals of Z[ω] and

N(·) denotes the norm of ideals.
Our main theorem is the following.

Theorem 1.1. If Ψ((r)) =O(|r|−1), then (1.2) has infinitely many solu-
tions in r, a∈Z[ω] for almost all z ∈C whenever

∑
Φ((r))Ψ2((r))|r|−2=∞.

We define E(r) as the set of complex numbers z which satisfy (1.2) for a
given r ∈ Z[ω], i.e.

E(r) =
⋃

a∈Z[ω]
a/r∈F

(a,r)=(1)

{
z :

∣∣∣∣z − a

r

∣∣∣∣ < Ψ((r))

|r|
, z ∈ F

}
.

To prove Theorem 1.1, it is enough to show

(1.3) λ
( ∞⋂
N=1

∞⋃
|r|2=N

E(r)
)

= lim
N→∞

λ
( ∞⋃
|r|2=N

E(r)
)

= 1

whenever Ψ((r)) = O(|r|−1) and
∑
Φ((r))Ψ2((r))|r|−2 =∞. Here λ denotes

the normalized Lebesgue measure on F.
We extend two theorems of Vaaler [V, Theorems 2 and 3] to imaginary

quadratic fields:

Theorem 1.2. Suppose there exist an integer k ≥ 2 and a real num-
ber η > 0 such that the following condition holds: every finite subset Z of
{k, k + 1, . . .} with 0 ≤ Λ(Z) ≤ η satisfies∑

|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s)) ≤ Λ(Z),(1.4)

where Λ(Z) =
∑
|r|2∈Z λ(E(r)). Then

∑
Φ((r))Ψ2((r))|r|−2=∞ implies (1.3).

Theorem 1.3. If Ψ((r)) = O(|r|−1), then there exists η > 0 such that
if Z is a finite subset of {2, 3, . . .} with 0 < Λ(Z) ≤ η, then∑

|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))� Λ2(Z)

(
ln ln

1

Λ(Z)

)2

.(1.5)

We note that (1.5) is stronger than (1.4) since there exists a large rational
integer k such that Λ(Z)(ln lnΛ(Z)−1)2 < 1 with Z = {k, k + 1, . . .}.

In the next section, we will prove Theorem 1.3 and then prove Theo-
rem 1.2, which will complete the proof of Theorem 1.1. We note that we do
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need the condition Ψ((r)) = O(|r|−1) in the proof of Theorem 1.3, but we
do not need it in the proof of Theorem 1.2.

2. Proof of main results. Throughout this section we will use N(·)
for the norm of an ideal over Z[ω], and use P (and Pj) for prime ideals.
We also use Ψ(·) to denote the number of residue classes modulo ideals, the
complex number version of Euler’s function.

We denote by g(R), for an ideal R of Z[ω], the smallest positive integer v
that satisfies ∑

P |R
N(P )>v

1

N(P )
< 1.

Before proving Theorem 1.3, we give some lemmas similar to Vaaler’s
estimates [V].

Lemma 2.1. If R is an ideal of Z[ω] and g(R) = v, then∏
P |R

N(P )≤v

(
1− 1

N(P )

)
� Φ(R)

N(R)
as v →∞.

Proof. From the formula for Euler’s function over ideals, we have

Φ(R) = N(R)
∏
P |R

(
1− 1

N(P )

)
.

Then ∏
P |R

N(P )≤v

(
1− 1

N(P )

)
=
Φ(R)

N(R)

∏
P |R

N(P )>v

(
1− 1

N(P )

)−1

=
Φ(R)

N(R)
exp

{ ∑
P |R

N(P )>v

ln

(
1− 1

N(P )

)−1}

≤ Φ(R)

N(R)
exp

{ ∑
P |R

N(P )>v

1

N(P )
+
∑
P

∞∑
j=2

1

jNj(P )

}
.

Moreover, ∑
P

∞∑
j=2

1

jNj(P )
≤
∑
P

1

N(P )(N(P )− 1)
<
∑
S

1

N2(S)
.(2.1)

Here
∑

S is a sum over all ideals of Z[ω]. In order to show the right side
of (2.1) converges, we first estimate the number T (N) of ideals whose norm
is less than or equal to a given rational integer N . By [H], there exists a
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constant k(d) such that

lim
N→∞

T (N)

N
= k(d),

which shows that uN = T (N)/N is bounded. Let Ti denote the number of

ideals whose norm is equal to i ∈ N. Then T (N) =
∑N

i=1 Ti. From TN =
NuN − (N − 1)uN−1, we have

N∑
N(S)=1

1

N2(S)
=

N∑
i=1

Ti
i2

<
uN
N

+
2

N2
uN−1 +

2

(N − 1)2
uN−2 + · · ·+ 2

22
u1

�
N∑
i=1

1

i2
as N →∞.

