On metric theory of Diophantine approximation for complex numbers

by
Zhengyu Chen (Yokohama)

1. Introduction. In 1941, R. J. Duffin and A. C. Schaeffer [DS] made a conjecture on a Diophantine approximation problem. The conjecture states that the inequality

$$
\begin{equation*}
\left|\alpha-\frac{m}{n}\right|<\frac{\psi(n)}{n}, \quad(m, n)=1, \tag{1.1}
\end{equation*}
$$

has infinitely many solutions in positive integers m and n for almost all real numbers α if and only if $\sum_{n=2}^{\infty} \phi(n) \psi(n) n^{-1}=\infty$. If this series converges, then we can easily see that (1.1) has only finitely many solutions in positive integers m and n for almost all α. So the only difficulty is proving that (1.1) has infinitely many solutions for almost all α whenever $\sum_{n=2}^{\infty} \phi(n) \psi(n) n^{-1}=\infty$. R. J. Duffin and A. C. Schaeffer also gave a sufficient condition on $\psi(n)$ for (1.1) to have infinitely many solutions a.e., which is called the Duffin-Schaeffer theorem. In 1950, J. W. S. Cassels [C] showed that the inequality $|\alpha-m / n|<\psi(n) / n$ without the condition $(m, n)=1$ has infinitely many solutions for either almost all α or almost no α. Then in 1961, P. X. Gallagher [G] added the condition $(m, n)=1$, and proved that (1.1) has infinitely many solutions for either almost all α or almost no α. In 1970, P. Erdős [E] showed that if $\psi(n)=0$ or $\psi(n)=\varepsilon n^{-1}$ for all $n \in \mathbb{N}$ and some $\varepsilon>0$, then (1.1) has infinitely many solutions in positive integers m and n for almost all α if $\sum_{n=2}^{\infty} \phi(n) \psi(n) n^{-1}$ diverges. In 1978, J. D. Vaaler [V] gave a more general result following P. Erdős' idea. More precisely, he proved that (1.1) has infinitely many solutions in positive integers m and n for almost all α if $\psi(n)=\mathcal{O}\left(n^{-1}\right)$ and $\sum_{n=2}^{\infty} \phi(n) \psi(n) n^{-1}$ diverges.

Diophantine approximation of complex numbers was first considered in 1887 by A. Hurwitz [Hu, who discussed Diophantine approximation by con-

[^0]tinued fractions over the quadratic fields $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$. Since then, a number of papers on this subject have appeared, such as $[\mathrm{F}],[\mathrm{P}]$ and $[\mathrm{N}]$. In 1982, D. Sullivan [S] gave a metric result on Diophantine approximation over an imaginary quadratic field under a condition similar to the condition of the Duffin-Schaeffer theorem. In 1991, H. Nakada and G. Wagner (NW] proved a Duffin-Schaeffer type theorem over an imaginary quadratic field, as well as a Gallagher type theorem.

In this paper, we discuss a further development of the metric theory of Diophantine approximation over an imaginary quadratic field. Our main result indicates that the difficulty of the complex number version of the Duffin-Schaeffer conjecture is similar to that of the one-dimensional real case. Indeed, we will show that a Vaaler type theorem holds in this case, and then we find the same difficulty as in the case of real numbers for proving the complex version of the Duffin-Schaeffer conjecture. We refer to HPV] and [BHHV] for the recent developments on the original Duffin-Schaeffer conjecture.

For a given square-free negative integer d, we consider

$$
\mathbb{Q}(\sqrt{d})=\{p+q \sqrt{d}: p, q \in \mathbb{Q}\}
$$

and its maximal order

$$
\mathbb{Z}[\omega]=\{m+n \omega: m, n \in \mathbb{Z}\}
$$

where

$$
\omega= \begin{cases}(1+\sqrt{d}) / 2 & \text { if } d \equiv 1(\bmod 4) \\ \sqrt{d} & \text { if } d \equiv 2,3(\bmod 4)\end{cases}
$$

In order to avoid the problem of different prime factor decompositions of an integer in $\mathbb{Z}[\omega]$, we consider ideals to get the uniqueness of prime factor decomposition. For $a \in \mathbb{Z}[\omega]$, we denote by (a) the principal ideal generated by a. Then we can give a complex number version of the Duffin-Schaeffer conjecture as follows: the inequality

$$
\begin{equation*}
\left|z-\frac{a}{r}\right|<\frac{\Psi((r))}{|r|}, \quad(r, a)=(1) \tag{1.2}
\end{equation*}
$$

has infinitely many solutions in $r, a \in \mathbb{Z}[\omega]$ for almost all $z \in \mathbb{C}$ if and only if $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\infty$. Here (r, a) denotes the ideal in $\mathbb{Z}[\omega]$ generated by r and a, and $(r, a)=$ (1) means that r and a are coprime in terms of ideals. We set

$$
\mathbb{F}=\{z \in \mathbb{C}: z=x+y \omega, x, y \in \mathbb{R}, 0 \leq x, y<1\}
$$

Without loss of generality, we discuss our problems for almost all $z \in \mathbb{F}$ instead of $z \in \mathbb{C}$. The function $\Psi((r))$ is a non-negative real-valued function defined on the set of principal ideals of $\mathbb{Z}[\omega]$. The function $\Phi((r))$ is a complex number version of Euler's function over $\mathbb{Z}[\omega]$, which counts the number of
integers $a \in \mathbb{Z}[\omega]$ relatively prime to r and $a / r \in \mathbb{F}$, and it equals the number of residue classes modulo the principal ideal (r). Then we have $\Phi((r))=|r|^{2} \prod_{P \mid(r)}\left(1-\mathrm{N}^{-1}(P)\right)$, where P denotes prime ideals of $\mathbb{Z}[\omega]$ and $\mathrm{N}(\cdot)$ denotes the norm of ideals.

Our main theorem is the following.
Theorem 1.1. If $\Psi((r))=\mathcal{O}\left(|r|^{-1}\right)$, then (1.2) has infinitely many solutions in $r, a \in \mathbb{Z}[\omega]$ for almost all $z \in \mathbb{C}$ whenever $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\infty$.

We define $\mathcal{E}_{(r)}$ as the set of complex numbers z which satisfy $\sqrt{1.2}$ for a given $r \in \mathbb{Z}[\omega]$, i.e.

$$
\mathcal{E}_{(r)}=\bigcup_{\substack{a \in \mathbb{Z}[\omega] \\ a / r \in \mathbb{F} \\(a, r)=(1)}}\left\{z:\left|z-\frac{a}{r}\right|<\frac{\Psi((r))}{|r|}, z \in \mathbb{F}\right\}
$$

To prove Theorem 1.1, it is enough to show

$$
\begin{equation*}
\lambda\left(\bigcap_{N=1}^{\infty} \bigcup_{|r|^{2}=N}^{\infty} \mathcal{E}_{(r)}\right)=\lim _{N \rightarrow \infty} \lambda\left(\bigcup_{|r|^{2}=N}^{\infty} \mathcal{E}_{(r)}\right)=1 \tag{1.3}
\end{equation*}
$$

whenever $\Psi((r))=\mathcal{O}\left(|r|^{-1}\right)$ and $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\infty$. Here λ denotes the normalized Lebesgue measure on \mathbb{F}.

We extend two theorems of Vaaler [V, Theorems 2 and 3] to imaginary quadratic fields:

Theorem 1.2. Suppose there exist an integer $k \geq 2$ and a real number $\eta>0$ such that the following condition holds: every finite subset \mathbf{Z} of $\{k, k+1, \ldots\}$ with $0 \leq \Lambda(\mathbf{Z}) \leq \eta$ satisfies

$$
\begin{equation*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{\substack{2} \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \leq \Lambda(\mathbf{Z}) \tag{1.4}
\end{equation*}
$$

where $\Lambda(\mathbf{Z})=\sum_{|r|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)}\right)$. Then $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\infty$ implies (1.3).
Theorem 1.3. If $\Psi((r))=\mathcal{O}\left(|r|^{-1}\right)$, then there exists $\eta>0$ such that if \mathbf{Z} is a finite subset of $\{2,3, \ldots\}$ with $0<\Lambda(\mathbf{Z}) \leq \eta$, then

$$
\begin{equation*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{|s|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \ll \Lambda^{2}(\mathbf{Z})\left(\ln \ln \frac{1}{\Lambda(\mathbf{Z})}\right)^{2} \tag{1.5}
\end{equation*}
$$

We note that $(\sqrt{1.5})$ is stronger than $(\sqrt{1.4})$ since there exists a large rational integer k such that $\Lambda(\mathbf{Z})\left(\ln \ln \Lambda(\mathbf{Z})^{-1}\right)^{2}<1$ with $\mathbf{Z}=\{k, k+1, \ldots\}$.

