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Some q-supercongruences for truncated basic
hypergeometric series
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Victor J. W. Guo (Huaian) and Jiang Zeng (Lyon)

1. Introduction. We shall follow the standard q-notation from [4]. The
q-shifted factorial is defined by (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for
n = 1, 2, . . . , and (a; q)0 = 1, while the q-integer is denoted by [n] := 1−qn

1−q . In

a previous paper [6], we proposed several q-analogues of Rodriguez-Villegas

and Mortenson type congruences for truncated hypergeometric series con-
jectured by Rodriguez-Villegas [11, 9], and proved the following q-analogue
of one of their supercongruences:

p−1∑
k=0

(q; q2)2k
(q2; q2)2k

≡
(
−1

p

)
q(1−p

2)/4 (mod [p]2).(1.1)

Here and in what follows, p always denotes an odd prime, and
( ·
p

)
is the

Legendre symbol modulo p.

Recently, by using the properties of generalized Legendre polynomials,
Z.-H. Sun [13, Theorem 2.5] proved the following remarkable congruence:

p−1∑
k=0

(
2k

k

)(
a

k

)(
−1− a
k

)
1

4k
≡ 0 (mod p2),(1.2)

where a is a p-adic integer such that the least nonnegative residue of a mod-
ulo p is odd. It is interesting to note that (1.2) is a common generalization
of several congruences due to van Hamme and Rodriguez-Villegas. On the
other hand, van Hamme [17] proved the following congruence:

(1.3)

(p−1)/2∑
k=0

(
2k

k

)3 1

64k
≡
{

4x2−2p (mod p2) if p = x2+y2 with x odd,

0 (mod p2) if p ≡ 3 (mod 4),
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a generalization of which was recently conjectured by H. Swisher [16, (H.3)].
The aim of this paper is to prove some q-supercongruences for certain trun-
cated basic hypergeometric series generalizing the above results.

Recall that the q-binomial coefficients
[
n
k

]
are defined by[

n

k

]
=

[
n

k

]
q

=

{
(qn−k+1; q)k

(q; q)k
if 0 ≤ k ≤ n,

0 otherwise.

The first aim of this paper is to give a unified q-analogue of (1.3) and
Z.-W. Sun’s generalization [14, Theorem 1.1(i)] of (1.3).

Theorem 1.1. Let 0 ≤ s ≤ (p− 1)/2. Then modulo [p]2,

(1.4)

(p−1)/2∑
k=0

[
2k

k

]2
q2

[
2k

k + s

]
q2

q2k

(−q2; q2)2k(−q; q)22k

≡


(−1)sq(p−1)/2−s

2

[
(p− 1)/2

(p− 2s− 1)/4

]2
q4

(q2; q2)(p−2s−1)/2(q
2; q2)(p+2s−1)/2

(q4; q4)2(p−1)/2

if s ≡ p−1
2 (mod 2),

0 otherwise.

When s = 0, the congruence (1.4) reduces to the following result.

Corollary 1.2. Modulo [p]2,

(1.5)

(p−1)/2∑
k=0

[
2k

k

]3
q2

q2k

(−q2; q2)2k(−q; q)22k

≡

q(p−1)/2
[
(p− 1)/2

(p−1)/4

]2
q4

1

(−q2; q2)2(p−1)/2
if p≡ 1 (mod 4),

0 otherwise.

To see that (1.5) is a q-analogue of (1.3) we need to recall a known
result. Let p be a prime such that p ≡ 1 (mod 4) and p = x2 + y2 with
x ≡ 1 (mod 4). Then we have the so-called Beukers–Chowla–Dwork–Evans
congruence [3, 10](

(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2x− p

2x

)
(mod p2),

which easily implies Sun’s congruence [12, Lemma 3.4](
(p− 1)/2

(p− 1)/4

)2 1

2p−1
≡ 4x2 − 2p (mod p2).(1.6)

Using (1.6), it is clear that (1.5) reduces to (1.3) when q → 1.
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Generalizing a result of Mortenson [7, 8], Z.-W. Sun [15, (1.4)] obtained
the congruence

(p−1)/2∑
k=0

(
2k
k

)(
2k+2s
k+s

)
42k+s

≡
(
−1

p

)
(mod p2) for 0 ≤ s ≤ p− 1

2
.(1.7)

For any p-adic integer x, let 〈x〉p denote the least nonnegative residue
of x modulo p. The second aim of this paper is to give a unified q-analogue
of (1.2) and (1.7).

Theorem 1.3. Let m and r be two positive integers with p -m. Let
s ≤ min{〈−r/m〉p, 〈−(m− r)/m〉p} be a nonnegative integer. If 〈− r

m〉p ≡
s+ 1 (mod 2), then

(p−1)/2∑
k=s

(qm; qm)2k(qr; qm)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s(q2m; q2m)2k
≡ 0 (mod [p]2),(1.8)

p−1∑
k=s

(qm; qm)2k(qr; qm)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s(q2m; q2m)2k
≡ 0 (mod [p]2).(1.9)

If 〈−r/m〉p ≡ s (mod 2), then

(1.10)

(p−1)/2∑
k=s

(qm; qm)2k(qr; qm)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s(q2m; q2m)2k

≡ q(s+
p−1
2

)m(qm; q2m) 〈−r/m〉p−s

2

(qm; q2m) 〈−(m−r)/m〉p−s

2

× (q−m〈−r/m〉p ; qm)s(q
−m〈−(m−r)/m〉p ; qm)s

(q2m; q2m) 〈−r/m〉p+s

2

(q2m; q2m) 〈−(m−r)/m〉p+s

2

(mod [p]).

