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1. Introduction

1.1. Background and motivation. For polynomials f(Z), g(Z) ∈
Z[Z] satisfying

(1) ∆(Z) 6= 0 and j(Z) 6∈ Q,
where

∆(Z) = −16(4f(Z)3 + 27g(Z)2) and j(Z) =
−1728(4f(Z))3

∆(Z)

are the discriminant and j-invariant respectively, we consider the elliptic
curve

(2) E(Z) : Y 2 = X3 + f(Z)X + g(Z)

over the function field Q(Z). For a general background on elliptic curves we
refer to [31].

Here we are interested in studying the specialisations E(t) of these curves
on average over the parameter t running through some interesting sets of
integers or rational numbers. More precisely, motivated by the Lang–Trotter
and Sato–Tate conjectures we study the distributions of Frobenius traces,
Frobenius fields and Frobenius angles of the reductions of E(t) modulo con-
secutive primes p ≤ x for a growing parameter x.

Let us first introduce some standard notation.
Given an elliptic curve E over Q we denote by Ep the reduction of E

modulo p. In particular, we use Ep(Fp) to denote the group of Fp-rational
points on Ep, where Fp is the finite field of p elements. We always assume
that the elements of Fp are represented by the set {0, . . . , p − 1} and thus
we switch freely between equations in Fp and congruences modulo p.
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For a ∈ Z, we use πE(a;x) to denote the number of primes p ≤ x which
do not divide the conductor NE of E and such that

ap(E) = a,

where

ap(E) = p+ 1−#Ep(Fp)

is the so-called Frobenius trace of Ep. We also set ap(E) = 0 for p |NE .

For a fixed imaginary quadratic field K, we denote by πE(K;x) the num-
ber of primes p ≤ x with p - NE and such that

ap(E) 6= 0 and Q
(√

ap(E)2 − 4p
)

= K,

where Q(
√
ap(E)2 − 4p) is the so-called Frobenius field of E with respect

to p.

Two celebrated Lang–Trotter conjectures [21] assert that if E is without
complex multiplication (CM), then:

• πE(a;x) ∼ c(E, a)
√
x

log x as x → ∞, for some constant c(E, a) ≥ 0

depending only on E and a;

• πE(K;x) ∼ C(E,K)
√
x

log x as x → ∞, for some constant C(E,K) ≥ 0
depending only on E and K.

However, the situation is quite different when E does have complex
multiplication. For example, Deuring [16] has showed that if E has CM,
then

(3) πE(0;x) ∼ 1

2
· x

log x
.

Besides, it is well known that if E is with CM, for any prime p - NE we
have

Q
(√

ap(E)2 − 4p
)
' EndQ̄(E)⊗Z Q,

where EndQ̄(E) stands for the endomorphism ring of E; but if E is without
complex multiplication, there are infinitely many distinct such Frobenius
fields as prime p - NE varies.

Despite a series of interesting (conditional and unconditional) recent
achievements, see [9, 10, 12, 14, 27, 30] for surveys and some recent results,
these conjectures are widely open.

In addition, by Hasse’s bound (see [31]) we can define the Frobenius angle
ψp(E) ∈ [0, π] via the identity

(4) cosψp(E) =
ap(E)

2
√
p
.
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For real numbers 0 ≤ α < β ≤ π, we define the Sato–Tate density

(5) µST(α, β) =
2

π

β�

α

sin2 ϑ dϑ =
2

π

cosα�

cosβ

(1− z2)1/2 dz.

We denote by πE(α, β;x) the number of primes p ≤ x (with p - NE) for
which ψp(E) ∈ [α, β]. The Sato–Tate conjecture, that has recently been set-
tled in the series of works of Barnet–Lamb, Geraghty, Harris, and Taylor [7],
Clozel, Harris and Taylor [8], Harris, Shepherd–Barron and Taylor [19], and
Taylor [32], asserts that if E is not a CM curve, then

(6) πE(α, β;x) ∼ µST(α, β) · x

log x

as x → ∞. However, if E is a CM curve, Deuring’s result (3) says that for
half of primes p, the Frobenius angle satisfies ψp(E) = π.

So, due to the lack of conclusive results towards the Lang–Trotter con-
jectures, and also the lack of an explicit error term in the asymptotic for-
mula (6), it makes sense to study πE(a;x), πE(K;x) and πE(α, β;x) on
average over some natural families of elliptic curves.

Here we continue this line of research and in particular introduce new
natural families of curves, which are sometimes much thinner than the ones
previously studied in the literature. We note that the thinner the family the
better the corresponding result approximates the ultimate goal of obtaining
precise estimates for individual curves.

1.2. Previously known results. The idea of studying the properties
of the reduction Ep for p ≤ x on average over a family of curves E is due to
Fouvry and Murty [17], who have considered the average value of πE(0;x)
and proved the Lang–Trotter conjecture on average for the family of curves

(7) Eu,v : Y 2 = X3 + uX + v,

where the integers u and v satisfy the inequalities |u| ≤ U , |v| ≤ V . The
results of [17] are nontrivial provided that

(8) min{U, V } > x1/2+ε and UV > x3/2+ε

for some fixed positive ε > 0; then, on average, the Lang–Trotter conjecture
holds for such curves. Note that the case of πE(0;x) corresponds to the
distribution of so-called supersingular primes. David and Pappalardi [13]
have extended the result of [17] to πE(a;x) with an arbitrary a ∈ Z, however
under a more restrictive condition on U and V than that given by (8), namely
for min{U, V } > x1+ε. Finally, Baier [2] gives a full analogue of the result
of [17] for any a ∈ Z and under the same restriction (8); later Baier [3] also
replaces (8) by the condition

min{U, V } > (log x)60+ε and x3/2(log x)10+ε < UV < exp(x1/8−ε)
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when a 6= 0. See also [4] for a refined version of the Lang–Trotter conjecture
related to Frobenius traces with a uniform error term.

The Sato–Tate conjecture on average has also been studied for the fam-
ily (7) (see [5, 6]). In particular, Banks and Shparlinski [6] have shown that
using bounds of multiplicative character sums and the large sieve inequality
(instead of the exponential sum technique employed in [17]), one can study
the Sato–Tate conjecture in a much wider range of U and V than that given
by (8). Namely, the results of [6] are nontrivial when

(9) UV ≥ x1+ε and min{U, V } ≥ xε

for some fixed positive ε > 0, and the Sato–Tate conjecture is true on average
for this family of elliptic curves. The technique of [6] has been used in several
other problems such as primality or distribution of values of #Eu,v(Fp) in
the domain which is similar to (9) (see [10, 15, 28]).

