Quadratic congruences on average and rational points on cubic surfaces

by

Stephan Baier (Mumbai) and Ulrich Derenthal (Hannover)

1. Introduction. Given a (possibly singular) del Pezzo surface S defined over the field \mathbb{Q} of rational numbers and containing infinitely many rational points, we would like to study the distribution of these points more precisely. We will be most interested in the cubic surface of singularity type $\mathbf{A}_{5}+\mathbf{A}_{1}$ defined in \mathbb{P}^{3} by

$$
\begin{equation*}
x_{1}^{3}+x_{2} x_{3}^{2}+x_{0} x_{1} x_{2}=0 . \tag{1.1}
\end{equation*}
$$

Let $H: S(\mathbb{Q}) \rightarrow \mathbb{R}$ be an anticanonical height function. The number of rational points of bounded height on S is dominated by the number of points lying on the lines on (an anticanonical model of) S. Therefore, it is more interesting to study rational points of height bounded by B on the complement U of the lines on S, i.e., the number

$$
N_{U, H}(B)=\#\{\mathbf{x} \in U(\mathbb{Q}) \mid H(\mathbf{x}) \leq B\} .
$$

Manin's conjecture [FMT89] predicts that, as B tends to ∞,

$$
N_{U, H}(B)=c_{S, H} B(\log B)^{r-1}(1+o(1)),
$$

where r is the rank of the Picard group of (a minimal desingularization of) S and $c_{S, H}$ is a positive constant for which Peyre, Batyrev and Tschinkel have given a conjectural interpretation Pey95, BT98b.

If S is an equivariant compactification of an algebraic group G, Manin's conjecture can be proved in certain cases. For instance, see BT98a for the case of toric varieties (with $G=\mathbb{G}_{\mathrm{m}}^{2}$), [CLT02] for the case of the additive group $G=\mathbb{G}_{\mathrm{a}}^{2}$ and [TT12] for certain semidirect products $G=\mathbb{G}_{\mathrm{a}} \rtimes \mathbb{G}_{\mathrm{m}}$. However, equation (1.1) defines a cubic surface that is not covered by any of these results (see DL10], DL15).

[^0]

Fig. 1. Points of height at most 100 on the $\mathbf{A}_{5}+\mathbf{A}_{1}$ cubic surface
For general surfaces S, one can approach Manin's conjecture resorting to universal torsors. Using Cox rings, a universal torsor \mathcal{T} of a minimal desingularization \widetilde{S} of a del Pezzo surface S of degree d can be explicitly described as an open subset of an affine variety $\operatorname{Spec} \operatorname{Cox}(\widetilde{S})$. The basic case is again the one of toric varieties Sal98, where $\operatorname{Spec} \operatorname{Cox}(\widetilde{S}) \cong \mathbb{A}^{12-d}$ is an affine space.

The next natural case is when $\operatorname{Spec} \operatorname{Cox}(\widetilde{S}) \subset \mathbb{A}^{13-d}$ is a hypersurface defined by one torsor equation in the variables $\eta_{1}, \ldots, \eta_{13-d}$. For example, for our surface of degree $d=3$ and type $\mathbf{A}_{5}+\mathbf{A}_{1}$, the torsor equation is

$$
\begin{equation*}
\eta_{1} \eta_{10}+\eta_{2} \eta_{9}^{2}+\eta_{4} \eta_{5}^{2} \eta_{6}^{4} \eta_{7}^{3} \eta_{8}=0 . \tag{1.2}
\end{equation*}
$$

All such del Pezzo surfaces are classified in Der14, where a detailed description of $\operatorname{Cox}(\widetilde{S})$ is also given.

The passage to a universal torsor translates the problem of counting rational points on S to the one of counting tuples ($\eta_{1}, \ldots, \eta_{13-d}$) of integers satisfying the torsor equation and certain height and coprimality conditions.

This is basically done as follows. The coprimality conditions can be taken care of by Möbius inversions (in this introduction, we will simply ignore all auxiliary variables occurring because of this). Using a torsor equation such as (1.2), we may eliminate one variable η_{13-d} that occurs linearly in it. Fixing $\eta_{1}, \ldots, \eta_{11-d}$, we are led to count the number of integers η_{12-d} satisfying a congruence condition modulo some integer q and lying in some range I given
by the height conditions. In our example, the congruence condition is

$$
\eta_{2} \eta_{9}^{2} \equiv-\eta_{4} \eta_{5}^{2} \eta_{6}^{4} \eta_{7}^{3} \eta_{8} \bmod \eta_{1}
$$

Note that both I and q may depend on $\eta_{1}, \ldots, \eta_{11-d}$.
If η_{12-d} also occurs linearly in the torsor equation then the congruence is linear, so that the number of such η_{12-d} is basically $q^{-1} \operatorname{vol}(I)+E$, where $E=O(1)$. Summing this over the remaining variables $\eta_{1}, \ldots, \eta_{11-d}$, we must estimate the main term $q^{-1} \operatorname{vol}(I)$ and show that the contribution of the error term E is negligible. The estimation of the error term of the first summation is sometimes straightforward and sometimes hard. The estimation of the main term is expected to be often straightforward using the results of [Der09, Sections 4, 5, 7] in the case of linear η_{12-d}.

However, if η_{12-d} occurs with a square power in the torsor equation (such as η_{9}^{2} in 1.2$)$, the main term contains an extra factor of the shape

$$
\begin{equation*}
\mathcal{N}(a, q)=\#\left\{\varrho \mid 1 \leq \varrho \leq q,(\varrho, q)=1, \varrho^{2} \equiv a \bmod q\right\} \tag{1.3}
\end{equation*}
$$

where a and q are, basically, monomials in $\eta_{1}, \ldots, \eta_{11-d}$ (for instance $q=\eta_{1}$ and $a=-\eta_{2} \eta_{4} \eta_{7} \eta_{8}$ in our example; see also [Der09, Proposition 2.4]). Our experience is that the presence of $\mathcal{N}(a, q)$ usually makes the treatment of the error term in the next summation over η_{11-d} (over some interval J) much harder.

Following the most natural order of summation (which is guided by the requirement to start with the η_{i} that may be the largest), a term of the shape $\mathcal{N}(a, q)$ appears in the treatment of the following singular del Pezzo surfaces (with one torsor equation):

- quartic del Pezzo surfaces of types \mathbf{D}_{5} and \mathbf{A}_{4},
- cubic surfaces of types $\mathbf{E}_{6}, \mathbf{D}_{5}, \mathbf{A}_{5}+\mathbf{A}_{1}$,
- del Pezzo surfaces of degree 2 of types $\mathbf{E}_{7}, \mathbf{E}_{6}, \mathbf{D}_{6}+\mathbf{A}_{1}$,
- del Pezzo surfaces of degree 1 of types $\mathbf{E}_{8}, \mathbf{E}_{7}+\mathbf{A}_{1}$.

Let us sketch the effects of $\mathcal{N}(a, q)$ in the summation of the main term over η_{11-d} in an interval J. To avoid complications which are irrelevant to our issue, we replace $q^{-1} \operatorname{vol}(I)$ by 1 for the moment; this can be restored by using partial summation. If η_{11-d} occurs linearly in a, we can switch the order of the summations over ϱ and η_{11-d}. Then the summation over η_{11-d} subject to the linear congruence modulo q gives the main term $q^{-1} \operatorname{vol}(J)$ and an error term $F=O(1)$, which we must sum over ϱ subject to $1 \leq \varrho \leq q$ and $(\varrho, q)=1$ and over the remaining variables $\eta_{1}, \ldots, \eta_{10-d}$.

The most naive estimation $\sum_{\varrho=1}^{q} F=O(q)$ is usually not good enough. This problem has been approached in several different ways:

- For the quartic \mathbf{A}_{4} case BD09b, it is enough to obtain an extra saving by using different orders of summation over η_{11-d} and η_{10-d}, depending on their relative size.
- Alternatively, one can get an extra saving by making F explicit, improving $O(q)$ to $O\left(q^{1 / 2+\varepsilon}\right)$ as in [BB07, Lemma 3] using Fourier series and quadratic Gauss sums, which is sufficient for the second summation for the quartic surface of type \mathbf{D}_{5} [BB07] and for the cubic surface of type \mathbf{E}_{6} [BBD07]; for the latter over imaginary quadratic fields, one can apply Poisson summation combined with Hua's results for exponentional sums over number fields [DF15].
- For the cubic surface of type \mathbf{D}_{5} BD09a, the previous two approaches are combined and slightly improved.
- For the degree 2 del Pezzo surface of type \mathbf{E}_{7} [BB13], the first two summations over η_{11-d}, η_{12-d} are treated simultaneously.

Furthermore, Manin's conjecture is true for some smooth and singular del Pezzo surfaces of degree greater than or equal to 3 for which the factor $\mathcal{N}(a, q)$ does not appear, in particular for certain singular cubic surfaces of types $2 \mathbf{A}_{2}+\mathbf{A}_{1}$ LB12] and \mathbf{D}_{4} LB14].

However, for other cases such as the cubic surface S of type $\mathbf{A}_{5}+\mathbf{A}_{1}$, different ideas seem to be needed. In our approach, the main novelty is that we get cancellation effects from summation over ϱ, several variables η_{i} occurring linearly in a and, most importantly, a variable η_{1} occurring in q, while using the trivial $O(1)$-bound for F. This is done in Section 2, using the Pólya-Vinogradov bound for character sums and Heath-Brown's large sieve for real character sums HB95].

In what follows, for $X>0$, the notation $x \sim X$ indicates that $X<$ $x \leq 2 X$. Let $K_{2}, K_{4}, K_{7}, K_{8}, Q \geq 1 / 2$ and $K=K_{2} K_{4} K_{7} K_{8}$. Applied to the cubic surface of type $\mathbf{A}_{5}+\mathbf{A}_{1}$, the most basic case of our result gives the asymptotic formula

$$
\begin{equation*}
\sum_{\substack{\eta_{i} \sim K_{i} \\ i=2,4,7,8}} \sum_{\eta_{1} \sim Q} \mathcal{N}\left(-\eta_{2} \eta_{4} \eta_{7} \eta_{8}, \eta_{1}\right)=c K Q+O\left(K^{1-\delta} Q(\log Q)^{1+\varepsilon}\right) \tag{1.4}
\end{equation*}
$$

for some explicit $c, \delta>0$ and for any fixed $\varepsilon>0$.
Our result shall be compared with the work of Heath-Brown HB03, Section 5]. In order to obtain an upper bound for $N_{U, H}(B)$ in the case of Cayley's cubic surface, Heath-Brown proved that the left-hand side of 1.4) is $\ll K Q$. However, to obtain an asymptotic formula for $N_{U, H}(B)$ for the cubic surface defined by 1.1 , we need an asymptotic formula for the lefthand side of (1.4), but also for the more complicated expression Σ defined in 2.7.

Comparing the proof of the asymptotic formula for Σ stated in Theorem 2.1 and its application in Section 3.4 with Heath-Brown's work, we notice that our result involves several extra difficulties. In particular, we have to isolate the main term, work out the case of even q, include a weight
function and some additional parameters, and finally work with ranges for η_{1} depending on the remaining variables. This latter task is the main difficulty and its resolution requires some extra tools such as Perron's formula.

It is also interesting to note that we essentially manage to remove the factor $\mathcal{N}(a, q)$ from the main term of the first summation in Lemma 3.3 , so that we can continue the proof just as in the case of linear η_{11-d} in the torsor equation.

As an application of our general estimate for the average number of solutions of our quadratic congruence, we prove Manin's conjecture for the cubic surface S of singularity type $\mathbf{A}_{5}+\mathbf{A}_{1}$ defined by (1.1). The complement of the lines is $U=S \backslash\left\{x_{1}=0\right\}$. We use the anticanonical height function defined by $H(\mathbf{x})=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{3}\right|\right\}$ for $\mathbf{x}=\left(x_{0}: \cdots: x_{3}\right)$, where $\left(x_{0}, \ldots, x_{3}\right) \in \mathbb{Z}^{4}$ is such that $\left(x_{0}, \ldots, x_{3}\right)=1$. See Section 3.1 for more information on the geometry of S. Besides Theorem 2.1, our main result is as follows.