Letting s = 0, −r/m = a and q → 1 in (1.9), we obtain (1.2). On the
other hand, it is not difficult to see that (see [6]), for any prime p ≥ 5,

(−1)〈−1/3〉p =

(
−3

p

)
, (−1)〈−1/4〉p =

(
−2

p

)
, (−1)〈−1/6〉p =

(
−1

p

)
.

Taking r = 1 and m = 3, 4, 6 in (1.8), we obtain

Corollary 1.4. Let p ≥ 5 be a prime and let s be a nonnegative integer.
Then the following congruences hold modulo [p]2:

(p−1)/2∑
k=s

[
2k

k+s

]
q3

(q; q3)k(q2; q3)kq
3k

(q6; q6)2k
≡ 0 if s ≤ p−1

3 and s ≡
1+(−3

p
)

2 (mod 2),
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(p−1)/2∑
k=s

[
2k

k + s

]
q4

(q; q4)k(q3; q4)kq
4k

(q8; q8)2k
≡ 0 if s ≤ p−1

4 and s ≡
1+(−2

p
)

2 (mod 2),

(p−1)/2∑
k=s

[
2k

k + s

]
q6

(q; q6)k(q5; q6)kq
6k

(q12; q12)2k
≡ 0 if s ≤ p−1

6 and s ≡
1+(−1

p
)

2 (mod 2).

The proof of Theorem 1.3 is based on the following q-Clausen type sum-
mation formula, which seems to be new and interesting in its own right.

Theorem 1.5. Let n and s be nonnegative integers with s ≤ n. Then

(1.11)

( n∑
k=s

(q−2n; q2)k(x; q)kq
k

(q; q)k−s(q; q)k+s

)( n∑
k=s

(q−2n; q2)k(q/x; q)kq
k

(q; q)k−s(q; q)k+s

)

=
(−1)n(q2; q2)2nq

−n2

(q2; q2)n−s(q2; q2)n+s

n∑
k=s

(−1)k(q2; q2)n+k(x; q)k(q/x; q)kq
k2−2nk

(q2; q2)n−k(q; q)k−s(q; q)k+s(q; q)2k
.

We also have the following q-analogue of (1.7), which reduces to (1.1)
when s = 0.

Theorem 1.6. Let p be an odd prime and let 0 ≤ s ≤ (p− 1)/2. Then

(p−1)/2∑
k=0

(q; q2)k(q; q2)k+s

(q2; q2)k(q2; q2)k+s
≡
(
−1

p

)
q(1−p

2)/4 (mod [p]2).

Finally, we shall prove the following result.

Theorem 1.7. Let p be an odd prime and let m, r be positive integers
with p -m and r < m. Then for any integer s with 0 ≤ s ≤ 〈−(m− r)/m〉p,

(1.12)

p−s−1∑
k=0

(qr; qm)k(qm−r; qm)k+s

(qm; qm)k(qm; qm)k+s

≡ (−1)〈−r/m〉pq−m〈−r/m〉p(〈−r/m〉p+1)/2 (mod [p]).

In particular, if p ≡ ±1 (mod m), then

p−s−1∑
k=0

(qr; qm)k(qm−r; qm)k+s

(qm; qm)k(qm; qm)k+s
≡ (−1)〈−r/m〉pq

r(m−r)(1−p2)
2m (mod [p]).(1.13)

Throughout the paper we will often use the fact that for any prime p,
the q-integer [p] is always an irreducible polynomial in Q[q]. Hence, Q[q]/[p]
is a field. Therefore, rational functions a(q)/b(q) are well defined modulo [p]
or [p]r (r ≥ 1) on condition that b(q) is relatively prime to [p].

The rest of this paper is organized as follows. In Sections 2–5 we prove
Theorem 1.1, Theorem 1.5, Theorem 1.3, and Theorems 1.6 and 1.7, respec-
tively. We conclude the paper with some open problems.
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2. Proof of Theorem 1.1. We first establish two lemmas.

Lemma 2.1. Let 0 ≤ k ≤ (p− 1)/2. Then[
(p− 1)/2 + k

2k

]
q2
≡ (−1)k

[
2k

k

]
q2

qkp−k
2

(−q; q)22k
(mod [p]2).(2.1)

Proof. Since

(1− qp−2j+1)(1− qp+2j−1) + (1− q2j−1)2qp−2j+1 = (1− qp)2,
we have

(1− qp−2j+1)(1− qp+2j−1) ≡ −(1− q2j−1)2qp−2j+1 (mod [p]2).

It follows that[
(p− 1)/2 + k

2k

]
q2

=

∏k
j=1(1− qp−2j+1)(1− qp+2j−1)

(q2; q2)2k

≡ (−1)k
∏k

j=1(1− q2j−1)2qp−2j+1

(q2; q2)2k

= (−1)k
[
2k

k

]
q2

qkp−k
2

(−q; q)22k
(mod [p]2).