In the next section, we will prove Theorem 1.3 and then prove Theorem 1.2, which will complete the proof of Theorem 1.1. We note that we do
need the condition $\Psi((r))=\mathcal{O}\left(|r|^{-1}\right)$ in the proof of Theorem 1.3, but we do not need it in the proof of Theorem 1.2 .
2. Proof of main results. Throughout this section we will use $N(\cdot)$ for the norm of an ideal over $\mathbb{Z}[\omega]$, and use P (and P_{j}) for prime ideals. We also use $\Psi(\cdot)$ to denote the number of residue classes modulo ideals, the complex number version of Euler's function.

We denote by $g(R)$, for an ideal R of $\mathbb{Z}[\omega]$, the smallest positive integer v that satisfies

$$
\sum_{\substack{P \mid R \\ \mathrm{~N}(P)>v}} \frac{1}{\mathrm{~N}(P)}<1
$$

Before proving Theorem 1.3 , we give some lemmas similar to Vaaler's estimates V.

Lemma 2.1. If R is an ideal of $\mathbb{Z}[\omega]$ and $g(R)=v$, then

$$
\prod_{\substack{P \mid R \\ \mathrm{~N}(P) \leq v}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \ll \frac{\Phi(R)}{\mathrm{N}(R)} \quad \text { as } v \rightarrow \infty
$$

Proof. From the formula for Euler's function over ideals, we have

$$
\Phi(R)=\mathrm{N}(R) \prod_{P \mid R}\left(1-\frac{1}{\mathrm{~N}(P)}\right)
$$

Then

$$
\begin{aligned}
\prod_{\substack{P \mid R \\
\mathrm{~N}(P) \leq v}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) & =\frac{\Phi(R)}{\mathrm{N}(R)} \prod_{\substack{P \mid R}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} \\
& =\frac{\Phi(R)}{\mathrm{N}(R)} \exp \left\{\sum_{\substack{P \mid R}} \ln \left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1}\right\} \\
& \leq \frac{\Phi(R)}{\mathrm{N}(R)} \exp \left\{\sum_{\substack{P \mid R \\
\mathrm{~N}(P)>v}} \frac{1}{\mathrm{~N}(P)>v}+\sum_{P} \sum_{j=2}^{\infty} \frac{1}{j \mathrm{~N}^{j}(P)}\right\}
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
\sum_{P} \sum_{j=2}^{\infty} \frac{1}{j \mathrm{~N}^{j}(P)} \leq \sum_{P} \frac{1}{\mathrm{~N}(P)(\mathrm{N}(P)-1)}<\sum_{S} \frac{1}{\mathrm{~N}^{2}(S)} \tag{2.1}
\end{equation*}
$$

Here \sum_{S} is a sum over all ideals of $\mathbb{Z}[\omega]$. In order to show the right side of (2.1) converges, we first estimate the number $T(N)$ of ideals whose norm is less than or equal to a given rational integer N. By $[\mathrm{H}]$, there exists a
constant $k(d)$ such that

$$
\lim _{N \rightarrow \infty} \frac{T(N)}{N}=k(d)
$$

which shows that $u_{N}=T(N) / N$ is bounded. Let T_{i} denote the number of ideals whose norm is equal to $i \in \mathbb{N}$. Then $T(N)=\sum_{i=1}^{N} T_{i}$. From $T_{N}=$ $N u_{N}-(N-1) u_{N-1}$, we have

$$
\begin{aligned}
\sum_{\mathrm{N}(S)=1}^{N} \frac{1}{\mathrm{~N}^{2}(S)} & =\sum_{i=1}^{N} \frac{T_{i}}{i^{2}} \\
& <\frac{u_{N}}{N}+\frac{2}{N^{2}} u_{N-1}+\frac{2}{(N-1)^{2}} u_{N-2}+\cdots+\frac{2}{2^{2}} u_{1} \\
& \ll \sum_{i=1}^{N} \frac{1}{i^{2}} \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

So the right side of (2.1) converges, which implies

$$
\prod_{P \mid R}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \ll \frac{\Phi(R)}{\mathrm{N}(R)} \quad \text { as } v \rightarrow \infty
$$

We now give a corollary of Lemma 2.1 which we will use later.
Corollary 2.2. If R is an ideal of $\mathbb{Z}[\omega]$ and $g(R)=v$, then

$$
1 \ll \frac{\Phi(R)}{\mathrm{N}(R)} \ln (1+v) \quad \text { as } v \rightarrow \infty
$$

Proof. Here we need M. Rosen's [R] result on Mertens' theorem for an algebraic number field \mathbb{K} :

$$
\prod_{\mathrm{N}(P) \leq x}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1}=e^{\gamma} \alpha_{\mathbb{K}} \ln x+\mathcal{O}_{\mathbb{K}}(1)
$$

where $\gamma>0$ and $\alpha_{\mathbb{K}}$ are constants. From Lemma 2.1 we have

$$
\begin{aligned}
1 & \ll \frac{\Phi(R)}{\mathrm{N}(R)} \prod_{\substack{P \mid R \\
\mathrm{~N}(P) \leq v}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} \leq \frac{\Phi(R)}{\mathrm{N}(R)} \prod_{\mathrm{N}(P) \leq v}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} \\
& \ll \frac{\Phi(R)}{\mathrm{N}(R)} \ln (1+v) \quad \text { as } v \rightarrow \infty
\end{aligned}
$$

For $\xi, x, v>0$, we define a collection $\mathcal{N}(\xi, x, v)$ of ideals of $\mathbb{Z}[\omega]$ by

$$
\mathcal{N}(\xi, x, v)=\left\{R: \sum_{\substack{P \mid R \\ \mathrm{~N}(P) \geq v}} \frac{1}{\mathrm{~N}(P)} \geq \xi, \mathrm{N}(R) \leq x\right\}
$$

We denote by $\# \mathcal{N}(\xi, x, v)$ the number of ideals in $\mathcal{N}(\xi, x, v)$. Then we can extend Vaaler's estimate [V] to the complex number case as follows:

Lemma 2.3. For any $\varepsilon, \xi, x>0$, we have

$$
\begin{equation*}
\# \mathcal{N}(\xi, v, x) \ll \frac{x}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty \text { with } \beta=e^{\xi} \tag{2.2}
\end{equation*}
$$

Proof. Suppose $0<\varepsilon<1-1 / e^{\xi}=1-1 / \beta$. It is enough to show the conclusion for such ε since the right side of (2.2) becomes larger if ε gets larger. Let $[v, w]$ be an interval with $w=v^{\beta(1-2 \varepsilon / 3)}$. Let $\left\{P_{1}, \ldots, P_{M}\right\}$ be the set of all prime ideals whose norms are in $[v, w]$ with $\mathrm{N}\left(P_{1}\right) \leq \cdots \leq \mathrm{N}\left(P_{M}\right)$. Let π be the prime-counting function in the sense of ideals of $\mathbb{Z}[\omega]$, i.e. $\pi(w)$ is the number of prime ideals whose norm is less than or equal to w. Then we see $M \geq \pi(w)-\pi(v)$. We have the equality

$$
\frac{v^{\beta(1-2 \varepsilon / 3)}}{\frac{w}{\ln w}-\frac{v}{\ln v}}=\frac{\beta(1-\varepsilon / 3) \ln v}{v^{\beta \varepsilon / 3}-\beta(1-\varepsilon / 3) v^{1-\beta(1-2 \varepsilon / 3)}}
$$

Since $\varepsilon<1-1 / \beta$, we have $1-\beta(1-2 \varepsilon / 3)<0$. Hence there exists an integer $v_{0}(\varepsilon, \xi)>0$ such that $\frac{w}{\ln w}-\frac{v}{\ln v} \geq v^{\beta(1-2 \varepsilon / 3)}$ for any $v \geq v_{0}$ and we have

$$
M \geq \pi(w)-\pi(v) \gg \frac{w}{\ln w}-\frac{v}{\ln v} \geq v^{\beta(1-2 \varepsilon / 3)} \quad \text { as } v \rightarrow \infty
$$

by the prime ideal theorem.
Next, we divide all the ideals in $\mathcal{N}(\xi, x, v)$ into two classes.
Class 1: There are no less than M different prime ideal factors of R and their norms are all in the interval $\left[v, e^{w}\right]$. By using Mertens' theorem on algebraic number fields $[\mathrm{R}$,

$$
\sum_{\mathrm{N}(P) \leq x} \frac{1}{\mathrm{~N}(P)}=\ln \ln x+B_{\mathbb{K}}+\mathcal{O}_{\mathbb{K}}\left(\frac{1}{\ln x}\right)
$$

where $B_{\mathbb{K}}$ is a constant depending only on the algebraic number field \mathbb{K}. We denote by N_{1} the number of ideals of class 1 . Then

$$
N_{1} \ll x \frac{\left(\sum_{v \leq \mathrm{N}(P) \leq e^{w}} \frac{1}{\mathrm{~N}(P)}\right)^{M}}{M!} \ll x \frac{(\ln w)^{M}}{M!} \quad \text { as } v \rightarrow \infty
$$

where $w \leq M^{2}$. From Stirling's formula we have

$$
\begin{align*}
x \frac{(\ln w)^{M}}{M!} \ll \frac{2^{M}\left(e^{\ln \ln M}\right)^{M}}{M!} & \ll x \frac{2^{M} e^{M+M \ln \ln M}}{M^{M} \sqrt{2 \pi M}} \tag{2.3}\\
& \ll \frac{x}{e^{v^{\beta(1-2 \varepsilon / 3)}} \quad \text { as } v \rightarrow \infty} .
\end{align*}
$$