Theorem 1.1. Let $\varepsilon>0$ be fixed. As B tends to ∞, we have the estimate

$$
N_{U, H}(B)=c_{S, H} B(\log B)^{6}+O\left(B(\log B)^{5+\varepsilon}\right)
$$

where

$$
\begin{aligned}
c_{S, H} & =\frac{1}{172800} \omega_{\infty} \prod_{p}\left(1-\frac{1}{p}\right)^{7}\left(1+\frac{7}{p}+\frac{1}{p^{2}}\right) \\
\omega_{\infty} & =\int_{0 \leq\left|\left(x_{1} x_{2}\right)^{-1}\left(x_{1}^{3}+x_{2} x_{3}^{2}\right)\right|,\left|x_{1}\right|, x_{2},\left|x_{3}\right| \leq 1} \frac{1}{x_{1} x_{2}} d x_{1} d x_{2} d x_{3}
\end{aligned}
$$

We will check in Section 3.6 that this agrees with Manin's conjecture and that the constant $c_{S, H}$ is the one predicted by Peyre, Batyrev and Tschinkel.
2. Quadratic congruences on average. As explained in the introduction, our motivation to study quadratic congruences in this section is their appearance in proofs of Manin's conjecture.
2.1. Counting solutions of quadratic congruences. To evaluate the main term of the first summation over a variable occurring non-linearly in the torsor equation (such as η_{9} in (1.2) in our example; see Lemma 3.2 below for the result of the first summation in our case and [Der09, Proposition 2.4] for the result in a more general situation), we need to count solutions of quadratic congruences on average. To this end, we consider the following general situation.

Throughout, for $X>0$, we use the notation $x \sim X$ to indicate that $X<x \leq 2 X$. Let $b \in \mathbb{Z} \backslash\{0\}, k \in \mathbb{Z}_{>0}$ with $(k, b)=1, r \in \mathbb{Z}_{>0}$ with $r \geq 2$ and $K_{1}, \ldots, K_{r}, Q, V$ be positive real numbers. We assume that Φ is a
continuous real-valued function defined on $\left(K_{1}, 2 K_{1}\right] \times \cdots \times\left(K_{r}, 2 K_{r}\right] \times(0, Q]$ which satisfies

$$
\begin{equation*}
0 \leq \Phi \leq V \tag{2.1}
\end{equation*}
$$

and, in each of the variables, can be divided into finitely many continuously differentiable and monotone pieces whose number is bounded by an absolute constant. We further assume that Q^{-}and Q^{+}are continuous real-valued functions defined on $\left(K_{1}, 2 K_{1}\right] \times \cdots \times\left(K_{r}, 2 K_{r}\right]$ such that

$$
\begin{equation*}
0<Q^{-} \leq Q^{+} \leq Q \tag{2.2}
\end{equation*}
$$

Moreover, for any given $i \in\{1, \ldots, r\}$, for $x_{j} \sim K_{j}$ with $j \in\{1, \ldots, r\} \backslash\{i\}$, and for $0<y \leq Q$, we assume that the set

$$
\begin{align*}
& \mathcal{A}_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}, y\right) \tag{2.3}\\
& \quad=\left\{x_{i} \sim K_{i} \mid Q^{-}\left(x_{1}, \ldots, x_{r}\right)<y \leq Q^{+}\left(x_{1}, \ldots, x_{r}\right)\right\}
\end{align*}
$$

is the union of finitely many intervals whose number is bounded by an absolute constant. Throughout, for brevity, we write

$$
\begin{align*}
K & =2^{r+1} K_{1} \cdots K_{r}, \quad Q^{ \pm}=Q^{ \pm}\left(a_{1}, \ldots, a_{r}\right), \tag{2.4}\\
\mathcal{A}_{i}(y) & =\mathcal{A}_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}, y\right) . \tag{2.5}
\end{align*}
$$

Finally, for any integer $n \in \mathbb{Z}_{>0}$, we set

$$
\begin{equation*}
\operatorname{rad}(n)=\prod_{p \mid n} p \tag{2.6}
\end{equation*}
$$

Our goal is to evaluate asymptotically the expression

$$
\begin{equation*}
\Sigma=\sum_{a_{1} \sim K_{1}} \cdots \sum_{a_{r} \sim K_{r}} \sum_{Q^{-}<q \leq Q^{+}} \Phi\left(a_{1}, \ldots, a_{r}, q\right) \mathcal{N}\left(-a_{1} \cdots a_{r} b, k q\right), \tag{2.7}
\end{equation*}
$$

where $\mathcal{N}\left(-a_{1} \cdots a_{r} b, k q\right)$ is defined in 1.3).
We begin by splitting Σ into a main term and an error term. Let $k q=$ $2^{v(k q)} h$, where $v(\ell)$ is the 2 -adic valuation of $\ell \in \mathbb{Z}_{>0}$ and h is odd. Thus, for any $n \in \mathbb{Z}$, we have

$$
\begin{equation*}
\sum_{\varrho^{2} \equiv n \bmod k q} 1=\left(\sum_{\varrho^{2} \equiv n \bmod 22^{v(k q)}} 1\right)\left(\sum_{\varrho^{2} \equiv n \bmod h} 1\right) . \tag{2.8}
\end{equation*}
$$

In the following, for $j \geq 0$, we set

$$
\left\{\frac{n}{2^{j}}\right\}=\sum_{\substack{\varrho \bmod 2^{j} \\ \varrho^{2} \equiv n \bmod 2^{j}}} 1
$$

It is well-known that if $\left(n, 2^{j}\right)=1$, then

$$
\left\{\frac{n}{2^{j}}\right\}= \begin{cases}1 & \text { if } j=0 \tag{2.9}\\ 1 & \text { if } n \equiv 1 \bmod 2 \text { and } j=1 \\ 2 & \text { if } n \equiv 1 \bmod 4 \text { and } j=2 \\ 4 & \text { if } n \equiv 1 \bmod 8 \text { and } j \geq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, if h is odd and $(n, h)=1$, then

$$
\begin{equation*}
\sum_{\varrho^{2} \equiv n \bmod h} 1=\sum_{d \mid h} \mu^{2}(d)\left(\frac{n}{d}\right) \tag{2.10}
\end{equation*}
$$

The equalities 2.8-2.10 imply that if $\left(a_{1} \cdots a_{r} b, k q\right)=1$, then

$$
\begin{equation*}
\mathcal{N}\left(-a_{1} \cdots a_{r} b, k q\right)=\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k q)}}\right\} \sum_{\substack{d \mid k q \\(d, 2)=1}} \mu^{2}(d)\left(\frac{-a_{1} \cdots a_{r} b}{d}\right) \tag{2.11}
\end{equation*}
$$

If $\left(a_{1} \cdots a_{r} b, k q\right) \neq 1$, then $\mathcal{N}\left(-a_{1} \cdots a_{r} b, k q\right)=0$. Therefore, we deduce that we can write

$$
\begin{equation*}
\Sigma=M+E \tag{2.12}
\end{equation*}
$$

where the main term M is defined by

$$
\begin{equation*}
M=\sum_{\substack{a_{1} \sim K_{1} \\\left(a_{1} \cdots a_{r} b, k q\right)=1}} \cdots \sum_{\substack{a_{r} \sim K_{r}}} \sum_{\substack{-} q \leq Q^{+}} \Phi\left(a_{1}, \ldots, a_{r}, q\right)\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k q)}}\right\} \tag{2.13}
\end{equation*}
$$

and the error term E is defined by

$$
\begin{align*}
& E=\sum_{a_{1} \sim K_{1}} \cdots \sum_{\substack{a_{r} \sim K_{r} \\
\left(a_{1} \cdots a_{r} b, k q\right)=1}} \sum_{\substack{Q^{-}<q \leq Q^{+}}} \Phi\left(a_{1}, \ldots, a_{r}, q\right)\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k q)}}\right\} \tag{2.14}\\
& \times \sum_{\substack{d \mid k q \\
d>1 \\
(d, 2)=1}} \mu^{2}(d)\left(\frac{-a_{1} \cdots a_{r} b}{d}\right)
\end{align*}
$$

In the following sections, we estimate the error term by generalizing the method used by Heath-Brown HB03, Section 5]. We shall not evaluate the main term any further since this is not needed in our application. Our result is as follows.

Theorem 2.1. Let $\varepsilon>0$ be fixed. Set $L=\log (2+Q)$. Then

$$
\Sigma-M \ll E^{\prime}
$$

where

$$
E^{\prime}=V K^{1 / 2+\varepsilon} Q L^{\varepsilon}\left(K^{1 / 2-1 / 2 r} \operatorname{rad}(k)^{1 / 4}+|b|^{\varepsilon} 2^{(1+\varepsilon) \omega(k)}+2^{\omega(k)} L\right) .
$$

The term Σ is not exactly the one that we need in our application. Let Σ^{\prime} be defined like Σ in (2.7), but with some additional coprimality conditions included, namely

$$
\begin{equation*}
\Sigma^{\prime}=\sum_{\substack{a_{1} \sim K_{1} \\\left(a_{1}, t_{1}\right)=1 \\\left(a_{i}, a_{j}\right)=1,}} \cdots \sum_{\substack{a_{r} \sim K_{r} \\\left(a_{r}, t_{r}\right)=1 \\ 1 \leq i<j \leq r}} \sum_{\substack{Q^{-}<q \leq Q^{+} \\(q, u)=1}} \Phi\left(a_{1}, \ldots, a_{r}, q\right) \mathcal{N}\left(-a_{1} \cdots a_{r} b, k q\right) \tag{2.15}
\end{equation*}
$$

where $t_{1}, \ldots, t_{r}, u \in \mathbb{Z}_{>0}$. Accordingly, we set

$$
\begin{equation*}
M^{\prime}=\sum_{\substack{a_{1} \sim K_{1} \\\left(a_{1}, t_{1}\right)=1 \\\left(a_{i}, a_{j}\right)=1, a_{2} \\ 1 \leq i<j \leq r}} \ldots \sum_{\substack{a_{r} \sim K_{r} \\\left(a_{r}, t_{r}\right)=1}} \sum_{\substack{Q^{-}<q \leq Q^{+} \\\left(a_{1} \cdots, u\right)=1 \\\left(a_{1} \cdots a_{r} b, k q\right)=1}} \Phi\left(a_{1}, \ldots, a_{r}, q\right)\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k q)}}\right\} \tag{2.16}
\end{equation*}
$$

Removing the additional coprimality conditions using Möbius inversions, we shall deduce from Theorem 2.1 the following asymptotic formula for Σ^{\prime}.

Corollary 2.2. Let $\varepsilon>0$ be fixed. Then

$$
\Sigma^{\prime}-M^{\prime} \ll(1+\varepsilon)^{\omega\left(t_{1}\right)+\cdots+\omega\left(t_{r}\right)+\omega(u)} E^{\prime}
$$

REmARK 2.3. Theorem 2.1 and Corollary 2.2 remain true if the left half-open q-summation interval (Q^{-}, Q^{+}] is replaced by an arbitrary interval $\mathcal{I}\left(Q^{-}, Q^{+}\right)$(left half-open, right half-open, open, closed) with endpoints Q^{-} and Q^{+}. The proof is the same, with the relevant summation intervals being altered accordingly.