Lemma 2.2. Let n and s be nonnegative integers with s ≤ n. Then

(2.2)
n∑

k=0

[
n+ k

2k

][
2k

k

][
2k

k + s

]
(−1)kq(

n−k
2 )

(−q; q)2k

=

 (−1)sq(n
2−s2)/2

[
n

(n− s)/2

]2
q2

(q; q)n−s(q; q)n+s

(q2; q2)2n
if n ≡ s (mod 2),

0 otherwise.

Proof. We may rewrite the left-hand side of (2.2) as

n∑
k=s

(q−n; q)k(qn+1; q)k(q1/2; q)k(−q1/2; q)kqk+(n2)

(q; q)k(q; q)k−s(q; q)k+s(−q; q)k

=
(q−n; q)s(q

n+1; q)s(q; q
2)2sq

s+(n2)

(q2; q2)s(q; q)2s
4φ3

[
qs−n, qn+s+1, qs+1/2, −qs+1/2

qs+1, −qs+1, q2s+1
; q, q

]
.

The result then follows from Andrews’ terminating q-analogue of Watson’s
formula [4, (II.17)]:

(2.3)

4φ3

[
q−n, a2qn+1, b, −b

aq, −aq, b2
; q, q

]
=


0 if n is odd,
bn(q, a2q2/b2; q2)n/2

(a2q2, b2q; q2)n/2
if n is even,

with the substitution of n, a and b by n− s, qs and qs+1/2, respectively.
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Proof of Theorem 1.1. By the congruence (2.1), we have

(p−1)/2∑
k=0

[
2k

k

]2
q2

[
2k

k + s

]
q2

q2k

(−q2; q2)2k(−q; q)22k

≡
(p−1)/2∑
k=0

[
(p− 1)/2 + k

2k

]
q2

[
2k

k

]
q2

[
2k

k + s

]
q2

(−1)k

(−q2; q2)2k
qk

2+2k−pk (mod [p]2).

The conclusion then follows from (2.2) with n = (p− 1)/2 and q → q2.

3. Proof of Theorem 1.5. We first establish four lemmas to make the
proof easier.

Lemma 3.1. Let n be a nonnegative integer. Then
n∑

k=0

(−1)n−k
[
n

k

]
(aqn; q)kq

(n−k+1
2 )

(a; q)k(1− xq−k)
=

(ax; q)n(q; q)n
(a; q)n(xq−n; q)n+1

,(3.1)

n∑
k=0

(−1)n−k
[
n

k

]
q(

k
2)

(q; q)n−k
(x; q)n−k+1

=
q(

n+1
2 )

1− xqn
.(3.2)

Proof. For (3.1), by partial fraction decomposition we have

(ax; q)n(q; q)n
(a; q)n(xq−n; q)n+1

=
n∑

k=0

ak
1− xq−k

(3.3)

with

ak = lim
x→qk

(1− xq−k)(ax; q)n(q; q)n
(a; q)n(xq−n; q)n+1

= (−1)n−kq(
n−k+1

2 )
[
n

k

]
(aqn; q)k
(a; q)k

.

By the Gauss or q-binomial inversion (see, for example, [1, p. 77, Exercise
2.47]), the identity (3.2) is equivalent to

(q; q)n
(x; q)n+1

=

n∑
k=0

[
n

k

]
q

(−1)kq(
k+1
2 ) 1

1− xqk
,

which corresponds to the a = 0 case of (3.3) with x→ xqn.

Lemma 3.2. Let n be a positive integer. Then

(3.4) (x; q)n + (a/x; q)n = (x; q)n(a/x; q)n

+
n−1∑
k=0

(x; q)k(a/x; q)k(1− qn)

(q; q)k(1− qn−k)

k∑
j=0

(−1)j
[
k

j

]
q(

j
2)(aqk+j ; q)n−k,

(3.5) (x; q)n + (a/x; q)n = (x; q)n(a/x; q)n + (a; q)n

+

n−1∑
k=1

(x; q)k(a/x; q)k(1−qn)

n−k∑
j=1

(−1)j
[
n−k−1

j − 1

][
k+ j−1

j − 1

]
q(

j
2)+kjaj

1− qj
.



q-Supercongruences for hypergeometric series 315

Proof. We first prove (3.4). Taking x = q−m (0 ≤ m ≤ n− 1), we have

(3.6)
n−1∑
k=0

(x; q)k(a/x; q)k(1− qn)

(q; q)k(1− qn−k)

k∑
j=0

(−1)j
[
k

j

]
q(

j
2)(aqk+j ; q)n−k

=

n−1∑
k=0

(q−m; q)k(aqm; q)k(1− qn)

(q; q)k(1− qn−k)

k∑
j=0

(−1)j
[
k

j

]
q(

j
2)(aqk+j ; q)n−k

=

m∑
k=0

(−1)k
[
m

k

]
q(

k
2)−mk (aqm; q)k(1− qn)

(1− qn−k)

k∑
j=0

(−1)j
[
k

j

]
q(

j
2)

(aqj ; q)n
(aqj ; q)k

=

m∑
j=0

(−1)j
[
m

j

]
q(

j
2)(aqj ; q)n

×
m∑
k=j

(−1)k
[
m− j
k − j

]
q(

k
2)−mk (aqm; q)k(1− qn)

(aqj ; q)k(1− qn−k)
.

