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1. Introduction. The 3x+ 1 function is given by

(1.1) T (n) = T1(n) :=

{
3n+1

2 if n is odd,
n
2 if n is even.

The 3x+ 1 problem (or Collatz problem) concerns the behavior of this map
under iteration, restricted to the domain of positive integers N+. This do-
main is invariant under iteration, and it contains the periodic orbit {1, 2}
of T , which is the only periodic orbit known on N+ at present. The 3x+ 1
Conjecture (or Collatz Conjecture) asserts that every positive integer under
iteration enters this periodic orbit. The 3x + 1 Conjecture appears to be
intractable at present: see for example [14, 20], and for recent viewpoints
[16] and [9].

The 3x− 1 function is given by

(1.2) T−1(n) :=

{
3n−1

2 if n is odd,
n
2 if n is even.

It satisfies T−1(n) = −T1(−n). There is an analogous 3x − 1 problem con-
cerning its behavior under iteration on the positive integers N+, which has
recently been studied by Berg and Opfer [6]. This function has three known
periodic orbits on N+, which are

{1}, {5, 7, 10}, {17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34}.
The 3x − 1 Conjecture asserts that every integer m ≥ 1 under iteration by
T−1 eventually enters one of these three periodic orbits. This conjecture also
appears intractable at present.
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More generally, one may consider iteration of the 3x+k function, where
k ≡ ±1 (mod 6), given by

(1.3) Tk(n) :=

{
3n+k

2 if n is odd,
n
2 if n is even.

The 3x+k functions were studied in [15], in connection with rational cycles
for the 3x+1 function. Those periodic orbits of the 3x± k function restricted
to the domain of all integers n having (n, k) = 1 are known to correspond
to those rational cycles for the 3x + 1 problem whose members each have
denominator k, when written in lowest terms.

We let T ◦j(m) denote the jth iterate of a map T : Z → Z, and denote
the forward orbit of m by

O+
k (m) := {n : n = T ◦jk (m) for some j ≥ 0}.

In terms of forward orbits the 3x+ 1 Conjecture asserts that 1 ∈ O+
1 (m) for

each integer m ≥ 1. Additionally we define the backward orbit (or inverse
orbit) of m by

O−k (m) := {n : T ◦jk (n) = m for some j ≥ 0}.
The set O−k (m) comprises the forward orbit of m under the (multivalued)
inverse map

(1.4) T ◦−1(n) = T ◦−11 (n) :=

{ {2n} if n ≡ 0, 1 (mod 3),{
2n, 2n−13

}
if n ≡ 2 (mod 3).

The 3x+ 1 Conjecture formulated in terms of backward orbits asserts that
O−1 (1) = N+.

The main objects of study of this paper are the backward orbit generating
functions

(1.5) fk,m(z) :=
∑

n∈O−k (m)∩N+

zn

with k ≡ ±1 (mod 6) and m ∈ Z. The functions fk,m(z) are analytic func-
tions of z in the open unit disk {z ∈ C : |z| < 1}, and we consider the
problem of when these generating functions are analytically continuable to
larger domains in the complex plane.

Our main result, Theorem 1.1 below, formulates conditions characteriz-
ing for the 3x + k problem when the generating function of a finite union
of backward orbits is a rational function of z. There is a known dichotomy
for analytic continuation of a class of functions including the type above:
they either are rational functions or else have the unit circle as a natural
boundary to analytic continuation (the Pólya–Carlson theorem). Using this
dichotomy we deduce that for each k ∈ Z with (k, 6) = 1 and for almost
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all m ≥ 1, the functions fk,m(z) have the unit circle {|z| = 1} as a natural
boundary to analytic continuation.

The functions fk,m(z) encode data on the orbit intersected with the
positive integers. However with the proper choice of two such functions one
can recover the orbit on the negative integers as well. To see this, we first
note that the 3x+ k function and the 3x− k function are conjugate under
the involution J : Z→ Z with J(x) = −x, i.e.

Tk ◦ J = J ◦ T−k,
an operation which exchanges positive and negative integers. Consequently,
the behavior of the function Tk restricted to the negative integers exactly
matches that of T−k restricted to the positive integers, with the latter en-
coded by the generating function above. Thus the two generating functions
fk,m(z) and f−k,−m(z) between them give full information (1) for the inverse
orbit O−k (m) on Z.

For the special case k = ±1 corresponding to the 3x+1 function and the
3x− 1 function respectively, the positive integers N+ and negative integers
N− = −N+ are each bi-invariant sets for Tk, i.e. they are closed under
forward and backward iteration. The conjugacy function J above shows that
the 3x−1 function on N+ has iterates matching those of the 3x+1 function
on the negative integers. In this special case we need only consider m ≥ 1,
using f1,m(z) and f−1,m(z). For all m ≤ −1 we have f1,m(z) = f−1,m(z) ≡ 0.

1.1. Main results. The results of this paper concern properties of gen-
erating functions for the set union of a finite number of backward orbits of
the 3x+ k map.

We first observe that the backward orbits of a general function T :X→X
have a trichotomy of possible behaviors: Two distinct such orbits O−T (m1)
and O−T (m2) either are disjoint or have one of them properly contained in
the other. These three outcomes correspond to one of:

(i) m1 ∈ O−T (m2);

(ii) m2 ∈ O−T (m1);
(iii) neither (i) nor (ii) holds.