Results towards the Lang–Trotter and Sato–Tate conjectures for more
general families of the form Y 2 = X3 + f(u)X + g(v) with polynomials f, g
and integers |u| ≤ U , |v| ≤ V , are given in [29]. In particular, the conjectures
are valid on average for these polynomial families of elliptic curves with
restrictions on U and V .

Furthermore, Cojocaru and Hall [11] have considered the family of curves
(2) and obtained an upper bound on the average value of πE(t)(a;x) for the
parameter t that runs through the set of rational numbers

F(T ) = {u/v ∈ Q : gcd(u, v) = 1, 1 ≤ u, v ≤ T},

of height at most T . For the size of F(T ), it is well known that

(10) #F(T ) ∼ 6

π2
T 2

as T → ∞ (see [18, Theorem 331]). We recall that F(T ) ∩ [0, 1] is the
well-known set of Farey fractions.

Cojocaru and Shparlinski [12] have improved [11, Theorem 1.4] and ob-
tained a similar bound for the average value of πE(t)(a;x). Namely, by [12,
Theorem 2], if the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then, for any
integer a, we have

(11)
∑

t∈F(T )
∆(t)6=0

πE(t)(a;x)� Tx3/2+o(1) +

{
T 2x3/4 if a 6= 0,

T 2x2/3 if a = 0;

and moreover, for any imaginary quadratic field K,

(12)
∑

t∈F(T )
∆(t)6=0

πE(t)(K;x)� Tx3/2+o(1) + T 2x2/3.
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Here we use the Landau symbols O and o and the Vinogradov symbol�.
We recall that the assertions A = O(B) and A � B are both equivalent
to the inequality |A| ≤ cB with some absolute constant c, while A = o(B)
means that A/B → 0. We also use the asymptotic notation ∼. Throughout
the paper the implied constants may depend on the polynomials f(Z) and
g(Z) in (2).

1.3. General outline of our results. In this paper, we consider the
Lang–Trotter and Sato–Tate conjectures on average for the polynomial fam-
ily (2) of elliptic curves when the variable Z runs through sets of several
different types. More precisely, given a large positive parameter T , we con-
sider the case when Z runs through F(T ) or a much “thinner” set of T
consecutive integers, that is,

I(T ) = {1, . . . , T}.
We believe that these are the first known results that involve one parametric
family of curves, precisely with a parameter running through an interval of
consecutive integers (note that F(T ) has the structure and properties of a
two parametric set).

Furthermore, we also consider the case when Z runs through the sums
u+ v (taken with multiplicities) over all pairs (u, v) ∈ U ×V for two subsets
U ,V ∈ I(T ); to the best of our knowledge, results in these settings, with
arbitrary non-empty sets U and V, are completely new as well.

To derive our results we introduce several new ideas, such as using a
result of Michel [23, Proposition 1.1] in a combination with a technique of
Niederreiter [25, Lemma 3]. We also obtain several other results of indepen-
dent interest such as estimates in Section 2.3 for the number of solutions of
some congruences and equations with elements of F(T ).

We start with an improvement and generalisation of the bound (11), and
in fact give a proof that is simpler than that of (11). More precisely, for an
elliptic curve E over Q and a sequence A = {ap} of integers, supported on
primes p, we define πE(A;x) as the number of primes p ≤ x which do not
divide the conductor NE of E and such that

ap(E) = ap.

We say that A is the zero sequence if ap = 0 for every p, and A is a
constant sequence if all ap equal the same integer. Note that if ap = a for
all p, that is, A is a constant sequence, then πE(A;x) = πE(a;x). Here, one
of the interesting choices of the sequence A is with

ap = −b2p1/2c,
corresponding to curves with the largest possible number of Fp-rational
points.
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1.4. Formulations of our results. We are now able to give exact
formulations of our results.

Theorem 1. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any sequence A = {ap} of integers, we have∑
t∈F(T )
∆(t)6=0

πE(t)(A;x)�
{
Tx11/8+o(1) + T 2x7/8 for any A,

Tx4/3+o(1) + T 2x5/6 if A is the zero sequence.

The proof of Theorem 1 is based on a simple idea using the Cauchy
inequality and then estimating the second moment of the quantity ofRT,p(w)
(see Section 2.1) via a result of Ayyad, Cochrane and Zheng [1, Theorem 1].
This gives a stronger result than the approach of [12] which is based on
deriving an asymptotic formula for the average deviation of RT,p(w) from
its expected value (which also requires the use of the inclusion-exclusion
formula).

Comparing this with (11), we can see that if a 6= 0 then Theorem 1
improves (11) and remains nontrivial when x3/8+ε ≤ T ≤ x5/8−ε for small
ε > 0. If a = 0 then the same holds for x1/3+ε ≤ T ≤ x2/3−ε. Furthermore,
we note that (11) is nontrivial only when T ≥ x1/2+ε, because the trivial
upper bound is O(T 2x).

We then consider the very interesting and natural special case of the
polynomials

(13) f(Z) = 3Z(1728− Z) and g(Z) = 2Z(1728− Z)2,

for which one can verify that j(Z) = Z. Thus for each specialisation t 6=
0, 1728, the j-invariant of the curve E(t) equals t. For this special case, we
obtain a better bound than that of Theorem 1.

Theorem 2. If the polynomials f(Z), g(Z) ∈ Z[Z] are given by (13),
then for any sequence A = {ap} of integers, we have∑

t∈F(T )
∆(t)6=0

πE(t)(A;x)� Tx5/4+o(1) + T 2x3/4+o(1).

We also get a nontrivial upper bound for the sum of πE(r+s)(A;x), where

r and s run over F(T ) and x1/4+ε ≤ T ≤ x1−ε for small ε > 0.

Theorem 3. Suppose that the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1).
Then for any sequence A = {ap} of integers, we have∑

r,s∈F(T )
∆(r+s)6=0

πE(r+s)(A;x)� T 5 + T 3x5/4+o(1) + T 4x3/4+o(1).
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Now, we state a new result concerning the Lang–Trotter conjecture in-
volving Frobenius fields.

Theorem 4. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any imaginary quadratic field K, we have∑

t∈F(T )
∆(t)6=0

πE(t)(K;x)� Tx4/3+o(1) + T 2x5/6.