Theorem 2.1 and Corollary 2.2 trivially hold if $K_{i}<1 / 2$ for some i in $\{1, \ldots, r\}$ or $Q<1$ since in this case we have $\Sigma=M=0$. Therefore, we shall assume that $K_{i} \geq 1 / 2$ for any $i \in\{1, \ldots, r\}$ and $Q \geq 1$ throughout the proofs of these results. Recalling the definition 2.4) of K, we note that $K \geq 2$.
2.2. Application of the Pólya-Vinogradov bound I. Let us write $d=f g$, where $g=(d, k)$. It follows that $(f, k / g)=1$, and so the condition $d \mid k q$ is equivalent to $f \mid q$. Thus, we can write $q=e f$. Let us set

$$
Q^{-}(e, g)=\max \left\{1 / g, Q^{-} / e\right\}, \quad Q^{+}(e)=Q^{+} / e .
$$

Reordering the summations and noting that $\mu^{2}(f g)=1$ if and only if $(f, g)=$ 1 and $\mu^{2}(f)=\mu^{2}(g)=1$, we can rewrite the error term E defined in 2.14) as

$$
\begin{equation*}
E=\sum_{\substack{g \mid k \\(g, 2)=1}} \mu^{2}(g) \sum_{\substack{e \leq Q \\(e, b)=1}} E(e, g) \tag{2.17}
\end{equation*}
$$

where

$$
\begin{align*}
& E(e, g)= \sum_{\substack{a_{1} \sim K_{1} \\
\left(a_{1} \cdots a_{r}, k e\right)=1}} \cdots \sum_{\substack{a_{r} \sim K_{r}}}\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k e)}}\right\} \sum_{\substack{Q^{-}(e, g)<f \leq Q^{+}(e) \\
(f, 2 k)=1}} \Phi\left(a_{1}, \ldots, a_{r}, e f\right) \tag{2.18}\\
& \times \mu^{2}(f)\left(\frac{-a_{1} \cdots a_{r} b}{f g}\right) .
\end{align*}
$$

In the following sections, we will estimate $E(e, g)$ in three different ways. We start with an application of the Pólya-Vinogradov bound for character sums. Pulling in the summation over a_{1}, we get

$$
\begin{align*}
E(e, g)= & \sum_{\substack{a_{2} \sim K_{2} \\
\left(a_{2} \cdots a_{r}, k e\right)=1}} \cdots \sum_{\substack{a_{r} \sim K_{r}}} \mu^{2}(f)\left(\frac{-a_{2} \cdots a_{r} b}{f g}\right) \tag{2.19}\\
& \times \sum_{\substack{1 / g<f \leq Q / e \\
(f, 2 k)=1}}^{8}\left\{\frac{-h a_{2} \cdots a_{r} b}{2^{v(k e)}}\right\} \sum_{\substack{a_{1} \in \mathcal{A}_{1}(e f) \\
a_{1} \equiv h \text { mod } 8 \\
\left(a_{1}, k e\right)=1}} \Phi\left(a_{1}, \ldots, a_{r}, e f\right)\left(\frac{a_{1}}{f g}\right),
\end{align*}
$$

where $\mathcal{A}_{1}(e f)$ is defined in (2.3) and 2.5$)$. In the following, we estimate the innermost sum over a_{1} under the assumption $\mu^{2}(f g)=1$. Using partial summation and the assumptions on Φ in Section 2.1 (in particular, 2.1), we get

$$
\begin{equation*}
\sum_{\substack{a_{1} \in \mathcal{A}_{1}(e f) \\ a_{1} \equiv h \bmod 8 \\\left(a_{1}, k e\right)=1}} \Phi\left(a_{1}, \ldots, a_{r}, e f\right)\left(\frac{a_{1}}{f g}\right) \ll V \sup _{L_{1}<L_{2}}\left|\sum_{\substack{L_{1}<a_{1} \leq L_{2} \\ a_{1} \in \mathcal{A}_{1}(e f) \\ a_{1} \equiv h \bmod 8 \\\left(a_{1}, k e\right)=1}}\left(\frac{a_{1}}{f g}\right)\right| . \tag{2.20}
\end{equation*}
$$

Removing the coprimality condition $\left(a_{1}, k e\right)=1$ using a Möbius inversion, we obtain

$$
\begin{equation*}
\sum_{\substack{\left.L_{1}<a_{1} \leq L_{2} \\ a_{1} \in \mathcal{A}_{1}(e f) \\ a_{1} \equiv h \bmod \right) \\\left(a_{1}, k e\right)=1}}\left(\frac{a_{1}}{f g}\right)=\sum_{d \mid k e} \mu(d)\left(\frac{d}{f g}\right) \sum_{\substack{L_{1} / d<a \leq L_{2} / d \\ d a \in \mathcal{A}_{1}(e f) \\ d a \equiv h \bmod 8}}\left(\frac{a}{f g}\right) . \tag{2.21}
\end{equation*}
$$

Recalling the assumption that $\mathcal{A}_{1}(e f)$ is the union of finitely many intervals whose number is bounded by an absolute constant, we deduce from the Pólya-Vinogradov bound for character sums that

$$
\begin{equation*}
\sum_{\substack{L_{1} / d<a \leq L_{2} / d \\ d a \in \mathcal{A}_{1}(e f) \\ d a \equiv h \bmod 8}}\left(\frac{a}{f g}\right) \ll f^{1 / 2} g^{1 / 2} \log (f g) \tag{2.22}
\end{equation*}
$$

where we note that $f g$ is not a perfect square since $f g>1$ and $\mu^{2}(f g)=1$.

Combining 2.19-2.22, we get

$$
E(e, g) \ll V K_{2} \cdots K_{r} Q^{3 / 2} e^{-3 / 2} g^{1 / 2} \log \left(2 g Q e^{-1}\right) 2^{\omega(k e)}
$$

Similarly, for every $i \in\{1, \ldots, r\}$, we obtain

$$
E(e, g) \ll V \frac{K_{1} \cdots K_{r}}{K_{i}} Q^{3 / 2} e^{-3 / 2} g^{1 / 2} \log \left(2 g Q e^{-1}\right) 2^{\omega(k e)}
$$

Hence, on taking K_{i} as the maximum of K_{1}, \ldots, K_{r}, it follows that

$$
\begin{equation*}
E(e, g) \ll V K^{1-1 / r} Q^{3 / 2} e^{-3 / 2} g^{1 / 2} \log \left(2 g Q e^{-1}\right) 2^{\omega(k e)} \tag{2.23}
\end{equation*}
$$

where K is defined in (2.4).
2.3. Application of the Pólya-Vinogradov bound II. In this section, we set $a=a_{1} \cdots a_{r}$. Alternatively, we may use the Pólya-Vinogradov bound to treat the innermost sum over f in 2.18 non-trivially if $-a b$ is not a perfect square, which we assume in the following. Using partial summation and the bound (2.1), we deduce

$$
\begin{align*}
\sum_{\substack{Q^{-}(e, g)<f \leq Q^{+}(e) \\
(f, 2 k)=1}} \Phi\left(a_{1}, \ldots, a_{r}, e f\right) \mu^{2}(f)\left(\frac{-a b}{f g}\right) \tag{2.24}\\
\left.\ll V_{Q^{-}(e, g) \leq F_{1}<F_{2} \leq Q^{+}(e)} \sup _{\substack{F_{1}<f \leq F_{2} \\
(f, 2 k)=1}} \mu^{2}(f)\left(\frac{-a b}{f}\right) \right\rvert\, .
\end{align*}
$$

Using the well-known formula

$$
\mu^{2}(f)=\sum_{d^{2} \mid f} \mu(d)
$$

and writing $f=d^{2} \tilde{f}$, we get

$$
\begin{equation*}
\sum_{\substack{F_{1}<f \leq F_{2} \\(f, 2 k)=1}} \mu^{2}(f)\left(\frac{-a b}{f}\right)=\sum_{\substack{d \leq F_{2}^{1 / 2} \\(d, 2 a b k)=1}} \mu(d) \sum_{\substack{F_{1} / d^{2}<\tilde{f} \leq F_{2} / d^{2} \\(\tilde{f}, 2 k)=1}}\left(\frac{-a b}{\tilde{f}}\right) . \tag{2.25}
\end{equation*}
$$

Removing the coprimality condition $(\tilde{f}, k)=1$ using a Möbius inversion, we obtain

$$
\begin{equation*}
\sum_{\substack{F_{1} / d^{2}<\tilde{f} \leq F_{2} / d^{2} \\(\tilde{f}, 2 k)=1}}\left(\frac{-a b}{\tilde{f}}\right)=\sum_{\substack{\tilde{d} \mid k \\(\tilde{d}, 2)=1}} \mu(\tilde{d})\left(\frac{-a b}{\tilde{d}}\right) \sum_{\substack{F_{1} /\left(d^{2} \tilde{d}\right)<f^{\prime} \leq F_{2} /\left(d^{2} \tilde{d}\right) \\\left(f^{\prime}, 2\right)=1}}\left(\frac{-a b}{f^{\prime}}\right) . \tag{2.26}
\end{equation*}
$$

The Pólya-Vinogradov bound gives

$$
\begin{equation*}
\sum_{\substack{F_{1} /\left(d^{2} \tilde{d}\right)<f^{\prime} \leq F_{2} /\left(d^{2} \tilde{d}\right) \\\left(f^{\prime}, 2\right)=1}}\left(\frac{-a b}{f^{\prime}}\right) \ll(a|b|)^{1 / 2} \log (2 a|b|), \tag{2.27}
\end{equation*}
$$

where we recall our assumption that $-a b$ is not a perfect square.

Let $E^{\prime}(e, g)$ be the contribution to $E(e, g)$ of those a_{1}, \ldots, a_{r} for which $-a b$ is not a perfect square. Then, combining (2.2) and 2.24-2.27), we get

$$
\begin{equation*}
E^{\prime}(e, g) \ll V K^{3 / 2} Q^{1 / 2} e^{-1 / 2}|b|^{1 / 2} \log (K|b|) 2^{\omega(k)} . \tag{2.28}
\end{equation*}
$$

The remaining contribution $E^{\square}(e, g)$ of perfect squares $-a b$ is trivially calculated to be

$$
\begin{equation*}
E^{\square}(e, g) \ll V K^{1 / 2+\varepsilon} Q e^{-1} \tag{2.29}
\end{equation*}
$$

Combining (2.28) and 2.29, we obtain

$$
\begin{equation*}
E(e, g) \ll V K^{3 / 2} Q^{1 / 2} e^{-1 / 2}|b|^{1 / 2} \log (K|b|) 2^{\omega(k)}+V K^{1 / 2+\varepsilon} Q e^{-1} \tag{2.30}
\end{equation*}
$$

2.4. Application of Heath-Brown's large sieve. Finally, we will make use of Heath-Brown's large sieve for real character sums to bound $E(e, g)$. Set

$$
u_{f}=\Phi\left(a_{1}, \ldots, a_{r}, e f\right) \mu^{2}(f)\left(\frac{-a_{1} \cdots a_{r} b}{f g}\right)
$$

To make the summation ranges independent, we first remove the summation condition $Q^{-}(e, g)<f \leq Q^{+}(e)$ using Perron's formula, getting

$$
\begin{align*}
\sum_{\substack{Q^{-}(e, g)<f \leq Q^{+}(e) \\
(f, 2 k)=1}} u_{f}= & \frac{1}{2 \pi i} \int_{c-i T}^{c+i T}\left(\sum_{\substack{1 \leq f \leq Q / e \\
(f, 2 k)=1}} u_{f} f^{-s}\right)\left(Q^{+}(e)^{s}-Q^{-}(e, g)^{s}\right) \frac{d s}{s} \tag{2.31}\\
& +O\left(V+\frac{V Q \log 2 Q}{e T}\right)
\end{align*}
$$

where we have set $c=1 / \log 2 Q$ and used (2.1). Set

$$
\begin{aligned}
T & =2 Q(\log 2 Q) e^{-1} \\
A\left(a_{1}, \ldots, a_{r} ; s\right) & =\left(Q^{+}(e)^{s}-Q^{-}(e, g)^{s}\left\{\frac{-a_{1} \cdots a_{r} b}{2^{v(k e)}}\right\}\left(\frac{-a_{1} \cdots a_{r} b}{g}\right),\right. \\
B(f ; s) & =f^{-s} \mu^{2}(f)(-b / f)
\end{aligned}
$$

and

$$
\begin{aligned}
& I(s)= \\
& \quad \sum_{\substack{a_{1} \sim K_{1} \\
\left(a_{1} \cdots a_{r}, k e\right)=1}} \cdots \sum_{\substack{a_{r} \sim K_{r}}} \sum_{\substack{1 \leq f \leq Q / e \\
(f, 2)=1}} \Phi\left(a_{1}, \ldots, a_{r}, e f\right) A\left(a_{1}, \ldots, a_{r} ; s\right) B(f ; s)\left(\frac{a_{1} \cdots a_{r}}{f}\right) .
\end{aligned}
$$

