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1. Introduction. Given a (possibly singular) del Pezzo surface S de-
fined over the field Q of rational numbers and containing infinitely many
rational points, we would like to study the distribution of these points more
precisely. We will be most interested in the cubic surface of singularity type
A5 + A1 defined in P3 by

(1.1) x31 + x2x
2
3 + x0x1x2 = 0.

Let H : S(Q) → R be an anticanonical height function. The number
of rational points of bounded height on S is dominated by the number of
points lying on the lines on (an anticanonical model of) S. Therefore, it is
more interesting to study rational points of height bounded by B on the
complement U of the lines on S, i.e., the number

NU,H(B) = #{x ∈ U(Q) | H(x) ≤ B}.

Manin’s conjecture [FMT89] predicts that, as B tends to ∞,

NU,H(B) = cS,HB(logB)r−1(1 + o(1)),

where r is the rank of the Picard group of (a minimal desingularization of)
S and cS,H is a positive constant for which Peyre, Batyrev and Tschinkel
have given a conjectural interpretation [Pey95], [BT98b].

If S is an equivariant compactification of an algebraic group G, Manin’s
conjecture can be proved in certain cases. For instance, see [BT98a] for the
case of toric varieties (with G = G2

m), [CLT02] for the case of the additive
group G = G2

a and [TT12] for certain semidirect products G = Ga o Gm.
However, equation (1.1) defines a cubic surface that is not covered by any
of these results (see [DL10], [DL15]).
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Fig. 1. Points of height at most 100 on the A5 + A1 cubic surface

For general surfaces S, one can approach Manin’s conjecture resorting
to universal torsors. Using Cox rings, a universal torsor T of a minimal
desingularization S̃ of a del Pezzo surface S of degree d can be explicitly
described as an open subset of an affine variety Spec Cox(S̃). The basic case

is again the one of toric varieties [Sal98], where Spec Cox(S̃) ∼= A12−d is an
affine space.

The next natural case is when Spec Cox(S̃) ⊂ A13−d is a hypersurface
defined by one torsor equation in the variables η1, . . . , η13−d. For example,
for our surface of degree d = 3 and type A5 + A1, the torsor equation is

(1.2) η1η10 + η2η
2
9 + η4η

2
5η

4
6η

3
7η8 = 0.

All such del Pezzo surfaces are classified in [Der14], where a detailed de-

scription of Cox(S̃) is also given.
The passage to a universal torsor translates the problem of counting

rational points on S to the one of counting tuples (η1, . . . , η13−d) of integers
satisfying the torsor equation and certain height and coprimality conditions.

This is basically done as follows. The coprimality conditions can be taken
care of by Möbius inversions (in this introduction, we will simply ignore all
auxiliary variables occurring because of this). Using a torsor equation such
as (1.2), we may eliminate one variable η13−d that occurs linearly in it. Fixing
η1, . . . , η11−d, we are led to count the number of integers η12−d satisfying a
congruence condition modulo some integer q and lying in some range I given
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by the height conditions. In our example, the congruence condition is

η2η
2
9 ≡ −η4η25η46η37η8 mod η1.

Note that both I and q may depend on η1, . . . , η11−d.
If η12−d also occurs linearly in the torsor equation then the congruence

is linear, so that the number of such η12−d is basically q−1 vol(I) +E, where
E = O(1). Summing this over the remaining variables η1, . . . , η11−d, we
must estimate the main term q−1 vol(I) and show that the contribution of
the error term E is negligible. The estimation of the error term of the first
summation is sometimes straightforward and sometimes hard. The estima-
tion of the main term is expected to be often straightforward using the
results of [Der09, Sections 4, 5, 7] in the case of linear η12−d.

However, if η12−d occurs with a square power in the torsor equation (such
as η29 in (1.2)), the main term contains an extra factor of the shape

(1.3) N (a, q) = #{% | 1 ≤ % ≤ q, (%, q) = 1, %2 ≡ a mod q},
where a and q are, basically, monomials in η1, . . . , η11−d (for instance q = η1
and a = −η2η4η7η8 in our example; see also [Der09, Proposition 2.4]). Our
experience is that the presence of N (a, q) usually makes the treatment of the
error term in the next summation over η11−d (over some interval J) much
harder.

Following the most natural order of summation (which is guided by the
requirement to start with the ηi that may be the largest), a term of the
shape N (a, q) appears in the treatment of the following singular del Pezzo
surfaces (with one torsor equation):

• quartic del Pezzo surfaces of types D5 and A4,
• cubic surfaces of types E6, D5, A5 + A1,
• del Pezzo surfaces of degree 2 of types E7, E6, D6 + A1,
• del Pezzo surfaces of degree 1 of types E8, E7 + A1.

Let us sketch the effects of N (a, q) in the summation of the main term
over η11−d in an interval J . To avoid complications which are irrelevant to
our issue, we replace q−1 vol(I) by 1 for the moment; this can be restored
by using partial summation. If η11−d occurs linearly in a, we can switch the
order of the summations over % and η11−d. Then the summation over η11−d
subject to the linear congruence modulo q gives the main term q−1 vol(J)
and an error term F = O(1), which we must sum over % subject to 1 ≤ % ≤ q
and (%, q) = 1 and over the remaining variables η1, . . . , η10−d.

The most naive estimation
∑q

%=1 F = O(q) is usually not good enough.
This problem has been approached in several different ways:

• For the quartic A4 case [BD09b], it is enough to obtain an extra saving
by using different orders of summation over η11−d and η10−d, depending
on their relative size.
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• Alternatively, one can get an extra saving by making F explicit, im-
proving O(q) to O(q1/2+ε) as in [BB07, Lemma 3] using Fourier series
and quadratic Gauss sums, which is sufficient for the second sum-
mation for the quartic surface of type D5 [BB07] and for the cubic
surface of type E6 [BBD07]; for the latter over imaginary quadratic
fields, one can apply Poisson summation combined with Hua’s results
for exponentional sums over number fields [DF15].
• For the cubic surface of type D5 [BD09a], the previous two approaches

are combined and slightly improved.
• For the degree 2 del Pezzo surface of type E7 [BB13], the first two

summations over η11−d, η12−d are treated simultaneously.

Furthermore, Manin’s conjecture is true for some smooth and singular del
Pezzo surfaces of degree greater than or equal to 3 for which the factor
N (a, q) does not appear, in particular for certain singular cubic surfaces of
types 2A2 + A1 [LB12] and D4 [LB14].

However, for other cases such as the cubic surface S of type A5 + A1,
different ideas seem to be needed. In our approach, the main novelty is
that we get cancellation effects from summation over %, several variables ηi
occurring linearly in a and, most importantly, a variable η1 occurring in q,
while using the trivial O(1)-bound for F . This is done in Section 2, using
the Pólya–Vinogradov bound for character sums and Heath-Brown’s large
sieve for real character sums [HB95].

In what follows, for X > 0, the notation x ∼ X indicates that X <
x ≤ 2X. Let K2,K4,K7,K8, Q ≥ 1/2 and K = K2K4K7K8. Applied to the
cubic surface of type A5 + A1, the most basic case of our result gives the
asymptotic formula

(1.4)
∑
ηi∼Ki
i=2,4,7,8

∑
η1∼Q

N (−η2η4η7η8, η1) = cKQ+O(K1−δQ(logQ)1+ε)

for some explicit c, δ > 0 and for any fixed ε > 0.