Comparing this with (12), we can see that Theorem 4 improves (12) and
remains nontrivial when x1/3+ε ≤ T ≤ x2/3−ε for small ε > 0.

The following result is the first study on the sum of πE(r+s)(K;x) when r

and s run over F(T ). Since the trivial bound is T 4x, this result is nontrivial
when T ≥ x1/6+ε for any ε > 0.

Theorem 5. Suppose that the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1).
Then for any imaginary quadratic field K, we have∑

r,s∈F(T )
∆(r+s)6=0

πE(r+s)(K;x)� T 4x5/6 + T 2+o(1)x4/3.

Unfortunately, currently there are no asymptotic formulas for the average
value of πE(t)(α, β;x) (which is relevant to the Sato–Tate conjecture) when
the parameter t runs through F(T ). In particular the arguments in the proof
of Lemma 19 are not strong enough for this.

Here, we consider this problem in another direction. As usual, we use
π(x) to denote the number of primes p ≤ x.

Theorem 6. Suppose that the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1),
and for some ε > 0,

x1/4+ε ≤ T ≤ x1−ε.

Then for any real numbers 0 ≤ α < β ≤ π, we have

1

(#F(T ))2

∑
r,s∈F(T )
∆(r+s)6=0

πE(r+s)(α, β;x) = (µST(α, β) +O(x−δ))π(x),

with arbitrary real δ satisfying 0 < δ < min{ε, 1/4}.
Note that in Theorem 6 it can be easy to drop the condition T ≤ x1−ε

and obtain a version of the theorem under just one natural restriction T ≥
x1/4+ε. Since small values of T are of our primary interest, we have not
attempted to do this.

We now recall that the common feature of the approaches of both [6]
and [17] is that they need two independently varying parameters u and v.
This has been a part of the motivation for Cojocaru and Hall [11] and Co-
jocaru and Shparlinski [12] to consider the family of curves (2). However,
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even this family cannot be considered as a truly single parametric family
of curves, because the simple exclusion-inclusion principle reduces a prob-
lem with the parameter t ∈ F(T ) to a series of problems with t = u/v,
where u and v run independently through some intervals of consecutive in-
tegers.

To overcome this drawback, in [29], the family of curves (2) has been
studied for specialisations t from the set

(14) I(T ) = {1, . . . , T}

of T consecutive integers. In particular, in [29, Theorem 15], an asymptotic
formula is given for the average value of πE(t)(α, β;x) over t ∈ I(T ), pro-

vided that T ≥ x1/2+ε, thus providing yet another form of the Sato–Tate
conjecture on average. This result is a first example of averaging over a single
parametric family of curves. The proof of [29, Theorem 15], amongst other
things, is based on a result of Michel [23]. We note that unfortunately in [29,
Lemma 9] a wrong reference is given, a correct one is [23, Proposition 1.1].
Here we use a similar approach to estimate the average value of πE(t)(A;x)
over t ∈ I(T ), that is, also for a single parametric family of curves, which is
related to the Lang–Trotter conjecture.

Theorem 7. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any sequence A = {ap} of integers, we have∑

t∈I(T )
∆(t) 6=0

πE(t)(A;x)� T 2 + T 1/2x5/4+o(1).

In Theorem 7, since the trivial upper bound is Tx, when x1/2+ε < T <
x1−ε for small ε > 0 the result is nontrivial. We also have an analogue of
Theorem 7 over sum-sets.

Theorem 8. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any sequence A = {ap} of integers and sets U ,V ⊆ I(T ), we have∑

u∈U ,v∈V
∆(u+v)6=0

πE(u+v)(A;x)� T#U#V + (#U#V)3/4x5/4.

As the above, in Theorem 8 the trivial upper bound is #U#Vx, so the
result is nontrivial when T < x1−ε and #U#V > x1+ε for small ε > 0, which
implies that T > x(1+ε)/2.

For the Lang–Trotter conjecture related to Frobenius fields, we get the
following result when the parameter runs through I(T ). The result is non-
trivial when T > x2/3+ε for any ε > 0.
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Theorem 9. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any imaginary quadratic field K, we have∑

t∈I(T )
∆(t)6=0

πE(t)(K;x)� T 1/2x4/3 + Tx5/6.

We want to remark that since for any nonnegative valued function h(X),
we have ∑

r,s∈I(T )

h(r + s) ≤ T
∑

t∈I(2T )

h(t),

Theorem 9 implies the following upper bound:∑
r,s∈I(T )

∆(r+s) 6=0

πE(r+s)(K;x)� T 3/2x4/3 + T 2x5/6.

As mentioned before, in [29, Theorem 15], an asymptotic formula is
given for the average value of πE(t)(α, β;x) over t ∈ I(T ). Here, we derive
an analogue for the average value of πE(u+v)(α, β;x), where u, v run through
two subsets U ,V, respectively.

Theorem 10. Suppose that the polynomials f(Z), g(Z) ∈ Z[Z] sat-
isfy (1), and the nonempty sets U ,V ⊆ I(T ) are such that, for some ε > 0,

#U#V ≥ x1+ε and T ≤ x1−ε.

Then for any real numbers 0 ≤ α < β ≤ π, we have

1

#U#V
∑

u∈U ,v∈V
∆(u+v)6=0

πE(u+v)(α, β;x) = (µST(α, β) +O(x−ε/4))π(x).

Note that in Theorem 10, since T 2 ≥ #U#V ≥ x1+ε, we have T ≥
x(1+ε)/2.

We remark that in this paper we often replace summation over primes
by summation over all integers. Thus some terms in the above bounds can
be improved by a small power of log x.

2. Preliminaries

2.1. Notation and general remarks. Throughout the paper, p always
denotes a prime number. For t ∈ Q, let N(t) denote the conductor of the
specialisation of E(Z) at Z = t. We always consider rational numbers in the
form of irreducible fractions.

Note that for t ∈ Q, ∆(t) may be a rational number. However, we know
that the elliptic curve E(t) has good reduction at prime p if and only if p does
not divide both the numerator and denominator of ∆(t); see [31, Chapter
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VII, Proposition 5.1(a)]. So, we can say that for any prime p, p - N(t) (that
is, E(t) has good reduction at p) if and only if ∆(t) 6≡ 0 (mod p) (certainly,
it first requires that p does not divide the denominator of ∆(t)).

