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1. Introduction. A. Hurwitz [4] introduced, in 1887, continued fraction
expansions for complex numbers with Gaussian integers as partial quotients,
via the nearest integer algorithm (also known subsequently as the Hurwitz
algorithm), and established some basic properties concerning convergence
of the sequence of convergents; he also proved an analogue of the classical
Lagrange theorem characterizing quadratic surds as the numbers with even-
tually periodic continued fractions. Analogous results were also proved for
the nearest integer algorithms with respect to Eisenstein integers as partial
quotients, in place of Gaussian integers.

Application of complex continued fractions, typically involving the near-
est integer algorithm, to questions in Diophantine approximation analogous
to the theory for simple continued fractions for real numbers, was taken up
by various authors during the last century (see [6], [7], [5], [3], and other
references cited therein).

In [1], where we considered the question of values of binary quadratic
forms with complex coefficients over pairs of Gaussian integers, we extended
the study of continued fractions to other possible algorithms in place of the
nearest integer algorithm, and also introduced certain nonalgorithmic con-
structions for continued fraction expansions, via what was called iteration
sequences; the partial quotients for the continued fractions were however re-
tained to be Gaussian integers. In this paper we set up a broader framework
for studying continued fraction expansions for complex numbers, and prove
certain general results on convergence, analogue of the Lagrange theorem,
speed of convergence etc. Our results in particular generalize those of Hur-
witz in the case of the nearest integer algorithms with respect to Gaussian
integers and Eisenstein integers.
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2. Preliminaries on continued fraction expansions. We begin with
a general formulation of the notion of continued fraction expansion, with
flexible choices for the partial quotients. Let C denote the field of complex
numbers and C∗ the set of nonzero numbers in C. When z ∈ C can be
expressed as

z = a0 +
1

a1 +
1

a2 + · · ·
with aj ∈ C∗ for all j ∈ N (natural numbers), where the right hand side is
assigned the usual meaning as the limit of the truncated expressions (assum-
ing that they represent genuine complex numbers and the limit exists—see
below), we consider the expression as above to be a continued fraction ex-
pansion for z; though our main application will be with an’s in specific rings,
we shall first discuss some results in which an can be more general complex
numbers. The above concept can be formulated more systematically as fol-
lows.

Let {an}∞n=0 be a sequence in C∗. We associate to it two sequences
{pn}∞n=−1 and {qn}∞n=−1 defined recursively by the relations

p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1 for all n ≥ 0,

q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1 for all n ≥ 0.

If qn 6= 0 for all n then we can form pn/qn, and if they converge, as n→∞,
to a complex number z, we say that {an}∞n=0 defines a continued fraction
expansion of z; in this case we express z as [a0, a1, a2, . . . ].

In conformity with the nomenclature adopted in [1] we call {pn}, {qn}
the Q-pair of sequences associated to {an}∞n=0 (Q signifies “quotient”). The
ratios pn/qn with qn 6= 0 are called the convergents corresponding to the Q-
pair, or to the sequence {an}∞n=0. We note that pnqn−1 − qnpn−1 = (−1)n−1

for all n ≥ 0, as may be verified inductively.

Given a z ∈ C∗, “candidates” for continued fraction expansions for z can
be arrived at by setting an = zn − z−1n+1 for all n ≥ 0, where {zn}∞n=0 is a
sequence in C∗ such that z0 = z and for all n ≥ 1, |zn| ≥ 1 and zn+1 6= z−1n .
We shall call such a sequence an iteration sequence for z, and {an}∞n=0 the
associated sequence of partial quotients. (In [1] “iteration sequences” were
introduced, with slightly different conditions, and an’s restricted to Gaussian
integers.) Whether a sequence of partial quotients so constructed indeed
defines a continued fraction expansion for z is an issue that needs to be
considered however.

We begin by noting the following general properties.

Proposition 2.1. Let z ∈ C∗, and let {zn} be an iteration sequence
for z. Let {an}∞n=0 be the associated sequence of partial quotients, and let



Continued fraction expansions 357

{pn}, {qn} be the Q-pair of sequences associated to {an}. Then for all n ≥ 0:

(i) qnz − pn = (−1)n(z1 · · · zn+1)
−1;

(ii) if |pn| > |z1|−1 then qn 6= 0;
(iii) (zn+1qn + qn−1)z = zn+1pn + pn−1;
(iv) if |qn−1| < |qn| then |z − pn/qn| ≤ |qn|−2(|zn+1| − |qn−1/qn|)−1;
(v) if qn’s are nonzero and |qn| → ∞ then pn/qn converges to z as

n→∞.

Proof. (i) We argue by induction. Note that as p0 = a0, q0 = 1 and
z − a0 = z−11 , the statement holds for n = 0. Now let n ≥ 1 and suppose
that the assertion holds for 0, 1, . . . , n− 1. Then

qnz − pn = (anqn−1 + qn−2)z − (anpn−1 + pn−2)

= an(qn−1z − pn−1) + (qn−2z − pn−2)
= (−1)n−1(z1 · · · zn)−1an + (−1)n−2(z1 · · · zn−1)−1

= (−1)n(z1 · · · zn)−1(−an + zn) = (−1)n(z1 · · · zn+1)
−1.

(ii) For n ≥ 0, if |pn| > |z1|−1 then by (i) we have

|qnz| ≥ |pn| − |z1 · · · zn+1|−1 ≥ |pn| − |z1|−1 > 0,

and hence qn 6= 0.
(iii) For n ≥ 0, by (i) we have

zn+1(qnz − pn) = (−1)n(z1 · · · zn+1)
−1zn+1 = (−1)n(z1 · · · zn)−1

= −(qn−1z − pn−1),
and hence (iii) follows.