So the right side of (2.1) converges, which implies∏
P |R

N(P )≤v

(
1− 1

N(P )

)
� Φ(R)

N(R)
as v →∞.

We now give a corollary of Lemma 2.1 which we will use later.

Corollary 2.2. If R is an ideal of Z[ω] and g(R) = v, then

1� Φ(R)

N(R)
ln(1 + v) as v →∞.

Proof. Here we need M. Rosen’s [R] result on Mertens’ theorem for an
algebraic number field K:∏

N(P )≤x

(
1− 1

N(P )

)−1
= eγαK lnx+OK(1)

where γ > 0 and αK are constants. From Lemma 2.1 we have

1� Φ(R)

N(R)

∏
P |R

N(P )≤v

(
1− 1

N(P )

)−1
≤ Φ(R)

N(R)

∏
N(P )≤v

(
1− 1

N(P )

)−1

� Φ(R)

N(R)
ln(1 + v) as v →∞.

For ξ, x, v > 0, we define a collection N (ξ, x, v) of ideals of Z[ω] by

N (ξ, x, v) =

{
R :

∑
P |R

N(P )≥v

1

N(P )
≥ ξ, N(R) ≤ x

}
.
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We denote by #N (ξ, x, v) the number of ideals in N (ξ, x, v). Then we can
extend Vaaler’s estimate [V] to the complex number case as follows:

Lemma 2.3. For any ε, ξ, x > 0, we have

(2.2) #N (ξ, v, x)� x

ev
β(1−ε) as v →∞ with β = eξ.

Proof. Suppose 0 < ε < 1 − 1/eξ = 1 − 1/β. It is enough to show the
conclusion for such ε since the right side of (2.2) becomes larger if ε gets

larger. Let [v, w] be an interval with w = vβ(1−2ε/3). Let {P1, . . . , PM} be the
set of all prime ideals whose norms are in [v, w] with N(P1) ≤ · · · ≤ N(PM ).
Let π be the prime-counting function in the sense of ideals of Z[ω], i.e. π(w)
is the number of prime ideals whose norm is less than or equal to w. Then
we see M ≥ π(w)− π(v). We have the equality

vβ(1−2ε/3)

w
lnw −

v
ln v

=
β(1− ε/3) ln v

vβε/3 − β(1− ε/3)v1−β(1−2ε/3)
.

Since ε < 1−1/β, we have 1−β(1−2ε/3) < 0. Hence there exists an integer
v0(ε, ξ) > 0 such that w

lnw −
v

ln v ≥ v
β(1−2ε/3) for any v ≥ v0 and we have

M ≥ π(w)− π(v)� w

lnw
− v

ln v
≥ vβ(1−2ε/3) as v →∞

by the prime ideal theorem.

Next, we divide all the ideals in N (ξ, x, v) into two classes.

Class 1: There are no less than M different prime ideal factors of R
and their norms are all in the interval [v, ew]. By using Mertens’ theorem
on algebraic number fields [R],∑

N(P )≤x

1

N(P )
= ln lnx+BK +OK

(
1

lnx

)
where BK is a constant depending only on the algebraic number field K. We
denote by N1 the number of ideals of class 1. Then

N1 � x

(∑
v≤N(P )≤ew

1
N(P )

)M
M !

� x
(lnw)M

M !
as v →∞,

where w ≤M2. From Stirling’s formula we have

x
(lnw)M

M !
� 2M (eln lnM )M

M !
� x

2MeM+M ln lnM

MM
√

2πM
(2.3)

� x

ev
β(1−2ε/3)

as v →∞.

Class 2: There are less than M different prime ideal factors of R and
their norms are all in [v, ew]. By using Mertens’ theorem on algebraic num-
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ber fields [R], we have

M∑
j=1

1

N(Pj)
� ln lnw − ln ln v = ξ + ln

(
1− ε

3

)
< ξ − ε

3
as v →∞.

From∑
P |R

N(P )≥v≥g(R)

1

N(P )
=

∑
P |R

v≤N(P )≤w

1

N(P )
+

∑
P |R

w<N(P )≤ew

1

N(P )
+

∑
P |R

N(P )>ew

1

N(P )
≥ ξ

and the definition of class 2, we see that∑
P |R

v≤N(P )≤w

1

N(P )
+

∑
P |R

w<N(P )≤ew

1

N(P )
≤

∑
v≤N(P )≤w

1

N(P )
� ξ − ε

3
as v →∞.