Class 2: There are less than M different prime ideal factors of R and their norms are all in $\left[v, e^{w}\right]$. By using Mertens' theorem on algebraic num-
ber fields $[\mathrm{R}$, we have

$$
\sum_{j=1}^{M} \frac{1}{\mathrm{~N}\left(P_{j}\right)} \ll \ln \ln w-\ln \ln v=\xi+\ln \left(1-\frac{\varepsilon}{3}\right)<\xi-\frac{\varepsilon}{3} \quad \text { as } v \rightarrow \infty
$$

From
$\sum_{\substack{P \mid R \\ \mathrm{~N}(P) \geq v \geq g(R)}} \frac{1}{\mathrm{~N}(P)}=\sum_{\substack{P \mid R \\ v \leq \mathrm{N}(P) \leq w}} \frac{1}{\mathrm{~N}(P)}+\sum_{\substack{P \mid R \\ w<\mathrm{N}(P) \leq e^{w}}} \frac{1}{\mathrm{~N}(P)}+\sum_{\substack{P \mid R \\ \mathrm{~N}(P)>e^{w}}} \frac{1}{\mathrm{~N}(P)} \geq \xi$
and the definition of class 2 , we see that
$\sum_{\substack{P \mid R \\ v \leq \mathrm{N}(P) \leq w}} \frac{1}{\mathrm{~N}(P)}+\sum_{\substack{P \mid R \\ w<\mathrm{N}(P) \leq e^{w}}} \frac{1}{\mathrm{~N}(P)} \leq \sum_{v \leq \mathrm{N}(P) \leq w} \frac{1}{\mathrm{~N}(P)} \ll \xi-\frac{\varepsilon}{3} \quad$ as $v \rightarrow \infty$.
So we have the estimate

$$
\sum_{\substack{P \mid R \\ \mathrm{~N}(P)>e^{w}}} \frac{1}{\mathrm{~N}(P)} \gg \frac{\varepsilon}{3} \quad \text { as } v \rightarrow \infty .
$$

The number of ideals R of class 2 is less than $\sum_{\mathrm{N}(R) \leq x} 1$ and so

$$
\begin{align*}
\sum_{\mathrm{N}(R) \leq x} 1 & \ll \sum_{\mathrm{N}(R) \leq x} \frac{3}{\varepsilon} \sum_{\substack{P \mid R \\
\mathrm{~N}(P)>e^{w}}} \frac{1}{\mathrm{~N}(P)} \tag{2.4}\\
& \ll \frac{1}{\varepsilon} \sum_{\mathrm{N}(P)>e^{w}} \frac{1}{\mathrm{~N}(P)} \cdot \frac{x}{\mathrm{~N}(P)} \\
& <\frac{x}{\varepsilon}\left(\frac{1}{\left(e^{w}\right)^{2}}+\frac{1}{e^{w}\left(e^{w}+1\right)}+\frac{1}{\left(e^{w}+1\right)\left(e^{w}+2\right)}+\cdots\right) \\
& \ll \frac{1}{\varepsilon} \cdot \frac{x}{e^{v^{\beta(1-2 \varepsilon / 3)}} \quad \text { as } v \rightarrow \infty .}
\end{align*}
$$

The estimates (2.3) and (2.4) imply (2.2).
For a fixed $r \in \mathbb{Z}[\omega]$ and $\xi, v>0$ we define two collections $\mathcal{A}_{r}(\xi, v)$ and $\mathcal{B}_{r}(\xi, v)$ of ideals by

$$
\begin{aligned}
& \mathcal{A}_{r}(\xi, v)=\left\{A: A \mid(r), \quad \sum_{\substack{P \mid A}} \frac{1}{\mathrm{~N}(P)} \geq \xi\right\}, \\
& \mathcal{B}_{r}(\xi, v)=\left\{B: B \mid(r), \quad \sum_{\substack{P \mid B \\
\mathrm{~N}(P) \geq v \geq g((r))}} \frac{1}{\mathrm{~N}(P)}<\xi\right\} .
\end{aligned}
$$

Lemma 2.4. For any $\varepsilon, \xi>0$ and $v \geq g((r))$,

$$
\sum_{A \in \mathcal{A}_{r}(\xi, v)} \frac{1}{\mathrm{~N}(A)} \ll \frac{\ln (1+g((r)))}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty \text { with } \beta=e^{\xi}
$$

Proof. Let $w=v^{\beta(1-\varepsilon / 3)}$, where $0<\varepsilon<1-e^{-\xi}=1-\beta^{-1}$. Suppose there are M different prime ideals P_{1}, \ldots, P_{M} with $v \leq \mathrm{N}\left(P_{1}\right) \leq \cdots \leq$ $\mathrm{N}\left(P_{M}\right) \leq w$. Let \mathcal{J} be any collection of M different prime ideals whose norms are in $[v, \infty)$. Then from the proof of Lemma 2.3, we have

$$
\sum_{P \in \mathcal{J}} \frac{1}{\mathrm{~N}(P)} \leq \sum_{j=1}^{M} \frac{1}{\mathrm{~N}\left(P_{j}\right)} \ll \xi-\frac{\varepsilon}{3} \quad \text { as } v \rightarrow \infty
$$

For any $A \in \mathcal{A}_{r}(\xi, v)$, we have

$$
\sum_{\substack{P \mid A\\) \geq v \geq g((r))}} \frac{1}{\mathrm{~N}(P)} \geq \xi
$$

This implies that for all large v, there are at least M different prime ideal factors of A whose norms are all in $[v, \infty)$. Let Q_{1}, \ldots, Q_{J} be all different prime ideal factors of (r).

CASE 1: $J<M$. From the discussion above, $\mathcal{A}_{r}(\xi, v)=\emptyset$ for all large v, which means $\sum_{A \in \mathcal{A}_{r}(\xi, v)} \mathrm{N}^{-1}(A)=0$.

CASE 2: $J \geq M$. Since $v \geq g((r))$ and $\sum_{j=1}^{J} \mathrm{~N}^{-1}\left(Q_{j}\right)<1$, we have

$$
\begin{equation*}
\sum_{A \in \mathcal{A}_{r}(\xi, v)} \frac{1}{\mathrm{~N}(A)} \leq \sum_{A \mid(r)} \frac{1}{\mathrm{~N}(A)} \cdot \frac{\left(\sum_{j=1}^{J} \frac{1}{\mathrm{~N}\left(Q_{j}\right)}\right)^{M}}{M!}<\left(\sum_{A \mid(r)} \frac{1}{\mathrm{~N}(A)}\right) \frac{1}{M!} \tag{2.5}
\end{equation*}
$$

Suppose $(r)=Q_{1}^{\gamma_{1}} \cdots Q_{J}^{\gamma_{J}}$ where Q_{1}, \ldots, Q_{J} are all different prime ideal factors of (r) and $\gamma_{1}, \ldots, \gamma_{J}$ are positive integers. By Corollary 2.2, we have

$$
\begin{align*}
& \sum_{A \mid(r)} \frac{1}{\mathrm{~N}(A)}=\left(1+\frac{1}{\mathrm{~N}\left(Q_{1}\right)}+\frac{1}{\mathrm{~N}^{2}\left(Q_{1}\right)}+\cdots+\frac{1}{\mathrm{~N}^{\gamma_{1}}\left(Q_{1}\right)}\right) \tag{2.6}\\
& \cdot\left(1+\frac{1}{\mathrm{~N}\left(Q_{2}\right)}+\frac{1}{\mathrm{~N}^{2}\left(Q_{2}\right)}+\cdots+\frac{1}{\mathrm{~N}^{\gamma_{2}}\left(Q_{2}\right)}\right) \\
& \cdots\left(1+\frac{1}{\mathrm{~N}\left(Q_{J}\right)}+\frac{1}{\mathrm{~N}^{2}\left(Q_{J}\right)}+\cdots+\frac{1}{\mathrm{~N}^{\gamma_{J}}\left(Q_{J}\right)}\right) \\
& \leq \quad \prod_{\substack{Q \mid(r)}}\left(1-\frac{1}{\mathrm{~N}(Q)}\right)^{-1} \ll \ln (1+g((r))) \quad \text { as } v \rightarrow \infty
\end{align*}
$$