Then it follows from (2.31) that

$$
\begin{align*}
E(e, g) & =\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} I(s) \frac{d s}{s}+O(V K) \tag{2.32}\\
& \ll(\log T) \sup _{-T \leq t \leq T}|I(c+i t)|+V K \\
& =(\log T)\left|I\left(c+i t_{0}\right)\right|+V K
\end{align*}
$$

for a particular $t_{0} \in[-T, T]$. From HB95, Corollary 4], a version of HeathBrown's large sieve for real character sums, we have

$$
\begin{align*}
& \sum_{a_{1} \sim K_{1}} \cdots \sum_{a_{r} \sim K_{r}} \sum_{\substack{1 \leq f \leq F \\
(f, 2)=1}} A^{\prime}\left(a_{1}, \ldots, a_{r}\right) B^{\prime}(f)\left(\frac{a_{1} \cdots a_{r}}{f}\right) \tag{2.33}\\
& \ll\left(K F^{1 / 2}+K^{1 / 2} F\right)(K F)^{\varepsilon}
\end{align*}
$$

whenever $A^{\prime}\left(a_{1}, \ldots, a_{r}\right), B^{\prime}(f) \ll 1$ and $F \geq 1$, and where we note that

$$
\left|\sum_{\substack{a_{1} \sim K_{1} \\ a_{1} \cdots a_{r}=a}} \cdots \sum_{\substack{a_{r} \sim K_{r}}} A^{\prime}\left(a_{1}, \ldots, a_{r}\right)\right| \ll \tau_{r}(a) \ll a^{\varepsilon}
$$

for any given $a \in \mathbb{Z}_{>0}$, with τ_{r} denoting the Dirichlet convolution of the constant arithmetic function equal to 1 with itself r times. Using the bound (2.33) together with partial summation in f to remove the weight function $\Phi\left(a_{1}, \ldots, a_{r}, e f\right)$, we deduce that

$$
\begin{equation*}
\left|I\left(c+i t_{0}\right)\right| \ll V\left(K Q^{1 / 2} e^{-1 / 2}+K^{1 / 2} Q e^{-1}\right)\left(K Q e^{-1}\right)^{\varepsilon} \tag{2.34}
\end{equation*}
$$

where we take into account that

$$
A\left(a_{1}, \ldots, a_{r} ; t_{0}\right) \ll 1, \quad B\left(f ; t_{0}\right) \ll 1
$$

Combining 2.32 and 2.34, and noting that

$$
\log T=\log \frac{2 Q \log 2 Q}{e}=\log \left(\frac{2 Q}{e}\right)+\log \log (2 Q) \ll\left(\frac{Q}{e}\right)^{\varepsilon} \log ^{\varepsilon}(2+Q)
$$

we deduce that

$$
\begin{equation*}
E(e, g) \ll V\left(K Q^{1 / 2} e^{-1 / 2}+K^{1 / 2} Q e^{-1}\right)\left(K Q e^{-1}\right)^{\varepsilon} \log ^{\varepsilon}(2+Q) \tag{2.35}
\end{equation*}
$$

2.5. Proofs of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. Combining the three bounds 2.23), (2.30) and 2.35 , we obtain

$$
\begin{equation*}
E(e, g) \ll\left(V\left(K Q e^{-1}\right)^{\varepsilon} \log ^{\varepsilon}(2+Q)\right) \mathbf{m}+V K^{1 / 2+\varepsilon} Q e^{-1} \tag{2.36}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{m}= & \min \left\{K^{1-1 / r} Q^{3 / 2} e^{-3 / 2} g^{1 / 2+\varepsilon}, K^{3 / 2} Q^{1 / 2} e^{-1 / 2}|b|^{1 / 2+\varepsilon} 2^{\omega(k)},\right. \\
\ll & \min \left\{K^{1-1 / r} Q^{3 / 2} e^{-3 / 2} g^{1 / 2+\varepsilon}, K Q^{1 / 2} e^{-1 / 2}\right\} \\
& +\min \left\{K^{3 / 2} Q^{1 / 2} e^{-1 / 2}|b|^{1 / 2+\varepsilon} 2^{\omega(k)}, K^{1 / 2} Q e^{-1}\right\} \\
\ll & \left(K^{1-1 / r} Q^{3 / 2} e^{-3 / 2} g^{1 / 2+\varepsilon}\right)^{\mu}\left(K Q^{1 / 2} e^{-1 / 2}\right)^{1-\mu} \\
& +\left(K^{3 / 2} Q^{1 / 2} e^{-1 / 2}|b|^{1 / 2+\varepsilon} 2^{\omega(k)}\right)^{\nu}\left(K^{1 / 2} Q e^{-1}\right)^{1-\nu} \\
\ll & K^{1-\mu / r} Q^{1 / 2+\mu} e^{-(1 / 2+\mu)} g^{\mu / 2+\varepsilon}+K^{1 / 2+\nu} Q^{1-\nu / 2} e^{-(1-\nu / 2)}|b|^{\nu / 2+\varepsilon} 2^{\nu \omega(k)}
\end{aligned}
$$

for any $\mu, \nu \in[0,1]$. Choosing $(\mu, \nu)=(1 / 2-3 \varepsilon, 4 \varepsilon)$, recalling (2.17) and (2.36), and summing over g and e now gives
$E \ll V K^{1-1 /(2 r)+\varepsilon} Q \operatorname{rad}(k)^{1 / 4} \log ^{\varepsilon}(2+Q)$

$$
+V K^{1 / 2+4 \varepsilon} Q|b|^{3 \varepsilon} 2^{(1+4 \varepsilon) \omega(k)} \log ^{\varepsilon}(2+Q)+V K^{1 / 2+\varepsilon} Q \log (2+Q) 2^{\omega(k)}
$$

Proof of Corollary 2.2. Removing all additional coprimality conditions separately using Möbius inversion, i.e., the formula

$$
\sum_{d \mid(m, n)} \mu(d)= \begin{cases}1 & \text { if }(m, n)=1 \\ 0 & \text { otherwise }\end{cases}
$$

we are led to

$$
\begin{align*}
& \Sigma^{\prime}=\sum_{\substack{\left(d_{\alpha, \beta}\right) \in \mathbb{Z}_{>0}^{r(r-1) / 2} \\
(1 \leq \alpha<\beta \leq r)}} \sum_{d_{1} \mid t_{1}} \cdots \sum_{d_{r} \mid t_{r}} \sum_{d \mid u}\left(\prod_{1 \leq i<j \leq r} \mu\left(d_{i, j}\right)\right)\left(\prod_{l=1}^{r} \mu\left(d_{l}\right)\right) \tag{2.37}\\
& \times \mu(d) \Sigma\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right)
\end{align*}
$$

with
(2.38) $\quad \Sigma\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right)$

$$
=\sum_{a_{1} \sim K_{1} / D_{1}} \ldots \sum_{a_{r} \sim K_{r} / D_{r}} \sum_{Q^{-} / d<q \leq Q^{+} / d} \Phi\left(a_{1} D_{1}, \ldots, a_{r} D_{r}, q d\right) \mathcal{N}(-a D b, k d q),
$$

where

$$
a=a_{1} \cdots a_{r}, \quad D_{i}=\operatorname{lcm}\left(d_{i}, d_{1, i}, \ldots, d_{i-1, i}, d_{i, i+1}, \ldots, d_{i, r}\right), \quad D=D_{1} \cdots D_{r}
$$

Using Theorem 2.1, we obtain

$$
\begin{align*}
& \Sigma\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right)-M\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right) \tag{2.39}\\
& \quad \ll V\left(\frac{K}{D}\right)^{1 / 2+\varepsilon} \frac{Q}{d} L^{\varepsilon} \\
& \quad \times\left(\left(\frac{K}{D}\right)^{1 / 2-1 / 2 r} d^{1 / 4} \operatorname{rad}(k)^{1 / 4}+|D b|^{\varepsilon} 2^{(1+\varepsilon) \omega(d k)}+2^{\omega(d k)} L\right)
\end{align*}
$$

where $L=\log (2+Q)$ and

$$
\begin{aligned}
& M\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right) \\
& =\sum_{a_{1} \sim K_{1} / D_{1}} \ldots \sum_{a_{r} \sim K_{r} / D_{r}} \sum_{Q^{-} / d<q \leq Q^{+} / d} \Phi\left(a_{1} D_{1}, \ldots, a_{r} D_{r}, q d\right)\left\{\frac{-a_{1} \cdots a_{r} D b}{2^{v(k d q)}}\right\} .
\end{aligned}
$$

Reverting all the Möbius inversions carried out, we find that

$$
\begin{aligned}
M^{\prime}=\sum_{\substack{\left(d_{\alpha, \beta}\right) \in \mathbb{Z}_{>0}^{r(r-1) / 2} \\
(1 \leq \alpha<\beta \leq r)}} \sum_{d_{1} \mid t_{1}} \cdots \sum_{d_{r} \mid t_{r}} \sum_{d \mid u}(& \left.\prod_{1 \leq i<j \leq r} \mu\left(d_{i, j}\right)\right)\left(\prod_{l=1}^{r} \mu\left(d_{l}\right)\right) \\
& \times \mu(d) M\left(\left(d_{i, j}\right)_{1 \leq i<j \leq r}, d_{1}, \ldots, d_{r}, d\right),
\end{aligned}
$$

where M^{\prime} is defined in 2.16). Summing up the error term in 2.39) over $D \leq K$ and $d \leq Q^{-}$, and noting that the number of $d_{\alpha, \beta}$'s and d_{γ} 's such that

$$
D=D_{1} \cdots D_{r}=\prod_{i=1}^{r} \operatorname{lcm}\left(d_{i}, d_{1, i}, \ldots, d_{i-1, i}, d_{i, i+1}, \ldots, d_{i, r}\right)
$$

is bounded by $O\left(D^{\varepsilon}\right)$, we get the error term claimed.
3. Counting rational points on a singular cubic surface. In this part, we give a proof of Manin's conjecture (Theorem 1.1) for the singular cubic surface with $\mathbf{A}_{5}+\mathbf{A}_{1}$ singularity type. We will apply our result on quadratic congruences (Corollary 2.2).
3.1. Geometry. Our cubic surface S defined by 1.1 over the field \mathbb{Q} has singularities only at $(0: 0: 1: 0)$ of type \mathbf{A}_{1}, and at $(1: 0: 0: 0)$ of type \mathbf{A}_{5}. It contains precisely two lines, $\left\{x_{1}=x_{2}=0\right\}$ and $\left\{x_{1}=x_{3}=0\right\}$. The complement of the lines is $U=\left\{\mathbf{x} \in S \mid x_{1} \neq 0\right\}$. It is rational, as one can see by projecting to \mathbb{P}^{2} from one of the singularities.

Its minimal desingularization \widetilde{S} is a blow-up of \mathbb{P}^{2} in six points, so $\operatorname{Pic}(\widetilde{S})$ is free of rank 7. The Cox ring of \widetilde{S} has been determined in [Der14]. It has ten generators $\eta_{1}, \ldots, \eta_{10}$ satisfying (1.2). The configuration of the rational curves on \widetilde{S} corresponding to the generators of $\operatorname{Cox}(\widetilde{S})$ is described by the extended Dynkin diagram in Figure 2, where each vertex corresponds to a curve E_{i} for η_{i}, and an edge indicates that two curves intersect.

3.2. Passage to a universal torsor. Let

$$
\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{10}\right), \quad \boldsymbol{\eta}^{\prime}=\left(\eta_{1}, \ldots, \eta_{8}\right), \quad \boldsymbol{\eta}^{\left(k_{1}, \ldots, k_{8}\right)}=\eta_{1}^{k_{1}} \cdots \eta_{8}^{k_{8}}
$$

for any $\left(k_{1}, \ldots, k_{8}\right) \in \mathbb{R}^{8}$.

Fig. 2. Configuration of curves on \widetilde{S}
For $i=1, \ldots, 10$, let

$$
\left(\mathbb{Z}_{i}, J_{i}, J_{i}^{\prime}\right)= \begin{cases}\left(\mathbb{Z}_{>0}, \mathbb{R}_{\geq 1}, \mathbb{R}_{\geq 1}\right), & i \in\{1, \ldots, 6\} \tag{3.1}\\ \left(\mathbb{Z}_{>0}, \mathbb{R}_{\geq 1}, \mathbb{R}_{\geq 0}\right), & i=7, \\ \left(\mathbb{Z}_{\neq 0}, \mathbb{R}_{\leq-1} \cup \mathbb{R}_{\geq 1}, \mathbb{R}\right), & i=8, \\ (\mathbb{Z}, \mathbb{R}, \mathbb{R}), & i \in\{9,10\}\end{cases}
$$

In the course of our argument, we estimate summations over $\eta_{i} \in \mathbb{Z}_{i}$ by integrations over $\eta_{i} \in J_{i}$, which we enlarge to $\eta_{i} \in J_{i}^{\prime}$ in (3.24).