We define

(15) PF = #{p prime : ∃u/v ∈ Q, p | v, p - N(u/v)}.
Since p - N(u/v), we have ∆(u/v) 6≡ 0 (mod p), which requires that p
does not divide the denominator of ∆(u/v). Noticing the form of ∆(u/v)
and p | v, we can see that PF is upper bounded by a constant which only
depends on the polynomials f(Z), g(Z). For example, if deg f > deg g, then
PF is not greater than the number of prime divisors of 2af , where af is the
leading coefficient of f(Z), because such a prime p must divide 2af .

For an integer w, we denote by RT,p(w) the number of fractions u/v ∈
F(T ) with gcd(v, p) = 1 and u/v ≡ w (mod p). In particular, we immediately
derive the inequality∑

t∈F(T )
∆(t)6=0

πE(t)(A;x) ≤ PFT 2 +
∑

t=u/v∈F(T )
∆(t)6=0

∑
p≤x

p-v,p-N(t)
at,p=ap

1(16)

≤ PFT 2 +
∑
p≤x

∑
0≤w≤p−1

∆(w)6≡0 (mod p)
aw,p=ap

RT,p(w),

where to simplify the notation we write

(17) aw,p = ap(E(w)).

We want to indicate that the treatment in (16) is an improvement of the
inequality used in [12, Section 3.2, bottom of p. 1982], however this does not
affect the final result of [12, Theorem 2].

2.2. Some congruences with traces. The following estimate is an
immediate consequence of (16).

Lemma 11. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any sequence A = {ap} of integers and any prime `, we have∑

t∈F(T )
∆(t)6=0

πE(t)(A;x) ≤ PFT 2 +
∑
p≤x

∑
0≤w≤p−1

∆(w)6≡0 (mod p)
aw,p≡ap (mod `)

RT,p(w).

Next we need the following two bounds that have been obtained in the
proof of [12, Theorem 2] (see the middle and the bottom of [12, p. 1983],
and [12, equation (8)] respectively) from an effective version of the Cheb-
otarev theorem given by Murty and Scherk [24, Theorem 2]; see also [11,
Theorem 1.2].
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Lemma 12. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any integer a and prime ` ≥ 17 and ` 6= p, we have∑

0≤w≤p−1
∆(w) 6≡0 (mod p)
aw,p≡a (mod `)

1 =
p

`
+

{
O(`p1/2) if a 6= 0,

O(`1/2p1/2) if a = 0,

where the implied constants are independent of a, p and `.

Lemma 13. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any prime ` ≥ 17 and ` 6= p, and any imaginary quadratic field K, we have∑

0≤w≤p−1
∆(w)6≡0 (mod p)
aw,p 6≡0 (mod p)

Q(
√
a2w,p−4p)=K

1 =
p

`
+O(`1/2p1/2),

where the implied constants are independent of K, p and `.

2.3. Some congruences with elements of F(T ). We first prove the
following estimate on the average multiplicity of values in the reduction of
F(T ) modulo p, which is used several times later on.

Lemma 14. For any prime p, define

QT,p = #{(u1/v1, u2/v2) ∈ F(T )×F(T ) : gcd(v1v2, p) = 1,

u1/v1 ≡ u2/v2 (mod p)}.

Then

QT,p � T 4/p+ T 2(log p)2 = T 4/p+ T 2po(1),

where the implied constant is independent of p and T .

Proof. Dropping the condition

gcd(v1v2, p) = gcd(u1, v1) = gcd(u2, v2) = 1,

we see that QT,p does not exceed the number of solutions to the congruence

u1v2 ≡ u2v1 (mod p), 1 ≤ u1, u2, v1, v2 ≤ T,

which has been estimated as O(T 4/p+T 2(log p)2) by Ayyad, Cochrane and
Zheng [1, Theorem 1] when T < p. Obviously, by fixing three variables and
varying the remaining variable, when p ≤ T the number of such solutions is
at most 2T 4/p . So, we have

QT,p � T 4/p+ T 2(log p)2 = T 4/p+ T 2po(1),

where the implied constant is independent of p and T .
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We now need an additive analogue of Lemma 14. Namely, we need an
upper bound on the number VT,p of solutions to the congruence

(18) u1/v1 + u2/v2 ≡ u3/v3 + u4/v4 (mod p),

ui/vi ∈ F(T ), i = 1, 2, 3, 4, gcd(v1v2v3v4, p) = 1.

Trivially we have VT,p � T 8/p+ T 7. Using bounds of exponential sums
with Farey fractions from [26], one can get an essentially optimal bound.
We also denote ep(z) = exp(2πiz/p).

Lemma 15. For any prime p, we have

max
a∈F∗

p

∣∣∣ ∑
u/v∈F(T )

ep(au/v)
∣∣∣ ≤ T (Tp)o(1).

Proof. The desired result looks similar to [26, Theorem 1] taken with
m = p. However, in [26] the set F(T ) is defined in a more traditional way
with the additional condition u < v (that is, F(T ) ⊆ [0, 1] in the definition
of [26]). So we give here a short proof which relies on the bound in [26,
Lemma 3]. Namely, let U, V ≥ 1 be arbitrary integers and let for each v
two integers Uv > Lv be given with 0 ≤ Lv < p and Uv ≤ U . Then by [26,
Lemma 3], taken with m = p, we have

(19) max
a∈F∗

p

∣∣∣ V∑
v=1

gcd(v,p)=1

Uv∑
u=Lv+1

ep(au/v)
∣∣∣ ≤ (U + V )(V p)o(1).

Now, for an integer d ≥ 1 we use µ(d) to denote the Möbius function. We
recall that µ(1) = 1, µ(d) = 0 if d ≥ 2 is not square-free, and µ(d) = (−1)ω(d)

otherwise, where ω(d) is the number of prime divisors of d. Then by the
inclusion-exclusion principle,∑

u/v∈F(T )

ep(au/v) =

T∑
d=1

µ(d)

T∑
v=1

gcd(v,p)=1
d|v

T∑
u=1
d|u

ep
(
au/v

)

=
T∑
d=1

µ(d)

bT/dc∑
v=1

gcd(v,p)=1

bT/dc∑
u=1

ep
(
au/v

)
.

Next, for each d = 1, . . . , T we apply (19) to see that each inner sum is at
most Td−1(Tp)o(1). The result follows.

We are now ready to estimate VT,p.
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Lemma 16. For any prime p, we have

VT,p =
(#F(T ))4

p
+O(T 4(Tp)o(1)).

Proof. Using the orthogonality of the exponential function, we write

VT,p =
∑∑
ui/vi∈F(T )
i=1,2,3,4

1

p

p−1∑
a=0

ep
(
a
(
u1/v1 + u2/v2 − u3/v3 − u4/v4

))
.