It follows from this trichotomy that for any map T on a countable set X,
the set union S of any finite collection of backward orbits can always be
partitioned into a finite set of disjoint backward orbits of single elements,
whose set union equals that of the whole collection.

Our main result characterizes when a finite union of backward orbits has
generating function that is a rational function.

(1) For the functions Tk that we consider, no orbit contains m = 0 except for the
single point orbit {0}.
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Theorem 1.1. Consider the 3x + k map Tk for an integer k ≡ ±1
(mod 6). The following two conditions on a set union S =

⋃`
i=1O

−
k (mi) of

a finite set of backward orbits {O−k (mi) : 1 ≤ i ≤ `} of Tk are equivalent:

(1) The generating function of S restricted to N+, which is

g(z) :=
∑

n∈S∩N+

zn,

is a rational function of z.
(2) There is a set X of residue classes modulo |k| and a positive integer

k0 such that the rational function

h(z) =
∑
n>0

n (mod |k|)∈X

zn =
∑
a∈X

1≤a≤|k|

za

1− z|k|

has power series coefficients agreeing with g(z) for all n ≥ k0, so
that g(z)−h(z) is a polynomial of degree at most k0−1. That is, the
set of all n ≥ k0 belonging to S contains exactly those n ≥ k0 that
belong to the union of the arithmetic progressions modulo |k| in X.

If the equivalent conditions (1), (2) hold, then the set X of residue classes
in (2) is necessarily closed under the action of the maps r 7→ 2r and r 7→ 3r
acting on residue classes modulo |k|.

We prove Theorem 1.1 in Section 3. The proof uses the Skolem–Mahler–
Lech theorem, whose statement we recall in Section 2, together with the
trichotomy above. The logical status of this result is interesting: At present
we do not know of a single case of a value k and a set union S where either of
conditions (1) or (2) hold unconditionally. However if the 3x+ 1 Conjecture
is true then for k = 1 there exist infinitely many examples of finite unions of
backward orbits S where conditions (1)–(2) hold. See Section 6 for discussion
of the general case k ≡ ±1 (mod 6).

We deduce from Theorem 1.1 several consequences about backward orbit
generating functions having natural boundaries, given in Theorems 1.2–1.4
below.

First we consider natural boundaries for the 3x+ 1 function.

Theorem 1.2. Consider the 3x+ 1 map T1 on the positive integers N+.
For the inverse orbit generating functions f1,m(z) =

∑
n∈O−1 (m) z

n with

starting value m ≥ 1 the following hold:

(1) For each m ≥ 1 except possibly m = 1, 2, 4 and 8 the generating
function f1,m(z) has the unit circle {|z| = 1} as a natural boundary
to analytic continuation.

(2) If the 3x+ 1 Conjecture is true, then for m = 1, 2, 4 and 8 the gen-
erating function f1,m(z) analytically continues to a rational function
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of z. If the 3x+ 1 Conjecture is false, then each of these four func-
tions has the unit circle {|z| = 1} as a natural boundary to analytic
continuation.

Secondly, we consider natural boundaries for the 3x− 1 function.

Theorem 1.3. Consider the 3x−1 map T−1 on the positive integers N+.
For every starting value m ≥ 1, the backward orbit generating function

f−1,m(z) =
∑

n∈O−−1(m)

zn

has the unit circle {|z| = 1} as a natural boundary to analytic continuation.

This result proves a conjecture of Berg and Opfer [6, Conjecture 2.4],
which concerns analytic continuability of the three functions η1(z) = f−1,1(z),
η2(z) = f−1,5(z) and η3(z) = f−1,17(z). Theorems 1.2 and 1.3 are proved in
Section 4 and make use of the Pólya–Carlson theorem given in Section 2.

Finally, in Section 5 we establish an analogous result for the general case
k ≡ ±1 (mod 6), which is less specific about exceptional cases.

Theorem 1.4. Consider the 3x+k map Tk with k ≡ ±1 ( mod 6) on the
positive integers N+. Then for all but finitely many starting values m ≥ 1
the backward orbit generating function fk,m(z) has the unit circle {|z| = 1}
as a natural boundary to analytic continuation.

Establishing Theorem 1.4 involves two additional difficulties. First, the
orbits of Tk for general k are more complicated than those for k = ±1; they
can have several collections of residue classes modulo |k| that are forward-
and-backward invariant sets for the general 3x+ k function; cf. Lemma 5.1.
(There is only one such class for k = ±1.) Second, some orbits may si-
multaneously contain infinitely many positive integers and infinitely many
negative integers. This latter fact necessitated our definition of orbit gen-
erating functions in (1.5) to require intersecting the orbit with the set of
positive integers.

1.2. Complexity of backward orbits in the 3x+ 1 problem. The
3x+ 1 Conjecture asserts that the backward orbit O−1 (1) has a simple form.
However this simplicity of form seems to be an illusion that hides the dif-
ficulty of the problem. The results above show that most backward orbits
O−1 (m) for variable m have considerable complexity, that is, they cannot
have the regular structure required for the backward orbit generating func-
tion to be a rational function.