Our result shall be compared with the work of Heath-Brown [HB03,
Section 5]. In order to obtain an upper bound for NU,H(B) in the case of
Cayley’s cubic surface, Heath-Brown proved that the left-hand side of (1.4)
is � KQ. However, to obtain an asymptotic formula for NU,H(B) for the
cubic surface defined by (1.1), we need an asymptotic formula for the left-
hand side of (1.4), but also for the more complicated expression Σ defined
in (2.7).

Comparing the proof of the asymptotic formula for Σ stated in The-
orem 2.1 and its application in Section 3.4 with Heath-Brown’s work, we
notice that our result involves several extra difficulties. In particular, we
have to isolate the main term, work out the case of even q, include a weight
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function and some additional parameters, and finally work with ranges for η1
depending on the remaining variables. This latter task is the main difficulty
and its resolution requires some extra tools such as Perron’s formula.

It is also interesting to note that we essentially manage to remove the
factor N (a, q) from the main term of the first summation in Lemma 3.3,
so that we can continue the proof just as in the case of linear η11−d in the
torsor equation.

As an application of our general estimate for the average number of so-
lutions of our quadratic congruence, we prove Manin’s conjecture for the
cubic surface S of singularity type A5 + A1 defined by (1.1). The com-
plement of the lines is U = S \ {x1 = 0}. We use the anticanonical height
function defined by H(x) = max{|x0|, . . . , |x3|} for x = (x0 : · · · : x3), where
(x0, . . . , x3) ∈ Z4 is such that (x0, . . . , x3) = 1. See Section 3.1 for more in-
formation on the geometry of S. Besides Theorem 2.1, our main result is as
follows.

Theorem 1.1. Let ε > 0 be fixed. As B tends to∞, we have the estimate

NU,H(B) = cS,HB(logB)6 +O(B(logB)5+ε),

where

cS,H =
1

172800
ω∞

∏
p

(
1− 1

p

)7(
1 +

7

p
+

1

p2

)
,

ω∞ =
�

0≤|(x1x2)−1(x31+x2x
2
3)|,|x1|,x2,|x3|≤1

1

x1x2
dx1 dx2 dx3.

We will check in Section 3.6 that this agrees with Manin’s conjecture and
that the constant cS,H is the one predicted by Peyre, Batyrev and Tschinkel.

2. Quadratic congruences on average. As explained in the intro-
duction, our motivation to study quadratic congruences in this section is
their appearance in proofs of Manin’s conjecture.

2.1. Counting solutions of quadratic congruences. To evaluate the
main term of the first summation over a variable occurring non-linearly in
the torsor equation (such as η9 in (1.2) in our example; see Lemma 3.2 below
for the result of the first summation in our case and [Der09, Proposition 2.4]
for the result in a more general situation), we need to count solutions of
quadratic congruences on average. To this end, we consider the following
general situation.

Throughout, for X > 0, we use the notation x ∼ X to indicate that
X < x ≤ 2X. Let b ∈ Z \ {0}, k ∈ Z>0 with (k, b) = 1, r ∈ Z>0 with
r ≥ 2 and K1, . . . ,Kr, Q, V be positive real numbers. We assume that Φ is a
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continuous real-valued function defined on (K1, 2K1]×· · ·×(Kr, 2Kr]×(0, Q]
which satisfies

(2.1) 0 ≤ Φ ≤ V

and, in each of the variables, can be divided into finitely many continuously
differentiable and monotone pieces whose number is bounded by an absolute
constant. We further assume that Q− and Q+ are continuous real-valued
functions defined on (K1, 2K1]× · · · × (Kr, 2Kr] such that

(2.2) 0 < Q− ≤ Q+ ≤ Q.

Moreover, for any given i ∈ {1, . . . , r}, for xj ∼ Kj with j ∈ {1, . . . , r} \ {i},
and for 0 < y ≤ Q, we assume that the set

(2.3) Ai(x1, . . . , xi−1, xi+1, . . . , xr, y)

= {xi ∼ Ki | Q−(x1, . . . , xr) < y ≤ Q+(x1, . . . , xr)}

is the union of finitely many intervals whose number is bounded by an
absolute constant. Throughout, for brevity, we write

K = 2r+1K1 · · ·Kr, Q± = Q±(a1, . . . , ar),(2.4)

Ai(y) = Ai(x1, . . . , xi−1, xi+1, . . . , xr, y).(2.5)

Finally, for any integer n ∈ Z>0, we set

(2.6) rad(n) =
∏
p|n

p.

Our goal is to evaluate asymptotically the expression

(2.7) Σ =
∑
a1∼K1

· · ·
∑
ar∼Kr

∑
Q−<q≤Q+

Φ(a1, . . . , ar, q)N (−a1 · · · arb, kq),

where N (−a1 · · · arb, kq) is defined in (1.3).

We begin by splitting Σ into a main term and an error term. Let kq =
2v(kq)h, where v(`) is the 2-adic valuation of ` ∈ Z>0 and h is odd. Thus,
for any n ∈ Z, we have

(2.8)
∑

%2≡nmod kq

1 =
( ∑
%2≡nmod 2v(kq)

1
)( ∑

%2≡nmodh

1
)
.

In the following, for j ≥ 0, we set{
n

2j

}
=

∑
%mod 2j

%2≡nmod 2j

1.
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It is well-known that if (n, 2j) = 1, then

(2.9)

{
n

2j

}
=



1 if j = 0,

1 if n ≡ 1 mod 2 and j = 1,

2 if n ≡ 1 mod 4 and j = 2,

4 if n ≡ 1 mod 8 and j ≥ 3,

0 otherwise.
Moreover, if h is odd and (n, h) = 1, then

(2.10)
∑

%2≡n mod h

1 =
∑
d|h

µ2(d)

(
n

d

)
.

The equalities (2.8)–(2.10) imply that if (a1 · · · arb, kq) = 1, then

(2.11) N (−a1 · · · arb, kq) =

{
−a1 · · · arb

2v(kq)

} ∑
d|kq

(d,2)=1

µ2(d)

(
−a1 · · · arb

d

)
.

If (a1 · · · arb, kq) 6= 1, then N (−a1 · · · arb, kq) = 0. Therefore, we deduce
that we can write

(2.12) Σ = M + E,

where the main term M is defined by

(2.13) M =
∑
a1∼K1

· · ·
∑
ar∼Kr

∑
Q−<q≤Q+

(a1···arb,kq)=1

Φ(a1, . . . , ar, q)

{
−a1 · · · arb

2v(kq)

}
,

and the error term E is defined by

(2.14) E =
∑
a1∼K1

· · ·
∑
ar∼Kr

∑
Q−<q≤Q+

(a1···arb,kq)=1

Φ(a1, . . . , ar, q)

{
−a1 · · · arb

2v(kq)

}

×
∑
d|kq
d>1

(d,2)=1

µ2(d)

(
−a1 · · · arb

d

)
.

In the following sections, we estimate the error term by generalizing the
method used by Heath-Brown [HB03, Section 5]. We shall not evaluate the
main term any further since this is not needed in our application. Our result
is as follows.