It follows from (3.1) that

m∑
k=j

(−1)k
[
m− j
k − j

]
q(

k
2)−mk (aqm; q)k(1− qn)

(aqj ; q)k(1− qn−k)

=
(aqm; q)j
(aqj ; q)j

m∑
k=j

(−1)k
[
m− j
k − j

]
q(

m−k+1
2 )−(m+1

2 ) (aqm+j ; q)k−j(1−qn)

(aq2j ; q)k−j(1−qn−k)

=
(−1)m(aqm; q)j(aq

n+j ; q)m−j(q; q)m−j(1− qn)q−(m+1
2 )

(aqj ; q)j(aq2j ; q)m−j(qn−m; q)m−j+1

=
(−1)m(a; q)j(aq

n+j ; q)m−j(q; q)m−j(1− qn)q−(m+1
2 )

(a; q)m(qn−m; q)m−j+1
.

Therefore, the right-hand side of (3.6) can be simplified as

(3.7)
(a; q)m+n(1−qn)q−(m+1

2 )

(a; q)m

m∑
j=0

(−1)m−j
[
m

j

]
q(

j
2)

(q; q)m−j
(qn−m; q)m−j+1

= (aqm; q)n,

where the equality follows from (3.2). Noticing that (q−m; q)n = 0 for 0 ≤
m ≤ n − 1, we have proved that both sides of (3.4) are equal for x = q−m

(0 ≤ m ≤ n − 1), and by symmetry, for x = aqm (0 ≤ m ≤ n − 1) too.
Furthermore, both sides of (3.4) are of the form x−nP (x) with P (x) being

a polynomial in x of degree 2n with leading coefficient (−1)nq(
n
2). Hence,

they must be identical. This proves (3.4).
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By the q-binomial theorem (see, for example, [2, Theorem 3.3]), for k ≥ 1,

(3.8)
k∑

j=0

(−1)j
[
k

j

]
q(

j
2)(aqk+j ; q)n−k

=
k∑

j=0

(−1)j
[
k

j

]
q(

j
2)

n−k∑
i=0

(−1)i
[
n− k
i

]
q(

i
2)+(k+j)iai

=
n−k∑
i=0

(−1)i
[
n− k
i

]
q(

i
2)+ikai

k∑
j=0

(−1)j
[
k

j

]
q(

j
2)+ij

=
n−k∑
i=1

(−1)i
[
n− k
i

]
(qi; q)kq

(i
2)+ikai.

Moreover, for k = 0, the left-hand side of (3.8) is clearly equal to (a; q)n.
Noticing that[

n− k
i

]
(qi; q)k

(q; q)k(1− qn−k)
=

[
n− k − 1

i− 1

][
k + i− 1

i− 1

]
1

1− qi
,

we complete the proof of (3.5).

Let n and h be positive integers and let m and s be nonnegative integers
such that s ≤ m and h ≤ n−m (so n > m). Let

f(x; j, k) := (x; q)j(x; q)k(q−n; q)j(q
−n; q)k

× (qj−m−h+1; q)h−1(q
k−m−h+1; q)h−1(q

2j+k − q2k+j)

(−1)m−s−1(q; q)2n(q; q)h−1(q; q)j−s(q; q)j+s(q; q)k−s(q; q)k+s
,

and, for integers a, b ≥ s, let

La,b(x) :=

a∑
j=s

b∑
k=s

f(x; j, k).

Lemma 3.3. Let A = (m2 + 3m− s2 + s)/2−m(n+ h)− h2 + h. Then

Lm,n(x) =
(x; q)s(x; q)m+h(qs+1/x; q)n−s−hx

n−s−hqA

(q; q)m−s(q; q)m+s(q; q)n−s(q; q)n+s(q; q)n−m−h
.(3.9)

Proof. Without loss of generality, we assume that q is a complex number
with |q| < 1. We first note that f(x; j, k) = −f(x; k, j), and so Lm,m(x) = 0.
Since both sides of (3.9) are polynomials in x of degree m+n with the same
leading coefficient, it suffices to show that these two polynomials have m+n
common roots, counted with multiplicity.

We proceed by dividing the roots of the right-hand side of (3.9) into four
cases:
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• If s ≥ 1, then it is easily seen that (x; q)2s divides Lm,n(x), which
means that the numbers q−r (0 ≤ r ≤ s− 1) are roots of Lm,n(x) with
multiplicity 2.
• For r with s ≤ r ≤ m, we have (q−r; q)k = 0 if k > m, and so

Lm,n(q−r) = Lm,m(q−r) = 0.
• For r with m + 1 ≤ r ≤ m + h − 1, we have r −m − h + 1 ≤ 0, and

so (qk−m−h+1; q)h−1 = 0 for m + 1 ≤ k ≤ r, while for r < k ≤ n we have
(q−r; q)k = 0. Hence, we again get Lm,n(q−r) = Lm,m(q−r) = 0.
• For r with s+ 1 ≤ r ≤ n−h, it is clear that Lm,n(qr) = 0 follows from

the identity
n∑

k=s

(q−n; q)k(qr; q)k(qk−m−h+1; q)h−1(1− qk−j)q2j+k

(q; q)k−s(q; q)k+s
= 0,(3.10)

which is proved as follows: The left-hand side of (3.10) can be written as

(3.11) (q−n; q)s(q
r; q)s

×
n∑

k=s

(q−n+s; q)k−s(q
r+s; q)k−s(q

k−m−h+1; q)h−1(1−qk−j)q2j+k

(q; q)k−s(q; q)k+s

= (q−n; q)s(q
r; q)s

n−s∑
k=0

(−1)k
[
n− s
k

]
q−(n−s)k+(k2)Rk,

where

Rk =
(qr+s; q)k(qk+s−m−h+1; q)h−1(1− qk+s−j)q2j+k+s

(q; q)k+2s
.