So we have the estimate∑
P |R

N(P )>ew

1

N(P )
� ε

3
as v →∞.

The number of ideals R of class 2 is less than
∑

N(R)≤x 1 and so∑
N(R)≤x

1�
∑

N(R)≤x

3

ε

∑
P |R

N(P )>ew

1

N(P )
(2.4)

� 1

ε

∑
N(P )>ew

1

N(P )
· x

N(P )

<
x

ε

(
1

(ew)2
+

1

ew(ew + 1)
+

1

(ew + 1)(ew + 2)
+ · · ·

)
� 1

ε
· x

ev
β(1−2ε/3)

as v →∞.

The estimates (2.3) and (2.4) imply (2.2).

For a fixed r ∈ Z[ω] and ξ, v > 0 we define two collections Ar(ξ, v) and
Br(ξ, v) of ideals by

Ar(ξ, v) =

{
A : A | (r),

∑
P |A

N(P )≥v≥g((r))

1

N(P )
≥ ξ
}
,

Br(ξ, v) =

{
B : B | (r),

∑
P |B

N(P )≥v≥g((r))

1

N(P )
< ξ

}
.
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Lemma 2.4. For any ε, ξ > 0 and v ≥ g((r)),∑
A∈Ar(ξ,v)

1

N(A)
� ln(1 + g((r)))

ev
β(1−ε) as v →∞ with β = eξ.

Proof. Let w = vβ(1−ε/3), where 0 < ε < 1 − e−ξ = 1 − β−1. Suppose
there are M different prime ideals P1, . . . , PM with v ≤ N(P1) ≤ · · · ≤
N(PM ) ≤ w. Let J be any collection of M different prime ideals whose
norms are in [v,∞). Then from the proof of Lemma 2.3, we have∑

P∈J

1

N(P )
≤

M∑
j=1

1

N(Pj)
� ξ − ε

3
as v →∞.

For any A ∈ Ar(ξ, v), we have∑
P |A

N(P )≥v≥g((r))

1

N(P )
≥ ξ.

This implies that for all large v, there are at least M different prime ideal
factors of A whose norms are all in [v,∞). Let Q1, . . . , QJ be all different
prime ideal factors of (r).

Case 1: J < M . From the discussion above, Ar(ξ, v) = ∅ for all large v,
which means

∑
A∈Ar(ξ,v) N−1(A) = 0.

Case 2: J ≥M . Since v ≥ g((r)) and
∑J

j=1 N−1(Qj) < 1, we have

(2.5)
∑

A∈Ar(ξ,v)

1

N(A)
≤
∑
A|(r)

1

N(A)
·

(∑J
j=1

1
N(Qj)

)M
M !

<

(∑
A|(r)

1

N(A)

)
1

M !
.

Suppose (r) = Qγ11 · · ·Q
γJ
J where Q1, . . . , QJ are all different prime ideal

factors of (r) and γ1, . . . , γJ are positive integers. By Corollary 2.2, we have

(2.6)
∑
A|(r)

1

N(A)
=

(
1 +

1

N(Q1)
+

1

N2(Q1)
+ · · ·+ 1

Nγ1(Q1)

)

·
(

1 +
1

N(Q2)
+

1

N2(Q2)
+ · · ·+ 1

Nγ2(Q2)

)
· · ·
(

1 +
1

N(QJ)
+

1

N2(QJ)
+ · · ·+ 1

NγJ (QJ)

)
≤

∏
Q|(r)

Q a prime ideal

(
1− 1

N(Q)

)−1
� ln(1 + g((r))) as v →∞.
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From (2.3), (2.5), and (2.6), we have∑
A∈Ar(ξ,v)

1

N(A)
� ln(1 + g((r)))

ev
β(1−ε) as v →∞ with β = eξ.

Lemma 2.5. Suppose (s), (r) are two principal ideals with s, r ∈ Z[ω]
and U = (s, r). Then for ε, ξ, x > 0, y ≥ 2, and v ≥ g((r)), we have∑

(s)v

xN(U)<|s|2<xyN(U)

1

|s|2
� ln(1 + g((r))) ln y

ev
β(1−ε) as v →∞,(2.7)

∑
(s)v

xN−1(U)<|s|2<xyN−1(U)

1

|s|2
� ln(1 + g((r))) ln y

ev
β(1−ε) as v →∞,(2.8)

with β = eξ. Here
∑

(s)v means the sum over (s) satisfying g((s)) = v.