Theorem 2.1. Let ε > 0 be fixed. Set L = log(2 +Q). Then

Σ −M � E′,

where

E′ = V K1/2+εQLε(K1/2−1/2r rad(k)1/4 + |b|ε2(1+ε)ω(k) + 2ω(k)L).
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The term Σ is not exactly the one that we need in our application. Let Σ′

be defined like Σ in (2.7), but with some additional coprimality conditions
included, namely

(2.15) Σ′ =
∑
a1∼K1

(a1,t1)=1

· · ·
∑
ar∼Kr

(ar,tr)=1

(ai,aj)=1, 1≤i<j≤r

∑
Q−<q≤Q+

(q,u)=1

Φ(a1, . . . , ar, q)N (−a1 · · · arb, kq),

where t1, . . . , tr, u ∈ Z>0. Accordingly, we set

(2.16) M ′ =
∑
a1∼K1

(a1,t1)=1

· · ·
∑
ar∼Kr

(ar,tr)=1

(ai,aj)=1, 1≤i<j≤r

∑
Q−<q≤Q+

(q,u)=1
(a1···arb,kq)=1

Φ(a1, . . . , ar, q)

{
−a1 · · · arb

2v(kq)

}
.

Removing the additional coprimality conditions using Möbius inversions, we
shall deduce from Theorem 2.1 the following asymptotic formula for Σ′.

Corollary 2.2. Let ε > 0 be fixed. Then

Σ′ −M ′ � (1 + ε)ω(t1)+···+ω(tr)+ω(u)E′.

Remark 2.3. Theorem 2.1 and Corollary 2.2 remain true if the left
half-open q-summation interval (Q−, Q+] is replaced by an arbitrary interval
I(Q−, Q+) (left half-open, right half-open, open, closed) with endpoints Q−

and Q+. The proof is the same, with the relevant summation intervals being
altered accordingly.

Theorem 2.1 and Corollary 2.2 trivially hold if Ki < 1/2 for some i in
{1, . . . , r} or Q < 1 since in this case we have Σ = M = 0. Therefore, we
shall assume that Ki ≥ 1/2 for any i ∈ {1, . . . , r} and Q ≥ 1 throughout
the proofs of these results. Recalling the definition (2.4) of K, we note that
K ≥ 2.

2.2. Application of the Pólya–Vinogradov bound I. Let us write
d = fg, where g = (d, k). It follows that (f, k/g) = 1, and so the condition
d | kq is equivalent to f | q. Thus, we can write q = ef . Let us set

Q−(e, g) = max{1/g,Q−/e}, Q+(e) = Q+/e.

Reordering the summations and noting that µ2(fg) = 1 if and only if (f, g) =
1 and µ2(f) = µ2(g) = 1, we can rewrite the error term E defined in (2.14)
as

(2.17) E =
∑
g|k

(g,2)=1

µ2(g)
∑
e≤Q

(e,b)=1

E(e, g),
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where

(2.18)

E(e, g) =
∑
a1∼K1

· · ·
∑
ar∼Kr

(a1···ar,ke)=1

{
−a1 · · · arb

2v(ke)

} ∑
Q−(e,g)<f≤Q+(e)

(f,2k)=1

Φ(a1, . . . , ar, ef)

× µ2(f)

(
−a1 · · · arb

fg

)
.

In the following sections, we will estimate E(e, g) in three different ways.
We start with an application of the Pólya–Vinogradov bound for character
sums. Pulling in the summation over a1, we get

(2.19) E(e, g) =
∑
a2∼K2

· · ·
∑
ar∼Kr

(a2···ar,ke)=1

∑
1/g<f≤Q/e
(f,2k)=1

µ2(f)

(
−a2 · · · arb

fg

)

×
8∑

h=1

{
−ha2 · · · arb

2v(ke)

} ∑
a1∈A1(ef)
a1≡h mod 8
(a1,ke)=1

Φ(a1, . . . , ar, ef)

(
a1
fg

)
,

where A1(ef) is defined in (2.3) and (2.5). In the following, we estimate the
innermost sum over a1 under the assumption µ2(fg) = 1. Using partial sum-
mation and the assumptions on Φ in Section 2.1 (in particular, (2.1)), we get

(2.20)
∑

a1∈A1(ef)
a1≡h mod 8
(a1,ke)=1

Φ(a1, . . . , ar, ef)

(
a1
fg

)
� V sup

L1<L2

∣∣∣∣ ∑
L1<a1≤L2
a1∈A1(ef)
a1≡h mod 8
(a1,ke)=1

(
a1
fg

)∣∣∣∣.

Removing the coprimality condition (a1, ke) = 1 using a Möbius inversion,
we obtain

(2.21)
∑

L1<a1≤L2
a1∈A1(ef)
a1≡h mod 8
(a1,ke)=1

(
a1
fg

)
=
∑
d|ke

µ(d)

(
d

fg

) ∑
L1/d<a≤L2/d
da∈A1(ef)
da≡h mod 8

(
a

fg

)
.

Recalling the assumption that A1(ef) is the union of finitely many inter-
vals whose number is bounded by an absolute constant, we deduce from the
Pólya–Vinogradov bound for character sums that

(2.22)
∑

L1/d<a≤L2/d
da∈A1(ef)
da≡h mod 8

(
a

fg

)
� f1/2g1/2 log(fg),

where we note that fg is not a perfect square since fg > 1 and µ2(fg) = 1.
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Combining (2.19)–(2.22), we get

E(e, g)� V K2 · · ·KrQ
3/2e−3/2g1/2 log(2gQe−1)2ω(ke).

Similarly, for every i ∈ {1, . . . , r}, we obtain

E(e, g)� V
K1 · · ·Kr

Ki
Q3/2e−3/2g1/2 log(2gQe−1)2ω(ke).

Hence, on taking Ki as the maximum of K1, . . . ,Kr, it follows that

(2.23) E(e, g)� V K1−1/rQ3/2e−3/2g1/2 log(2gQe−1)2ω(ke),

where K is defined in (2.4).

2.3. Application of the Pólya–Vinogradov bound II. In this sec-
tion, we set a = a1 · · · ar. Alternatively, we may use the Pólya–Vinogradov
bound to treat the innermost sum over f in (2.18) non-trivially if −ab is not
a perfect square, which we assume in the following. Using partial summation
and the bound (2.1), we deduce

(2.24)
∑

Q−(e,g)<f≤Q+(e)
(f,2k)=1

Φ(a1, . . . , ar, ef)µ2(f)

(
−ab
fg

)

� V sup
Q−(e,g)≤F1<F2≤Q+(e)

∣∣∣∣ ∑
F1<f≤F2

(f,2k)=1

µ2(f)

(
−ab
f

)∣∣∣∣.
Using the well-known formula

µ2(f) =
∑
d2|f

µ(d)

and writing f = d2f̃ , we get

(2.25)
∑

F1<f≤F2

(f,2k)=1

µ2(f)

(
−ab
f

)
=

∑
d≤F 1/2

2
(d,2abk)=1

µ(d)
∑

F1/d2<f̃≤F2/d2

(f̃ ,2k)=1

(
−ab
f̃

)
.

Removing the coprimality condition (f̃ , k) = 1 using a Möbius inversion, we
obtain

(2.26) ∑
F1/d2<f̃≤F2/d2

(f̃ ,2k)=1

(
−ab
f̃

)
=

∑
d̃|k

(d̃,2)=1

µ(d̃)

(
−ab
d̃

) ∑
F1/(d2d̃)<f ′≤F2/(d2d̃)

(f ′,2)=1

(
−ab
f ′

)
.