Lemma 3.1. We have

$$
N_{U, H}(B)=\#\left\{\boldsymbol{\eta} \in \mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{10} \mid(3.2)-(3.6) \text { hold }\right\}
$$

with the torsor equation

$$
\begin{equation*}
\eta_{1} \eta_{10}+\eta_{2} \eta_{9}^{2}+\eta_{4} \eta_{5}^{2} \eta_{6}^{4} \eta_{7}^{3} \eta_{8}=0 \tag{3.2}
\end{equation*}
$$

the height condition
$h\left(\boldsymbol{\eta}^{\prime}, \eta_{9} ; B\right)=B^{-1} \max \left\{\begin{array}{l}\left|\eta_{1}^{-1}\left(\eta_{2} \eta_{8} \eta_{9}^{2}+\eta_{4} \eta_{5}^{2} \eta_{6}^{4} \eta_{7}^{3} \eta_{8}^{2}\right)\right|,\left|\boldsymbol{\eta}^{(1,1,2,2,2,2,2,1)}\right|, \\ \left|\boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)}\right|,\left|\boldsymbol{\eta}^{(0,1,1,1,1,1,1,1)} \eta_{9}\right|\end{array}\right\} \leq 1$
and the coprimality conditions

$$
\begin{align*}
\left(\eta_{10}, \eta_{2} \eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right) & =\left(\eta_{9}, \eta_{1} \eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)=1 \tag{3.4}\\
\left(\eta_{8}, \eta_{1} \eta_{2} \eta_{3} \eta_{4} \eta_{5} \eta_{7}\right) & =1 \tag{3.5}\\
\left(\eta_{7}, \eta_{1} \eta_{2} \eta_{3} \eta_{4}\right) & =\left(\eta_{6}, \eta_{1} \eta_{2} \eta_{3} \eta_{4} \eta_{5}\right)=\left(\eta_{5}, \eta_{1} \eta_{2} \eta_{3}\right) \tag{3.6}\\
& =\left(\eta_{4}, \eta_{1} \eta_{2}\right)=\left(\eta_{1}, \eta_{2}\right)=1
\end{align*}
$$

Proof. Based on the birational projection $S \rightarrow \mathbb{P}^{2}$ from the \mathbf{A}_{5}-singularity and the structure of \widetilde{S} as a blow-up of \mathbb{P}^{2} in six points, we prove as in DT07, Section 4] that the map

$$
\psi: \boldsymbol{\eta} \mapsto\left(\eta_{8} \eta_{10}, \boldsymbol{\eta}^{(1,1,2,2,2,2,2,1)}, \boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)}, \boldsymbol{\eta}^{(0,1,1,1,1,1,1,1)} \eta_{9}\right)
$$

gives a bijection between the rational points on U and the set of $\boldsymbol{\eta}$ in $\mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{10}$ satisfying (3.2) and the coprimality conditions encoded in the extended Dynkin diagram in Figure 2, which are (3.4)-(3.6).

We note that the coprimality conditions imply that the image of such $\boldsymbol{\eta}$ under ψ has coprime coordinates, so that the height of $\psi(\boldsymbol{\eta})$ is simply the maximum of their absolute values. Using (3.2), we eliminate η_{10} and obtain (3.3).
3.3. Counting points. Recalling the definition (3.1) of J_{i}, let

$$
\mathcal{R}(B)=\left\{\left(\boldsymbol{\eta}^{\prime}, \eta_{9}\right) \in J_{1} \times \cdots \times J_{9} \mid h\left(\boldsymbol{\eta}^{\prime}, \eta_{9} ; B\right) \leq 1\right\}
$$

be the set whose number of lattice points we want to compare with its volume (both under the torsor equation (3.2) and the coprimality conditions (3.4)-(3.6).

Recall the definition (1.3) of $\mathcal{N}(q, a)$. Summing over η_{9}, with η_{10} as a dependent variable, we get:

Lemma 3.2. We have

$$
N_{U, H}(B)=\sum_{\eta^{\prime} \in \mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{8}} \theta_{1}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)+O\left(B(\log B)^{3}\right),
$$

where

$$
\begin{equation*}
V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)=\int_{\left(\boldsymbol{\eta}^{\prime}, \eta_{9}\right) \in \mathcal{R}(B)} \eta_{1}^{-1} d \eta_{9} \tag{3.7}
\end{equation*}
$$

and

$$
\theta_{1}\left(\boldsymbol{\eta}^{\prime}\right)=\sum_{\substack{k \mid \eta_{3} \\\left(k, \eta_{2} \eta_{4}\right)=1}} \frac{\mu(k) \varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)}{k \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)} \mathcal{N}\left(-\eta_{2} \eta_{4} \eta_{7} \eta_{8}, k \eta_{1}\right)
$$

if $\boldsymbol{\eta}^{\prime}$ satisfies the coprimality conditions (3.5)-(3.6), while $\theta_{1}\left(\boldsymbol{\eta}^{\prime}\right)=0$ otherwise.

Proof. Essentially because Figure 2 describing the coprimality conditions and the torsor equation (3.2) have the right shape, we are in a position to apply the general result of [Der09, Proposition 2.4]. This gives the main term as above after simplifying the condition $\left(k, \eta_{2} \eta_{4} \eta_{5} \eta_{6} \eta_{7} \eta_{8}\right)=1$ in the summation over k to $\left(k, \eta_{2} \eta_{4}\right)=1$, which is allowed because of $k \mid \eta_{3}$ and (3.5)-(3.6).

The sum of the error term over all relevant $\boldsymbol{\eta}^{\prime}$ is bounded by

$$
\begin{aligned}
\sum_{\eta^{\prime}} 2^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)+\omega\left(\eta_{1} \eta_{3}\right)} & \ll \sum_{\eta_{1}, \ldots, \eta_{7}} \frac{2^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)+\omega\left(\eta_{1} \eta_{3}\right)} B}{\boldsymbol{\eta}^{(1,1,2,2,2,2,2,0}} \\
& \ll B(\log B)^{3},
\end{aligned}
$$

where we use the second part of (3.3) for the summation over η_{8}.
3.4. Application of Corollary 2.2. Using Corollary 2.2 , we now want to prove that Lemma 3.2 still holds when we replace the error term by
$O\left(B(\log B)^{4+\varepsilon}\right)$ and θ_{1} in the main term by θ_{1}^{\prime} with

$$
\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)=\sum_{\substack{k \mid \eta_{3} \\\left(k, \eta_{2} \eta_{4}\right)=1}} \frac{\mu(k) \varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)}{k \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)}\left\{\frac{-\eta_{2} \eta_{4} \eta_{7} \eta_{8}}{2^{v\left(k \eta_{1}\right)}}\right\}
$$

if 3.5-3.6 hold and $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)=0$ otherwise. Hence, we want to show the following.

Lemma 3.3. Let $\varepsilon>0$ be fixed. Then

$$
N_{U, H}(B)=\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{8}} \theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)+O\left(B(\log B)^{4+\varepsilon}\right)
$$

Proof. First, we write

$$
\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{8}} \theta_{1}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)=F^{+}(B)+F^{-}(B)
$$

where

$$
\begin{aligned}
& F^{+}(B)=\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{>0}^{7} \times \mathbb{Z}_{>0}} \theta_{1}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right), \\
& F^{-}(B)=\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{>0}^{7} \times \mathbb{Z}_{<0}} \theta_{1}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)
\end{aligned}
$$

The term $F^{-}(B)$ can be treated similarly to $F^{+}(B)$. Therefore, we confine ourselves to the treatment of the latter, which we now transform in such a way that Corollary 2.2 can be applied.

For convenience, we break the summation ranges of $\eta_{1}, \eta_{2}, \eta_{4}, \eta_{7}, \eta_{8}$ into dyadic intervals, i.e., we write

$$
\begin{equation*}
F^{+}(B)=\sum_{\boldsymbol{\eta}^{\prime \prime} \in \mathbb{Z}_{>0}^{3}} \sum_{k \mid \eta_{3}} \frac{\mu(k)}{k} \sum_{L_{1}, L_{2}, L_{4}, L_{7}, L_{8}} W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}\right) \tag{3.8}
\end{equation*}
$$

where $\boldsymbol{\eta}^{\prime \prime}=\left(\eta_{3}, \eta_{5}, \eta_{6}\right)$ satisfies the coprimality conditions $\left(\eta_{3}, \eta_{5} \eta_{6}\right)=1=$ $\left(\eta_{5}, \eta_{6}\right)$, the variables $L_{1}, L_{2}, L_{4}, L_{7}, L_{8} \geq 1 / 2$ run over powers of 2 , and

$$
\begin{gathered}
W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}\right)=\sum_{\substack{\eta_{1} \sim L_{1} \\
\left(\eta_{1}, \eta_{5} \eta_{6}\right)=1}} \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)^{-1} \sum_{\substack{\eta_{4} \sim L_{4} \\
\left(\eta_{4}, \eta_{6}\right)=1}} \sum_{\substack{\eta_{7} \sim L_{7} \\
\left(\eta_{7}, \eta_{3} \eta_{4}\right)=1}} \sum_{\substack{\eta_{8} \sim L_{8} \\
\eta_{2} \\
\eta_{2} \sim L_{2} \\
\left(\eta_{2}, \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)=1}} V_{1}(\boldsymbol{\eta} ; B) \mathcal{N}\left(-\eta_{2} \eta_{4} \eta_{7} \eta_{8}, k \eta_{5}\right) .
\end{gathered}
$$

Here we note that the coprimality condition $\left(\eta_{2} \eta_{4} \eta_{7} \eta_{8}, k \eta_{1}\right)=1$ is contained in the definition of $\mathcal{N}\left(-\eta_{2} \eta_{4} \eta_{7} \eta_{8}, k \eta_{1}\right)$.

To make Corollary 2.2 applicable, it is necessary to remove the arithmetic factors $\varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)^{-1}$ and $\varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)$. We write

$$
\begin{align*}
& \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)^{-1}=\varphi^{*}\left(k \cdot\left(\eta_{3} / k, \eta_{1}\right)\right)^{-1} \tag{3.9}\\
& \quad=\varphi^{*}(k)^{-1} \prod_{\substack{p \mid\left(\eta_{3} / k, \eta_{1}\right) \\
p \nmid k}}\left(1+\frac{1}{p-1}\right)=\varphi^{*}(k)^{-1} \sum_{\substack{d_{1} \mid\left(\eta_{3} / k, \eta_{1}\right) \\
\left(d_{1}, k\right)=1}} \frac{\mu^{2}\left(d_{1}\right)}{\varphi\left(d_{1}\right)}
\end{align*}
$$

and

$$
\begin{align*}
\varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right) & =\varphi^{*}\left(\eta_{3} \eta_{5} \eta_{6}\right) \prod_{\substack{p \mid \eta_{4} \\
p \nmid \eta_{3} \eta_{5} \eta_{6}}}\left(1-\frac{1}{p}\right) \prod_{\substack{\tilde{p} \mid \eta_{7} \\
\tilde{p} \nmid \eta_{3} \eta_{5} \eta_{6}}}\left(1-\frac{1}{\tilde{p}}\right) \tag{3.10}\\
& =\varphi^{*}\left(\eta_{3} \eta_{5} \eta_{6}\right) \sum_{\substack{d_{4} \mid \eta_{4} \\
\left(d_{4}, \eta_{3} \eta_{5} \eta_{6}\right)=1}} \frac{\mu\left(d_{4}\right)}{d_{4}} \sum_{\substack{d_{7} \mid \eta_{7} \\
\left(d_{7}, \eta_{3} \eta_{5} \eta_{6}\right)=1}} \frac{\mu\left(d_{7}\right)}{d_{7}}
\end{align*}
$$

where we use the fact that $\left(\eta_{4}, \eta_{7}\right)=1$. Hence, we may write

$$
\begin{align*}
&=\frac{\varphi^{*}\left(\eta_{3} \eta_{5} \eta_{6}\right)}{\varphi^{*}(k)} \sum_{\substack{d_{1} \mid \eta_{3} / k \\
\left(d_{1}, \eta_{5} \eta_{6} k\right)=1}} \sum_{\substack{d_{4} \leq 2 L_{4} \\
\left(d_{4}, \eta_{3} \eta_{5} \eta_{6}\right)=1}} \sum_{\substack{d_{7} \leq 2 L_{7} \\
\left(d_{7}, d_{7} \eta_{3} \eta_{5} \eta_{6}\right)=1}} \frac{\mu^{2}\left(d_{1}\right) \mu\left(d_{4}\right) \mu\left(d_{7}\right)}{\varphi\left(d_{1}\right) d_{4} d_{7}} \tag{3.11}\\
& \times W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right),
\end{align*}
$$

where
$W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right)$

$$
\begin{aligned}
& =\sum_{\substack{\eta_{1}^{\prime} \sim L_{1} / d_{1} \\
\left(\eta_{1}^{\prime}, \eta_{5} \eta_{6}\right)=1}} \sum_{\substack{\eta_{4}^{\prime} \sim L_{4} / d_{4} \\
\left(\eta_{4}^{\prime}, d_{7} \eta_{6}\right)=1}} \sum_{\substack{\eta_{7}^{\prime} \sim L_{7} / d_{7} \\
\left(\eta_{7}^{\prime}, d_{4} \eta_{7} \eta_{4}^{\prime}\right)=1}} \sum_{\substack{\eta_{2} \sim L_{2} \\
\left(\eta_{2}, d_{4} d_{7} \eta_{4}^{\prime} \eta_{5} \eta_{6} \eta_{7}^{\prime}\right)=1}} V_{\left(\eta_{8}, d_{4} d_{7} \eta_{2} \sim_{3} \eta_{3} \eta_{4}^{\prime} \eta_{5} \eta_{7}^{\prime}\right)=1} \\
& V_{1}\left(d_{1} \eta_{1}^{\prime}, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right) \mathcal{N}\left(-\eta_{2} \eta_{4}^{\prime} \eta_{7}^{\prime} \eta_{8} d_{4} d_{7}, k d_{1} \eta_{1}^{\prime}\right) .
\end{aligned}
$$