Proof. The right sides of (2.7) and (2.8) are both independent of U and x.
Thus, by choosing x properly, we see that (2.7) and (2.8) are equivalent. So
we only need to prove (2.7). Let (s) = US′ and (r) = UR′. Then

(2.9)
∑
(s)v

xN(U)<|s|2<xyN(U)

1

|s|2
=
∑
U |(r)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2

=
∑

U∈Ar(1/2,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
+

∑
U∈Br(1/2,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
.

Here we have∑
U∈Ar(1/2,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
=

∑
U∈Ar(1/2,v)

∑
(US′)v

(s,r)=U
x<N(S′)<xy

1

N(U)

1

N(S′)

≤
( ∑
U∈Ar(1/2,v)

1

N(U)

)( ∑
S′

x<N(S′)<xy

1

N(S′)

)
.

By using the same method as in the proof of Lemma 2.1, we estimate∑
S′

x<N(S′)<xy

1

N(S′)
� ln y as y →∞.
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From Lemma 2.4 we have∑
U∈Ar(1/2,v)

1

N(U)
� ln(1 + g((r)))

ev
β(1−ε) as v →∞,

and so

(2.10)
∑

U∈Ar(1/2,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
� ln(1 + g((r))) ln y

ev
β(1−ε) as v→∞.

Thus we get the desired estimate of the first term on the right side of (2.9)
with U ∈ Ar(1/2, v).

Now we consider the second term of the right side of (2.9) with U in
Br(1/2, v) and g((s)) = v. In this case we have

1 ≤
∑
P |(s)

N(P )≥v=g((s))

1

N(P )
≤

∑
P |U

N(P )≥v

1

N(P )
+

∑
P |S′

N(P )≥v

1

N(P )

<
1

2
+

∑
P |S′

N(P )≥v

1

N(P )
,

which shows
∑

P |S′,N(P )≥v N−1(P ) > 1/2. From Lemma 2.3, we see that∑
S′

x<N(S′)≤2x

1

N(S′)
<
( ∑

S′
x<N(S′)≤2x

1
)1

x
≤ #N (1/2, v, 2x)

x

� 1

ev
β(1−ε) as v →∞.

Thus we have∑
S′

x<N(S′)<xy

1

N(S′)
<

1

x

[y]∑
k=1

1

k

( ∑
S′

kx<N(S′)≤(k+1)x

1
)

≤ 1

x

(
1− 1

2

)
#N

(
1

2
, v, 2x

)
+

1

x

(
1

2
− 1

3

)
#N

(
1

2
, v, 3x

)
+ · · ·+ 1

x

1

[y]
#N

(
1

2
, v, ([y] + 1)x

)
�
(

1 +
1

2
+

1

3
+ · · ·+ 1

[y]

)
· 1

ev
β(1−ε)

� ln y · 1

ev
β(1−ε) as y →∞.
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This gives the estimate of the second term as follows:

(2.11)
∑

U∈Br(1/2,v)

∑
(s)(v)

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2

≤
( ∑
U∈Br(1/2,v)

1

N(U)

)( ∑
S′

x<N(S′)<xy

1

N(S′)

)
�
(∑
U |(r)

1

N(U)

)
ln y

ev
β(1−ε)

≤ |r|2

Φ((r))
· ln y

ev
β(1−ε) � ln(1 + g((r)))

ln y

ev
β(1−ε) as v →∞.

Now we can deduce the assertion of Lemma 2.5 from (2.10) and (2.11).

Proof of Theorem 1.3. Let r, s ∈ Z[ω] with (r) 6= (s). Set

δ = min

{
Ψ((r))

|r|
,
Ψ((s))

|s|

}
, ∆ = max

{
Ψ((r))

|r|
,
Ψ((s))

|s|

}
,

t = max{g((r)), g((s))}.
For a, b ∈ Z[ω] and given r and s, let

Ra =

{
z ∈ F :

∣∣∣∣z − a

r

∣∣∣∣ < Ψ((r))

|r|

}
, Sb =

{
z ∈ F :

∣∣∣∣z − b

s

∣∣∣∣ < Ψ((s))

|s|

}
.

Then
E(r) =

⋃
a∈Z[ω]
a/r∈F

(a,r)=(1)

Ra, E(s) =
⋃

b∈Z[ω]
b/s∈F

(b,s)=(1)

Sb.