The Pólya–Vinogradov bound gives

(2.27)
∑

F1/(d2d̃)<f ′≤F2/(d2d̃)
(f ′,2)=1

(
−ab
f ′

)
� (a|b|)1/2 log(2a|b|),

where we recall our assumption that −ab is not a perfect square.
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Let E′(e, g) be the contribution to E(e, g) of those a1, . . . , ar for which
−ab is not a perfect square. Then, combining (2.2) and (2.24)–(2.27), we
get

(2.28) E′(e, g)� V K3/2Q1/2e−1/2|b|1/2 log(K|b|)2ω(k).

The remaining contribution E2(e, g) of perfect squares −ab is trivially cal-
culated to be

(2.29) E2(e, g)� V K1/2+εQe−1.

Combining (2.28) and (2.29), we obtain

(2.30) E(e, g)� V K3/2Q1/2e−1/2|b|1/2 log(K|b|)2ω(k) + V K1/2+εQe−1.

2.4. Application of Heath-Brown’s large sieve. Finally, we will
make use of Heath-Brown’s large sieve for real character sums to bound
E(e, g). Set

uf = Φ(a1, . . . , ar, ef)µ2(f)

(
−a1 · · · arb

fg

)
.

To make the summation ranges independent, we first remove the summation
condition Q−(e, g) < f ≤ Q+(e) using Perron’s formula, getting

(2.31) ∑
Q−(e,g)<f≤Q+(e)

(f,2k)=1

uf =
1

2πi

c+iT�

c−iT

( ∑
1≤f≤Q/e
(f,2k)=1

uff
−s
)

(Q+(e)s−Q−(e, g)s)
ds

s

+O

(
V +

V Q log 2Q

eT

)
where we have set c = 1/log 2Q and used (2.1). Set

T = 2Q(log 2Q)e−1,

A(a1, . . . , ar; s) = (Q+(e)s −Q−(e, g)s
{
−a1 · · · arb

2v(ke)

}(
−a1 · · · arb

g

)
,

B(f ; s) = f−sµ2(f)(−b/f)

and

I(s) =∑
a1∼K1

· · ·
∑
ar∼Kr

(a1···ar,ke)=1

∑
1≤f≤Q/e
(f,2)=1

Φ(a1, . . . , ar, ef)A(a1, . . . , ar; s)B(f ; s)

(
a1 · · · ar

f

)
.
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Then it follows from (2.31) that

E(e, g) =
1

2πi

c+iT�

c−iT
I(s)

ds

s
+O(V K)(2.32)

� (log T ) sup
−T≤t≤T

|I(c+ it)|+ V K

= (log T )|I(c+ it0)|+ V K

for a particular t0 ∈ [−T, T ]. From [HB95, Corollary 4], a version of Heath-
Brown’s large sieve for real character sums, we have

(2.33)
∑
a1∼K1

· · ·
∑
ar∼Kr

∑
1≤f≤F
(f,2)=1

A′(a1, . . . , ar)B
′(f)

(
a1 · · · ar

f

)
� (KF 1/2 +K1/2F )(KF )ε

whenever A′(a1, . . . , ar), B
′(f)� 1 and F ≥ 1, and where we note that∣∣∣ ∑

a1∼K1

· · ·
∑
ar∼Kr

a1···ar=a

A′(a1, . . . , ar)
∣∣∣� τr(a)� aε

for any given a ∈ Z>0, with τr denoting the Dirichlet convolution of the
constant arithmetic function equal to 1 with itself r times. Using the bound
(2.33) together with partial summation in f to remove the weight function
Φ(a1, . . . , ar, ef), we deduce that

(2.34) |I(c+ it0)| � V (KQ1/2e−1/2 +K1/2Qe−1)(KQe−1)ε,

where we take into account that

A(a1, . . . , ar; t0)� 1, B(f ; t0)� 1.

Combining (2.32) and (2.34), and noting that

log T = log
2Q log 2Q

e
= log

(
2Q

e

)
+ log log(2Q)�

(
Q

e

)ε
logε(2 +Q),

we deduce that

(2.35) E(e, g)� V (KQ1/2e−1/2 +K1/2Qe−1)(KQe−1)ε logε(2 +Q).

2.5. Proofs of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. Combining the three bounds (2.23), (2.30)
and (2.35), we obtain

(2.36) E(e, g)� (V (KQe−1)ε logε(2 +Q))m + V K1/2+εQe−1,
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where

m = min
{
K1−1/rQ3/2e−3/2g1/2+ε,K3/2Q1/2e−1/2|b|1/2+ε2ω(k),

KQ1/2e−1/2 +K1/2Qe−1
}

� min{K1−1/rQ3/2e−3/2g1/2+ε,KQ1/2e−1/2}
+ min{K3/2Q1/2e−1/2|b|1/2+ε2ω(k),K1/2Qe−1}

� (K1−1/rQ3/2e−3/2g1/2+ε)µ(KQ1/2e−1/2)1−µ

+ (K3/2Q1/2e−1/2|b|1/2+ε2ω(k))ν(K1/2Qe−1)1−ν

� K1−µ/rQ1/2+µe−(1/2+µ)gµ/2+ε +K1/2+νQ1−ν/2e−(1−ν/2)|b|ν/2+ε2νω(k)

for any µ, ν ∈ [0, 1]. Choosing (µ, ν) = (1/2 − 3ε, 4ε), recalling (2.17)
and (2.36), and summing over g and e now gives

E � V K1−1/(2r)+εQ rad(k)1/4 logε(2 +Q)

+ V K1/2+4εQ|b|3ε2(1+4ε)ω(k) logε(2+Q)+V K1/2+εQ log(2+Q)2ω(k).

Proof of Corollary 2.2. Removing all additional coprimality conditions
separately using Möbius inversion, i.e., the formula∑

d|(m,n)

µ(d) =

{
1 if (m,n) = 1,

0 otherwise,

we are led to

(2.37) Σ′ =
∑

(dα,β)∈Z
r(r−1)/2
>0

(1≤α<β≤r)

∑
d1|t1

· · ·
∑
dr|tr

∑
d|u

( ∏
1≤i<j≤r

µ(di,j)
)( r∏

l=1

µ(dl)
)

× µ(d)Σ((di,j)1≤i<j≤r, d1, . . . , dr, d)

with

(2.38) Σ((di,j)1≤i<j≤r, d1, . . . , dr, d)

=
∑

a1∼K1/D1

· · ·
∑

ar∼Kr/Dr

∑
Q−/d<q≤Q+/d

Φ(a1D1, . . . , arDr, qd)N (−aDb, kdq),

where

a= a1 · · · ar, Di = lcm(di, d1,i, . . . , di−1,i, di,i+1, . . . , di,r), D=D1 · · ·Dr.

Using Theorem 2.1, we obtain

(2.39) Σ((di,j)1≤i<j≤r, d1, . . . , dr, d)−M((di,j)1≤i<j≤r, d1, . . . , dr, d)

� V

(
K

D

)1/2+εQ

d
Lε

×
((

K

D

)1/2−1/2r
d1/4 rad(k)1/4 + |Db|ε2(1+ε)ω(dk) + 2ω(dk)L

)
,
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where L = log(2 +Q) and

M((di,j)1≤i<j≤r, d1, . . . , dr, d)

=
∑

a1∼K1/D1

· · ·
∑

ar∼Kr/Dr

∑
Q−/d<q≤Q+/d

Φ(a1D1, . . . , arDr, qd)

{
−a1 · · · arDb

2v(kdq)

}
.