Since

(qr+s; q)k
(q; q)k+2s

=
(qk+2s+1; q)r−s−1

(q; q)r+s−1
,

we see that Rk is a polynomial in qk of degree r− s− 1 + h− 1 + 2 ≤ n− s
with constant term 0. By the q-binomial theorem (see [2, Theorem 3.3]),

n∑
k=0

(−1)k
[
n

k

]
q

q(
k+1
2 )xk = (xq; q)n,

and we have
n∑

k=0

(−1)k
[
n

k

]
q

q(
k+1
2 )−ik =

{
0 for 1 ≤ i ≤ n,

(q; q)n for i = 0.
(3.12)

It follows that the right-hand side of (3.11) is equal to 0. Hence, the identity
(3.10) holds.

Thus, we have found all the m + n roots of Lm,n(x), which are clearly
the same as those of the right-hand side of (3.9).
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Remark. We can use the identity (3.12) to give a short proof of Jack-
son’s terminating q-analogue of Dixon’s identity (see [5]).

Lemma 3.4. Let n and h be positive integers and let m and s be non-
negative integers with h ≤ n−m and s ≤ m. Then

(3.13)
m∑
j=s

n∑
k=m+h

(q−2n; q2)j(q
−2n; q2)k(1− qk−j)qj+k+jh

(q; q)j−s(q; q)j+s(q; q)k−s(q; q)k+s

×
[
k −m− 1

h− 1

][
m+ h− j − 1

h− 1

]
=

(−1)n−m−h(q2; q2)2n(−q; q)2n−hqm
2−n2−2mn+mh

(q; q)m−s(q; q)m+s(q2; q2)n−s(q2; q2)n+s(q; q)h−1(q2, q2)n−m−h
.

Proof. By the definition of q-binomial coefficients, we have
[
k−m−1
h−1

]
= 0

for m+1 ≤ k < m+h. Hence, the left-hand side of (3.13) remains unchanged
if we replace

∑n
k=m+h by

∑n
k=m+1. Furthermore,[

k −m− 1

h− 1

][
m+ h− j − 1

h− 1

]
=

(qj−m−h+1; q)h−1(q
k−m−h+1; q)h−1q

(m−j)(h−1)−(h2)

(−1)h−1(q; q)2h−1
.

The conclusion then follows from the identity (3.9) with x = −q−n.

Proof of Theorem 1.5. The left-hand side of (1.11) may be expanded as

(3.14)

n∑
k=s

(q−2n; q2)2kq
2k

(q; q)2k−s(q; q)
2
k+s

(x; q)k(q/x; q)k

+
∑

s≤j<k≤n

(q−2n; q2)j(q
−2n; q2)kq

j+k
(
(x; q)j(q/x; q)k + (x; q)k(q/x; q)j

)
(q; q)j−s(q; q)j+s(q; q)k−s(q; q)k+s

.

For 0 ≤ j < k, from (3.5) we deduce that

(3.15) (x; q)j(q/x; q)k + (x; q)k(q/x; q)j

= (x; q)j(q/x; q)j
(
(xqj ; q)k−j + (qj+1/x; q)k−j

)
= (x; q)k(q/x; q)k + (x; q)j(q/x; q)j(q

2j+1; q)k−j

+

k−j−1∑
i=1

(x; q)j+i(q/x; q)j+i(1− qk−j)

×
k−j−i∑
h=1

(−1)h
[
k − j − i− 1

h− 1

][
i+ h− 1

h− 1

]
q(

h+1
2 )+(i+2j)h

1− qh



q-Supercongruences for hypergeometric series 319

= (x; q)k(q/x; q)k + (x; q)j(q/x; q)j

+

k−j−1∑
i=0

(x; q)j+i(q/x; q)j+i(1− qk−j)

×
k−j−i∑
h=1

(−1)h
[
k − j − i− 1

h− 1

][
i+ h− 1

h− 1

]
q(

h+1
2 )+(i+2j)h

1− qh
,

where in the last step we have used the q-binomial theorem:

(q2j+1; q)k−j = 1 +

k−j∑
h=1

(−1)h
[
k − j
h

]
q(

h+1
2 )+2jh.

By (3.15), we may write (3.14) as
∑n

m=s am(x; q)m(q/x; q)m, where

(3.16) am =

n∑
j=s

(q−2n; q2)j(q
−2n; q2)mq

j+m

(q; q)j−s(q; q)j+s(q; q)m−s(q; q)m+s

+
m∑
j=s

n∑
k=m+1

(q−2n; q2)j(q
−2n; q2)k(1− qk−j)qj+k

(q; q)j−s(q; q)j+s(q; q)k−s(q; q)k+s

×
k−m∑
h=1

(−1)h
[
k −m− 1

h− 1

][
m+ h− j − 1

h− 1

]
q(

h+1
2 )+(m+j)h

1− qh
.