Indeed, the backward orbits of the 3x+ k maps for different k appear to
have an extremely complicated structure. The complexity of backward or-
bits was noted already for the 3x− 1 problem by Berg and Opfer [6, Fig. 1].
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They presented numerical data of membership in the three disjoint back-
ward orbits O−−1(1), O−−1(5), O−−1(17) in blocks of consecutive integers. Each
of these three orbits appears experimentally to contain a positive density of
integers, and the members of the different backward orbits appear to inter-
lace in a complicated way on these blocks of integers. It would be interesting
to formulate and study statistics that measure the amount of intertwining
complexity between two disjoint backward orbits of a fixed function Tk.

1.3. Effective computability issues. The computational problem of
deciding whether, given input data (k,m), the function fk,m(z) has {|z| = 1}
as a natural boundary is not known to be effectively computable. There does
exist a computational algorithm (2) which, given k as input, if it halts, will
list a finite exceptional set Ek ⊂ Z and a proof that for all integers m
not in Ek, the generating function fk,m(z) has the unit circle as a natural
boundary to analytic continuation. This algorithm is described at the end
of Section 5. Standard conjectures analogous to the 3x+1 Conjecture would
imply that this algorithm will always halt. At present it remains an open
problem to prove (or disprove) that this algorithm always halts.

There are two obstacles to proving effective computability for individual
inputs (k,m):

(1) There is no effective algorithm known which, when given m1 and m2,
will determine whether the backward orbits of m1 and m2 under Tk
are disjoint.

(2) It is not known whether each bi-invariant component of the 3x + k
map contains a finite cycle, although conjecturally this is always the
case [15, Sect. 3.1].

Each of these obstacles appears to be an intractable problem at present.

1.4. Contents of paper. In Section 2 we recall several well-known re-
sults on the structure of power series with integer coefficients. These concern
conditions for being rational functions or for having a natural boundary to
analytic continuation. In Section 3 we prove Theorem 1.1, in Section 4 we
prove Theorems 1.2 and 1.3, and in Section 5 we prove Theorem 1.4.

In Section 6 we complement Theorem 1.2 by showing that standard
conjectures on the iteration of the 3x + k maps imply that there will ex-
ist infinitely many cases where a finite sum of backward orbit generating
functions is a rational function.

In the concluding section we describe other known results for different
analytic generating functions associated to 3x + k mappings which are (or
may sometimes be) rational functions.

(2) By an algorithm we mean a procedure which can be programmed on a Turing
machine. Such a procedure, however, is not certified to halt on all inputs.
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2. Preliminary facts. The proofs of the paper use several well-known
results in analytic function theory.

2.1. Fabry gap theorem. The following basic result on natural bound-
aries of analytic functions given by lacunary expansion can be applied to very
special cases of backward orbits above.

Theorem 2.1 (Fabry gap theorem). Let f(z) =
∑∞

j=0 ajz
nj be a power

series with positive finite radius of convergence R, and having gaps between
its exponents nj in the sense that

lim
j→∞

nj
j

=∞.

Then the disk BR(0) = {|z| < R} is a maximal domain of holomorphy for
f(z), i.e. the circle |z| = R is a natural boundary to analytic continuation.

The original 1896 result of Fabry [13] proved this theorem under the
weaker assumption that the exponents are lacunary in the sense that there
is a constant C > 1 such that nk+1/nk > C for all sufficiently large k.
The stronger result stated above was established by Faber [12] in 1906 (see
Remmert [19, p. 256]). There are now much stronger gap theorem results
known, showing that if the average gap size tends to infinity then there is
a natural boundary (again see [19, p. 256]).

Theorem 2.1 has an immediate application to the 3x+k problem, based
on the observation that for any k ≡ ±1 (mod 6) the backward orbit of any
m ≡ 0 (mod 3) is O−k (m) = {2km : k ≥ 0}. It follows that for any positive
m ≡ 0 (mod 3) the generating function of its inverse orbit

fk,m(z) =
∑

n∈O−k (m)

zn =
∞∑
n=0

zm2n

satisfies the hypotheses of the Fabry gap theorem, so has {|z| = 1} as a
natural boundary.

For the 3x+1 function T1, it has been conjectured that for m 6≡ 0 (mod 3)
the expected number of inverse iterates below x is asymptotically bounded
below by c(m)x for a positive constant c(m) (see [1, Conjecture A]). If such
a conjecture were true, then the existing gap-type theorems do not apply to
infer the existence of a natural boundary to analytic continuation. The main
results of this paper are proved without appeal to the Fabry gap theorem.

2.2. Pólya–Carlson theorem. The following dichotomy theorem was
conjectured by Pólya [17] in 1916, and proved by Carlson [7] in 1921.

Theorem 2.2 (Pólya–Carlson theorem). Let f(z) =
∑∞

n=0 anz
n have

integer coefficients and have radius of convergence R = 1. Then exactly one
of the following holds:
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(i) The power series f(z) has the circle {|z| = 1} as a natural boundary
to analytic continuation.

(ii) The power series f(z) can be analytically continued to a rational
function of the form p(z)/(1− zm)n for a polynomial p(z) ∈ Z[z]
with m,n positive integers.

This result has since been strengthened and extended in various ways:
see Remmert [19, p. 265] and Bell, Coons and Rowland [2].

2.3. Skolem–Mahler–Lech theorem. The Skolem–Mahler–Lech the-
orem has many different incarnations, for which see van der Poorten [18] and
Everest et al. [10, Chap. 2]. It can be formulated in terms of zeros of recur-
rence sequences or zeros of Taylor series coefficients of rational functions; for
more recent algebraic-geometric versions, see [3]. We will use the following
version.