From (2.3), 2.5), and 2.6), we have

$$
\sum_{A \in \mathcal{A}_{r}(\xi, v)} \frac{1}{\mathrm{~N}(A)} \ll \frac{\ln (1+g((r)))}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty \text { with } \beta=e^{\xi}
$$

Lemma 2.5. Suppose $(s),(r)$ are two principal ideals with $s, r \in \mathbb{Z}[\omega]$ and $U=(s, r)$. Then for $\varepsilon, \xi, x>0, y \geq 2$, and $v \geq g((r))$, we have

$$
\begin{equation*}
\sum_{\substack{(s)^{v} \\ x \mathrm{~N}^{-1}(U)<|s|^{2}<x y \mathrm{~N}^{-1}(U)}} \frac{1}{|s|^{2}} \ll \frac{\ln (1+g((r))) \ln y}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty, \tag{2.8}
\end{equation*}
$$

with $\beta=e^{\xi}$. Here $\sum_{(s)^{v}}$ means the sum over (s) satisfying $g((s))=v$.
Proof. The right sides of (2.7) and (2.8) are both independent of U and x. Thus, by choosing x properly, we see that (2.7) and (2.8) are equivalent. So we only need to prove 2.7). Let $(s)=U S^{\prime}$ and $(r)=U R^{\prime}$. Then

$$
\begin{align*}
& \sum_{\substack{(s)^{v} \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}}=\sum_{U \mid(r)} \sum_{\substack{(s)^{v} \\
(s, r)=U \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}} \tag{2.9}\\
& \left.=\sum_{\substack{ \\
\sum_{\mathcal{A}}(1 / 2, v)}} \sum_{\substack{(s)^{v} \\
(s, r)=U \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}}+\sum_{\substack{U \in \mathcal{B}_{r}(1 / 2, v)}} \frac{1}{\substack{(s)^{v} \\
(s, r)=U \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \right\rvert\,
\end{align*}
$$

Here we have

$$
\begin{aligned}
\sum_{\substack{U \in \mathcal{A}_{r}(1 / 2, v)}} \sum_{\substack{(s)^{v} \\
(s, r)=U \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}} & =\sum_{\substack{U \in \mathcal{A}_{r}(1 / 2, v)}} \sum_{\substack{\left(U S^{\prime}\right)^{v} \\
(s, r)=U \\
x<\mathrm{N}\left(S^{\prime}\right)<x y}} \frac{1}{\mathrm{~N}(U)} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)} \\
& \leq\left(\sum_{\substack{U \in \mathcal{A}_{r}(1 / 2, v)}} \frac{1}{\mathrm{~N}(U)}\right)\left(\sum_{\substack{S^{\prime} \\
x<\mathrm{N}\left(S^{\prime}\right)<x y}} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)}\right) .
\end{aligned}
$$

By using the same method as in the proof of Lemma 2.1, we estimate

$$
\sum_{\substack{S^{\prime} \\ x<\mathrm{N}\left(S^{\prime}\right)<x y}} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)} \ll \ln y \quad \text { as } y \rightarrow \infty
$$

From Lemma 2.4 we have

$$
\sum_{U \in \mathcal{A}_{r}(1 / 2, v)} \frac{1}{\mathrm{~N}(U)} \ll \frac{\ln (1+g((r)))}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty
$$

and so

$$
\begin{equation*}
\sum_{\substack{U \in \mathcal{A}_{r}(1 / 2, v)}} \sum_{\substack{(s)^{v} \\(s, r)=U \\ x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}} \ll \frac{\ln (1+g((r))) \ln y}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty . \tag{2.10}
\end{equation*}
$$

Thus we get the desired estimate of the first term on the right side of 2.9) with $U \in \mathcal{A}_{r}(1 / 2, v)$.

Now we consider the second term of the right side of 2.9 with U in $\mathcal{B}_{r}(1 / 2, v)$ and $g((s))=v$. In this case we have

$$
\begin{aligned}
1 \leq \sum_{\substack{P \mid(s) \\
\mathrm{N}(P) \geq v=g((s))}} \frac{1}{\mathrm{~N}(P)} & \leq \sum_{\substack{P \mid U \\
\mathrm{~N}(P) \geq v}} \frac{1}{\mathrm{~N}(P)}+\sum_{\substack{P \mid S^{\prime} \\
\mathrm{N}(P) \geq v}} \frac{1}{\mathrm{~N}(P)} \\
& <\frac{1}{2}+\sum_{\substack{P \mid S^{\prime} \\
\mathrm{N}(P) \geq v}} \frac{1}{\mathrm{~N}(P)}
\end{aligned}
$$

which shows $\sum_{P \mid S^{\prime}, \mathrm{N}(P) \geq v} \mathrm{~N}^{-1}(P)>1 / 2$. From Lemma 2.3 , we see that

$$
\begin{aligned}
\sum_{\substack{S^{\prime} \\
x<\mathrm{N}\left(S^{\prime}\right) \leq 2 x}} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)} & <\left(\sum_{\substack{S^{\prime} \\
x<\mathrm{N}\left(S^{\prime}\right) \leq 2 x}} 1\right) \frac{1}{x} \leq \frac{\# \mathcal{N}(1 / 2, v, 2 x)}{x} \\
& \ll \frac{1}{e^{v^{\beta(1-\varepsilon)}}} \text { as } v \rightarrow \infty
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \sum_{\substack{S^{\prime} \\
x<\mathrm{N}\left(S^{\prime}\right)<x y}} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)}< \frac{1}{x} \sum_{k=1}^{[y]} \frac{1}{k}\left(\sum_{k x<\mathrm{N}\left(S^{\prime}\right) \leq(k+1) x} 1\right) \\
& \leq \frac{1}{x}\left(1-\frac{1}{2}\right) \# \mathcal{N}\left(\frac{1}{2}, v, 2 x\right)+\frac{1}{x}\left(\frac{1}{2}-\frac{1}{3}\right) \# \mathcal{N}\left(\frac{1}{2}, v, 3 x\right) \\
&+\cdots+\frac{1}{x} \frac{1}{[y]} \# \mathcal{N}\left(\frac{1}{2}, v,([y]+1) x\right) \\
& \ll\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{[y]}\right) \cdot \frac{1}{e^{v^{\beta(1-\varepsilon)}}} \\
& \ll \ln y \cdot \frac{1}{e^{v^{\beta(1-\varepsilon)}} \quad \text { as } y \rightarrow \infty .}
\end{aligned}
$$

This gives the estimate of the second term as follows:

$$
\begin{align*}
& \sum_{U \in \mathcal{B}_{r}(1 / 2, v)} \sum_{\substack{(s)^{(v)} \\
(s, r)=U \\
x \mathrm{~N}(U)<|s|^{2}<x y \mathrm{~N}(U)}} \frac{1}{|s|^{2}} \tag{2.11}\\
& \leq\left(\sum_{U \in \mathcal{B}_{r}(1 / 2, v)} \frac{1}{\mathrm{~N}(U)}\right)\left(\sum_{\substack{S^{\prime} \\
x<\mathrm{N}\left(S^{\prime}\right)<x y}} \frac{1}{\mathrm{~N}\left(S^{\prime}\right)}\right) \ll\left(\sum_{U \mid(r)} \frac{1}{\mathrm{~N}(U)}\right) \frac{\ln y}{e^{v^{\beta(1-\varepsilon)}}} \\
& \leq \frac{|r|^{2}}{\Phi((r))} \cdot \frac{\ln y}{e^{v^{\beta(1-\varepsilon)}} \ll \ln (1+g((r))) \frac{\ln y}{e^{v^{\beta(1-\varepsilon)}}} \quad \text { as } v \rightarrow \infty} .
\end{align*}
$$

Now we can deduce the assertion of Lemma 2.5 from 2.10 and 2.11.
Proof of Theorem 1.3. Let $r, s \in \mathbb{Z}[\omega]$ with $(r) \neq(s)$. Set

$$
\begin{aligned}
\delta & =\min \left\{\frac{\Psi((r))}{|r|}, \frac{\Psi((s))}{|s|}\right\}, \quad \Delta=\max \left\{\frac{\Psi((r))}{|r|}, \frac{\Psi((s))}{|s|}\right\} \\
t & =\max \{g((r)), g((s))\} .
\end{aligned}
$$