It is easy to see that

n∑
j=s

(q−2n; q2)jq
j

(q; q)j−s(q; q)j+s
=

(q−2n; q2)sq
s

(q; q)2s

n∑
j=s

(q−2n+2s; q2)jq
j−s

(q; q)j−s(q2s+1; q)j−s

=
(q−2n; q2)sq

s

(q; q)2s
2φ1

[
q−n+s, −q−n+s,

q2s+1
; q, q

]

= (−1)n−s
(q−2n; q2)s(−qn+s+1; q)n−sq

s−(n−s)2

(q; q)2s(q2s+1; q)n−s

by the q-Chu–Vandermonde summation formula [4, Appendix (II.6)]. Hence,

(3.17)
n∑

j=s

(q−2n; q2)j(q
−2n; q2)mq

j+m

(q; q)j−s(q; q)j+s(q; q)m−s(q; q)m+s

= (−1)n−s
(q−2n; q2)s(q

−2n; q2)m(−qn+s+1; q)n−sq
m+s−(n−s)2

(q; q)m−s(q; q)m+s(q; q)n+s

=
(−1)n−m(q2; q2)2n(−q; q)2nqm

2−n2−2mn

(q; q)m−s(q; q)m+s(q2; q2)n−s(q2; q2)n+s(q2, q2)n−m
.
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Substituting (3.17) and (3.13) into (3.16), we obtain

(3.18) am =
(−1)n−m(q2; q2)2nq

m2−n2−2mn

(q; q)m−s(q; q)m+s(q2; q2)n−s(q2; q2)n+s

×
n−m∑
h=0

(−q; q)2n−hq(
h+1
2 )+2mh

(−1)h(q; q)h(q2, q2)n−m−h
.

Replacing h by n−m− h, we have

(3.19)

n−m∑
h=0

(−1)h(−q; q)2n−hq(
h+1
2 )+2mh

(q; q)h(q2, q2)n−m−h

=
(−q; q)n+m

(q; q)n−m
(−1)n−mq(

n−m+1
2 )+2m(n−m)

×
n−m∑
h=0

(qm−n; q)h(−qn+m+1; q)h
(−q; q)h(q; q)h

q−2hm

=
(−q; q)n+m

(q; q)n−m
(−1)n−mq(

n−m+1
2 )+2m(n−m)

2φ1

[
q−(n−m), −qm+n+1

−q
; q, q−2m

]

=
(−q; q)n+m(q−n−m; q)n−m

(q; q)n−m(−q; q)n−m
(−1)n−mq(

n−m+1
2 )+2m(n−m)

=
(q2; q2)m+n

(q2; q2)n−m(q; q)2m
,

where we have used the q-Chu–Vandermonde summation formula. It follows
from (3.18) and (3.19) that am is just the coefficient of (x; q)m(q/x; q)m on
the right-hand side of (1.11).

4. Proof of Theorem 1.3. We first give a congruence modulo [p].

Lemma 4.1. Let m and r be two positive integers with p -m. Let s ≤
min{〈−r/m〉p, 〈−(m− r)/m〉p} be a nonnegative integer. Then the following
congruence holds modulo [p]:

(4.1)

(p−1)/2∑
k=s

(qm; q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s

≡


q

(〈−r/m〉p+s)m

2 (qm; q2m) 〈−r/m〉p−s

2

(q−m〈−r/m〉p ; qm)s

(q2m; q2m) 〈−r/m〉p+s

2

if 〈−r/m〉p ≡ s (mod 2),

0 otherwise.
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Proof. It is easy to see that 〈−r/m〉p + 〈−(m− r)/m〉p = p− 1, and so
s ≤ (p− 1)/2. Since p is an odd prime, we see that (qm; q2m)k ≡ 0 (mod [p])
for (p+ 1)/2 ≤ k ≤ p− s− 1, which means that

(p−1)/2∑
k=s

(qm; q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s
≡

p−s−1∑
k=s

(qm; q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s
(mod [p]).

Let a =
m〈−r/m〉p+r

p . Then m | r − ap and r − ap = −m〈−r/m〉p ≤ 0. It

is clear that (qr; qm)k ≡ (qr−ap; qm)k (mod [p]) and (qr−ap; qm)k = 0 for
k > 〈−r/m〉p. Moreover, we have p − s − 1 ≥ p − 〈−(m− r)/m〉p − 1 =
〈−r/m〉p ≥ s, and therefore

p−s−1∑
k=s

(qm; q2m)k(qr−ap; qm)kq
mk

(qm; qm)k−s(q; q)k+s

≡
〈−r/m〉p∑

k=s

(qm; q2m)k(qr−ap; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s

=
(qm; q2m)s(q

−m〈−r/m〉p ; qm)sq
ms

(qm; qm)2s

× 3φ2

[
q−m(〈−r/m〉p−s), q(s+1/2)m,−q(s+1/2)m

0, q(2s+1)m
; qm, qm

]
(mod [p]).

The conclusion follows from Andrews’ identity (2.3).