Theorem 2.3 (Skolem–Mahler–Lech theorem). Let R(z) ∈ C(z) be a
rational function. Suppose that R(z) is holomorphic at z = 0 and let its
Taylor series expansion around z = 0 be

R(z) =

∞∑
n=0

cnz
n.

Then the set of indices of vanishing Taylor coefficients Z(R; z = 0) := {n :
cn = 0} can be partitioned into a finite (possibly empty) set of complete half-
infinite arithmetic progressions P (a; d)+ := {n : n ≡ a (mod d) with n > 0},
for some modulus d, up to the inclusion or exclusion of a finite set.

Proof. This is a consequence of two results given in [10]. The first is
a result showing that the Taylor coefficients of a rational function R(z)
satisfy a linear recurrence with constant coefficients, with a converse stating
that any Taylor expansion having this property is the Taylor expansion of
a rational function [10, Theorem 1.5]. The second result is the recurrence
sequence form of the Skolem–Mahler–Lech theorem [10, Theorem 2.1]. For
a detailed proof of the latter result, see [18].

Rather remarkably, the known proofs of the Skolem–Mahler–Lech the-
orem use p-adic methods for some suitably chosen prime p, despite this
theorem statement being an assertion over the complex numbers.

At present there is no general algorithm known to effectively determine
the set of zero coefficients of a rational function. There does exist an effec-
tively computable algorithm to determine a set of arithmetic progressions
satisfying the conclusion of the theorem, and in particular, there is an ef-
fectively computable algorithm to determine whether the exceptional set
Z(R; z = 0) is finite or infinite. Evertse, Schlickewei and Schmidt [11] es-
tablish an effective upper bound on the number of exceptional zeros in the
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case where Z(R; z = 0) is finite; they do not, however, obtain a bound on
the size of such zeros.

3. Backward orbits of 3x+ k maps and the SML property. It is
convenient to restate the conclusion of the Skolem–Mahler–Lech theorem as
asserting a general property of sequences.

Definition 3.1. We say that a sequence {cn : n ≥ 0} of complex num-
bers has the SML property if the set {n ≥ 0 : cn = 0} can be partitioned
into a finite set of half-infinite arithmetic progressions

(3.1) P+(a; d) := {n : n ≡ a (mod d) with n > 0}
plus or minus a finite set (possibly the empty set).

Proof of Theorem 1.1. We set O := S ∩ N+ = (
⋃`
i=1O

−
k (mi)) ∩ N+.

By the remark just before Theorem 1.1, we may assume without loss of
generality that the O−k (mi) are pairwise disjoint sets.

Suppose first that property (2) holds. Then letting the members of X be
the least nonnegative residues in the congruence classes modulo |k| we may
write

g(z) :=
∑
n∈O

zn =

k0−1∑
j=0

aiz
i +

∑
j∈X

zk0+j

1− z|k|
,

which certifies that g(z) is a rational function, so property (1) holds.
Suppose next that property (1) holds. Then by hypothesis

g(z) =
∑̀
j=1

fk,mj
(z) =

∞∑
n=1

cnz
n

is a rational function, so the Skolem–Mahler–Lech theorem applies to show
that

S := {m : cm = 0} := N+ rO
has the SML property, i.e. its members are eventually periodic modulo some
finite modulus d ≥ 1:

(3.2) n ∈ S ⇒ n+ d ∈ S for all n ≥ n0(d).

That is, S coincides with the set union of a finite set of complete arithmetic
progressions

(3.3) P (ai; d) := {n ≥ 1 : n ≡ ai (mod d)},
up to the inclusion or exclusion of a finite set of exceptional values.

We call a modulus d admissible for a set S′ ⊆ N+ if it has the eventual
periodicity property (3.2). Note that d is admissible for S′ if and only if d is
admissible for its complement (S′)c := N+ r S′. Most sets S′ ⊂ N+ have no
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admissible modulus, but we now know that the S above does have one, and
here Sc = N+ r S = O.

Consider now the minimal admissible modulus d for S. For this value we
have a partition of all residue classes modulo d as X ∪ Y , defined by

X := {i (mod d) : P (i; d) ∩ S is finite},
Y := {i (mod d) : P (i; d) ∩ Sc is finite}.

In particular, a coset j (mod d) contains infinitely many elements of O if
and only if this coset belongs to X; and then all but finitely many j (mod d)
belong to O.

Claim 1. The minimal admissible modulus d for S is odd.

Proof. Suppose to the contrary that d = 2d′ were even. By minimality
there must exist a residue class i (mod d) such that i (mod d) ∈ X while
i+ d′ (mod d) ∈ Y .

We assert that 2i (mod d) ∈ X. Pick a modulus mj such that there
are infinitely many inverse iterates of m in the class i (mod d). Now if
n ∈ O−k (mj) then 2n ∈ O−k (mj). This gives infinitely many elements of O in
2i (mod d), whence this residue class is inX. We conclude that all sufficiently
large members of P (2i; d) belong to X.

However

Tk(2i+ dn) = Tk(2(i+ d′n)) = i+ d′n,

hence half of the elements of P (2i; d), those with n odd, arise as preimages
under Tk of the residue class P (i+d′; d). Since all sufficiently large elements
of O are the preimage under Tk of some other element of O, we conclude
that infinitely many elements of O fall into the class i+ d′ (mod d), whence
this class also belongs to X. But this contradicts the hypothesis that this
class belonged to Y , and Claim 1 follows.