If Ψ((r)) ≤ 1/2 and Ψ((s)) ≤ 1/2, then for any a1 6= a2 we have Ra1 ∩ Ra2
= ∅, and similarly for Sb. Then

λ(E(r) ∩ E(s)) =
∑
a/r∈F

(a,r)=(1)

∑
b/s∈F

(b,s)=(1)

λ(Ra ∩ Sb)(2.12)

≤ δ2
∑
a/r∈F

(a,r)=(1)

∑
b/s∈F

(b,s)=(1)

|a/r−b/s|<∆

1 = δ2
∑
a/r∈F

(a,r)=(1)

∑
b/s∈F

(b,s)=(1)

|as−br|<|r| |s|∆

1.

We define

H(k) =
{
{a, b} : a, b ∈ Z[ω], as− br = k, (a, r) = (b, s) = (1),

with a/r, b/s ∈ F
}
.

We will estimate the cardinality #H(k). Let U = (r, s) and S′ and R′ be
the ideals determined by (s) = US′ and (r) = UR′. Since ((a), R′) = (1)
and (S′, R′) = (1), we have (a)S′ 6= (b)R′, which shows #H(0) = 0. Since
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U | (as) and U | (br) imply U | (k), we have #H(k) = 0 if U - (k). So we only
need to consider k ∈ Z[ω] with U | (k). In this case, the principal ideal (k)
can be uniquely represented as (k) = U ·U(k) ·K1. Here U(k) is the ideal whose
prime ideal factors are all also prime ideal factors of U , and (K1, U) = (1).

If (K1, UR
′S′) 6= (1), then we can find a prime ideal P such that P |K1

and P |UR′S′. Since (K1, U) = (1), either P |R′ or P |S′. If P |R′, then
P | (br) and P - (s). Here P |R′ implies P - (a) and we have P - (as), which is
impossible since P | (k). We can use the same approach for the case of P |S′
and get the same conclusion. Hence if (K1, UR

′S′) 6= (1), then #H(k) = 0.

If (U(k), R
′S′) 6= (1), then we can find a prime ideal P with P |U(k)

and P |R′S′. If P |R′, there exists a positive integer n such that Pn |U and
Pn+1 -U . Then Pn+1 | (r), which means br ∈ Pn+1. From Pn+1 | (k), we see
that P | (a), which is impossible since ((a), R′) = (1) and P |R′. We can
use the same method for the case P |S′ and get the same conclusion. So if
(U(k), R

′S′) 6= (1), then #H(k) = 0.

Consequently, we only need to estimate #H(k) in the case (K1, UR
′S′)

= (1), (U(k), R
′S′) = (1) and N(U) ≤ |k|2. Suppose {a1, b1} and {a2, b2}

are two different pairs of integers in H(k) for a given k ∈ Z[ω]. Then
(a1 − a2)(s) = (b1 − b2)(r). So we have

(2.13) R′ | (a1 − a2) and S′ | (b1 − b2).

We consider the set of pairs (a, b) with a/r, b/s ∈ F such that any two of
them satisfy (2.13). Then its cardinality is |r|2N−1(R′) = N(U).

Next, we estimate the number of pairs of integers a, b in the above set
with (a, U) = (1) and (b, U) = (1). For this purpose we consider the pairs
of integers a, b with (a, U) 6= (1) or (b, U) 6= (1) and exclude them from
the pairs of integers a, b in the above set with |a| ≤ |r| and |b| ≤ |s|. Here
we assume aj , bj and al, bl are two different pairs of solutions of (2.13).
Now we estimate the number of pairs of integers a, b with (a, U) 6= (1) or
(b, U) 6= (1). Since U can be decomposed into U = P γ11 · · ·P

γj
j , we consider

two cases for P (= Pj).

Case 1: P |U , P -U(k), and P -R′S′. We will show that P | (aj) im-
plies P - (bj), which means that a, b are in different residue classes mod-
ulo P . Indeed, since R′ | (aj − al), S

′ | (bj − bl) and gcd(N(P ),N(R′)) =
gcd(N(P ),N(S′)) = 1, we have P | (aj − al) and P | (bj − bl). These show
UP - (k) and UP | (ajs), which means UP - (bjr) and thus P - (bj).

Case 2: P |U and either P |U(k) or P |R′S′.
(i) P |U(k) and P -R′S′. As in Case 1, we have P | (aj − al) and

P | (bj − bl). Since UP | (k) and UP | (ajs), we have UP | (bjr), which im-
plies P | (bj). So in this case P | (aj) implies P | (bj), which means that a, b
are in the same residue class modulo P .
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(ii) P |R′S′. Assume P |R′ and P -S′. Note that then P - (aj). Since
(P, S′) = (1), all the integers b are in the same residue class modulo P . In
this case, we only need to exclude the pairs a, b with P | (b). Similarly, for
P -R′ and P |S′, we only need to exclude a, b with P | (a).