Changing the order of summation and also noticing that |z|2 = zz, we obtain

VT,p =
1

p

p−1∑
a=0

∣∣∣ ∑
u/v∈F(T )

ep(au/v)
∣∣∣4.

Now, the contribution from a = 0 gives the main term (#F(T ))4/p, while
for other sums we apply Lemma 15.

2.4. Preparations for distribution of angles. Now, we introduce a
direct consequence of a result of Niederreiter [25, Lemma 3], which is one
of our key tools. For m arbitrary elements w1, . . . , wm lying in the interval
[−1, 1] (not necessarily distinct) and an arbitrary subinterval J of [−1, 1],
let A(J ;m) be the number of integers i, 1 ≤ i ≤ m, with wi ∈ J . For any
−1 ≤ a < b ≤ 1, define the function

G(a, b) =
2

π

b�

a

(1− z2)1/2 dz.

We also recall the Chebyshev polynomials Un of the second kind: on [−1, 1]
they are defined by

Un(z) =
sin((n+ 1) arccos z)

(1− z2)1/2
for z ∈ [−1, 1],

where n is a nonnegative integer. In particular, for ϑ ∈ [0, π],

Un(cosϑ) =
sin((n+ 1)ϑ)

sinϑ
.

Lemma 17. For any integer k ≥ 1, we have

max
−1≤a<b≤1

|A([a, b];m)−mG(a, b)| � m

k
+

k∑
n=1

1

n

∣∣∣ m∑
i=1

Un(wi)
∣∣∣.

Proof. Note that for any −1 ≤ a < b ≤ 1,

A([a, b];m)−mG(a, b)

=
(
A([−1, b];m)−mG(−1, b)

)
−
(
A([−1, a);m)−mG(−1, a)

)
.
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For any odd positive integer κ, it follows directly from [25, Lemma 3] that

|A([a, b];m)−mG(a, b)|

<
16m

0.362 · πκ+ 4
+

2(4κ− 3)

0.362 · πκ+ 2π

2κ−1∑
n=1

n+ 1

n(n+ 2)

∣∣∣ m∑
i=1

Un(wi)
∣∣∣.

The desired result is now obtained by varying the value of κ according to k.
Here, one ought to notice the symbol � we use in the result.

2.5. Distribution of angles over F(T ). We now consider the angles
ψp(E(t)) that are given by (4).

Michel [23, Proposition 1.1] gives the following bound on the weighed
sums with the angles ψp(E(t)) for single parametric polynomial families of
curves, where the sums is also twisted by additive characters. We recall the
notation ep(z) = exp(2πiz/p) from Section 2.3.

Lemma 18. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), we have∑
w∈Fp

∆(w)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(w))

)
sin
(
ψp(E(w))

) ep(mw)� np1/2

uniformly over all integers m and n ≥ 1.

The following result is a direct application of Lemma 18.

Lemma 19. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any prime p, we have∑

r,s∈F(T )
∆(r+s) 6≡0 (mod p)

sin
(
(n+ 1)ψp(E(r + s))

)
sin
(
ψp(E(r + s))

) � nT 2p1/2+o(1) + nT 4p−1/2

uniformly over all integers n ≥ 1.

Proof. Using the orthogonality of the exponential function, we write∑
r,s∈F(T )

∆(r+s)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(r + s))

)
sin
(
ψp(E(r + s))

)
=

∑
w∈Fp

∆(w) 6≡0 (mod p)

sin
(
(n+ 1)ψp(E(w))

)
sin
(
ψp(E(w))

)
×

∑
u1/v1∈F(T ), gcd(v1,p)=1
u2/v2∈F(T ), gcd(v2,p)=1

1

p

p−1∑
m=0

ep(m(w − u1/v1 − u2/v2))

+O(nT 3(T/p+ 1)),



Lang–Trotter and Sato–Tate distributions 313

where the last term comes from the exceptional case with p | v1v2. So chang-
ing the order of summation we obtain∑

r,s∈F(T )
∆(r+s)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(r + s))

)
sin
(
ψp(E(r + s))

)
=

1

p

p−1∑
m=0

∑
w∈Fp

∆(w)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(w))

)
sin
(
ψp(E(w))

) ep(mw)

×
∑

u1/v1∈F(T )
gcd(v1,p)=1

ep(−mu1/v1)
∑

u2/v2∈F(T )
gcd(v2,p)=1

ep(−mu2/v2).

Using Lemma 18, we have∑
r,s∈F(T )

∆(r+s)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(r + s))

)
sin
(
ψp(E(r + s))

)
� np−1/2

p−1∑
m=0

∣∣∣ ∑
u1/v1∈F(T )
gcd(v1,p)=1

ep(−mu1/v1)
∣∣∣ ∣∣∣ ∑
u2/v2∈F(T )
gcd(v2,p)=1

ep(−mu2/v2)
∣∣∣.

It now remains to apply the Cauchy inequality and note that
p−1∑
m=0

∣∣∣ ∑
u/v∈F(T )
gcd(v,p)=1

ep(−mu/v)
∣∣∣2

=

p−1∑
m=0

∑
u1/v1∈F(T )
u2/v2∈F(T )

gcd(v1v2,p)=1

ep(m(u2/v2 − u1/v1))

=
∑

u1/v1∈F(T )
u2/v2∈F(T )

gcd(v1v2,p)=1

p−1∑
m=0

ep(m(u2/v2 − u1/v1))� T 2p1+o(1) + T 4,

which follows from the orthogonality of the exponential function and from
Lemma 14.

Now, we define Bf,g,p(F(T );α, β) as the number of pairs (r, s) ∈ F(T )×
F(T ) with ∆(r + s) 6≡ 0 (mod p) such that

α ≤ ψp(E(r + s)) ≤ β.
Combining Lemmas 17 and 19 we derive the following result. Note that

here we assume that the prime p is greater than T . Since we prefer small
values of T , this assumption is reasonable.
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Lemma 20. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any prime p > T , we have

max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

� T 3p1/4+o(1) + T 4p−1/4+o(1).

Proof. Obviously, since p > T , we have

#{(r, s) ∈ F(T )×F(T ) : ∆(r + s) ≡ 0 (mod p)} � T 3.