Claim 2. The minimal admissible modulus d for S is not divisible by 3.

Proof. Suppose to the contrary that d = 3d′ were divisible by 3. Then
there must exist a residue class i (mod d) ∈ X, with at least one of i + d′

(mod d) and i+2d′ (mod d) in Y . By Claim 1, d is odd, so by replacing i by
i+ d if necessary we may assume that i is odd. The residue class i (mod d)
in X contains all sufficiently large elements of the form n = i + 2dn′, and
since these are in O and are odd numbers, with at most ` exceptions we
have

Tk(n) =
3i+ k

2
+ 3dn′ ∈ O.

This construction exhibits infinitely many numbers 3i+k
2 (mod d) in O, so
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it follows that 3i+k
2 (mod d) belongs to X. In a similar fashion one has

Tk(i+ 2d′ + 2dn′) =
3i+ k

2
+ d′(3n′ + 1) ⊂ P

(
3i+ k

2
; d

)
and also

Tk(i+ d′ + (d+ 2dn′)) =
3i+ k

2
+ d′(3n′ + 2) ⊂ P

(
3i+ k

2
; d

)
.

Thus each residue class i+d′ (mod d) and i+2d′ (mod d) contains infinitely
many elements of O, so both these residue classes must belong to X. This
contradicts the fact that one of these classes is in Y , and Claim 2 follows.

Claim 3. The modulus d = |k| is an admissible modulus for S.

Proof. We have (|k|, 6) = 1. Since we now know the minimum admissible
modulus d for S has (d, 6) = 1, by splitting into smaller residue classes as
necessary we may obtain an admissible modulus d′ such that |k| divides d′,
and (d′, 6) = 1. We now redefine d ≥ 1 to be the minimal admissible modulus
having the property that |k| divides d. The claim asserts that d = |k|.

Since (d, 6) = 1, both 2 and 3 are invertible modulo d. By applying
forward iteration, since n ∈ O−k (mj) implies Tk(n) ∈ O−k (mj) with at most
one exception, and since each residue class modulo d contains infinitely many
even integers and infinitely many odd integers, we conclude that

i (mod d) ∈ X ⇒ i

2
(mod d) ∈ X.

Since each congruence class modulo d contains infinitely many odd numbers,
we also have

i (mod d) ∈ X ⇒ 3i+ k

2
(mod d) ∈ X.

By applying a single step of backward iteration of Tk, and observing that
each residue class modulo d contains infinitely many integers in each residue
class modulo 6, we obtain

i (mod d) ∈ X ⇒ 2i (mod d) ∈ X,

i (mod d) ∈ X ⇒ 2i− k
3

(mod d) ∈ X.

These results show that the set of residue classes (mod d) in X is closed
under the action of the transfomations S1(r) = 2r and S2(r) = 3r+k

2 , as

well as under their inverses (S1)
−1(r) = r

2 and (S2)
−1(r) = 2r−k

3 . Now set

S3(r) := S1 ◦ S2(r) = 3r + k, with inverse map (S3)
−1(r) = r−k

3 . One
calculates the commutator map

S1S3(S1)
−1(S3)

−1(r) = r + k and S3S1(S3)
−1(S1)

−1(r) = r − k.
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We deduce that for all sufficiently large members of X,

n ∈ X ⇒ n+ |k| ∈ X.
This fact shows that we may choose the modulus d = |k|, proving Claim 3.

Claim 3 implies that d is admissible for N+ r S = O, so property (2)
holds.

We have shown properties (1) and (2) are equivalent. If property (1)
holds then Claim 3 shows that the set of residue classes in X (mod |k|)
is invariant under the action of the maps x 7→ 2x and x 7→ 3x + k ≡ 3x
(mod |k|). Since (|k|, 6) = 1, these maps are invertible, whence it follows
that the complementary set Y of residues modulo |k| is invariant under
these maps as well.

This completes the proof of Theorem 1.1.

4. Natural boundaries for backward orbits of the 3x ± 1 func-
tions. We use Theorem 1.1 to show the existence of natural boundaries for
the generating functions of most backward orbits for the 3x ± 1 functions,
as stated in Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By the Pólya–Carlson theorem, for O−1 (m) the as-
sociated generating function f1,m(z) will have {|z| = 1} as a natural bound-
ary if and only if f1,m(z) is not a rational function. By Theorem 1.1, the
orbit generating function f1,m(z) will be a rational function if and only if
the backward orbit O−1 (m) is eventually periodic modulo 1, i.e. it contains
all sufficiently large integers n. Thus to show a particular backward orbit
O−1 (m) for m ≥ 1 has a generating function f1,m(z) that is not a rational
function, it suffices to show there is another backward orbit O−1 (m′) disjoint
from it for some m′ ≥ 1. We treat two cases, which between them establish
assertions (1) and (2).

Case 1: The 3x+ 1 Conjecture is false. In this case there exists a back-
ward orbit O−1 (m′) of positive integers disjoint from O−1 (1), and both these
orbits are infinite. Then for each m ≥ 1 the function f1,m(z) is not a ra-
tional function of z, since the backward orbit O−1 (m) must be disjoint from
at least one of the orbits O−1 (1) or O−1 (m′), preventing eventual periodicity
modulo 1.