Now we observe that for $\eta_{2}, \eta_{3}, \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, \eta_{7}^{\prime}, \eta_{8}>0$, the set

$$
\left\{y>0 \mid V_{1}\left(d_{1} y, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right)>0\right\}
$$

is an interval. To evaluate $W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right)$, we shall apply Corollary 2.2 and Remark 2.3 with
k replaced by $k d_{1}, \quad b=d_{4} d_{7}, \quad r=4$,
$a_{1}=\eta_{4}^{\prime}, \quad a_{2}=\eta_{7}^{\prime}, \quad a_{3}=\eta_{2}, \quad a_{4}=\eta_{8}, \quad q=\eta_{1}^{\prime}$,
$t_{1}=d_{7} \eta_{6}, \quad t_{2}=d_{4} \eta_{3}, \quad t_{3}=d_{4} d_{7} \eta_{5} \eta_{6}, \quad t_{4}=d_{4} d_{7} \eta_{3} \eta_{5}, \quad u=\eta_{5} \eta_{6}$,

$$
\begin{aligned}
& K_{1}=L_{4} / d_{4}, \quad K_{2}=L_{7} / d_{7}, \quad K_{3}=L_{2}, \quad K_{4}=L_{8}, \quad Q=2 L_{1} / d_{1}, \\
& \mathcal{I}\left(Q^{-}, Q^{+}\right)=\mathcal{I}\left(Q^{-}\left(\eta_{4}^{\prime}, \eta_{7}^{\prime}, \eta_{2}, \eta_{8}\right), Q^{+}\left(\eta_{4}^{\prime}, \eta_{7}^{\prime}, \eta_{2}, \eta_{8}\right)\right) \\
& =\left(L_{1}, 2 L_{1}\right] \cap\left\{y>0 \mid V_{1}\left(d_{1} y, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right)>0\right\}, \\
& V=\quad \sup _{\eta_{1}\left(\boldsymbol{\eta} ; L_{1}, \eta_{2} \sim L_{2}, \eta_{4} \sim L_{4}, \eta_{7} \sim L_{7}, \eta_{8} \sim L_{8}\right.} \\
& \Phi\left(\eta_{4}^{\prime}, \eta_{7}^{\prime}, \eta_{2}, \eta_{8}, y\right) \\
& \quad= \begin{cases}V_{1}\left(d_{1} y, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right) & \text { if } Q^{-}<y<Q^{+} \\
\lim _{z \downarrow Q^{-}} V_{1}\left(d_{1} z, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right) & \text { if } y \leq Q^{-} \\
\lim _{z \uparrow Q^{+}} V_{1}\left(d_{1} z, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right) & \text { if } y \geq Q^{+}\end{cases}
\end{aligned}
$$

It is easy to check that the functions Φ, Q^{-}and Q^{+}so defined satisfy the conditions in Section 2.1. Therefore, Corollary 2.2 and Remark 2.3 give
(3.12) $\quad W\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right)$

$$
\begin{aligned}
= & M\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right) \\
& +E\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
M\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right) \tag{3.13}
\end{equation*}
$$

$$
\begin{aligned}
=\sum_{\substack{\eta_{1}^{\prime} \sim L_{1} / d_{1} \\
\left(\eta_{1}^{\prime}, \eta_{5} \eta_{6}\right)=1}} \sum_{\substack{\eta_{4}^{\prime} \sim L_{4} / d_{4} \\
\left(\eta_{4}^{\prime}, d_{7} \eta_{6}\right)=1}} \sum_{\substack{\eta_{7}^{\prime} \sim L_{7} / d_{7} \\
\eta_{7}^{\prime}, d_{4} \eta_{3} \eta_{4}^{\prime}=1 \\
\left(\eta_{2} \eta_{4}^{\prime} \eta_{7}^{\prime} \eta_{8} d_{4} d_{7}, k d_{1} \eta_{1}^{\prime}\right)=1}} \sum_{\substack{\eta_{8} \sim L_{8} \\
\left(\eta_{2}, d_{4} d_{2}^{\prime} \eta_{2}^{\prime} \eta_{5} \eta_{6} \eta_{7}^{\prime}\right)=1}} \\
V_{1}\left(d_{1} \eta_{1}^{\prime}, \eta_{2}, \eta_{3}, d_{4} \eta_{4}^{\prime}, \eta_{5}, \eta_{6}, d_{7} \eta_{7}^{\prime}, \eta_{8} ; B\right)\left\{\frac{\eta_{3} \eta_{4}^{\prime} \eta_{4}^{\prime} \eta_{7}^{\prime} \eta_{7}^{\prime} \eta_{8} d_{4} d_{7}}{\left.2^{v\left(k d_{1} \eta_{1}^{\prime}\right)}\right\}}\right\}
\end{aligned}
$$

and

$$
\begin{align*}
& E\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right) \tag{3.14}\\
& \ll \sup _{\eta_{i} \sim L_{i}} V_{1}(\boldsymbol{\eta} ; B) \cdot\left(L_{1}\left(L_{2} L_{4} L_{7} L_{8}\right)^{7 / 8+\varepsilon} d_{1}^{-3 / 4}\left(d_{4} d_{7}\right)^{-7 / 8} k^{1 / 4}\right. \\
& \left.\quad+L_{1}\left(L_{2} L_{4} L_{7} L_{8}\right)^{1 / 2+4 \varepsilon} d_{1}^{-1}\left(d_{4} d_{7}\right)^{-1 / 2}\left(\log 4 L_{1}\right) 2^{(1+4 \varepsilon) \omega\left(k d_{1}\right)}\right) \\
& \quad \times(1+\varepsilon)^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{5}\right)+\omega\left(\eta_{6}\right) \log ^{\varepsilon}\left(4 L_{1}\right) .}
\end{align*}
$$

Summing these contributions over k, L_{i} and d_{i}, we deduce from (3.8) and (3.11)-(3.14) that

$$
\begin{equation*}
F^{+}(B)=M^{+}(B)+E^{+}(B) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{aligned}
M^{+}(B)= & \sum_{\substack{\eta^{\prime \prime} \in \mathbb{Z}_{>0}^{3}}} \varphi^{*}\left(\eta_{3} \eta_{5} \eta_{6}\right) \sum_{k \mid \eta_{3}} \frac{\mu(k)}{k \varphi^{*}(k)} \sum_{\substack{L_{1}, L_{2}, L_{4}, L_{7}, L_{8}}} \sum_{\substack{d_{1} \mid \eta_{3} / k \\
\left(d_{1}, \eta_{5} \eta_{6} k\right)=1}} \sum_{\substack{d_{4} \leq 2 L_{4} \\
\left(d_{4}, \eta_{3} \eta_{5} \eta_{6}\right)=1}} \\
& \sum_{\substack{d_{7} \leq 2 L_{7} \\
\left(d_{7}, d_{4} \eta_{3} \eta_{5} \eta_{6}\right)=1}} \frac{\mu^{2}\left(d_{1}\right) \mu\left(d_{4}\right) \mu\left(d_{7}\right)}{\varphi\left(d_{1}\right) d_{4} d_{7}} M\left(\boldsymbol{\eta}^{\prime \prime}, k, L_{1}, L_{2}, L_{4}, L_{7}, L_{8}, d_{1}, d_{4}, d_{7}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& E^{+}(B) \tag{3.16}\\
& \ll \sum_{\boldsymbol{\eta}^{\prime \prime} \in \mathbb{Z}_{>0}^{3}}(1+\varepsilon)^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{5}\right)+\omega\left(\eta_{6}\right)} \sum_{L_{1}, L_{2}, L_{4}, L_{7}, L_{8}} \mathbf{L} \sup _{\eta_{i} \sim L_{i}} V_{1}(\boldsymbol{\eta} ; B),
\end{align*}
$$

where we have set

$$
\mathbf{L}=L_{1}\left(L_{2} L_{4} L_{7} L_{8}\right)^{8 / 9}\left(\log 4 L_{1}\right)^{1+\varepsilon}
$$

Reverting the decompositions of the arithmetic functions in (3.9) and 3.10), combining the $\eta_{1^{-}}, \eta_{2^{-}}, \eta_{4^{-}}, \eta_{7^{-}}$and $\eta_{8^{-}}$-ranges, and noting that if $k \mid \eta_{3}$ then the conditions $\left(\eta_{2} \eta_{4} \eta_{7} \eta_{8}, k \eta_{1}\right)=1$ and $\left(k, \eta_{2} \eta_{4}\right)=1$ are equivalent, we simplify the main term $M^{+}(B)$ to

$$
\begin{equation*}
M^{+}(B)=\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{>0}^{7} \times \mathbb{Z}_{>0}} \theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right) \tag{3.17}
\end{equation*}
$$

where $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)$ is defined before the statement of the lemma.
Finally, we show that $E^{+}(B)$ is an error term. To estimate V_{1}, an application of [Der09, Lemma 5.1] gives

$$
\begin{align*}
V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right) & \ll \min \left\{\frac{B^{1 / 2}}{\eta_{1}^{1 / 2} \eta_{2}^{1 / 2}\left|\eta_{8}\right|^{1 / 2}}, \frac{B}{\boldsymbol{\eta}^{(0,1 / 2,0,1 / 2,1,2,3 / 2,3 / 2)}}\right\} \tag{3.18}\\
& \ll \frac{B^{2 / 3}}{\left|\boldsymbol{\eta}^{(1 / 3,1 / 2,0,1 / 6,1 / 3,1 / 2,2 / 3,5 / 6)}\right|} \tag{3.19}
\end{align*}
$$

$$
\begin{equation*}
=\frac{B}{\left|\boldsymbol{\eta}^{(1,1,1,1,1,1,1,1)}\right|}\left(\frac{B}{\left|\boldsymbol{\eta}^{(1,1,2,2,2,2,2,1)}\right|} \frac{B}{\left|\boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)}\right|}\right)^{-1 / 6} \tag{3.20}
\end{equation*}
$$

where 3.19 is the weighted average of the two parts of 3.18 , and 3.20 indicates how the second and third parts of the height condition 3.3 will be used below when summing over η_{6}, η_{7}. Set

$$
\mathbf{L}^{\prime}=L_{1}\left(L_{2} L_{4} L_{8}\right)^{8 / 9}\left(\log 4 L_{1}\right)^{1+\varepsilon}
$$

Then, starting from (3.16), we see that

$$
\begin{aligned}
E^{+}(B) & \ll \sum_{L_{1}, L_{2}, L_{4}, L_{7}, L_{8}} \mathbf{L} \sup _{\eta_{i} \sim L_{i}}\left(\sum_{\eta_{3}, \eta_{5}, \eta_{6}} \frac{(1+\varepsilon)^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{5}\right)+\omega\left(\eta_{6}\right)} B^{2 / 3}}{\mid \boldsymbol{\eta}^{(1 / 3,1 / 2,0,1 / 6,1 / 3,1 / 2,2 / 3,5 / 6) \mid}}\right) \\
& \ll \sum_{L_{1}, L_{2}, L_{4}, L_{8}} \mathbf{L}^{\prime} \sup _{\eta_{i} \sim L_{i}}\left(\sum_{\eta_{3}, \eta_{5}, \eta_{6}, \eta_{7}} \frac{(1+\varepsilon)^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{5}\right)+\omega\left(\eta_{6}\right)} B^{2 / 3}}{\mid \boldsymbol{\eta}^{(1 / 3,1 / 2,0,1 / 6,1 / 3,1 / 2,2 / 3,5 / 6) \mid}}\right) \\
& \ll \sum_{L_{1}, L_{2}, L_{4}, L_{8}} \mathbf{L}^{\prime} \sup _{\eta_{i} \sim L_{i}}\left(\sum_{\eta_{3}, \eta_{5}} \frac{(1+\varepsilon)^{\omega\left(\eta_{3}\right)+\omega\left(\eta_{5}\right)} B(\log B)^{\varepsilon}}{\left|\eta_{1} \eta_{2} \eta_{3} \eta_{4} \eta_{5} \eta_{8}\right|}\right) \\
& \ll \sum_{L_{1}, L_{2}, L_{4}, L_{8}} \mathbf{L}^{\prime} \sup _{\eta_{i} \sim L_{i}} \frac{B(\log B)^{2+3 \varepsilon}}{\left|\eta_{1} \eta_{2} \eta_{4} \eta_{8}\right|} \\
& \ll \sum_{L_{1}, L_{2}, L_{4}, L_{7}} \frac{B(\log B)^{2+4 \varepsilon}\left(\log 4 L_{1}\right)}{\left(L_{2} L_{4} L_{8}\right)^{1 / 9}} \\
& \ll B(\log B)^{4+4 \varepsilon} .
\end{aligned}
$$

Combining this with (3.15) and (3.17), and treating $F^{-}(B)$ similarly to $F^{+}(B)$, we obtain the desired result.
3.5. Completion of the proof of Theorem 1.1. It remains to evaluate the main term in Lemma 3.3 asymptotically. To this end, we would like to apply Der09, Proposition 4.3]. We note that $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)$ is not of the form considered in Der09, Section 7] because of the extra 2-adic factor. However, this factor turns out to be 1 on average, and the remaining part of $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)$ has the necessary properties. As in Der09, Definition 3.7], $\mathcal{A}\left(\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right), \eta_{8}\right)$ denotes the average size of θ_{1}^{\prime} when summed over η_{8}.