For $a, b \in \mathbb{Z}[\omega]$ and given r and s, let

$$
\mathcal{R}_{a}=\left\{z \in \mathbb{F}:\left|z-\frac{a}{r}\right|<\frac{\Psi((r))}{|r|}\right\}, \quad \mathcal{S}_{b}=\left\{z \in \mathbb{F}:\left|z-\frac{b}{s}\right|<\frac{\Psi((s))}{|s|}\right\} .
$$

Then

$$
\mathcal{E}_{(r)}=\bigcup_{\substack{a \in \mathbb{Z}[\omega] \\ a / r \in \mathbb{F} \\(a, r)=(1)}} \mathcal{R}_{a}, \quad \mathcal{E}_{(s)}=\bigcup_{\substack{b \in \mathbb{Z}[\omega] \\ b / s \in \mathbb{F} \\(b, s)=(1)}} \mathcal{S}_{b} .
$$

If $\Psi((r)) \leq 1 / 2$ and $\Psi((s)) \leq 1 / 2$, then for any $a_{1} \neq a_{2}$ we have $\mathcal{R}_{a_{1}} \cap \mathcal{R}_{a_{2}}$ $=\emptyset$, and similarly for \mathcal{S}_{b}. Then

$$
\begin{align*}
& \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right)= \sum_{\substack{a / r \in \mathbb{F} \\
(a, r)=(1)}} \sum_{\substack{b / s \in \mathbb{F} \\
(b, s)=(1)}} \lambda\left(\mathcal{R}_{a} \cap \mathcal{S}_{b}\right) \tag{2.12}\\
& \leq \delta^{2} \sum_{\substack{a / r \in \mathbb{F} \\
(a, r)=(1) \\
|a / r-b / s|<\Delta}} \sum_{\substack{b / s \in \mathbb{F} \\
\mid b, s)=(1)}} 1=\delta^{2} \sum_{\substack{a / r \in \mathbb{F} \\
(a, r)=(1) \\
|a s-b r|<|r||s| \Delta}} \sum_{\substack{b / s \in \mathbb{F} \\
(b)=(1)}} 1 .
\end{align*}
$$

We define

$$
\begin{aligned}
H(k)=\{\{a, b\}: a, b \in \mathbb{Z}[\omega], \text { as }-b r=k,(a, r)= & (b, s)=(1) \\
& \text { with } a / r, b / s \in \mathbb{F}\} .
\end{aligned}
$$

We will estimate the cardinality $\# H(k)$. Let $U=(r, s)$ and S^{\prime} and R^{\prime} be the ideals determined by $(s)=U S^{\prime}$ and $(r)=U R^{\prime}$. Since $\left((a), R^{\prime}\right)=(1)$ and $\left(S^{\prime}, R^{\prime}\right)=(1)$, we have $(a) S^{\prime} \neq(b) R^{\prime}$, which shows $\# H(0)=0$. Since
$U \mid(a s)$ and $U \mid(b r)$ imply $U \mid(k)$, we have $\# H(k)=0$ if $U \nmid(k)$. So we only need to consider $k \in \mathbb{Z}[\omega]$ with $U \mid(k)$. In this case, the principal ideal (k) can be uniquely represented as $(k)=U \cdot U_{(k)} \cdot K_{1}$. Here $U_{(k)}$ is the ideal whose prime ideal factors are all also prime ideal factors of U, and $\left(K_{1}, U\right)=(1)$.

If $\left(K_{1}, U R^{\prime} S^{\prime}\right) \neq(1)$, then we can find a prime ideal P such that $P \mid K_{1}$ and $P \mid U R^{\prime} S^{\prime}$. Since $\left(K_{1}, U\right)=(1)$, either $P \mid R^{\prime}$ or $P \mid S^{\prime}$. If $P \mid R^{\prime}$, then $P \mid(b r)$ and $P \nmid(s)$. Here $P \mid R^{\prime}$ implies $P \nmid(a)$ and we have $P \nmid(a s)$, which is impossible since $P \mid(k)$. We can use the same approach for the case of $P \mid S^{\prime}$ and get the same conclusion. Hence if $\left(K_{1}, U R^{\prime} S^{\prime}\right) \neq(1)$, then $\# H(k)=0$.

If $\left(U_{(k)}, R^{\prime} S^{\prime}\right) \neq(1)$, then we can find a prime ideal P with $P \mid U_{(k)}$ and $P \mid R^{\prime} S^{\prime}$. If $P \mid R^{\prime}$, there exists a positive integer n such that $P^{n} \mid U$ and $P^{n+1} \nmid U$. Then $P^{n+1} \mid(r)$, which means $b r \in P^{n+1}$. From $P^{n+1} \mid(k)$, we see that $P \mid(a)$, which is impossible since $\left((a), R^{\prime}\right)=(1)$ and $P \mid R^{\prime}$. We can use the same method for the case $P \mid S^{\prime}$ and get the same conclusion. So if $\left(U_{(k)}, R^{\prime} S^{\prime}\right) \neq(1)$, then $\# H(k)=0$.

Consequently, we only need to estimate $\# H(k)$ in the case $\left(K_{1}, U R^{\prime} S^{\prime}\right)$ $=(1),\left(U_{(k)}, R^{\prime} S^{\prime}\right)=(1)$ and $\mathrm{N}(U) \leq|k|^{2}$. Suppose $\left\{a_{1}, b_{1}\right\}$ and $\left\{a_{2}, b_{2}\right\}$ are two different pairs of integers in $H(k)$ for a given $k \in \mathbb{Z}[\omega]$. Then $\left(a_{1}-a_{2}\right)(s)=\left(b_{1}-b_{2}\right)(r)$. So we have

$$
\begin{equation*}
R^{\prime} \mid\left(a_{1}-a_{2}\right) \quad \text { and } \quad S^{\prime} \mid\left(b_{1}-b_{2}\right) \tag{2.13}
\end{equation*}
$$

We consider the set of pairs (a, b) with $a / r, b / s \in \mathbb{F}$ such that any two of them satisfy 2.13 . Then its cardinality is $|r|^{2} \mathrm{~N}^{-1}\left(R^{\prime}\right)=\mathrm{N}(U)$.

Next, we estimate the number of pairs of integers a, b in the above set with $(a, U)=(1)$ and $(b, U)=(1)$. For this purpose we consider the pairs of integers a, b with $(a, U) \neq(1)$ or $(b, U) \neq(1)$ and exclude them from the pairs of integers a, b in the above set with $|a| \leq|r|$ and $|b| \leq|s|$. Here we assume a_{j}, b_{j} and a_{l}, b_{l} are two different pairs of solutions of 2.13). Now we estimate the number of pairs of integers a, b with $(a, U) \neq(1)$ or $(b, U) \neq(1)$. Since U can be decomposed into $U=P_{1}^{\gamma_{1}} \cdots P_{j}^{\gamma_{j}}$, we consider two cases for $P\left(=P_{j}\right)$.

Case 1: $P \mid U, P \nmid U_{(k)}$, and $P \nmid R^{\prime} S^{\prime}$. We will show that $P \mid\left(a_{j}\right)$ implies $P \nmid\left(b_{j}\right)$, which means that a, b are in different residue classes modulo P. Indeed, since $R^{\prime}\left|\left(a_{j}-a_{l}\right), S^{\prime}\right|\left(b_{j}-b_{l}\right)$ and $\operatorname{gcd}\left(\mathrm{N}(P), \mathrm{N}\left(R^{\prime}\right)\right)=$ $\operatorname{gcd}\left(\mathrm{N}(P), \mathrm{N}\left(S^{\prime}\right)\right)=1$, we have $P \mid\left(a_{j}-a_{l}\right)$ and $P \mid\left(b_{j}-b_{l}\right)$. These show $U P \nmid(k)$ and $U P \mid\left(a_{j} s\right)$, which means $U P \nmid\left(b_{j} r\right)$ and thus $P \nmid\left(b_{j}\right)$.