Proof of Theorem 1.3. By Lemma 2.1, for 0 ≤ k ≤ (p− 1)/2, we have

(qm; qm)2k
(q2m; q2m)2k

=

[
2k

k

]
q2m

1

(−qm; qm)2k

≡ (−1)kqmk2−mkp

[
(p− 1)/2 + k

2k

]
q2m

(−qm; qm)2k

=
(−1)kqmk2−mkp(q2m; q2m)(p−1)/2+k

(q2m; q2m)(p−1)/2−k(qm; qm)2k
(mod [p]2),

and so

(4.2)

(p−1)/2∑
k=s

(qm; qm)2k(qr; qm)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s(q2m; q2m)2k

≡
(p−1)/2∑
k=s

(−1)k(qm; qm) p−1
2

+k(qr; qm)k(qm−r; qm)kq
mk2−mk(p−1)

(q2m; q2m) p−1
2
−k(qm; qm)k−s(qm; qm)k+s(qm; qm)2k

(mod [p]2).
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Letting q → qm, x = qr and n = (p− 1)/2 in Theorem 1.5, we see that the
right-hand side of (4.2) can be written as

(4.3)
(−1)(p−1)/2(q2m; q2m)(p−1)/2−s(q

2m; q2m)(p−1)/2+sq
(p−1)2/4

(q2m; q2m)2(p−1)/2

×
((p−1)/2∑

k=s

(qm(1−p); q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s

)

×
((p−1)/2∑

k=s

(qm(1−p); q2m)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s

)
.

If 〈−r/m〉p ≡ s+ 1 (mod 2), then by the congruence (4.1), we have

(p−1)/2∑
k=s

(qm(1−p); q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s
≡

(p−1)/2∑
k=s

(qm; q2m)k(qr; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s

≡ 0 (mod [p]),

and also 〈−(m− r)/m〉p ≡ s+ 1 (mod 2), which means that

(p−1)/2∑
k=s

(qm(1−p); q2m)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s
≡ 0 (mod [p]).

Noticing that (q2m; q2m)(p−1)/2 6≡ 0 (mod [p]), we conclude that the right-

hand side of (4.2) is congruent to 0 modulo [p]2. This proves (1.8).

To prove (1.9), just observe that (see the proof of Lemma 4.1)

(qr; qm)k ≡ (qm−r; qm)k ≡ 0 (mod [p])

for max{〈−r/m〉p, 〈−(m− r)/m〉p} < k ≤ p− 1, and

(qr; qm)k(qm−r; qm)k ≡
(qm; qm)2k

(qm; qm)k−s(qm; qm)k+s

≡ 0 (mod [p])

for (p− 1)/2 < k ≤ max{〈−r/m〉p, 〈−(m− r)/m〉p}.
Finally, (1.10) follows from factorizing (4.2) into (4.3), applying the first

case of the congruence (4.1), and then using the aforementioned relation
〈−r/m〉p + 〈−(m− r)/m〉p = p− 1.

5. Proof of Theorems 1.6 and 1.7. The following lemma is probably
known. For the reader’s convenience, we include a proof.
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Lemma 5.1. Let m, n and s be nonnegative integers with s ≤ n. Then

n∑
k=0

(−1)k
[
n

k

][
m+ k

n

]
q(

k
2)−nk = (−1)nq−(n+1

2 ),(5.1)

n∑
k=0

(−1)k
[
n+ k

2k

]
q2

[
2k + 2s

k + s

]
q2

qk
2−k−2nk

(−q2k+1; q)2s
= (−1)nq−n(n+1).(5.2)

Proof. It is not difficult to see that (5.1) and (5.2) are equivalent, re-
spectively, to

n∑
k=0

(−1)k
[
n

k

][
m+ n− k

n

]
q(

k+1
2 ) = 1,(5.3)

n∑
k=0

(−1)k
[
n

k

]
q2

[
2n− k
n

]
q2

(q2n−2k+1; q2)s
(q2n−2k+2; q2)s

q2(
k+1
2 ) = 1.(5.4)

Since
[
m+n−k

n

]
can be written as a polynomial in q−k of degree n with

constant term 1/(q; q)n, the identity (5.3) follows from (3.12). On the other
hand, since 0 ≤ s ≤ n, we see that[

2n− k
n

]
q2

(q2n−2k+1; q2)s
(q2n−2k+2; q2)s

=
(q2n−2k+2s+2; q2)n−s(q

2n−2k+1; q2)s
(q2; q2)n

is a polynomial in q−2k of degree n with constant term 1/(q2; q2)n. Therefore,
(5.4) follows from (3.12) with q → q2.

Proof of Theorem 1.6. It is easy to see that

(q; q2)k
(q2; q2)k

=

[
2k

k

]
q2

1

(−q; q)2k
.