Lemma 3.4. We have $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) \in \Theta_{2,8}(C)$ Der09, Definition 4.2] for some $C \in \mathbb{R}_{\geq 0}$, with

$$
\mathcal{A}\left(\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right), \eta_{8}\right)=\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right)=\prod_{p} \theta_{2, p}\left(I_{p}\left(\eta_{1}, \ldots, \eta_{7}\right)\right) \in \Theta_{4,7}^{\prime}(2)
$$

[Der09, Definition 7.8], where $I_{p}\left(\eta_{1}, \ldots, \eta_{7}\right)=\left\{i \in\{1, \ldots, 7\}|p| \eta_{i}\right\}$ and

$$
\theta_{2, p}(I)= \begin{cases}1, & I=\emptyset \\ 1-1 / p, & I=\{1\},\{2\},\{6\}, \\ (1-1 / p)^{2}, & I=\{4\},\{5\},\{7\},\{1,3\},\{2,3\}, \\ & \{3,4\},\{4,5\},\{5,7\},\{6,7\} \\ (1-1 / p)(1-2 / p), & I=\{3\}, \\ 0, & \text { otherwise }\end{cases}
$$

Proof. We will see that

$$
\begin{equation*}
\sum_{0<\eta_{8} \leq t} \theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)=t \theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right)+O\left(2^{\omega\left(\eta_{1} \eta_{2} \eta_{3} \eta_{4} \eta_{5} \eta_{7}\right)+\omega\left(\eta_{3}\right)}\right) \tag{3.21}
\end{equation*}
$$

where

$$
\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right)=\sum_{\substack{k \mid \eta_{3} \\\left(k, \eta_{2} \eta_{4}\right)=1}} \frac{\mu(k) \varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)}{k \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)} \varphi^{*}\left(\eta_{1} \eta_{2} \eta_{3} \eta_{4} \eta_{5} \eta_{7}\right)
$$

if 3.6 holds and $\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right)=0$ otherwise.
We observe that $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) \in \Theta_{1,8}\left(3, \eta_{8}\right)$ Der09, Definition 3.8] since we have $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) \ll \prod_{i=1}^{8}\left(\varphi^{*}\left(\eta_{i}\right)\right)^{2} \in \Theta_{0,8}(0)$ Der09, Definition 3.2] by Der09, Example 3.3], and because $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)$ as a function in η_{8} lies in $\Theta_{0}(0)$ Der09, Definition 3.7] by (3.21), and because its average is

$$
\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right) \ll \prod_{i=1}^{7}\left(\varphi^{*}\left(\eta_{i}\right)\right)^{2} \in \Theta_{0,7}(0)
$$

as before, and because the error term is $\ll \prod_{i=1}^{7} 4^{\omega\left(\eta_{i}\right)} \in \Theta_{0,7}(3)$ also as in [Der09, Example 3.3].

Furthermore, we see that $\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right)$ has the form of Der09, Definition 7.8], and a computation shows that its local factors $\theta_{2, p}$ are as in our statement, so $\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right) \in \Theta_{4,7}^{\prime}(2)$, and $\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right) \in \Theta_{2,7}(C)$ for some $C \geq 3$ by [Der09, Corollary 7.9]. In total, this shows $\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) \in \Theta_{2,8}(C)$ [Der09, Definition 4.2].

It remains to prove (3.21). If (3.6) does not hold, both sides of 3.21) are 0 . Otherwise,

$$
\sum_{0<\eta_{8} \leq t} \theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right)=\sum_{\substack{k \mid \eta_{3} \\\left(k, \eta_{2} \eta_{4}\right)=1}} \frac{\mu(k) \varphi^{*}\left(\eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7}\right)}{k \varphi^{*}\left(\left(\eta_{3}, k \eta_{1}\right)\right)} \sum_{\substack{\left.0<\eta_{8}<t \\ 3.5\right)}}\left\{\frac{-\eta_{2} \eta_{4} \eta_{7} \eta_{8}}{2^{v\left(k \eta_{1}\right)}}\right\}
$$

We must show that the inner sum over η_{8} is $t \varphi^{*}\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right)+O\left(2^{\omega\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right)}\right)$. Let $n=\min \left\{v\left(k \eta_{1}\right), 3\right\}$. If $n=0$, this holds by Möbius inversion. If $n>0$, (3.6) implies that $\eta_{2}, \eta_{4}, \eta_{7}$ are odd. Then the inner sum equals (with $\overline{-\eta_{2} \eta_{4} \eta_{7}}$ being the multiplicative inverse of $-\eta_{2} \eta_{4} \eta_{7} \bmod 2^{n}$)

$$
\sum_{\substack{\left.0<\eta_{8} \leq t \\ \eta_{8}, \eta_{1} \cdots \eta_{5} \eta_{7}\right)=1 \\=-\eta_{2} \eta_{4} \eta_{7} \bmod 2^{n}}} 2^{n-1}=\sum_{l \mid \eta_{1} \cdots \eta_{5} \eta_{7}} \mu(l) \sum_{\substack{ \\l \eta_{8}^{\prime} \equiv=-\eta_{2} \eta_{4} \eta_{7} \bmod 2^{n}}} 2^{n-1} .
$$

If l is even, the congruence is never fulfilled, so the inner sum over η_{8}^{\prime} is 0 . If l is odd, the inner sum over η_{8}^{\prime} is $\frac{2^{n-1} t}{2^{n} l}+O(1)=\frac{t}{2 l}+O(1)$. In total, the
inner sum over η_{8} is

$$
\begin{aligned}
\sum_{\substack{l \mid \eta_{1} \cdots \eta_{5} \eta_{7} \\
2 \nmid l}} \frac{\mu(l)}{2 l} t+O\left(2^{\omega\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right)}\right) & =\frac{1}{2} t \prod_{\substack{p \mid \eta_{1} \cdots \eta_{5} \eta_{7} \\
p \neq 2}}\left(1-\frac{1}{p}\right)+O\left(2^{\omega\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right)}\right) \\
& =\varphi^{*}\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right) t+O\left(2^{\omega\left(\eta_{1} \cdots \eta_{5} \eta_{7}\right)}\right)
\end{aligned}
$$

since $n>0$ implies that $\eta_{1} \eta_{3}$ is even. Summing the error term over k only gives another factor $2^{\omega\left(\eta_{3}\right)}$.

Because of 3.20 and Lemma 3.4, we are in a position to apply Der09, Proposition 4.3], getting

$$
\begin{equation*}
\sum_{\boldsymbol{\eta}^{\prime} \in \mathbb{Z}_{1} \times \cdots \times \mathbb{Z}_{8}} \theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right) V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right)=c_{0} V_{0}(B)+O\left(B(\log B)^{5}(\log \log B)^{2}\right) \tag{3.22}
\end{equation*}
$$

with

$$
\begin{aligned}
V_{0}(B) & =\int_{\boldsymbol{\eta}^{\prime}} V_{1}\left(\boldsymbol{\eta}^{\prime} ; B\right) d \boldsymbol{\eta}^{\prime}=\int_{\left(\boldsymbol{\eta}^{\prime}, \eta_{9}\right) \in \mathcal{R}(B)} \eta_{1}^{-1} d \eta_{9} d \boldsymbol{\eta}^{\prime} \\
c_{0} & =\mathcal{A}\left(\theta_{1}^{\prime}\left(\boldsymbol{\eta}^{\prime}\right), \eta_{8}, \ldots, \eta_{1}\right)=\mathcal{A}\left(\theta_{2}\left(\eta_{1}, \ldots, \eta_{7}\right), \eta_{7}, \ldots, \eta_{1}\right)=\prod_{p} \omega_{p}
\end{aligned}
$$

whose local factors can be computed from the presentation of θ_{2} in Lemma 3.4 by Der09, Corollary 7.10] as

$$
\begin{equation*}
\omega_{p}=\left(1-\frac{1}{p}\right)^{7}\left(1+\frac{7}{p}+\frac{1}{p^{2}}\right) \tag{3.23}
\end{equation*}
$$

Recall the definition (3.1) of J_{i}^{\prime}. We define

$$
\begin{aligned}
& \mathcal{R}_{1}^{\prime}(B)=\left\{\left(\eta_{1}, \ldots, \eta_{6}\right) \in J_{1}^{\prime} \times \cdots \times J_{6}^{\prime} \left\lvert\, \begin{array}{l}
\boldsymbol{\eta}^{(3,2,4,3,2,0,0,0)} \leq B \\
\boldsymbol{\eta}^{(5,3,6,4,2,-2,0,0)} \geq B
\end{array}\right.\right\} \\
& \mathcal{R}_{2}^{\prime}\left(\eta_{1}, \ldots, \eta_{6} ; B\right)=\left\{\left(\eta_{7}, \eta_{8}, \eta_{9}\right) \in J_{7}^{\prime} \times J_{8}^{\prime} \times J_{9}^{\prime} \mid h\left(\boldsymbol{\eta}^{\prime}, \eta_{9} ; B\right) \leq 1\right\}, \\
& \mathcal{R}^{\prime}(B)=\left\{\left(\boldsymbol{\eta}^{\prime}, \eta_{9}\right) \in \mathbb{R}^{9} \left\lvert\, \begin{array}{l}
\left(\eta_{1}, \ldots, \eta_{6}\right) \in \mathcal{R}_{1}^{\prime}(B), \\
\left(\eta_{7}, \eta_{8}, \eta_{9}\right) \in \mathcal{R}_{2}^{\prime}\left(\eta_{1}, \ldots, \eta_{6} ; B\right)
\end{array}\right.\right\} \\
& V_{0}^{\prime}(B)=\int_{\left(\boldsymbol{\eta}^{\prime}, \eta_{9}\right) \in \mathcal{R}^{\prime}(B)} \eta_{1}^{-1} d \eta_{9} d \boldsymbol{\eta}^{\prime},
\end{aligned}
$$

where the definition of $\mathcal{R}_{1}^{\prime}(B)$ is inspired by the description in 3.26) of the polytope whose volume is $\alpha(S)$.