From the above discussion, we have

(2.14) #H(k) ≤ N(U)
∏
P |U
P -U(k)

P -R′S′

(
1− 2

N(P )

) ∏
P |U

P |U(k)R
′S′

(
1− 1

N(P )

)

≤ N(U)
∏
P |U
P -U(k)

P -R′S′

(
1− 1

N(P )

) ∏
P |U
P -U(k)

P -R′S′

(
1− 1

N(P )

) ∏
P |U
P -U(k)

P |R′S′

(
1− 1

N(P )

)

×
∏
P |U
P |U(k)

P -R′S′

(
1− 1

N(P )

) ∏
P |U
P |U(k)

P |R′S′

(
1− 1

N(P )

)

= Φ(U)
∏
P |U
P -R′S′

(
1− 1

N(P )

) ∏
P |U(k)

(
1− 1

N(P )

)−1
.

Now we use some notation following Vaaler [V]:

J0 = {P : P |U, P -R′S′},
J1 = {P : P ∈ J0, N(P ) ≤ t},
J2 = {P : P ∈ J0, N(P ) > t},
Im = {I : I = P γ11 · · ·P

γk
k , P1, . . . , Pk ∈ Jm, γ1, . . . , γk ∈ Z}

with m = 0, 1, 2.

Since U(k) ∈ I0, we divide U(k) into two parts I1 ∈ I1 and I2 ∈ I2, with
U(k) = I1I2. Then, together with (2.14), we have the following estimate:

(2.15)

#H(k) ≤ Φ(U)
∏
P∈J1

(
1− 1

N(P )

)∏
P |I1

(
1− 1

N(P )

)−1∏
P∈J2

(
1− 1

N(P )

)∏
P |I2
(
1− 1

N(P )

)
≤ Φ(U)

∏
P∈J1

(
1− 1

N(P )

)∏
P |I1

(
1− 1

N(P )

)−1
.

Let
K = I2K1, Q =

∏
P |R′S′U
N(P )≤t

P.
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Since (K1, U) = (1) and (U(k), R
′S′) = (1), we have (K1, R

′S′U) = (1)
and (I2, R

′S′) = (1), which implies (K,Q) = (1). Then by using (2.12)
and (2.15), we get

(2.16) λ(E(r) ∩ E(s)) ≤ δ2
∑
k∈Z[ω]

1≤|k|≤|r| |s|∆

#H(k)

≤ δ2
∑
I1∈I1

∑
K

1≤N(K)≤ |r|
2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

Φ(U)
∏
P∈J1

(
1− 1

N(P )

)
·
∏
P |I1

(
1− 1

N(P )

)−1

= δ2Φ(U)
∏
P∈J1

(
1− 1

N(P )

)
·
∑
I1∈I1

(∏
P |I1

(
1− 1

N(P )

)−1 ∑
K

1≤N(K)≤ |r|
2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

1

)
.

By the Landau prime ideal theorem [L], π(y) = Li(y) +OK(ye−cK
√
ln y), we

have (π(y)(ln 2 + ln y) + ln ln y)y−1 � 1 as y →∞. Then there exists b ≥ 0
such that for any y ≥ b, we have π(y)(ln 2 + ln y) + ln ln y ≤ y ln 3. We will
estimate ∑

|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))

by considering two cases.

Case A: t ≥ b and |t|2|s|2∆2 ≥ 3tN(U). By the sieve method for imagi-
nary quadratic fields, we see that

(2.17)
∑
K

1≤N(K)≤ |r|
2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

1 =
∑
D|Q

µ(D)T

([
|r|2|s|2∆2

N(U)N(I1)N(D)

])

�
∑
D|Q

µ(D)

N(D)

|r|2|s|2∆2

N(U)N(I1)
−
∑
D|Q

µ(D)

{
|r|2|s|2∆2

N(U)N(I1)N(D)

}

≤ |r|
2|s|2∆2

N(U)N(I1)

∏
P |Q

(
1− 1

N(P )

)
+ 2π(t) as t→∞,

where µ is the ideal version of the Möbius function, that is,

µ(D) =

{
(−1)k if D = P1 · · ·Pk,
0 if there exists P such that P 2 |D,
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and T (·) is the function we have used in the proof of Lemma 2.1. Next we
use Mertens’ theorem for algebraic number fields [R] to get

lim
t→∞

(ln t)
∏

N(P )≤t

(
1− 1

N(P )

)
= e−γK .

From this formula we have

2π(t) ≤ |r|
2|s|2∆2

N(U)
· 1

tπ(t) ln t
(2.18)

� |r|
2|s|2∆2

N(U)

∏
P |Q

(
1− 1

N(P )

)
1

tπ(t)
as t→∞.