Hence, by Lemmas 2.1 and 5.1, we have

(5.5)

(p−1)/2∑
k=0

(q; q2)k(q; q2)k+s

(q2; q2)k(q2; q2)k+s

=

(p−1)/2∑
k=0

[
2k

k

]
q2

[
2k + 2s

k + s

]
q2

1

(−q; q)2k(−q; q)2k+2s

≡
(p−1)/2∑
k=0

(−1)k
[p−1

2 + k

2k

]
q2

[
2k + 2s

k + s

]
q2

(−q; q)2kqk
2−kp

(−q; q)2k+2s

= (−1)(p−1)/2q(1−p
2)/4 (mod [p]2).
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Proof of Theorem 1.7. Again, let a = (m〈−r/m〉p + r)/p. Then a is a
positive integer, m |ap− r, and so

(qr; qm)k
(qm; qm)k

=
k∏

j=1

1− qmj+r−m

1− qmj
(5.6)

≡ (−1)k
k∏

j=1

(1− qap−mj−r+m)qmj+r−m

1− qmj

= (−1)k
[
(ap− r)/m

k

]
qm
qmk(k−1)/2+kr

≡ (−1)k
[
〈−r/m〉p

k

]
qm
qmk(k−1)/2−mk〈−r/m〉p (mod [p]),

(qm−r; qm)k+s

(qm; qm)k+s
≡

k+s∏
j=1

1− qap+mj−r

1− qmj
=

[ap−r
m + k + s

k + s

]
qm

(5.7)

=

[
〈−r/m〉p + k + s

k + s

]
qm

(mod [p]).

By the congruences (5.6) and (5.7), we have

p−s−1∑
k=0

(qr; qm)k(qm−r; qm)k+s

(qm; qm)k(qm; qm)k+s

≡
p−s−1∑
k=0

(−1)k
[
〈−r/m〉p

k

]
qm

[
〈−r/m〉p + k + s

k + s

]
qm
qmk(k−1)/2−mk〈−r/m〉p

= (−1)〈−r/m〉pq−m〈−r/m〉p(〈−r/m〉p+1)/2 (mod [p]),

where in the last step we have used p − s − 1 ≥ p − 〈−(m− r)/m〉p − 1
= 〈−r/m〉p and the identity (5.1). This proves (1.12).

To prove (1.13), just notice that if p ≡ ±1 (mod m), then r(m−r)(1−p2)
2m

is an integer and

−m〈−r/m〉p(〈−r/m〉p + 1)

2
≡ r(m− r)(1− p2)

2m
(mod p).

6. Concluding remarks and open problems. It seems that the con-
gruence (1.9) can be further generalized as follows.

Conjecture 6.1. Let m and r be two positive integers with p -m. Let
s ≤ p− 1 be a nonnegative integer. If 〈−r/m〉p ≡ s+ 1 (mod 2), then

p−1∑
k=s

(qm; qm)2k(qr; qm)k(qm−r; qm)kq
mk

(qm; qm)k−s(qm; qm)k+s(q2m; q2m)2k
≡ 0 (mod [p]2).(6.1)
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Note that if s > max{〈−r/m〉p, 〈−(m− r)/m〉p}, then (6.1) is obviously
true, since in this case each summand on the left-hand side is congruent
to 0 modulo [p]2. It is easy to see that when r = 1, m = 3, 4, 6 and q → 1,
Conjecture 6.1 reduces to a result of Z.-W. Sun [14, Theorem 1.3(i)].

We conjecture that Theorem 1.7 can be further strengthened:

Conjecture 6.2. Let m and r be positive integers with p≡±1 (mod m)
and r < m. Then for any integer s with 0 ≤ s ≤ 〈−(m− r)/m〉p,

p−s−1∑
k=0

(qr; qm)k(qm−r; qm)k+s

(qm; qm)k(qm; qm)k+s
≡ (−1)〈−r/m〉pqr(m−r)(1−p

2)/(2m) (mod [p]2).

Like [6, Conjecture 7.1], Conjecture 6.2 seems to have a further general-
ization

Conjecture 6.3. Let m and |r| be positive integers with p -m and m - r.
Then there exists a unique integer fp,m,r such that, for any s with 0 ≤ s ≤
〈−(m− r)/m〉p,

p−s−1∑
k=0

(qr; qm)k(qm−r; qm)k+s

(qm; qm)k(qm; qm)k+s
≡ (−1)〈−r/m〉pqfp,m,r (mod [p]2).

Furthermore, the numbers fp,m,r satisfy the symmetry fp,m,r = fp,m,m−r and
the recurrence relation:

fp,m,m+r =

{−fp,m,r if r ≡ 0 (mod p),

fp,m,r − r otherwise.

Here are some values of fp,m,r:

f3,2,1 = −2, f3,2,3 = −3, f3,2,5 = 3, f3,2,7 = −2, f3,2,9 = −9,

f3,2,11 = 9, f3,2,13 = −2, f5,3,1 = −8, f5,3,2 = −8, f5,3,4 = −9,

f5,3,5 = −10, f5,3,7 = −13, f5,3,8 = 10, f5,3,10 = −20, f5,3,11 = 2,

f5,3,13 = 20, f5,3,14 = −9, f5,3,16 = 7, f5,3,17 = −23, f5,3,19 = −9,

f5,8,1 = −23, f7,9,1 = −54, f7,9,2 = −21, f7,9,4 = −37, f7,9,5 = −37,

f7,9,7 = −21, f7,9,8 = −54, f7,9,10 = −55, f7,9,11 = −23 f7,9,13 = −41,

f7,9,14 = −42, f7,9,16 = −22, f7,9,17 = −33.

Finally, supercongruences (or q-supercongruences) have now been around
for quite a long time, and it would be desirable to have some more conceptual
proofs of these phenomena, such as combinatorial interpretations, connec-
tions to elliptic curves or to representations of p-adic groups.
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Université de Lyon
Université Lyon 1
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