We now associate to each pair (r, s) ∈ Bf,g,p(F(T );α, β) a value
cosψp(E(r + s)). This enables us to apply Lemma 17. So, by that lemma,
for any positive integer k, we have

max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

� T 3 +
(#F(T ))2

k
+

k∑
n=1

1

n

∣∣∣∣ ∑
r,s∈F(T )

∆(r+s)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(r + s))

)
sin
(
ψp(E(r + s))

) ∣∣∣∣.
Here, the reason why the term T 3 appears in the above inequality is that the
pairs (r, s) satisfying ∆(r+ s) ≡ 0 (mod p) are not counted in Bf,g,p(F(T );
α, β).

Thus, by (10) and Lemma 19, we get

(20) max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

� T 3 +
T 4

k
+ kT 2p1/2+o(1) + kT 4p−1/2

� T 4

k
+ kT 2p1/2+o(1) + kT 4p−1/2.

Clearly, we can assume that T ≥ p1/4 as otherwise the result is weaker
than the trivial bound O(T 4).

Now, for p1/2 ≥ T ≥ p1/4 we take k = dp−1/4T e to balance the first two
terms in (20) and derive

(21) max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

� T 3p1/4+o(1) + T 5p−3/4 ≤ T 3p1/4+o(1),

For T ≥ p1/2 we take k = dp1/4e to balance the first and the third terms
in (20) and derive

(22) max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

� T 2p3/4+o(1) + T 4p−1/4 ≤ T 4p−1/4+o(1).
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Finally, noticing that T 4p−1/4 ≤ T 3p1/4 is equivalent to T ≤ p1/2, we
see that in both cases the bounds (21) and (22) can be combined in one
bound

max
0≤α<β≤π

|Bf,g,p(F(T );α, β)− µST(α, β)(#F(T ))2|

≤ T 3p1/4+o(1) + T 4p−1/4+o(1),

2.6. Distribution of angles over I(T ). We start by recalling the
bound from [29, Lemma 10], which is essentially based on Lemma 18 here
and the standard reduction between complete and incomplete sums (see [20,
Section 12.2]).

Lemma 21. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any prime p, we have∑

t∈I(T )
∆(t)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(t))

)
sin
(
ψp(E(t))

) � np1/2+o(1)

uniformly over all integers n ≥ 1.

Let Cf,g,p(I(T );α, β) be the number of integers t ∈ I(T ), where I(T ) is
given by (14), with ∆(t) 6≡ 0 (mod p), such that

α ≤ ψp(E(t)) ≤ β.
Here, we reproduce the asymptotic formula on Cf,g,p(I(T );α, β) given in [29,
Lemma 11] with a minor change (we use a different notation).

Lemma 22. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any prime p > T , we have

max
0≤α<β≤π

|Cf,g,p(I(T );α, β)− µST(α, β)T | � T 1/2p1/4+o(1).

Proof. Note that since p > T , the number of t ∈ I(T ) satisfying ∆(t) ≡ 0
(mod p) is upper bounded by a constant, say c, which only depends on the
degrees of f(Z) and g(Z).

As in the proof of Lemma 20, by Lemmas 17 and 21, for any positive
integer k, we have

max
0≤α<β≤π

|Cf,g,p(I(T );α, β)− µST(α, β)T |

� 1 +
T

k
+

k∑
n=1

1

n

∣∣∣∣ ∑
t∈I(T )

∆(t) 6≡0 (mod p)

sin
(
(n+ 1)ψp(E(t))

)
sin
(
ψp(E(t))

) ∣∣∣∣
� 1 + T/k + kp1/2+o(1).
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It is easy to see that for T ≤ p1/2 the result is weaker than the trivial bound
O(T ).

For T > p1/2, taking k = dp−1/4T 1/2e, we complete the proof.

We now give yet another application of Lemma 18.

Lemma 23. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any nonempty subsets U ,V ⊆ I(T ) and any prime p > T , we have∑

u∈U ,v∈V
∆(u+v)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(u+ v))

)
sin
(
ψp(E(u+ v))

) � n(p#U#V)1/2

uniformly over all integers n ≥ 1.

Proof. Applying the same argument as in the proof of Lemma 19, we
have ∑

u∈U ,v∈V
∆(u+v)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(u+ v))

)
sin
(
ψp(E(u+ v))

)
� np−1/2

p−1∑
m=0

∣∣∣∑
u∈U

ep(−mu)
∣∣∣ ∣∣∣∑
v∈V

ep(−mv)
∣∣∣.

It now remains to apply the Cauchy inequality and note the identities

p−1∑
m=0

∣∣∣∑
u∈U

ep(−mu)
∣∣∣2 = p#U and

p−1∑
m=0

∣∣∣∑
v∈V

ep(−mv)
∣∣∣2 = p#V,

which follow from the orthogonality of the exponential function and p > T .

Now, for any two nonempty subsets U ,V ⊆ I(T ), let Df,g,p(U ,V;α, β)
be the number of pairs (u, v) ∈ U × V with ∆(u + v) 6≡ 0 (mod p) such
that

α ≤ ψp(E(u+ v)) ≤ β.

As before, combining Lemmas 17 with 23 we derive:

Lemma 24. If the polynomials f(Z), g(Z) ∈ Z[Z] satisfy (1), then for
any subsets U ,V ⊆ I(T ) and any prime p > T , we have

max
0≤α<β≤π

|Df,g,p(U ,V;α, β)− µST(α, β)#U#V| � p1/4(#U#V)3/4.

Proof. Clearly, since p > T , we have

#{(u, v) ∈ U ×V : ∆(u+ v) ≡ 0 (mod p)} � min{#U ,#V} � (#U#V)1/2.
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As in the proof of Lemma 20, by Lemma 17, for any positive integer k
we have

max
0≤α<β≤π

|Df,g,p(U ,V;α, β)− µST(α, β)#U#V|

� (#U#V)1/2 +
#U#V
k

+
k∑

n=1

1

n

∣∣∣∣ ∑
u∈U ,v∈V

∆(u+v)6≡0 (mod p)

sin
(
(n+ 1)ψp(E(u+ v))

)
sin
(
ψp(E(u+ v))

) ∣∣∣∣.
Thus, by Lemma 23, we get

max
0≤α<β≤π

|Df,g,p(U ,V;α, β)− µST(α, β)#U#V|

� (#U#V)1/2 +
#U#V
k

+ k(p#U#V)1/2 � #U#V
k

+ k(p#U#V)1/2.