If N(I1) ≤ tπ(t), we insert (2.17) and (2.18) into (2.16) to obtain

(2.19) λ(E(r) ∩ E(s))� δ2
Φ(U)

N(U)
|r|2|s|2∆2

∏
P |Q

(
1− 1

N(P )

)

·
∏
P∈J1

(
1− 1

N(P )

)(
1 +

N(P )

(N(P )− 1)2

)

≤ Φ((r))
Ψ2((r))

|r|2
Φ((s))

Ψ2((s))

|s|2
∏
P |U
P -R′S′
N(P )≤t

(
1 +

1

N(P )(N(P )− 1)

)

� λ(E(r))λ(E(s)) as t→∞.

If N(I1) > tπ(t), then there exist a prime ideal P ∈ J1 and γ ∈ Z such
that P γ | I1, N(P ) ≤ t, and Nγ(P ) > t. This implies that there exists an
ideal D such that D2 | I1 and N2(D) ≥ t2/3. Then we have

(2.20) λ(E(r) ∩ E(s))� δ2Φ(U)
∑
I1∈I1

N(I1)>tπ(t)

∑
K

1≤N(K)≤ |r|
2|s|2∆2

N(U)N(I1)

1

≤ δ2Φ(U)
∑
D

[t1/3]≤N(D)<∞

∑
J

D2|J
1≤N(J)≤ |r|

2|s|2∆2

N(U)

1

� δ2∆2Φ(U)

N(U)
|r|2|s|2

∑
D

[t1/3]≤N(D)<∞

1

N2(D)
as t→∞.
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We use a method similar to the proof of Lemma 2.1 to estimate∑
[t1/3]≤N(D)<∞

1

N2(D)
�

∞∑
n=[t1/3]

1

n2
� 1

t1/3
as t→∞.

We insert this estimate into (2.20) and with Corollary 2.2 we get

λ(E(r) ∩ E(s))� Ψ2((r))Ψ2((s))
1

t1/3
(2.21)

� Φ((r))
Ψ2((r))

|r|2
(ln t)Φ((s))

Ψ2((s))

|s|2
(ln t)

1

t1/3

� λ(E(r))λ(E(s)) as t→∞.

Together with (2.19) and (2.21), we conclude, in case A, that∑
|r|2∈Z

∑
|s|2∈Z

(r) 6=(s)

λ(E(r) ∩ E(s))�
∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r))λ(E(s)).(2.22)

Case B: t < b or |r|2|s|2∆2 < 3tN(U). Let η0 = e−max{b,C,v0} and
suppose 0 < Λ(Z) ≤ η0. We set L = ln(1/Λ(Z)) and obtain

(2.23) λ(E(r) ∩ E(s))� Ψ2((r))Ψ2((s))
Φ(U)

N(U)

∏
P∈J1

(
1− 1

N(P )

) ∑
I1∈I1

1

Φ(I1)

< Ψ2((r))Ψ2((s))
∏
P |U
P 6∈J1

(
1− 1

N(P )

)

·
∏
P∈J1

(
1− 1

N(P )
+

1

N(P )(N(P )− 1)
− 1

(N(P ))2(N(P )− 1)

)

� Ψ2((r))

|r|2
Φ((r)) ln(1 + g((r)))

Ψ2((s))

|s|2
Φ((s)) ln(1 + g((s)))

� λ(E(r))λ(E(s)) ln2(1 + t) as t→∞.

If t < L, which implies L ≥ b, then from (2.23) we deduce that∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))�
∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)
t<L

λ(E(r))λ(E(s)) ln2(1 + t)(2.24)

< Λ2(Z)

(
ln

(
1 + ln

1

Λ(Z)

))2

� Λ2(Z)

(
ln ln

1

Λ(Z)

)2

as t→∞.
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If t ≥ L and N(U) < |r|2|s|2∆2 < 3tN(U), then

(2.25)
∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))

�
∞∑

m=L

m∑
n=1

( ∑
(r)m

|r|2∈Z

∑
(s)n

|s|2∈Z
N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))Ψ2((s))
)

=

∞∑
m=L

m∑
n=1

( ∑
(s)n

|s|2∈Z

Ψ2((s))
∑
(r)m

|r|2∈Z
N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))
)

�
∞∑

m=L

m∑
n=1

( ∑
(s)n

|s|2∈Z

λ(E(s)) ln(1 + n)
∑
(r)m

N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))
)

�
∞∑

m=L

ln(1 +m)
m∑
n=1

( ∑
(s)n

|s|2∈Z

λ(E(s))
∑
(r)m

N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))
)
.