Reverting all the Möbius inversions carried out, we find that

M ′ =
∑

(dα,β)∈Z
r(r−1)/2
>0

(1≤α<β≤r)

∑
d1|t1

· · ·
∑
dr|tr

∑
d|u

( ∏
1≤i<j≤r

µ(di,j)
)( r∏

l=1

µ(dl)
)

× µ(d)M((di,j)1≤i<j≤r, d1, . . . , dr, d),

where M ′ is defined in (2.16). Summing up the error term in (2.39) over
D ≤ K and d ≤ Q−, and noting that the number of dα,β’s and dγ ’s such
that

D = D1 · · ·Dr =
r∏
i=1

lcm(di, d1,i, . . . , di−1,i, di,i+1, . . . , di,r)

is bounded by O(Dε), we get the error term claimed.

3. Counting rational points on a singular cubic surface. In this
part, we give a proof of Manin’s conjecture (Theorem 1.1) for the singular
cubic surface with A5 + A1 singularity type. We will apply our result on
quadratic congruences (Corollary 2.2).

3.1. Geometry. Our cubic surface S defined by (1.1) over the field Q
has singularities only at (0 : 0 : 1 : 0) of type A1, and at (1 : 0 : 0 : 0) of
type A5. It contains precisely two lines, {x1 = x2 = 0} and {x1 = x3 = 0}.
The complement of the lines is U = {x ∈ S | x1 6= 0}. It is rational, as one
can see by projecting to P2 from one of the singularities.

Its minimal desingularization S̃ is a blow-up of P2 in six points, so Pic(S̃)

is free of rank 7. The Cox ring of S̃ has been determined in [Der14]. It has
ten generators η1, . . . , η10 satisfying (1.2). The configuration of the rational

curves on S̃ corresponding to the generators of Cox(S̃) is described by the
extended Dynkin diagram in Figure 2, where each vertex corresponds to a
curve Ei for ηi, and an edge indicates that two curves intersect.

3.2. Passage to a universal torsor. Let

η = (η1, . . . , η10), η′ = (η1, . . . , η8), η(k1,...,k8) = ηk11 · · · η
k8
8

for any (k1, . . . , k8) ∈ R8.
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E9 E2

E8 E6 E7 E5 E4 E3

E10 E1

Fig. 2. Configuration of curves on S̃

For i = 1, . . . , 10, let

(3.1) (Zi, Ji, J ′i) =


(Z>0,R≥1,R≥1), i ∈ {1, . . . , 6},
(Z>0,R≥1,R≥0), i = 7,

(Z6=0,R≤−1 ∪ R≥1,R), i = 8,

(Z,R,R), i ∈ {9, 10}.
In the course of our argument, we estimate summations over ηi ∈ Zi by
integrations over ηi ∈ Ji, which we enlarge to ηi ∈ J ′i in (3.24).

Lemma 3.1. We have

NU,H(B) = #{η ∈ Z1 × · · · × Z10 | (3.2)–(3.6) hold}

with the torsor equation

(3.2) η1η10 + η2η
2
9 + η4η

2
5η

4
6η

3
7η8 = 0,

the height condition

(3.3)

h(η′, η9;B) = B−1 max

{
|η−11 (η2η8η

2
9 + η4η

2
5η

4
6η

3
7η

2
8)|, |η(1,1,2,2,2,2,2,1)|,

|η(3,2,4,3,2,0,1,0)|, |η(0,1,1,1,1,1,1,1)η9|

}
≤ 1

and the coprimality conditions

(η10, η2η3η4η5η6η7) = (η9, η1η3η4η5η6η7) = 1,(3.4)

(η8, η1η2η3η4η5η7) = 1,(3.5)

(η7, η1η2η3η4) = (η6, η1η2η3η4η5) = (η5, η1η2η3)(3.6)

= (η4, η1η2) = (η1, η2) = 1.

Proof. Based on the birational projection S 99K P2 from the A5-singu-
larity and the structure of S̃ as a blow-up of P2 in six points, we prove as
in [DT07, Section 4] that the map

ψ : η 7→ (η8η10,η
(1,1,2,2,2,2,2,1),η(3,2,4,3,2,0,1,0),η(0,1,1,1,1,1,1,1)η9)

gives a bijection between the rational points on U and the set of η in
Z1 × · · · × Z10 satisfying (3.2) and the coprimality conditions encoded in
the extended Dynkin diagram in Figure 2, which are (3.4)–(3.6).
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We note that the coprimality conditions imply that the image of such
η under ψ has coprime coordinates, so that the height of ψ(η) is simply
the maximum of their absolute values. Using (3.2), we eliminate η10 and
obtain (3.3).

3.3. Counting points. Recalling the definition (3.1) of Ji, let

R(B) = {(η′, η9) ∈ J1 × · · · × J9 | h(η′, η9;B) ≤ 1}
be the set whose number of lattice points we want to compare with its
volume (both under the torsor equation (3.2) and the coprimality condi-
tions (3.4)–(3.6)).

Recall the definition (1.3) of N (q, a). Summing over η9, with η10 as a
dependent variable, we get:

Lemma 3.2. We have

NU,H(B) =
∑

η′∈Z1×···×Z8

θ1(η
′)V1(η

′;B) +O(B(logB)3),

where

(3.7) V1(η
′;B) =

�

(η′,η9)∈R(B)

η−11 dη9

and

θ1(η
′) =

∑
k|η3

(k,η2η4)=1

µ(k)ϕ∗(η3η4η5η6η7)

kϕ∗((η3, kη1))
N (−η2η4η7η8, kη1)

if η′ satisfies the coprimality conditions (3.5)–(3.6), while θ1(η
′) = 0 other-

wise.

Proof. Essentially because Figure 2 describing the coprimality conditions
and the torsor equation (3.2) have the right shape, we are in a position to
apply the general result of [Der09, Proposition 2.4]. This gives the main
term as above after simplifying the condition (k, η2η4η5η6η7η8) = 1 in the
summation over k to (k, η2η4) = 1, which is allowed because of k | η3 and
(3.5)–(3.6).

The sum of the error term over all relevant η′ is bounded by∑
η′

2ω(η3)+ω(η3η4η5η6η7)+ω(η1η3) �
∑

η1,...,η7

2ω(η3)+ω(η3η4η5η6η7)+ω(η1η3)B

η(1,1,2,2,2,2,2,0)

� B(logB)3,

where we use the second part of (3.3) for the summation over η8.

3.4. Application of Corollary 2.2. Using Corollary 2.2, we now want
to prove that Lemma 3.2 still holds when we replace the error term by



Quadratic congruences on average 161

O(B(logB)4+ε) and θ1 in the main term by θ′1 with

θ′1(η
′) =

∑
k|η3

(k,η2η4)=1

µ(k)ϕ∗(η3η4η5η6η7)

kϕ∗((η3, kη1))

{
−η2η4η7η8

2v(kη1)

}

if (3.5)–(3.6) hold and θ′1(η
′) = 0 otherwise. Hence, we want to show the

following.

Lemma 3.3. Let ε > 0 be fixed. Then

NU,H(B) =
∑

η′∈Z1×···×Z8

θ′1(η
′)V1(η

′;B) +O(B(logB)4+ε).

Proof. First, we write∑
η′∈Z1×···×Z8

θ1(η
′)V1(η

′;B) = F+(B) + F−(B),

where

F+(B) =
∑

η′∈Z7
>0×Z>0

θ1(η
′)V1(η

′;B),

F−(B) =
∑

η′∈Z7
>0×Z<0

θ1(η
′)V1(η

′;B).