Case 2: $P \mid U$ and either $P \mid U_{(k)}$ or $P \mid R^{\prime} S^{\prime}$.
(i) $P \mid U_{(k)}$ and $P \nmid R^{\prime} S^{\prime}$. As in Case 1, we have $P \mid\left(a_{j}-a_{l}\right)$ and $P \mid\left(b_{j}-b_{l}\right)$. Since $U P \mid(k)$ and $U P \mid\left(a_{j} s\right)$, we have $U P \mid\left(b_{j} r\right)$, which implies $P \mid\left(b_{j}\right)$. So in this case $P \mid\left(a_{j}\right)$ implies $P \mid\left(b_{j}\right)$, which means that a, b are in the same residue class modulo P.
(ii) $P \mid R^{\prime} S^{\prime}$. Assume $P \mid R^{\prime}$ and $P \nmid S^{\prime}$. Note that then $P \nmid\left(a_{j}\right)$. Since $\left(P, S^{\prime}\right)=(1)$, all the integers b are in the same residue class modulo P. In this case, we only need to exclude the pairs a, b with $P \mid(b)$. Similarly, for $P \nmid R^{\prime}$ and $P \mid S^{\prime}$, we only need to exclude a, b with $P \mid(a)$.

From the above discussion, we have

$$
\begin{align*}
& \# H(k) \leq \mathrm{N}(U) \prod_{\substack{P \mid U \\
P \nmid U_{k}(k) \\
P \nmid R^{\prime} S^{\prime}}}\left(1-\frac{2}{\mathrm{~N}(P)}\right) \prod_{\substack{P|U \\
P| U_{(k)} R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \tag{2.14}\\
& \leq \mathrm{N}(U) \prod_{\substack{P \mid U \\
P \nmid U_{(k)}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{\substack{P \mid U \\
P \nmid R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{\substack{P \mid U(k) \\
P \nmid U_{(k)} \\
\\
P \nmid R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \\
& \times \prod_{\substack{P|U \\
P| U_{(k)} \\
P \nmid R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{\substack{P|U \\
P| U_{(k)} \\
P \mid R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \\
& =\Phi(U) \prod_{\substack{P \mid U \\
P \nmid R^{\prime} S^{\prime}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{P \mid U_{(k)}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} .
\end{align*}
$$

Now we use some notation following Vaaler [V]:

$$
\begin{aligned}
\mathcal{J}_{0}= & \left\{P: P \mid U, P \nmid R^{\prime} S^{\prime}\right\} \\
\mathcal{J}_{1}= & \left\{P: P \in \mathcal{J}_{0}, \mathrm{~N}(P) \leq t\right\} \\
\mathcal{J}_{2}= & \left\{P: P \in \mathcal{J}_{0}, \mathrm{~N}(P)>t\right\}, \\
\mathcal{I}_{m}= & \left\{I: I=P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}}, P_{1}, \ldots, P_{k} \in \mathcal{J}_{m}, \gamma_{1}, \ldots, \gamma_{k} \in \mathbb{Z}\right\} \\
& \text { with } m=0,1,2 .
\end{aligned}
$$

Since $U_{(k)} \in \mathcal{I}_{0}$, we divide $U_{(k)}$ into two parts $I_{1} \in \mathcal{I}_{1}$ and $I_{2} \in \mathcal{I}_{2}$, with $U_{(k)}=I_{1} I_{2}$. Then, together with (2.14), we have the following estimate:

$$
\begin{align*}
\# H(k) & \leq \Phi(U) \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{P \mid I_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} \frac{\prod_{P \in \mathcal{J}_{2}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)}{\prod_{P \mid I_{2}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)} \tag{2.15}\\
& \leq \Phi(U) \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \prod_{P \mid I_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} .
\end{align*}
$$

Let

$$
K=I_{2} K_{1}, \quad Q=\prod_{\substack{P \mid R^{\prime} S^{\prime} U \\ \mathrm{~N}(P) \leq t}} P .
$$

Since $\left(K_{1}, U\right)=(1)$ and $\left(U_{(k)}, R^{\prime} S^{\prime}\right)=(1)$, we have $\left(K_{1}, R^{\prime} S^{\prime} U\right)=(1)$ and $\left(I_{2}, R^{\prime} S^{\prime}\right)=(1)$, which implies $(K, Q)=(1)$. Then by using (2.12) and (2.15), we get

$$
\begin{equation*}
\lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \leq \delta^{2} \sum_{\substack{k \in \mathbb{Z}[\omega] \\ 1 \leq|k| \leq|r||s| \Delta}} \# H(k) \tag{2.16}
\end{equation*}
$$

$$
\leq \delta^{2} \sum_{I_{1} \in \mathcal{I}_{1}} \sum_{\substack{K \\ 1 \leq \mathrm{N}(K) \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right)} \\(K, Q)=(1)}} \Phi(U) \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \cdot \prod_{P \mid I_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1}
$$

$$
=\delta^{2} \Phi(U) \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \cdot \sum_{I_{1} \in \mathcal{I}_{1}}\left(\prod_{P \mid I_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)^{-1} \sum_{\substack{K \\ 1 \leq \mathrm{N}(K) \leq\left.\left|r^{2}\right| s\right|^{2} \Delta^{2} \\ \mathrm{~N} \mid U()^{2} \mathrm{~N}\left(I_{1}\right)}}^{(K, Q)=(1)} \boldsymbol{1} .\right.
$$

By the Landau prime ideal theorem [L], $\pi(y)=\operatorname{Li}(y)+\mathcal{O}_{\mathbb{K}}\left(y e^{-c_{\mathbb{K}} \sqrt{\ln y}}\right)$, we have $(\pi(y)(\ln 2+\ln y)+\ln \ln y) y^{-1} \ll 1$ as $y \rightarrow \infty$. Then there exists $b \geq 0$ such that for any $y \geq b$, we have $\pi(y)(\ln 2+\ln y)+\ln \ln y \leq y \ln 3$. We will estimate

$$
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{\substack{2} \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right)
$$

by considering two cases.
CASE A: $t \geq b$ and $|t|^{2}|s|^{2} \Delta^{2} \geq 3^{t} \mathrm{~N}(U)$. By the sieve method for imaginary quadratic fields, we see that

$$
\begin{align*}
& \sum_{\substack{K \\
1 \leq \mathrm{N}(K) \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right)} \\
(K, Q)=(1)}} 1=\sum_{D \mid Q} \mu(D) T\left(\left[\frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right) \mathrm{N}(D)}\right]\right) \tag{2.17}\\
& \ll \sum_{D \mid Q} \frac{\mu(D)}{\mathrm{N}(D)} \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right)}-\sum_{D \mid Q} \mu(D)\left\{\frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right) \mathrm{N}(D)}\right\} \\
& \quad \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right)} \prod_{P \mid Q}\left(1-\frac{1}{\mathrm{~N}(P)}\right)+2^{\pi(t)} \quad \text { as } t \rightarrow \infty
\end{align*}
$$

where μ is the ideal version of the Möbius function, that is,

$$
\mu(D)= \begin{cases}(-1)^{k} & \text { if } D=P_{1} \cdots P_{k} \\ 0 & \text { if there exists } P \text { such that } P^{2} \mid D\end{cases}
$$

and $T(\cdot)$ is the function we have used in the proof of Lemma 2.1. Next we use Mertens' theorem for algebraic number fields $[R]$ to get

$$
\lim _{t \rightarrow \infty}(\ln t) \prod_{\mathrm{N}(P) \leq t}\left(1-\frac{1}{\mathrm{~N}(P)}\right)=e^{-\gamma_{\mathbb{K}}}
$$

From this formula we have

$$
\begin{align*}
2^{\pi(t)} & \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U)} \cdot \frac{1}{t^{\pi(t)} \ln t} \tag{2.18}\\
& \ll \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U)} \prod_{P \mid Q}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \frac{1}{t^{\pi(t)}} \quad \text { as } t \rightarrow \infty .
\end{align*}
$$

If $\mathrm{N}\left(I_{1}\right) \leq t^{\pi(t)}$, we insert 2.17 and $\sqrt{2.18}$ into $\sqrt{2.16}$ to obtain

$$
\begin{align*}
& \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \ll \delta^{2} \frac{\Phi(U)}{\mathrm{N}(U)}|r|^{2}|s|^{2} \Delta^{2} \prod_{P \mid Q}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \tag{2.19}\\
& \cdot \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right)\left(1+\frac{\mathrm{N}(P)}{(\mathrm{N}(P)-1)^{2}}\right) \\
& \quad \leq \Phi((r)) \frac{\Psi^{2}((r))}{|r|^{2}} \Phi((s)) \frac{\Psi^{2}((s))}{|s|^{2}} \prod_{\substack{P \mid U \\
P \nmid R^{\prime} S^{\prime} \\
\mathrm{N}(P) \leq t}}\left(1+\frac{1}{\mathrm{~N}(P)(\mathrm{N}(P)-1)}\right) \\
& \quad \ll \lambda\left(\mathcal{E}_{(r)}\right) \lambda\left(\mathcal{E}_{(s)}\right) \quad \text { as } t \rightarrow \infty .
\end{align*}
$$