We claim that

$$
\begin{equation*}
V_{0}(B)=V_{0}^{\prime}(B)+O\left(B(\log B)^{5}\right) \tag{3.24}
\end{equation*}
$$

Comparing the definitions, in particular J_{i} and J_{i}^{\prime} for $i \in\{6,8\}$, we see that we must remove the conditions $\eta_{6} \geq 1$ and $\left|\eta_{8}\right| \geq 1$ and add the two conditions from the definition of $\mathcal{R}_{1}^{\prime}(B)$, all with a sufficiently small
error term. We do this in four steps as in [Der09, Lemma 8.7]; the order is important:
(1) Add $\boldsymbol{\eta}^{(3,2,4,3,2,0,0,0)} \leq B$: This does not change anything because this condition follows from $\eta_{7} \geq 1$ and $\boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)} \leq B$ by 3.3).
(2) Add $\boldsymbol{\eta}^{(5,3,6,4,2,-2,0,0)} \geq B$: Using [Der09, Lemma 5.1(3)] for the integration over η_{7}, η_{9}, we see that the error term is

$$
\ll \int \frac{B^{5 / 6}}{\left|\boldsymbol{\eta}^{(1 / 6,1 / 2,0,1 / 3,2 / 3,4 / 3,0,7 / 6)}\right|} d\left(\eta_{1}, \ldots, \eta_{6}, \eta_{8}\right) .
$$

Using the opposite of our new condition for the integration over η_{6} together with $1 \leq \eta_{1}, \ldots, \eta_{5} \leq B$ and $\left|\eta_{8}\right| \geq 1$, we see that this is $\ll B(\log B)^{5}$.
(3) Remove $\left|\eta_{8}\right| \geq 1$: Using Der09, Lemma 5.1(1)] for the integration over η_{9}, we see that the error term is

$$
\ll \int \frac{B^{1 / 2}}{\eta_{1}^{1 / 2} \eta_{2}^{1 / 2}\left|\eta_{8}\right|^{1 / 2}} d \boldsymbol{\eta}^{\prime}
$$

Using $\left|\eta_{8}\right| \leq 1$, and $\boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)} \leq B$ for η_{7}, and $\boldsymbol{\eta}^{(5,3,6,4,2,-2,0,0)}$ $\geq B$ for η_{6}, and finally $1 \leq \eta_{1}, \ldots, \eta_{5} \leq B$, we see that this is $\ll B(\log B)^{5}$.
(4) Remove $\eta_{7} \geq 1$: Using Der09, Lemma 5.1(2)] for the integration over η_{8}, η_{9}, we see that the error is

$$
\ll \int \frac{B^{3 / 4}}{\boldsymbol{\eta}^{(1 / 4,1 / 2,0,1 / 4,1 / 2,1,3 / 4,0)}} d\left(\eta_{1}, \ldots, \eta_{7}\right) .
$$

Using $0 \leq \eta_{7} \leq 1$, and $\boldsymbol{\eta}^{(3,2,4,3,2,0,0,0)} \leq B$ for η_{5}, and finally $1 \leq$ $\eta_{1}, \ldots, \eta_{4}, \eta_{6} \leq B$, we see that this is $\ll B(\log B)^{5}$.
Next, we claim as in Der09, Lemma 8.6] that

$$
\begin{equation*}
V_{0}^{\prime}(B)=\alpha(S) \omega_{\infty} B(\log B)^{6} \tag{3.25}
\end{equation*}
$$

Indeed, substituting
$x_{2}=B^{-1} \boldsymbol{\eta}^{(3,2,4,3,2,0,1,0)}, \quad x_{1}=B^{-1} \boldsymbol{\eta}^{(1,1,2,2,2,2,2)}, \quad x_{3}=B^{-1} \boldsymbol{\eta}^{(0,1,1,1,1,1,1,1)} \eta_{9}$ into ω_{∞} as in Theorem 1.1, where $\eta_{1}, \ldots, \eta_{6}$ should be regarded as parameters and $\eta_{7}, \eta_{8}, \eta_{9}$ as the new integration variables, we see that

$$
\frac{B \omega_{\infty}}{\eta_{1} \cdots \eta_{6}}=\int_{\left(\eta_{7}, \eta_{8}, \eta_{9}\right) \in \mathcal{R}_{2}^{\prime}\left(\eta_{1}, \ldots, \eta_{6} ; B\right)} \eta_{1}^{-1} d\left(\eta_{7}, \eta_{8}, \eta_{9}\right)
$$

Finally, we see that

$$
\alpha(S)(\log B)^{6}=\int_{\mathcal{R}_{1}^{\prime}(B)} \frac{1}{\eta_{1} \cdots \eta_{6}} d\left(\eta_{1}, \ldots, \eta_{6}\right)
$$

by substituting $\eta_{i}=B^{t_{i}}$ into $\alpha(S)=\operatorname{vol}\left(P^{\prime}\right)=\int_{\mathbf{t} \in P^{\prime}} d \mathbf{t}$ (see (3.26) below).

Combining Lemma 3.3 with $3.22-3.25$ completes the proof of Theorem 1.1 .
3.6. Compatibility with Manin's conjecture. As the rank of $\operatorname{Pic}(\widetilde{S})$ is equal to 7 (see Section 3.1), the exponent of $\log B$ in Theorem 1.1 is as predicted by Manin's conjecture. By Pey95, BT98b], we have conjecturally $c_{S, H}=\alpha(S) \cdot \omega_{H}(S)$.

We have

$$
\alpha(S)=\frac{\alpha\left(S_{0}\right)}{\# W\left(\mathbf{A}_{5}\right) \cdot \# W\left(\mathbf{A}_{1}\right)}=\frac{1}{180 \cdot 6!\cdot 2!}=\frac{1}{172800}
$$

by [Der07, Table 1] and [DJT08, Theorem 1.3], where S_{0} is a split smooth cubic surface. Since

$$
\begin{aligned}
{\left[-K_{\widetilde{S}}\right] } & =\left[3 E_{1}+2 E_{2}+4 E_{3}+3 E_{4}+2 E_{5}+E_{7}\right], \\
{\left[E_{8}\right] } & =\left[2 E_{1}+E_{2}+2 E_{3}+E_{4}-2 E_{6}-E_{7}\right],
\end{aligned}
$$

we also have $\alpha(S)=\operatorname{vol}(P)=\operatorname{vol}\left(P^{\prime}\right)$, where

$$
\begin{gather*}
P=\left\{\begin{array}{l|l}
\left(t_{1}, \ldots, t_{7}\right) \in \mathbb{R}_{\geq 0}^{7} & \begin{array}{l}
3 t_{1}+2 t_{2}+4 t_{3}+3 t_{4}+2 t_{5}+t_{7}=1 \\
2 t_{1}+t_{2}+2 t_{3}+t_{4}-2 t_{6}-t_{7} \geq 0
\end{array}
\end{array}\right\} \tag{3.26}\\
\cong P^{\prime}=\left\{\left(t_{1}, \ldots, t_{6}\right) \in \mathbb{R}_{\geq 0}^{6} \left\lvert\, \begin{array}{l}
3 t_{1}+2 t_{2}+4 t_{3}+3 t_{4}+2 t_{5} \leq 1 \\
5 t_{1}+3 t_{2}+6 t_{3}+4 t_{4}+2 t_{5}-2 t_{6} \geq 1
\end{array}\right.\right\} .
\end{gather*}
$$

Furthermore,

$$
\omega_{H}(S)=\omega_{\infty} \prod_{p}\left(1-\frac{1}{p}\right)^{7} \omega_{p}, \quad \text { where } \quad \omega_{p}=\frac{\# \widetilde{S}\left(\mathbb{F}_{p}\right)}{p^{2}}=1+\frac{7}{p}+\frac{1}{p^{2}}
$$

because the minimal desingularization \widetilde{S} of S is a blow-up of \mathbb{P}^{2} (which has $p^{2}+p+1$ points over \mathbb{F}_{p}) in six points (each replacing one point by an exceptional divisor containing $\# \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)=p+1$ points over $\left.\mathbb{F}_{p}\right)$.

We check using the techniques of Pey95, BT98b that ω_{∞} is as in Theorem 1.1 since the Leray form of \widetilde{S} is

$$
\omega_{L}(\widetilde{S})=\left(x_{1} x_{2}\right)^{-1} d x_{1} d x_{2} d x_{3}
$$

(where $x_{1} x_{2}$ is the derivative of 1.1 with respect to x_{0}) and by writing x_{0} in terms of x_{1}, x_{2}, x_{3} using the defining equation (1.1).

Acknowledgments. The first-named author was supported by ERC grant 258713 . The second-named author was supported by DFG grant DE $1646 / 2-1$ and SNF grant 200021_124737/1. This collaboration was started at the Sino-French Summer Institute in Arithmetic Geometry 2011 at the Chern Institute of Mathematics in Tianjin. It was also supported by the Center for Advanced Studies at LMU München. The authors thank these institutions for their hospitality. We thank Pierre Le Boudec for his help
with the first version of this article, and we thank the anonymous referee for helpful remarks.

References

[BB13] S. Baier and T. D. Browning, Inhomogeneous cubic congruences and rational points on del Pezzo surfaces, J. Reine Angew. Math. 680 (2013), 69-151.
[BT98a] V. V. Batyrev and Yu. Tschinkel, Manin's conjecture for toric varieties, J. Algebraic Geom. 7 (1998), 15-53.
[BT98b] V. V. Batyrev and Yu. Tschinkel, Tamagawa numbers of polarized algebraic varieties, Astérisque 251 (1998), 299-340.
[BB07] R. de la Bretèche and T. D. Browning, On Manin's conjecture for singular del Pezzo surfaces of degree 4, I, Michigan Math. J. 55 (2007), 51-80.
[BBD07] R. de la Bretèche, T. D. Browning, and U. Derenthal, On Manin's conjecture for a certain singular cubic surface, Ann. Sci. École Norm. Sup. (4) 40 (2007), 1-50.
[BD09a] T. D. Browning and U. Derenthal, Manin's conjecture for a cubic surface with D_{5} singularity, Int. Math. Res. Notices 2009, no. 14, 2620-2647.
[BD09b] T. D. Browning and U. Derenthal, Manin's conjecture for a quartic del Pezzo surface with A_{4} singularity, Ann. Inst. Fourier (Grenoble) 59 (2009), 1231-1265.
[CLT02] A. Chambert-Loir and Yu. Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), 421-452.
[Der07] U. Derenthal, On a constant arising in Manin's conjecture for del Pezzo surfaces, Math. Res. Lett. 14 (2007), 481-489.
[Der09] U. Derenthal, Counting integral points on universal torsors, Int. Math. Res. Notices 2009, no. 14, 2648-2699.
[Der14] U. Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. London Math. Soc. (3) 108 (2014), 638-681.
[DF15] U. Derenthal and C. Frei, On Manin's conjecture for a certain singular cubic surface over imaginary quadratic fields, Int. Math. Res. Notices 2015, no. 10, 2728-2750.
[DJT08] U. Derenthal, M. Joyce, and Z. Teitler, The nef cone volume of generalized del Pezzo surfaces, Algebra Number Theory 2 (2008), 157-182.
[DL10] U. Derenthal and D. Loughran, Singular del Pezzo surfaces that are equivariant compactifications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 26-43, 241.
[DL15] U. Derenthal and D. Loughran, Equivariant compactifications of two-dimensional algebraic groups, Proc. Edinburgh Math. Soc. (2) 58 (2015), 149-168.
[DT07] U. Derenthal and Yu. Tschinkel, Universal torsors over del Pezzo surfaces and rational points, in: Equidistribution in Number Theory, An Introduction, NATO Sci. Ser. II Math. Phys. Chem. 237, Springer, Dordrecht, 2007, 169-196.
[FMT89] J. Franke, Yu. I. Manin, and Yu. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421-435.
[HB95] D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235-275.
[HB03] D. R. Heath-Brown, The density of rational points on Cayley's cubic surface, in: Proc. Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften 360, Univ. Bonn, Bonn, 2003, 33 pp.
[LB12] P. Le Boudec, Manin's conjecture for a cubic surface with $2 \mathbf{A}_{2}+\mathbf{A}_{1}$ singularity type, Math. Proc. Cambridge Philos. Soc. 153 (2012), 419-455.
[LB14] P. Le Boudec, Affine congruences and rational points on a certain cubic surface, Algebra Number Theory 8 (2014), 1259-1296.
[Pey95] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), 101-218.
[Sal98] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque 251 (1998), 91-258.
[TT12] S. Tanimoto and Yu. Tschinkel, Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups, in: Zeta Functions in Algebra and Geometry, Contemp. Math. 566, Amer. Math. Soc., Providence, RI, 2012, 119-157.

Stephan Baier
Tata Institute of Fundamental Research
1 Dr. Homi Bhabha Road
Colaba, Mumbai 400005, India
E-mail: sbaier@math.tifr.res.in
Ulrich Derenthal
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover, Germany
E-mail: derenthal@math.uni-hannover.de

Received on 24.11.2014 and in revised form on 22.7.2015

[^0]: 2010 Mathematics Subject Classification: Primary 11D45; Secondary 14G05, 11G35.
 Key words and phrases: quadratic congruences, rational points, Manin's conjecture, cubic surfaces, universal torsors.