The term F−(B) can be treated similarly to F+(B). Therefore, we confine
ourselves to the treatment of the latter, which we now transform in such a
way that Corollary 2.2 can be applied.

For convenience, we break the summation ranges of η1, η2, η4, η7, η8 into
dyadic intervals, i.e., we write

(3.8) F+(B) =
∑

η′′∈Z3
>0

∑
k|η3

µ(k)

k

∑
L1,L2,L4,L7,L8

W (η′′, k, L1, L2, L4, L7, L8),

where η′′ = (η3, η5, η6) satisfies the coprimality conditions (η3, η5η6) = 1 =
(η5, η6), the variables L1, L2, L4, L7, L8 ≥ 1/2 run over powers of 2, and

W (η′′, k, L1, L2, L4, L7, L8) =
∑
η1∼L1

(η1,η5η6)=1

ϕ∗((η3, kη1))
−1

∑
η4∼L4

(η4,η6)=1

∑
η7∼L7

(η7,η3η4)=1

ϕ∗(η3η4η5η6η7)
∑
η2∼L2

(η2,η4η5η6η7)=1

∑
η8∼L8

(η8,η2η3η4η5η7)=1

V1(η;B)N (−η2η4η7η8, kη1).

Here we note that the coprimality condition (η2η4η7η8, kη1) = 1 is contained
in the definition of N (−η2η4η7η8, kη1).
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To make Corollary 2.2 applicable, it is necessary to remove the arithmetic
factors ϕ∗((η3, kη1))

−1 and ϕ∗(η3η4η5η6η7). We write

(3.9) ϕ∗((η3, kη1))
−1 = ϕ∗(k · (η3/k, η1))−1

= ϕ∗(k)−1
∏

p|(η3/k,η1)
p-k

(
1 +

1

p− 1

)
= ϕ∗(k)−1

∑
d1|(η3/k,η1)
(d1,k)=1

µ2(d1)

ϕ(d1)

and

ϕ∗(η3η4η5η6η7) = ϕ∗(η3η5η6)
∏
p|η4

p-η3η5η6

(
1− 1

p

) ∏
p̃|η7

p̃-η3η5η6

(
1− 1

p̃

)
(3.10)

= ϕ∗(η3η5η6)
∑
d4|η4

(d4,η3η5η6)=1

µ(d4)

d4

∑
d7|η7

(d7,η3η5η6)=1

µ(d7)

d7
,

where we use the fact that (η4, η7) = 1. Hence, we may write

(3.11) W (η′′, k, L1, L2, L4, L7, L8)

=
ϕ∗(η3η5η6)

ϕ∗(k)

∑
d1|η3/k

(d1,η5η6k)=1

∑
d4≤2L4

(d4,η3η5η6)=1

∑
d7≤2L7

(d7,d4η3η5η6)=1

µ2(d1)µ(d4)µ(d7)

ϕ(d1)d4d7

×W (η′′, k, L1, L2, L4, L7, L8, d1, d4, d7),

where

W (η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

=
∑

η′1∼L1/d1
(η′1,η5η6)=1

∑
η′4∼L4/d4
(η′4,d7η6)=1

∑
η′7∼L7/d7

(η′7,d4η3η
′
4)=1

∑
η2∼L2

(η2,d4d7η′4η5η6η
′
7)=1

∑
η8∼L8

(η8,d4d7η2η3η′4η5η
′
7)=1

V1(d1η
′
1, η2, η3, d4η

′
4, η5, η6, d7η

′
7, η8;B)N (−η2η′4η′7η8d4d7, kd1η′1).

Now we observe that for η2, η3, η
′
4, η5, η6, η

′
7, η8 > 0, the set

{y > 0 | V1(d1y, η2, η3, d4η′4, η5, η6, d7η′7, η8;B) > 0}

is an interval. To evaluate W (η′′, k, L1, L2, L4, L7, L8, d1, d4, d7), we shall
apply Corollary 2.2 and Remark 2.3 with

k replaced by kd1, b = d4d7, r = 4,

a1 = η′4, a2 = η′7, a3 = η2, a4 = η8, q = η′1,

t1 = d7η6, t2 = d4η3, t3 = d4d7η5η6, t4 = d4d7η3η5, u = η5η6,
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K1 = L4/d4, K2 = L7/d7, K3 = L2, K4 = L8, Q = 2L1/d1,

I(Q−, Q+) = I(Q−(η′4, η
′
7, η2, η8), Q

+(η′4, η
′
7, η2, η8))

= (L1, 2L1] ∩ {y > 0 | V1(d1y, η2, η3, d4η′4, η5, η6, d7η′7, η8;B) > 0},
V = sup

η1∼L1, η2∼L2, η4∼L4, η7∼L7, η8∼L8

V1(η;B),

Φ(η′4, η
′
7, η2, η8, y)

=


V1(d1y, η2, η3, d4η

′
4, η5, η6, d7η

′
7, η8;B) if Q− < y < Q+,

lim
z↓Q−

V1(d1z, η2, η3, d4η
′
4, η5, η6, d7η

′
7, η8;B) if y ≤ Q−,

lim
z↑Q+

V1(d1z, η2, η3, d4η
′
4, η5, η6, d7η

′
7, η8;B) if y ≥ Q+.

It is easy to check that the functions Φ, Q− and Q+ so defined satisfy the
conditions in Section 2.1. Therefore, Corollary 2.2 and Remark 2.3 give

(3.12) W (η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

= M(η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

+ E(η′′, k, L1, L2, L4, L7, L8, d1, d4, d7),

where

(3.13) M(η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

=
∑

η′1∼L1/d1
(η′1,η5η6)=1

∑
η′4∼L4/d4
(η′4,d7η6)=1

∑
η′7∼L7/d7

(η′7,d4η3η
′
4)=1

∑
η2∼L2

(η2,d4d7η′4η5η6η
′
7)=1

∑
η8∼L8

(η8,d4d7η3η′4η5η
′
7)=1

(η2η′4η
′
7η8d4d7,kd1η

′
1)=1

V1(d1η
′
1, η2, η3, d4η

′
4, η5, η6, d7η

′
7, η8;B)

{
η2η
′
4η
′
7η8d4d7

2v(kd1η
′
1)

}
and

(3.14) E(η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

� sup
ηi∼Li

V1(η;B) ·
(
L1(L2L4L7L8)

7/8+εd
−3/4
1 (d4d7)

−7/8k1/4

+ L1(L2L4L7L8)
1/2+4εd−11 (d4d7)

−1/2(log 4L1)2
(1+4ε)ω(kd1)

)
× (1 + ε)ω(η3)+ω(η5)+ω(η6) logε(4L1).

Summing these contributions over k, Li and di, we deduce from (3.8) and
(3.11)–(3.14) that

(3.15) F+(B) = M+(B) + E+(B),
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where

M+(B) =
∑

η′′∈Z3
>0

ϕ∗(η3η5η6)
∑
k|η3

µ(k)

kϕ∗(k)

∑
L1,L2,L4,L7,L8

∑
d1|η3/k

(d1,η5η6k)=1

∑
d4≤2L4

(d4,η3η5η6)=1∑
d7≤2L7

(d7,d4η3η5η6)=1

µ2(d1)µ(d4)µ(d7)

ϕ(d1)d4d7
M(η′′, k, L1, L2, L4, L7, L8, d1, d4, d7)

and

(3.16) E+(B)

�
∑

η′′∈Z3
>0

(1 + ε)ω(η3)+ω(η5)+ω(η6)
∑

L1,L2,L4,L7,L8

L sup
ηi∼Li

V1(η;B),

where we have set

L = L1(L2L4L7L8)
8/9(log 4L1)

1+ε.