If $\mathrm{N}\left(I_{1}\right)>t^{\pi(t)}$, then there exist a prime ideal $P \in \mathcal{J}_{1}$ and $\gamma \in \mathbb{Z}$ such that $P^{\gamma} \mid I_{1}, \mathrm{~N}(P) \leq t$, and $\mathrm{N}^{\gamma}(P)>t$. This implies that there exists an ideal D such that $D^{2} \mid I_{1}$ and $\mathrm{N}^{2}(D) \geq t^{2 / 3}$. Then we have

$$
\begin{align*}
\lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) & \ll \delta^{2} \Phi(U) \sum_{\substack{I_{1} \in \mathcal{I}_{1} \\
\mathrm{~N}\left(I_{1}\right)>t^{\pi(t)}}} \sum_{\substack{K \\
1 \leq \mathrm{N}(K) \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U) \mathrm{N}\left(I_{1}\right)}}} 1 \tag{2.20}\\
& \leq \sum_{\substack{J \\
\left[t^{1 / 3}\right] \leq \mathrm{N}(D)<\infty}} 1 \\
& \ll \delta^{2} \Delta^{2} \frac{\Phi(U)}{\mathrm{N}(U)}|r|^{2}|s|^{2} \sum_{\substack{D \\
\left[t^{1 / 3}\right] \leq \mathrm{N}(J) \leq \frac{|r|^{2}|s|^{2} \Delta^{2}}{\mathrm{~N}(U)}}} \frac{1}{\mathrm{~N}^{2}(D)<\infty} \quad \text { as } t \rightarrow \infty .
\end{align*}
$$

We use a method similar to the proof of Lemma 2.1 to estimate

$$
\sum_{\left[t^{1 / 3}\right] \leq \mathrm{N}(D)<\infty} \frac{1}{\mathrm{~N}^{2}(D)} \ll \sum_{n=\left[t^{1 / 3}\right]}^{\infty} \frac{1}{n^{2}} \ll \frac{1}{t^{1 / 3}} \quad \text { as } t \rightarrow \infty
$$

We insert this estimate into 2.20 and with Corollary 2.2 we get

$$
\begin{align*}
\lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) & \ll \Psi^{2}((r)) \Psi^{2}((s)) \frac{1}{t^{1 / 3}} \tag{2.21}\\
& \ll \Phi((r)) \frac{\Psi^{2}((r))}{|r|^{2}}(\ln t) \Phi((s)) \frac{\Psi^{2}((s))}{|s|^{2}}(\ln t) \frac{1}{t^{1 / 3}} \\
& \ll \lambda\left(\mathcal{E}_{(r)}\right) \lambda\left(\mathcal{E}_{(s)}\right) \quad \text { as } t \rightarrow \infty
\end{align*}
$$

Together with 2.19 and 2.21 , we conclude, in case A, that

$$
\begin{equation*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{\substack{2 \\(s)}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \ll \sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{\substack{|s|^{2} \in \mathbf{Z}\\}} \lambda\left(\mathcal{E}_{(r)}\right) \lambda\left(\mathcal{E}_{(s)}\right) \tag{2.22}
\end{equation*}
$$

CASE B: $t<b$ or $|r|^{2}|s|^{2} \Delta^{2}<3^{t} \mathrm{~N}(U)$. Let $\eta_{0}=e^{-\max \left\{b, C, v_{0}\right\}}$ and suppose $0<\Lambda(\mathbf{Z}) \leq \eta_{0}$. We set $L=\ln (1 / \Lambda(\mathbf{Z}))$ and obtain

$$
\begin{align*}
& \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \ll \Psi^{2}((r)) \Psi^{2}((s)) \frac{\Phi(U)}{\mathrm{N}(U)} \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \sum_{I_{1} \in \mathcal{I}_{1}} \frac{1}{\Phi\left(I_{1}\right)} \tag{2.23}\\
& \quad<\Psi^{2}((r)) \Psi^{2}((s)) \prod_{\substack{P \mid U \\
P \notin \mathcal{J}_{1}}}\left(1-\frac{1}{\mathrm{~N}(P)}\right) \\
& \quad \cdot \prod_{P \in \mathcal{J}_{1}}\left(1-\frac{1}{\mathrm{~N}(P)}+\frac{1}{\mathrm{~N}(P)(\mathrm{N}(P)-1)}-\frac{1}{(\mathrm{~N}(P))^{2}(\mathrm{~N}(P)-1)}\right) \\
& \quad \ll \frac{\Psi^{2}((r))}{|r|^{2}} \Phi((r)) \ln (1+g((r))) \frac{\Psi^{2}((s))}{|s|^{2}} \Phi((s)) \ln (1+g((s))) \\
& \quad \ll \lambda\left(\mathcal{E}_{(r)}\right) \lambda\left(\mathcal{E}_{(s)}\right) \ln ^{2}(1+t) \quad \text { as } t \rightarrow \infty
\end{align*}
$$

If $t<L$, which implies $L \geq b$, then from 2.23 we deduce that

$$
\begin{align*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\
(r) \neq(s)}} \sum_{\left.\right|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) & \ll \sum_{\substack{|r|^{2} \in \mathbf{Z} \\
(r) \neq\left(\left.s\right|^{2} \in \mathbf{Z} \\
t<L\right.}} \lambda\left(\mathcal{E}_{(r)}\right) \lambda\left(\mathcal{E}_{(s)}\right) \ln ^{2}(1+t) \tag{2.24}\\
& <\Lambda^{2}(\mathbf{Z})\left(\ln \left(1+\ln \frac{1}{\Lambda(\mathbf{Z})}\right)\right)^{2} \\
& \ll \Lambda^{2}(\mathbf{Z})\left(\ln \ln \frac{1}{\Lambda(\mathbf{Z})}\right)^{2} \quad \text { as } t \rightarrow \infty
\end{align*}
$$

If $t \geq L$ and $\mathrm{N}(U)<|r|^{2}|s|^{2} \Delta^{2}<3^{t} \mathrm{~N}(U)$, then

$$
\begin{align*}
& \sum_{|r|^{2} \in \mathbf{Z}} \sum_{|s|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \tag{2.25}\\
& \text { (} r \text {) } \neq(s) \\
& \ll \sum_{m=L}^{\infty} \sum_{n=1}^{m}\left(\sum_{\substack{(r)^{m} \\
|r|^{2} \in \mathbf{Z}|s|^{2} \in \mathbf{Z} \\
\mathrm{~N}(U)<|r|^{2}|s|^{2} \Delta^{2}<3^{m} \mathrm{~N}(U)}} \Psi^{2}((r)) \Psi^{2}((s))\right) \\
& =\sum_{m=L}^{\infty} \sum_{n=1}^{m}\left(\sum_{\substack{(s)^{n} \\
|s|^{2} \in \mathbf{Z}}} \Psi^{2}((s)) \sum_{\substack{(r)^{m} \\
|r|^{2} \in \mathbf{Z}\\
}} \Psi^{2}((r))\right) \\
& \ll \sum_{m=L}^{\infty} \sum_{n=1}^{m}\left(\sum_{\substack{(s)^{n} \\
|s|^{2} \in \mathbf{Z}}} \lambda\left(\mathcal{E}_{(s)}\right) \ln (1+n) \sum_{\substack{(r)^{m} \\
\mathrm{~N}(U)<|r|^{2}|s|^{2} \Delta^{2}<3^{m} \mathrm{~N}(U)}} \Psi^{2}((r))\right) \\
& \ll \sum_{m=L}^{\infty} \ln (1+m) \sum_{n=1}^{m}\left(\sum_{\substack{(s)^{n} \\
|s|^{2} \in \mathbf{Z}}} \lambda\left(\mathcal{E}_{(s)}\right) \sum_{\substack{(r)^{m} \\
\mathrm{~N}(U)<|r|^{2}|s|^{2} \Delta^{2}<3^{m} \mathrm{~N}(U)}} \Psi^{2}((r))\right) .
\end{align*}
$$

If $\Psi((r))|r|^{-1} \leq \Psi((s))|s|^{-1}$, then

$$
\Delta=\Psi((s))|s|^{-1} \quad \text { and } \quad|r|^{2}|s|^{2} \Delta^{2}=|r|^{2} \Psi^{2}((s))
$$

By using Lemma 4 with $\xi=1 / 2$ and $e^{1 / 2}(1-\varepsilon)=3 / 2$, we get

$$
\begin{align*}
\sum_{\substack{(r)^{m} \\
\mathrm{~N}(U)<|r|^{2} \Psi^{2}((s))<3^{m} \mathrm{~N}(U)}} \Psi^{2}((r)) & \ll C \sum_{\substack{(r)^{m}}} \frac{1}{|r|^{2}} \tag{2.26}\\
& \ll C\left(\operatorname{N}(U)<|r|^{2} \Psi^{2}((s))<3^{m} \mathrm{~N}(U)\right. \\
& \ll C m(1+n))\left(\ln 3^{m}\right) e^{-m^{\beta(1-\varepsilon)}} \\
& <m)) e^{-m^{3 / 2}},
\end{align*}
$$

where $C>0$ is a constant which satisfies $\Psi((r)) \leq C|r|^{-1}$ for all principal ideals (r).