We can assume that #U#V ≥ p, as otherwise the result is weaker than the
trivial bound O(#U#V). Then, taking k = d(p−1#U#V)1/4e and noticing

(p−1#U#V)1/4 ≤ k ≤ (p−1#U#V)1/4 + 1 ≤ 2(p−1#U#V)1/4,

we conclude the proof.

3. Proofs of main results

3.1. Proof of Theorem 1. From Lemma 11, first using the Cauchy
inequality and then discarding the conditions ∆(w) 6≡ 0 (mod p) and aw,p ≡
ap (mod `), we derive

(23)
∑

t∈F(T )
∆(t)6=0

πE(t)(A;x) ≤ PFT 2 +
∑
p≤x

L
1/2
T,pQ

1/2
T,p ,

where

LT,p =
∑

0≤w≤p−1
∆(w)6≡0 (mod p)
aw,p≡ap (mod `)

1 and QT,p =
∑

0≤w≤p−1

RT,p(w)2.

It is easy to see that QT,p is exactly the quantity defined in Lemma 14.

Therefore, for an arbitrary sequence A, substituting the bound of Lem-
ma 14 into (23) and applying the bound of Lemma 12 to LT,p with ` ∼ x1/4,
we obtain
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t∈F(T )
∆(t)6=0

πE(t)(A;x)� PFT
2 +

∑
p≤x

(x−1/8p1/2 + x1/8p1/4)(T 2p−1/2 + Tpo(1))

� Tx11/8+o(1) + T 2x7/8.

When A is the zero sequence, applying the bound of Lemma 12 to LT,p with

` ∼ x1/3, after similar calculations we conclude the proof.

3.2. Proof of Theorem 2. By (16) and as in the proof of Theorem 1,
we have

(24)
∑

t∈F(T )
∆(t)6=0

πE(t)(A;x) ≤ PFT 2 +
∑
p≤x

M
1/2
T,pQ

1/2
T,p ,

where

MT,p =
∑

0≤w≤p−1
∆(w) 6≡0 (mod p)

aw,p=ap

1,

and QT,p is as before.

For integer t, we define H(t, p) as the number of Fp-isomorphism classes
of elliptic curves over Fp with Frobenius trace t.

Notice that each elliptic curve E(w) has j-invariant w, which implies
that each E(w) represents a distinct Fp-isomorphism class of elliptic curves
over Fp. So, we have

MT,p ≤ H(ap, p).

By [22, Proposition 1.9(a)], for p ≥ 5 we know that

H(ap, p)� p1/2+o(1),

where the implied constant is independent of p and ap. We obtain

MT,p � p1/2+o(1).

Then, substituting this bound into (24) and using the bound of QT,p from
Lemma 14, we derive the desired result.

3.3. Proof of Theorem 3. Here, we use a method quite different from
the above.

For each ap, we define two angles αp, βp ∈ [0, π] such that

cosαp = min

{
ap

2
√
p

+
1

p
, 1

}
and cosβp = max

{
ap

2
√
p
− 1

p
,−1

}
.
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Then

µST(αp, βp) =
2

π

βp�

αp

sin2 ϑ dϑ =
2

π

cosαp�

cosβp

(1− z2)1/2 dz(25)

≤ 2

π
(cosαp − cosβp) ≤

4

πp
.

We recall the definition (17) and observe that for each elliptic curve
E(t), t ∈ F(T ) and a prime p, the Frobenius trace at,p is ap if and only if

cosψp(E(t)) =
ap

2
√
p
.

Thus, if at,p = ap, we have

αp ≤ ψp(E(t)) ≤ βp.

Applying the above observations and noticing the discussion about
N(r + s) and ∆(r + s) in Section 2.1, we get∑

r,s∈F(T )
∆(r+s) 6=0

πE(r+s)(A;x) =
∑

r,s∈F(T )
∆(r+s)6=0

∑
p≤x

p-N(r+s)
ar+s,p=ap

1 =
∑
p≤x

∑
r,s∈F(T )

∆(r+s)6≡0 (mod p)
ar+s,p=ap

1

≤
∑
p≤x

Bf,g,p(F(T );αp, βp),

where Bf,g,p(F(T );αp, βp) has been defined in Section 2.5. Then, combining
the above results with Lemma 20, we obtain∑

r,s∈F(T )
∆(r+s)6=0

πE(r+s)(A;x)

�
∑
p≤T

T 4 +
∑

T<p≤x
(µST(αp, βp)T

4 + T 3p1/4+o(1) + T 4p−1/4+o(1))

�
∑
p≤T

T 4 +
∑
p≤x

(T 4/p+ T 3p1/4+o(1) + T 4p−1/4+o(1))

� T 5 + T 4 log x+ T 3x5/4+o(1) + T 4x3/4+o(1)

� T 5 + T 3x5/4+o(1) + T 4x3/4+o(1),

which completes the proof.

3.4. Proof of Theorem 4. As in Lemma 11 and using the Cauchy
inequality, we obtain
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t∈F(T )
∆(t)6=0

πE(t)(K;x) ≤ PFT 2 +
∑
p≤x

∑
0≤w≤p−1

∆(w)6≡0 (mod p)
aw,p 6=0

Q(
√
a2w,p−4p)=K

RT,p(w)

≤ PFT 2 +
∑
p≤x

N
1/2
T,pQ

1/2
T,p ,

where

NT,p =
∑

0≤w≤p−1
∆(w) 6≡0 (mod p)

aw,p 6=0

Q(
√
a2w,p−4p)=K

1,

and QT,p is as before.

Applying the bound of Lemma 13 to NT,p with ` ∼ x1/3, we get

(26) NT,p � px−1/3 + x1/6p1/2.

Now, using the bound of QT,p from Lemma 14, we obtain∑
t∈F(T )
∆(t)6=0

πE(t)(K;x)� T 2 +
∑
p≤x

(p1/2x−1/6 + x1/12p1/4)(T 2p−1/2 + Tpo(1)),

and after simple calculations, we complete the proof.

3.5. Proof of Theorem 5. For an integer w, we denote by UT,p(w) the
number of pairs (u1/v1, u2/v2) ∈ F(T ) × F(T ) with gcd(v1v2, p) = 1 and
u1/v1 + u2/v2 ≡ w (mod p).