If Ψ((r))|r|−1 ≤ Ψ((s))|s|−1, then

∆ = Ψ((s))|s|−1 and |r|2|s|2∆2 = |r|2Ψ2((s)).

By using Lemma 4 with ξ = 1/2 and e1/2(1− ε) = 3/2, we get∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

Ψ2((r))� C
∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

1

|r|2
(2.26)

� C(ln(1 + n))(ln 3m)e−m
β(1−ε)

� Cm(ln(1 +m))e−m
3/2
,

where C > 0 is a constant which satisfies Ψ((r)) ≤ C|r|−1 for all principal
ideals (r).

If Ψ((r))|r|−1 > Ψ((s))|s|−1, then we can use the same approach of
Vaaler’s to divide the set Z into some small pieces, that is, let

Wj = {e ∈ Z[ω] : C/2j+1 < |e|2Ψ2((e)) ≤ C/2j}

with j = 0, 1, 2 . . . . For r ∈ Wj and N(U) < |s|2Ψ2((r)) < 3mN(U), we see
that

C|s|22−j−13−mN−1(U) < |r|2 < C|s|22−jN−1(U).



44 Z. Y. Chen

From Lemma 2.5, we have

∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

Ψ2((r)) ≤ C
∞∑
j=0

1

2j

∑
(r)m

C|s|2

2j+13m
1

N(U)
<|r|2<C|s|2

2j
1

N(U)

1

|r|2

(2.27)

� C

∞∑
j=0

1

2j
ln(1 + g((s))) ln(3m)e−v

3/2

� Cm ln(1 +m)e−m
3/2
.

By using (2.25)–(2.27), we find that

(2.28)
∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))

�
∞∑

m=L

ln(1 +m)

m∑
n=1

( ∑
(s)n

|s|2∈Z

λ(E(s))Cm(ln(1 +m))e−m
3/2
)

< C
∞∑

m=L

m ln2(1 +m)e−m
3/2
( ∞∑
n=1

∑
(s)n

|s|2∈Z

λ(E(s))
)

� 1

eL
Λ(Z) = Λ2(Z).

Then (2.24) and (2.28) imply∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))� Λ2(Z)

(
ln ln

1

Λ(Z)

)2

(2.29)

in Case B. From (2.22) and (2.29), we get the assertion of Theorem 1.3.

Proof of Theorem 1.2. Since
∑
Φ((r))Ψ2((r))|r|−2 =∞, by using a Gal-

lagher type result for imaginary quadratic fields [NW], we conclude that
limN→∞ λ(

⋃∞
|r|2=N E(r)) = 0 or 1.

Suppose limN→∞ λ(
⋃∞
|r|2=N E(r)) = 0. This also implies

lim
|r|2→∞

λ(E(r)) = 0.(2.30)

We can choose a large rational integerm where λ(
⋃∞
|r|2=m E(r)) ≤

1
4η. Let j =

max{k,m}. From
∑
Φ((r))Ψ2((r))|r|−2 =

∑∞
|r|2=1 λ(E(r)) = ∞ and (2.30),

it follows that there exists a finite subset Z of {j, j + 1, . . .} such that
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2
3η ≤ Λ(Z) ≤ η. Since

⋃
|r|2∈Z E(r) ⊆

⋃
|r|2=m E(r), we have

1

4
η ≥ λ

( ⋃
|r|2=m

E(r)
)
≥ λ

( ⋃
|r|2∈Z

E(r)
)

≥
∑
|r|2∈Z

λ(E(r))−
1

2

∑
|r|2∈Z

∑
|s|2∈Z

(r)6=(s)

λ(E(r) ∩ E(s))

≥ Λ(Z)− 1

2
Λ(Z) ≥ 1

3
η,

which is impossible. This implies limN→∞ λ(
⋃∞
|r|2=N E(r)) 6= 0, proving the

assertion of Theorem 1.1.

Acknowledgments. I would like to thank my supervisor Prof. Hitoshi
Nakada for a lot of suggestions and advice on this work. Also, special thanks
to Alan Haynes for his valuable comments and suggestions.

References

[BHHV] V. Beresnevich, G. Harman, A. Haynes and S. Velani, The Duffin–Schaeffer
conjecture with extra divergence II, Math. Z. 275 (2013), 127–133.

[C] J. W. S. Cassels, Some metrical theorems in Diophantine approximation I, Proc.
Cambridge Philos. Soc. 46 (1950), 209–18.

[DS] R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine
approximation, Duke Math. J. 8 (1941), 243–255.
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