Case 2: The 3x + 1 Conjecture is true. In this case, for m = 1, 2, 4, 8
we have

f1,m(z) =
( ∞∑
n=1

zn
)
− pm(z) =

z

1− z
− pm(z),

in which pm(z) = 0, z, z + z2 and z + z2 + z4 respectively, so these f1,m(z)
are rational functions. All remaining m ∈ N+r{1, 2, 4, 8} necessarily belong
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to one of the two backward orbits m ∈ O−1 (5) or m ∈ O−1 (16), which are
infinite and disjoint. It follows that the elements of O−1 (m) for such m are
not eventually periodic modulo 1, whence the contrapositive of Theorem 1.1
implies f1,m(z) is not a rational function.

Proof of Theorem 1.3. For the 3x− 1 function, it is known that O−−1(1),

O−−1(5) and O−−1(17) are infinite disjoint sets. It follows that for any m ≥ 1,

the elements in the backward orbit O−−1(m) cannot be eventually periodic
modulo 1. The contrapositive of Theorem 1.1 for k = −1 implies that
f−1,m(z) is not a rational function. By the Pólya–Carlson theorem it then
must have the unit circle {|z| = 1} as a natural boundary to analytic con-
tinuation.

5. Natural boundaries for backward orbits of the 3x + k func-
tions. We first discuss additional complexity in the iteration of general
3x+ k maps compared with the 3x± 1 maps, and then prove Theorem 1.4.

The behavior of general 3x+ k maps under iteration exhibits three fea-
tures not occurring for the 3x ± 1 maps. The first of these features is that
the larger domain Z splits into various bi-invariant sets for Tk. To describe
it, we denote a complete (two-sided) arithmetic progression in Z by

(5.1) P±(a; d) := {n ∈ Z : n ≡ a (mod |d|)};

compare with (3.3).

Lemma 5.1. For k ≡ ±1 (mod 6), the congruence classes modulo |k|
partition into minimal invariant sets under the action of the finite group
G(2, 3) generated by multiplication by 2 and by 3 acting on the multiplicative
semigroup (Z/kZ,×). For 1 ≤ a ≤ |k|, all of the sets

Xa,k :=
⋃
i,j≥1

P±(2i3ja; |k|)

in Z are forward-invariant and backward-invariant sets under the map Tk,
that project modulo |k| onto a set invariant under G(2, 3) in (Z/kZ,×).

Proof. Because of (|k|, 6) = 1, the two transformations acting on the
finite group Z/kZ given by S1(r) = 2r and S2(r) = (3r + k)/2 are invertible,
and so generate a group. The proof of Claim 3 above shows that this group
is also generated by S1(r) = 2r and S3(r) = 3r. The projections on Z/kZ
of the sets Xa,k are minimal sets closed under the action of these latter two
generators. The forward and backward invariance of these sets immediately
follows from this fact.
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The second additional feature of general 3x+ k maps is that for positive
divisors d of k, each of the sets

Sd,k :=
⋃

a:(a,|k|)=d

P±(a; |k|)

is bi-invariant for Tk, and is a disjoint union of classes Xa,k. Furthermore,
the map Md of multiplication by d has

Md(S1,k/d) = Sd,k.

It defines a conjugacy map between Tk/d and Tk restricted to these invariant
sets, i.e.

Mk/dTk/d(n) = TkMk/d(n) for all n ∈ S1,k/d.
This conjugacy also applies at the level of the smaller bi-invariant sets Xa,k,
for if (a, k) = d then

Md(Xa/d,k/d) = Xa,k.

The third additional feature is that 3x+ k maps may contain backward
orbits that have infinite intersection with both N+ and with the negative
integers N−. As an example of a backward orbit unbounded for positive and
negative integers, take any k > 0 with k ≡ 5 (mod 6) and the backward
orbit O−k (1). We have 2−k

3 ∈ O
−
k (1), hence

{(2− k)2j , 2j : j ≥ 1} ∪ {2j : j ≥ 1} ⊂ O−k (1).

There are only finitely many such exceptional orbits, and each of them
contains an odd integer in the “critical interval” [−k,−1].

Proof of Theorem 1.4. We treat separately the action of Tk on each bi-
invariant subset Xa,k of Z given by Lemma 5.1. There are finitely many such
subsets, so it suffices to prove for each Xa,k that for all but finitely many
m ∈ Xa,k with m ≥ 1, the generating function fk,m(z) has {|z| = 1} as a
natural boundary. By the Pólya–Carlson theorem this is equivalent to the
assertion that fk,m(z) is a rational function for only finitely many m ∈ Xa,k

with m ≥ 1. (Here the condition m ≥ 1 must be imposed in the hypothesis
of Theorem 1.4 because there always exist infinitely many negative m with
O−k (m) ⊂ N−, whence fk,m(z) = 0 is a rational function.)

Now suppose that m ∈ Xa,k ∩ N+ is such that fk,m(z) is a rational
function. Then by criterion (2) of Theorem 1.2, the backward orbit O−k (m)
(which is infinite) must contain all sufficiently large positive integers in Xa,k.
However a backward orbit O−k (m) cannot have this property whenever there
exists another m′ ∈ Xa,k ∩ N+ such that O−k (m′) is disjoint from O−k (m).
Since all backward orbits on positive integers are infinite, the finitely many
elements (Xa,k ∩ N+) r O−k (m) must by trichotomy have backward orbits
intersecting O−k (m), and therefore containing it. By replacing m with such
an element, we may enlarge the backward orbit, and thus in a finite number
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of steps arrive at a single positive element m′ whose backward orbit O−k (m)
contains all of Xa,k ∩ N+. We now study this backward orbit; note that it
may contain some negative integers. There are two cases to consider.