Reverting the decompositions of the arithmetic functions in (3.9) and (3.10),
combining the η1-, η2-, η4-, η7- and η8-ranges, and noting that if k | η3 then
the conditions (η2η4η7η8, kη1) = 1 and (k, η2η4) = 1 are equivalent, we
simplify the main term M+(B) to

(3.17) M+(B) =
∑

η′∈Z7
>0×Z>0

θ′1(η
′)V1(η

′;B),

where θ′1(η
′) is defined before the statement of the lemma.

Finally, we show that E+(B) is an error term. To estimate V1, an appli-
cation of [Der09, Lemma 5.1] gives

V1(η
′;B)� min

{
B1/2

η
1/2
1 η

1/2
2 |η8|1/2

,
B

η(0,1/2,0,1/2,1,2,3/2,3/2)

}
(3.18)

� B2/3

|η(1/3,1/2,0,1/6,1/3,1/2,2/3,5/6)|
(3.19)

=
B

|η(1,1,1,1,1,1,1,1)|

(
B

|η(1,1,2,2,2,2,2,1)|
B

|η(3,2,4,3,2,0,1,0)|

)−1/6
,(3.20)

where (3.19) is the weighted average of the two parts of (3.18), and (3.20)
indicates how the second and third parts of the height condition (3.3) will
be used below when summing over η6, η7. Set

L′ = L1(L2L4L8)
8/9(log 4L1)

1+ε.
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Then, starting from (3.16), we see that

E+(B)�
∑

L1,L2,L4,L7,L8

L sup
ηi∼Li

( ∑
η3,η5,η6

(1 + ε)ω(η3)+ω(η5)+ω(η6)B2/3

|η(1/3,1/2,0,1/6,1/3,1/2,2/3,5/6)|

)

�
∑

L1,L2,L4,L8

L′ sup
ηi∼Li

( ∑
η3,η5,η6,η7

(1 + ε)ω(η3)+ω(η5)+ω(η6)B2/3

|η(1/3,1/2,0,1/6,1/3,1/2,2/3,5/6)|

)

�
∑

L1,L2,L4,L8

L′ sup
ηi∼Li

(∑
η3,η5

(1 + ε)ω(η3)+ω(η5)B(logB)ε

|η1η2η3η4η5η8|

)

�
∑

L1,L2,L4,L8

L′ sup
ηi∼Li

B(logB)2+3ε

|η1η2η4η8|

�
∑

L1,L2,L4,L7

B(logB)2+4ε(log 4L1)

(L2L4L8)1/9

� B(logB)4+4ε.

Combining this with (3.15) and (3.17), and treating F−(B) similarly to
F+(B), we obtain the desired result.

3.5. Completion of the proof of Theorem 1.1. It remains to evalu-
ate the main term in Lemma 3.3 asymptotically. To this end, we would like
to apply [Der09, Proposition 4.3]. We note that θ′1(η

′) is not of the form
considered in [Der09, Section 7] because of the extra 2-adic factor. However,
this factor turns out to be 1 on average, and the remaining part of θ′1(η

′) has
the necessary properties. As in [Der09, Definition 3.7], A(θ′1(η

′), η8) denotes
the average size of θ′1 when summed over η8.

Lemma 3.4. We have θ′1(η
′) ∈ Θ2,8(C) [Der09, Definition 4.2] for some

C ∈ R≥0, with

A(θ′1(η
′), η8) = θ2(η1, . . . , η7) =

∏
p

θ2,p(Ip(η1, . . . , η7)) ∈ Θ′4,7(2)

[Der09, Definition 7.8], where Ip(η1, . . . , η7) = {i ∈ {1, . . . , 7} | p | ηi} and

θ2,p(I) =



1, I = ∅,
1− 1/p, I = {1}, {2}, {6},

(1− 1/p)2,
I = {4}, {5}, {7}, {1, 3}, {2, 3},
{3, 4}, {4, 5}, {5, 7}, {6, 7},

(1− 1/p)(1− 2/p), I = {3},
0, otherwise.
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Proof. We will see that

(3.21)
∑

0<η8≤t
θ′1(η

′) = tθ2(η1, . . . , η7) +O(2ω(η1η2η3η4η5η7)+ω(η3)),

where

θ2(η1, . . . , η7) =
∑
k|η3

(k,η2η4)=1

µ(k)ϕ∗(η3η4η5η6η7)

kϕ∗((η3, kη1))
ϕ∗(η1η2η3η4η5η7)

if (3.6) holds and θ2(η1, . . . , η7) = 0 otherwise.

We observe that θ′1(η
′) ∈ Θ1,8(3, η8) [Der09, Definition 3.8] since

we have θ′1(η
′) �

∏8
i=1(ϕ

∗(ηi))
2 ∈ Θ0,8(0) [Der09, Definition 3.2] by

[Der09, Example 3.3], and because θ′1(η
′) as a function in η8 lies in Θ0(0)

[Der09, Definition 3.7] by (3.21), and because its average is

θ2(η1, . . . , η7)�
7∏
i=1

(ϕ∗(ηi))
2 ∈ Θ0,7(0)

as before, and because the error term is �
∏7
i=1 4ω(ηi) ∈ Θ0,7(3) also as in

[Der09, Example 3.3].

Furthermore, we see that θ2(η1, . . . , η7) has the form of [Der09, Defi-
nition 7.8], and a computation shows that its local factors θ2,p are as in
our statement, so θ2(η1, . . . , η7) ∈ Θ′4,7(2), and θ2(η1, . . . , η7) ∈ Θ2,7(C) for
some C ≥ 3 by [Der09, Corollary 7.9]. In total, this shows θ′1(η

′) ∈ Θ2,8(C)
[Der09, Definition 4.2].

It remains to prove (3.21). If (3.6) does not hold, both sides of (3.21)
are 0. Otherwise,∑

0<η8≤t
θ′1(η

′) =
∑
k|η3

(k,η2η4)=1

µ(k)ϕ∗(η3η4η5η6η7)

kϕ∗((η3, kη1))

∑
0<η8≤t
(3.5)

{
−η2η4η7η8

2v(kη1)

}
.

We must show that the inner sum over η8 is tϕ∗(η1 · · · η5η7)+O(2ω(η1···η5η7)).
Let n = min{v(kη1), 3}. If n = 0, this holds by Möbius inversion. If n > 0,
(3.6) implies that η2, η4, η7 are odd. Then the inner sum equals (with−η2η4η7
being the multiplicative inverse of −η2η4η7 mod 2n)∑

0<η8≤t
(η8,η1···η5η7)=1

η8≡−η2η4η7 mod 2n

2n−1 =
∑

l|η1···η5η7

µ(l)
∑

0<η′8≤t/l
lη′8≡−η2η4η7 mod 2n

2n−1.

If l is even, the congruence is never fulfilled, so the inner sum over η′8 is 0.