If $\Psi((r))|r|^{-1}>\Psi((s))|s|^{-1}$, then we can use the same approach of Vaaler's to divide the set \mathbf{Z} into some small pieces, that is, let

$$
W_{j}=\left\{e \in \mathbb{Z}[\omega]: C / 2^{j+1}<|e|^{2} \Psi^{2}((e)) \leq C / 2^{j}\right\}
$$

with $j=0,1,2 \ldots$. For $r \in W_{j}$ and $\mathrm{N}(U)<|s|^{2} \Psi^{2}((r))<3^{m} \mathrm{~N}(U)$, we see that

$$
C|s|^{2} 2^{-j-1} 3^{-m} \mathrm{~N}^{-1}(U)<|r|^{2}<C|s|^{2} 2^{-j} \mathrm{~N}^{-1}(U)
$$

From Lemma 2.5, we have
(2.27)

$$
\begin{aligned}
\sum_{\substack{(r)^{m} \\
{ }^{2} \Psi^{2}((s))<3^{m} \mathrm{~N}(U)}} \Psi^{2}((r)) & \leq C \sum_{j=0}^{\infty} \frac{1}{2^{j}} \sum_{(r)^{m}} \frac{1}{|r|^{2}} \\
& \ll C \sum_{j=0}^{\infty} \frac{1}{2^{j} j|s|^{2}} \frac{1}{2^{j}} \ln (1+g((s))) \ln \left(3^{m}\right) e^{-v^{3 / 2}} \\
& \ll C m \ln (1+m) e^{-m^{3 / 2}} .
\end{aligned}
$$

By using (2.25)-(2.27), we find that

$$
\begin{equation*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{|s|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \tag{2.28}
\end{equation*}
$$

$$
\begin{aligned}
& \ll \sum_{m=L}^{\infty} \ln (1+m) \sum_{n=1}^{m}\left(\sum_{\substack{\left(s s^{n} \\
|s|^{2} \in \mathbf{Z}\right.}} \lambda\left(\mathcal{E}_{(s)}\right) C m(\ln (1+m)) e^{-m^{3 / 2}}\right) \\
& <C \sum_{m=L}^{\infty} m \ln ^{2}(1+m) e^{-m^{3 / 2}}\left(\sum_{n=1}^{\infty} \sum_{\substack{(s)^{n} \\
|s|^{2} \in \mathbf{Z}}}^{\infty} \lambda\left(\mathcal{E}_{(s)}\right)\right)
\end{aligned}
$$

$$
\ll \frac{1}{e^{L}} \Lambda(\mathbf{Z})=\Lambda^{2}(\mathbf{Z})
$$

Then 2.24 and 2.28 imply

$$
\begin{equation*}
\sum_{\substack{|r|^{2} \in \mathbf{Z} \\(r) \neq(s)}} \sum_{| |^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \ll \Lambda^{2}(\mathbf{Z})\left(\ln \ln \frac{1}{\Lambda(\mathbf{Z})}\right)^{2} \tag{2.29}
\end{equation*}
$$

in Case B. From 2.22 and 2.29 , we get the assertion of Theorem 1.3 .
Proof of Theorem 1.2. Since $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\infty$, by using a Gallagher type result for imaginary quadratic fields [NW], we conclude that $\lim _{N \rightarrow \infty} \lambda\left(\bigcup_{|r|^{2}=N}^{\infty} \mathcal{E}_{(r)}\right)=0$ or 1 .

Suppose $\lim _{N \rightarrow \infty} \lambda\left(\bigcup_{|r|^{2}=N}^{\infty} \mathcal{E}_{(r)}\right)=0$. This also implies

$$
\begin{equation*}
\lim _{|r|^{2} \rightarrow \infty} \lambda\left(\mathcal{E}_{(r)}\right)=0 \tag{2.30}
\end{equation*}
$$

We can choose a large rational integer m where $\lambda\left(\bigcup_{|r|^{2}=m}^{\infty} \mathcal{E}_{(r)}\right) \leq \frac{1}{4} \eta$. Let $j=$ $\max \{k, m\}$. From $\sum \Phi((r)) \Psi^{2}((r))|r|^{-2}=\sum_{|r|^{2}=1}^{\infty} \lambda\left(\mathcal{E}_{(r)}\right)=\infty$ and 2.30, , it follows that there exists a finite subset \mathbf{Z} of $\{j, j+1, \ldots\}$ such that
$\frac{2}{3} \eta \leq \Lambda(\mathbf{Z}) \leq \eta$. Since $\bigcup_{|r|^{2} \in \mathbf{Z}} \mathcal{E}_{(r)} \subseteq \bigcup_{|r|^{2}=m} \mathcal{E}_{(r)}$, we have

$$
\begin{aligned}
\frac{1}{4} \eta & \geq \lambda\left(\bigcup_{|r|^{2}=m} \mathcal{E}_{(r)}\right) \geq \lambda\left(\bigcup_{|r|^{2} \in \mathbf{Z}} \mathcal{E}_{(r)}\right) \\
& \geq \sum_{|r|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)}\right)-\frac{1}{2} \sum_{\substack{|r|^{2} \in \mathbf{Z} \\
(r) \neq(s)}} \sum_{|s|^{2} \in \mathbf{Z}} \lambda\left(\mathcal{E}_{(r)} \cap \mathcal{E}_{(s)}\right) \\
& \geq \Lambda(\mathbf{Z})-\frac{1}{2} \Lambda(\mathbf{Z}) \geq \frac{1}{3} \eta
\end{aligned}
$$

which is impossible. This implies $\lim _{N \rightarrow \infty} \lambda\left(\bigcup_{|r|^{2}=N}^{\infty} \mathcal{E}_{(r)}\right) \neq 0$, proving the assertion of Theorem 1.1.

Acknowledgments. I would like to thank my supervisor Prof. Hitoshi Nakada for a lot of suggestions and advice on this work. Also, special thanks to Alan Haynes for his valuable comments and suggestions.

References

[BHHV] V. Beresnevich, G. Harman, A. Haynes and S. Velani, The Duffin-Schaeffer conjecture with extra divergence II, Math. Z. 275 (2013), 127-133.
[C] J. W. S. Cassels, Some metrical theorems in Diophantine approximation I, Proc. Cambridge Philos. Soc. 46 (1950), 209-18.
[DS] R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), 243-255.
[E] P. Erdős, On the distribution of convergents of almost all real numbers, J. Number Theory 2 (1970), 425-441.
[F] L. R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), 1-42.
[G] P. X. Gallagher, Approximation by reduced fractions, J. Math. Soc. Japan 13 (1961), 342-345.
[H] H. Hasse, Vorlesungen über Zahlentheorie, Springer, 1964.
[HPV] A. Haynes, A. Pollington and S. Velani, The Duffin-Schaeffer conjecture with extra divergence, Math. Ann. 353 (2012), 259-273.
[Hu] A. Hurwitz, Über die Entwicklung complexer Grössen in Kettenbrüche, Acta Math. 11 (1887-88), 187-200.
[L] E. Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann. 56 (1903), 645-670.
[N] H. Nakada, The metrical theory of complex continued fractions, Acta Arith. 56 (1990), 279-289.
[NW] H. Nakada and G. Wagner, Duffin-Schaeffer theorem of Diophantine approximation for complex numbers, Astérisque 198-200 (1991), 259-263.
[P] O. Perron, Über die Approximation einer komplexen Zahl durch Zahlen des Körpers $K(i)$, I, Math. Ann. 103 (1930), 533-544; II, Math. Ann. 105 (1931), 160-164.
[R] M. Rosen, A generalization of Mertens' theorem, J. Ramanujan Math. Soc. 14 (1999), 1-19.
[S] D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers and the logarithm law for geodesics, Acta Arith. 149 (1983), 215-239.
[V] J. D. Vaaler, On the metric theory of diophantine approximation, Pacific J. Math. 76 (1978), 527-539.

Zhengyu Chen
Department of Mathematics
Keio University
Hiyoshi 3-14-1, Kohoku-ku
Yokohama, Kanagawa 223-8522, Japan
E-mail: yuwin_kfc@yahoo.co.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11J83; Secondary 11K60.
 Key words and phrases: Diophantine approximation, Duffin-Schaeffer conjecture, imaginary quadratic fields.