As in the proof of Theorem 4, we obtain∑
r,s∈F(T )
∆(r+s)6=0

πE(r+s)(K;x) ≤ PFT 4 +
∑
p≤x

∑
0≤w≤p−1

∆(w)6≡0 (mod p)
aw,p 6=0

Q(
√
a2w,p−4p)=K

UT,p(w)

≤ PFT 4 +
∑
p≤x

N
1/2
T,p V

1/2
T,p ,

where NT,p is as in that proof and VT,p is as in Section 2.3. Applying the

bound of Lemma 13 to NT,p with ` ∼ x1/3, we again obtain the bound (26),

from which we conclude that NT,p � x2/3. Hence∑
r,s∈F(T )
∆(r+s) 6=0

πE(r+s)(K;x)� T 4 + x1/3
∑
p≤x

V
1/2
T,p .
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Using Lemma 16, we derive∑
p≤x

V
1/2
T,p � T 4x1/2 + T 2+o(1)x1+o(1).

Therefore ∑
r,s∈F(T )
∆(r+s) 6=0

πE(r+s)(K;x)� T 4x5/6 + T 2+o(1)x4/3+o(1).

Clearly we can assume that T ≥ x1/6 as otherwise the result is weaker
than the trivial bound O(T 4x). In this case replace T 2+o(1)x4/3+o(1) with
T 2+o(1)x4/3 and the result follows.

3.6. Proof of Theorem 6. Using the same notation as in Section 2.5
and noticing the discussion about N(r + s) and ∆(r + s) in Section 2.1, we
have∑
r,s∈F(T )
∆(r+s) 6=0

πE(r+s)(α, β;x) =
∑

r,s∈F(T )
∆(r+s)6=0

∑
p≤x

p-N(r+s)
ψp(E(r+s))∈[α,β]

1 =
∑
p≤x

∑
r,s∈F(T )

∆(r+s) 6≡0 (mod p)
ψp(E(r+s))∈[α,β]

1

=
∑
p≤x

Bf,g,p(F(T );α, β).

By Lemma 20, we get∑
r,s∈F(T )
∆(r+s) 6=0

πE(r+s)(α, β;x)−
∑
p≤x

µST(α, β)(#F(T ))2

�
∑
p≤T

T 4 +
∑

T<p≤x
(T 3p1/4+o(1) + T 4p−1/4+o(1))

� T 5 + T 3x5/4+o(1) + T 4x3/4+o(1).

Thus, the desired result follows from (10) and the assumption x1/4+ε ≤ T ≤
x1−ε.

3.7. Proof of Theorem 7. As in Section 3.3, we have∑
t∈I(T )
∆(t)6=0

πE(t)(A;x) =
∑
t∈I(T )
∆(t) 6=0

∑
p≤x
p-N(t)
at,p=ap

1 =
∑
p≤x

∑
t∈I(T )

∆(t)6≡0 (mod p)
at,p=ap

1

≤
∑
p≤x

Cf,g,p(I(T );αp, βp),

where αp and βp have been defined in Section 3.3, and Cf,g,p(I(T );αp, βp)
has been defined in Section 2.6. Then, combining the above inequality with
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Lemma 22 and (25), we obtain∑
t∈I(T )
∆(t)6=0

πE(t)(A;x)�
∑
p≤T

T +
∑

T<p≤x

(
µST(αp, βp)T + T 1/2p1/4+o(1)

)
� T 2 +

∑
p≤x

(T/p+ T 1/2p1/4+o(1))

� T 2 + T log x+ T 1/2x5/4+o(1).

Noticing that T log x ≤
√
T 2 · T 1/2x5/4+o(1), we conclude the proof.

3.8. Proof of Theorem 8. As in Section 3.3, we obtain∑
u∈U ,v∈V

∆(u+v)6=0

πE(u+v)(A;x) =
∑

u∈U ,v∈V
∆(u+v)6=0

∑
p≤x

p-N(u+v)
au+v,p=ap

1 =
∑
p≤x

∑
u∈U ,v∈V

∆(u+v) 6≡0 (mod p)
au+v,p=ap

1

≤
∑
p≤x

Df,g,p(U ,V;αp, βp),

where αp and βp are as the above, and Df,g,p(U ,V;αp, βp) has been defined
in Section 2.6.

By Lemma 24 and the bound (25), we get∑
u∈U ,v∈V

∆(u+v)6=0

πE(u+v)(A;x)

�
∑
p≤T

#U#V +
∑

T<p≤x

(
µST(αp, βp)#U#V + p1/4(#U#V)3/4

)
� T#U#V +

∑
p≤x

(
#U#V/p+ p1/4(#U#V)3/4

)
� T#U#V + #U#V log x+ (#U#V)3/4x5/4.

We now note that the second term never dominates and can be removed.
Indeed, since #U#V ≤ T 2, we have for the geometric mean of the first and
the third terms:√

T#U#V · (#U#V)3/4x5/4 ≥ (#U#V)9/8x5/8 � #U#V log x.

This completes the proof.

3.9. Proof of Theorem 9. This proof is almost the same as that of
Theorem 4 in Section 3.4, and in fact, is simpler, because the parameter
t ∈ I(T ) is an integer.

We only need to note that the number of solutions to the congruence

t1 ≡ t2 (mod p), t1, t2 ∈ I(T ),
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is upper bounded by O(T + T 2/p). Then, as in the proof of Theorem 4, we
have ∑

t∈I(T )
∆(t)6=0

πE(t)(K;x)�
∑
p≤x

(x−1/6p1/2 + x1/12p1/4)(T 1/2 + Tp−1/2)

� T 1/2x4/3 + Tx5/6,

which concludes the proof.

3.10. Proof of Theorem 10. Using the notation in Section 2.6 and
noticing the discussion about N(u+v) and ∆(u+v) in Section 2.1, we have∑
u∈U ,v∈V

∆(u+v)6=0

πE(u+v)(α, β;x) =
∑

u∈U ,v∈V
∆(u+v)6=0

∑
p≤x

p-N(u+v)
ψp(E(u+v))∈[α,β]

1 =
∑
p≤x

∑
u∈U ,v∈V

∆(u+v)6≡0 (mod p)
ψp(E(u+v))∈[α,β]

1

=
∑
p≤x

Df,g,p(U ,V;α, β).

By Lemma 24, we get∑
u∈U ,v∈V

∆(u+v) 6=0

πE(u+v)(α, β;x)−
∑
p≤x

µST(α, β)#U#V

�
∑
p≤T

#U#V +
∑

T<p≤x
p1/4(#U#V)3/4

� π(T )#U#V + π(x)x1/4(#U#V)3/4.

Then, the desired result follows from the assumptions #U#V ≥ x1+ε and
T ≤ x1−ε.
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