Case 1: The backward orbit O−(m′) is a tree. This tree must necessarily
branch at a lowest point where both subtrees at the branch contain infinitely
many positive integers, otherwise its density on the positive integers in Xa,k

would be zero, contradicting that it covers all positive integers in Xa,k.
That is, there can be at most a finite number of branchings where only one
of the two branch subtrees contains positive integers. Go to the lowest such
branching where both subtrees have positive integers, hence infinitely many
such integers. Let m1 and m2 be the lowest nodes in these two subtrees.
Now O−k (m1) and O−k (m2) cover all but finitely many elements of Xa,k∩N+

and each certifies that all nodes in the other have backward orbit generating
functions having {|z| = 1} as a natural boundary.

Case 2: The backward orbit O−(m′) contains a periodic orbit. In this
case m′ itself must be in the periodic orbit, and O−(m′) consists of this
periodic orbit plus a finite number of trees that enter it under forward
iteration. Let m1, . . . ,mk denote the lowest node in each such tree that
does not belong to the periodic orbit. If there are more than two such trees
containing a positive element, then together they certify that all positive
elements m′′ in all these trees have generating functions fk,m′′(z) having
{|z| = 1} as a natural boundary. In this case only the elements of the
periodic orbit itself have fk,m′′(z) being a rational function. If, however, there
is exactly one tree entering the periodic orbit, then we must go backward to
the first branching node in this tree such that both subtrees contain positive
elements, and repeat the argument of Case 1. This latter situation will occur
for the 3x+ 1 function if the 3x+ 1 Conjecture is true, with m′ = 1 in that
case.

6. Existence of finite backward orbits covering almost all posi-
tive integers. Standard conjectures for the 3x+k problem on the integers
when (k, 6) = 1 (see [15]) assert that the following hold:

(i) (Finite Cycles Conjecture) There are only finitely many periodic
orbits of Tk on the integers Z.

(ii) (Divergent Trajectories Conjecture) There are no divergent trajec-
tories of Tk, i.e. for no integer m is its forward orbit O+

k (m) of infinite
cardinality.

The first conjecture follows from the Finite Primitive Cycles Conjecture
made in [15], taken over all the divisors of k. The second conjecture is a
generalization of the Divergent Trajectories Conjecture given for the 3x+ 1
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problem in [14, Sect. 2.7]; the heuristic argument justifying it applies just
as well to the 3x+ k problem with gcd(k, 6) = 1.

We will show that these two conjectures together imply the existence of
infinitely many collections of orbits satisfying hypotheses (1)–(2) of Theorem
1.1. We make some preliminary definitions.

Definition 6.1. Two analytic functions f(z) and g(z) will be called
rationally equivalent if their difference f(z) − g(z) is a rational function.
Otherwise they are rationally inequivalent.

Definition 6.2. Two collections of analytic functions (f1(z), . . . , fn(z))
and (g1(z), . . . , gm(z)) are called rationally equivalent if there is a one-to-
one correspondence of rationally equivalent pairs (fi(z), gσ(i)(z)) where, if
the sequences are of unequal length, one is padded with zeros to be the
same length, and σ is a permutation of indices of that length. Otherwise the
collections are rationally inequivalent.

Theorem 6.3. Suppose that the Finite Cycles Conjecture and the Di-
vergent Trajectories Conjecture both hold for Tk with k ≡ ±1 (mod 6). Then
for each set X of residue classes modulo |k| that is closed under the action of
the maps r 7→ 2r and r 7→ 3r acting on residue classes modulo |k|, there are
infinitely many different finite collections of inverse orbit generating func-
tions of disjoint backward orbits of the form {O−k (mi) : 1 ≤ i ≤ `} (with all
mi > 0) that are pairwise rationally inequivalent, such that:

(1) all orbits O−k (mi) take values only in residue classes in X;
(2) all sufficiently large positive integers in congruence classes in X be-

long to their set union S :=
⋃`
i=1O

−
k (mi).

In each of these cases the associated generating function gS(z) :=
∑

n∈S∩N+zn

is a rational function.

Proof. The truth of the Divergent Trajectories Conjecture implies that
each integer enters a periodic orbit under forward iteration. The truth of
the Finite Cycles Conjecture predicts that there are finitely many cycles.
Choose cycle generators {mi : 1 ≤ i ≤ `}, taking mi to be the element of
smallest absolute value in each cycle, making it positive if there is a tie.

We need only consider those backward orbits O−k (mi) that contain in-
finitely many positive integers, which is the same as those that contain at
least one positive integer. The collection of these finite sets of backward
orbits whose members mi belong to a fixed minimal set Xa,k in Lemma 5.1
will cover Xa,k ∩ N+. They are disjoint backward orbits, and∑

mi∈Xa,k

fk,mi
(z) =

∑
n∈Xa,k∩N+

xn,
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the right side of which is a rational function. Thus we obtain a finite sum
of generating functions of elements in each Xa,k that is a rational function.