If l is odd, the inner sum over η′8 is 2n−1t
2nl + O(1) = t

2l + O(1). In total, the
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inner sum over η8 is∑
l|η1···η5η7

2-l

µ(l)

2l
t+O(2ω(η1···η5η7)) =

1

2
t

∏
p|η1···η5η7

p 6=2

(
1− 1

p

)
+O(2ω(η1···η5η7))

= ϕ∗(η1 · · · η5η7)t+O(2ω(η1···η5η7)),

since n > 0 implies that η1η3 is even. Summing the error term over k only
gives another factor 2ω(η3).

Because of (3.20) and Lemma 3.4, we are in a position to apply [Der09,
Proposition 4.3], getting

(3.22)
∑

η′∈Z1×···×Z8

θ′1(η
′)V1(η

′;B) = c0V0(B) +O(B(logB)5(log logB)2)

with

V0(B) =
�

η′

V1(η
′;B) dη′ =

�

(η′,η9)∈R(B)

η−11 dη9 dη
′,

c0 = A(θ′1(η
′), η8, . . . , η1) = A(θ2(η1, . . . , η7), η7, . . . , η1) =

∏
p

ωp,

whose local factors can be computed from the presentation of θ2 in Lem-
ma 3.4 by [Der09, Corollary 7.10] as

(3.23) ωp =

(
1− 1

p

)7(
1 +

7

p
+

1

p2

)
.

Recall the definition (3.1) of J ′i . We define

R′1(B) =

{
(η1, . . . , η6) ∈ J ′1 × · · · × J ′6

∣∣∣∣ η(3,2,4,3,2,0,0,0) ≤ B,
η(5,3,6,4,2,−2,0,0) ≥ B

}
,

R′2(η1, . . . , η6;B) = {(η7, η8, η9) ∈ J ′7 × J ′8 × J ′9 | h(η′, η9;B) ≤ 1},

R′(B) =

{
(η′, η9) ∈ R9

∣∣∣∣ (η1, . . . , η6) ∈ R′1(B),

(η7, η8, η9) ∈ R′2(η1, . . . , η6;B)

}
,

V ′0(B) =
�

(η′,η9)∈R′(B)

η−11 dη9 dη
′,

where the definition of R′1(B) is inspired by the description in (3.26) of the
polytope whose volume is α(S).

We claim that

(3.24) V0(B) = V ′0(B) +O(B(logB)5).

Comparing the definitions, in particular Ji and J ′i for i ∈ {6, 8}, we see
that we must remove the conditions η6 ≥ 1 and |η8| ≥ 1 and add the
two conditions from the definition of R′1(B), all with a sufficiently small
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error term. We do this in four steps as in [Der09, Lemma 8.7]; the order is
important:

(1) Add η(3,2,4,3,2,0,0,0) ≤ B: This does not change anything because this
condition follows from η7 ≥ 1 and η(3,2,4,3,2,0,1,0) ≤ B by (3.3).

(2) Add η(5,3,6,4,2,−2,0,0) ≥ B: Using [Der09, Lemma 5.1(3)] for the inte-
gration over η7, η9, we see that the error term is

�
� B5/6

|η(1/6,1/2,0,1/3,2/3,4/3,0,7/6)|
d(η1, . . . , η6, η8).

Using the opposite of our new condition for the integration over η6
together with 1 ≤ η1, . . . , η5 ≤ B and |η8| ≥ 1, we see that this is
� B(logB)5.

(3) Remove |η8| ≥ 1: Using [Der09, Lemma 5.1(1)] for the integration
over η9, we see that the error term is

�
� B1/2

η
1/2
1 η

1/2
2 |η8|1/2

dη′.

Using |η8| ≤ 1, and η(3,2,4,3,2,0,1,0) ≤ B for η7, and η(5,3,6,4,2,−2,0,0)

≥ B for η6, and finally 1 ≤ η1, . . . , η5 ≤ B, we see that this is
� B(logB)5.

(4) Remove η7 ≥ 1: Using [Der09, Lemma 5.1(2)] for the integration
over η8, η9, we see that the error is

�
� B3/4

η(1/4,1/2,0,1/4,1/2,1,3/4,0)
d(η1, . . . , η7).

Using 0 ≤ η7 ≤ 1, and η(3,2,4,3,2,0,0,0) ≤ B for η5, and finally 1 ≤
η1, . . . , η4, η6 ≤ B, we see that this is � B(logB)5.

Next, we claim as in [Der09, Lemma 8.6] that

(3.25) V ′0(B) = α(S)ω∞B(logB)6.

Indeed, substituting

x2 =B−1η(3,2,4,3,2,0,1,0), x1 =B−1η(1,1,2,2,2,2,2,1), x3 =B−1η(0,1,1,1,1,1,1,1)η9

into ω∞ as in Theorem 1.1, where η1, . . . , η6 should be regarded as parame-
ters and η7, η8, η9 as the new integration variables, we see that

Bω∞
η1 · · · η6

=
�

(η7,η8,η9)∈R′2(η1,...,η6;B)

η−11 d(η7, η8, η9).

Finally, we see that

α(S)(logB)6 =
�

R′1(B)

1

η1 · · · η6
d(η1, . . . , η6)

by substituting ηi = Bti into α(S) = vol(P ′) =
	
t∈P ′ dt (see (3.26) below).
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Combining Lemma 3.3 with (3.22)–(3.25) completes the proof of Theo-
rem 1.1.

3.6. Compatibility with Manin’s conjecture. As the rank of Pic(S̃)
is equal to 7 (see Section 3.1), the exponent of logB in Theorem 1.1 is as
predicted by Manin’s conjecture. By [Pey95], [BT98b], we have conjecturally
cS,H = α(S) · ωH(S).

We have

α(S) =
α(S0)

#W (A5) ·#W (A1)
=

1

180 · 6! · 2!
=

1

172800

by [Der07, Table 1] and [DJT08, Theorem 1.3], where S0 is a split smooth
cubic surface. Since

[−K
S̃

] = [3E1 + 2E2 + 4E3 + 3E4 + 2E5 + E7],

[E8] = [2E1 + E2 + 2E3 + E4 − 2E6 − E7],

we also have α(S) = vol(P ) = vol(P ′), where

(3.26) P =

{
(t1, . . . , t7) ∈ R7

≥0

∣∣∣∣ 3t1 + 2t2 + 4t3 + 3t4 + 2t5 + t7 = 1,

2t1 + t2 + 2t3 + t4 − 2t6 − t7 ≥ 0

}
∼= P ′ =

{
(t1, . . . , t6) ∈ R6

≥0

∣∣∣∣ 3t1 + 2t2 + 4t3 + 3t4 + 2t5 ≤ 1,

5t1 + 3t2 + 6t3 + 4t4 + 2t5 − 2t6 ≥ 1

}
.

Furthermore,

ωH(S) = ω∞
∏
p

(
1− 1

p

)7

ωp, where ωp =
#S̃(Fp)
p2

= 1 +
7

p
+

1

p2
,

because the minimal desingularization S̃ of S is a blow-up of P2 (which has
p2 + p + 1 points over Fp) in six points (each replacing one point by an
exceptional divisor containing #P1(Fp) = p+ 1 points over Fp).

We check using the techniques of [Pey95], [BT98b] that ω∞ is as in

Theorem 1.1 since the Leray form of S̃ is

ωL(S̃) = (x1x2)
−1 dx1 dx2 dx3

(where x1x2 is the derivative of (1.1) with respect to x0) and by writing x0
in terms of x1, x2, x3 using the defining equation (1.1).
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