To get infinitely many distinct such identities we trace back along their
trees of inverse iterates. We note that at each node of the tree one has the
set partition identity

O−(m) = {m} ∪
⋃

{m′ : Tk(m′)=m}

O−k (m′).

This identity allows us to replace the generating function of the left side
element by the sum of generating functions of the right side. We may then
drop the generating function of the one-element set (which is a polynomial),
and we get another identity giving a sum of backward orbit generating func-
tions equal to a rational function. Whenever a branching of the backward
iterate trees occurs, we split the partition of Xa,k into one larger set. Some
of these inverse iterate trees must infinitely branch, otherwise there will not
be enough elements in the inverse image to cover all elements of Xa,k ∩N+.
Thus it is possible to obtain an infinite set of finite collections of backward
orbit sets on X = Xa,k for which property (2) holds, which are linearly
ordered under set inclusion (“nested”).

Now let Pk denote the kth partition into backward orbit sets obtained
this way in a nested set of partitions into inverse orbits. We may arrange
that the base partition P1 contains at least two distinct backward orbits,
whence its set of inverse orbit generating functions is rationally inequivalent
to the single rational function

R(x) :=
∑

n∈Xa,k∩N+

xn,

in the sense of Definition 6.2. This inequivalence holds using Theorem 1.1.
We see that condition (2) of that theorem does not hold for such subsets
because Xa,k is a minimal bi-invariant set closed under the action of mul-
tiplication by 2 and 3 (mod |k|) (via Lemma 5.1), and the node splitting
guarantees there exist infinitely many integers that lie in each of the inverse
orbits in the partition P1. In going from Pk to Pk+1 a single node is split,
and one inverse orbit is replaced by two inverse orbits, and a polynomial is
discarded from the right side of the identity, which is the generating function
of Xa,k ∩ N+ with a finite number of terms removed.

For Xa,k it remains to show all the partitions Pk give pairwise rationally
inequivalent generating functions in the sense of Definition 6.2. To show this,
we assert that each time a node is split we get a new collection of inverse
orbits whose associated collection of generating functions Pk+1 is pairwise
rationally inequivalent to each Pj , 1 ≤ j ≤ k, previously constructed. By the
nesting property of the partitions, this rational inequivalence condition is
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really equivalent to checking that any nontrivial subset of each partition Pk
separately does not have a generating function that is a rational function.
To verify the latter property we check that condition (2) of Theorem 1.1
does not hold for the generating function attached to any strict nontrivial
subset of the partition. By induction on k ≥ 1 we really only need to check
this property for those subsets of Pk+1 that contain exactly one of the two
new inverse orbits formed by the splitting at a node done at time k+ 1. But
this now holds because condition (2) of Theorem 1.1 does not hold for such
subsets by exactly the same argument as used for P1 above.

Finally, the result for general residue classes X (mod k) closed under
multiplication by 2 and 3 follows by taking a set union of decompositions of
the minimal clases Xa,k contained in X.

7. Concluding remarks. We describe some related work on problems
which involve generating functions with integer coefficients associated to
3x+ 1 type iterations which are (or sometimes may be) rational functions.

Berg and Meinardus [4] (see also [5]) introduced a different set of gen-
erating functions for encoding information about 3x + 1 iterates which are
also power series with integer coefficients. They introduced for each fixed
m ≥ 1 and for k = 1 the function

(7.1) g
(m)
k (z) :=

∞∑
n=1

T ◦mk (n)zn,

which encodes the iteration exactly m times, where the input value varies.
One may call these functions mth iterate generating functions. These func-
tions converge on the open unit disk {|z| < 1}. Berg and Meinardus [4,
Theorem 2] showed that for each m ≥ 1 these functions are rational func-
tions of z, and determined properties of these rational functions: all of their
poles fall on the circle {|z| = 1}, comprise a subset of the 2mth roots of
unity, and are at most double poles. Chamberland [8] extended their results
to general k ≡ ±1 (mod 6), and to more general maps (qx + k maps). He
studied the polar part of the singularities of these rational functions in detail
as m varies.

Berg and Meinardus [4] also introduced for fixed n ≥ 1 and k = 1 the
forward orbit generating functions

(7.2) hk,n(w) :=

∞∑
m=0

T ◦mk (n)wm,

which encode the complete sequence of forward iterates of a fixed integer n.
These power series have integer coefficients, but their radii of convergence
are not known in general. For given Tk and starting value n ≥ 1, if the
forward orbit of n is eventually periodic then the power series for hk,n(w)
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will converge on {|w| < 1}, and hk,m(w) will be a rational function of w. In
particular, if the 3x+ 1 Conjecture is true, then all h1,n(w) will be rational
functions. In the remaining case that the forward orbit O+

k (n) is a diver-
gent trajectory, Berg and Meinardus only assert that the radius of the disk
on which the series converges must be at least 2

3 . One might expect that
hk,n(w) will not be a rational function of w in this case, but justifying this
expectation remains an open problem.

Finally, Berg and Meinardus [4] introduced for k = 1 the bivariate gen-
erating functions

Fk(z, w) :=

∞∑
m=0

∞∑
n=0

T ◦mk (n)znwm.

They gave a system of functional equations which this generating function
satisfies (see [4, Theorem 4]). It is not known whether this function is ever
a bivariate rational function.
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