(iv) By (iii) we get

|(zn+1qn + qn−1)(qnz − pn)| = |(zn+1pn + pn−1)qn − (zn+1qn + qn−1)pn)|
= |pn−1qn − qn−1pn| = 1.

Also, |zn+1qn + qn−1| ≥ |qn|(|zn+1| − |qn−1/qn|), and since |zn+1| ≥ 1 and
|qn−1| < |qn| we have |zn+1| − |qn−1/qn| > 0. Thus

|z − pn/qn| = |qn|−1|zn+1qn + qn−1|−1 ≤ |qn|−2(|zn+1| − |qn−1/qn|)−1.
(v) If qn are nonzero and |qn| → ∞ then

|z − pn/qn| = |qn|−1|z1 · · · zn+1|−1 ≤ |qn|−1 → 0 as n→∞.
We next specialize to sequences {an}∞n=0 contained in discrete subrings

of C; by a subring we shall always mean one containing 1, the multiplica-
tive identity. When {an}∞n=0 is contained in a discrete subring Γ , from the
recurrence relations it follows that for the corresponding Q-pair {pn}, {qn},
we have pn, qn ∈ Γ for all n.

Proposition 2.2. Let the notation be as in Proposition 2.1 and suppose
further that:
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(i) {an}∞n=0 is contained in a discrete subring Γ of C;
(ii) there exists α > 0 such that |zn| ≥ 1 + α for all n ≥ 1.

Then qn 6= 0 for all n ≥ 0, and pn/qn → z as n → ∞. Also, for all n such
that |qn−1| < |qn|,

|z − pn/qn| ≤ α−1|qn|−2.
Proof. Since Γ is a discrete subring of C, for any p ∈ Γ \ {0} we have

|p| ≥ 1. Now if qn = 0 for some n ≥ 1, then by Proposition 2.1(i) we should
have |pn| = |z1 · · · zn+1|−1 ∈ (0, 1), which is not possible since pn ∈ Γ .
Hence qn 6= 0 for all n ≥ 0. Since qn ∈ Γ , this implies that |qn| ≥ 1 for all
n. Therefore,

|z − pn/qn| = |qn|−1|qnz − pn| = |qn|−1|z1 · · · zn+1|−1 ≤ (1 + α)−n → 0,

and hence pn/qn → z as n→∞.
When |qn−1| < |qn|, by Proposition 2.1 we have

|z − pn/qn| ≤ |qn|−2(|zn+1| − |qn−1/qn|)−1 ≤ α−1|qn|−2,
since |zn| ≥ 1 + α.

A standard way to generate iteration sequences is via algorithms. Let Λ
be a countable subset of C such that for every z ∈ C there exists λ ∈ Λ
such that |z − λ| ≤ 1. By a Λ-valued algorithm we mean a map f : C → Λ
such that |z − f(z)| ≤ 1 for all z ∈ C. Let K denote the subfield of C
generated by Λ; we note that K is also countable. For any z ∈ C \K a Λ-
valued algorithm f as above yields an iteration sequence defined by z0 = z
and zn+1 = (zn − f(zn))−1 for all n ≥ 0; for z ∈ C \K, it may be observed
successively that all zn are in C\K and hence zn 6= f(zn), so zn−f(zn) 6= 0.

Definition 2.3. We call the set {z− f(z) | z ∈ C \K} the fundamental
set of the algorithm f .

When Λ is a discrete subring of C we have the following.

Theorem 2.4. Let Γ be a discrete subring of C and let f : C→ Γ be a
Γ -valued algorithm such that the fundamental set of f is contained in a ball
of radius r centered at 0, where 0 < r < 1. Let K be the subfield generated
by Γ . Let z ∈ C \ K and let {zn}∞n=0 be the iteration sequence for z with
respect to f . Let {an}∞n=0 be the associated sequence of partial quotients, and
{pn}, {qn} the corresponding Q-pair. Then:

(i) qn 6= 0 for all n ≥ 0, and pn/qn → z as n→∞;
(ii) for every n such that |qn−1| < |qn| we have

∣∣z − pn
qn

∣∣ ≤ r
1−r |qn|

−2.

Proof. Under the given hypothesis, |zn − an| ≤ r for all n ≥ 0. Hence
for all n ≥ 1 we have |zn| = |zn−1 − an−1|−1 ≥ r−1. Thus condition (ii) of
Proposition 2.2 holds with α = r−1−1, and hence the theorem follows from
the proposition.
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When Λ is a discrete subset we have an algorithm f arising canonically,
where we choose, for z ∈ C, f(z) to be the element of Λ nearest to z; this map
is defined uniquely only for z in the complement of a countable set of lines
(consisting of points which are equidistant from two distinct points of Λ),
but we consider it extended to C through some convention—the specific
choice of the extension will not play any role in our discussion. We call
this the nearest element algorithm with respect to Λ; when Λ is a ring of
“integers”, such as the Gaussian or Eisenstein integers, the algorithm will
be referred to as the nearest integer algorithm of the corresponding ring.

Remark 2.5. It can be seen that any discrete subring Γ of C (contain-
ing 1), other than Z, has the form Z[i

√
k] or Z

[
1
2 + i

2

√
4l − 1

]
with k, l ∈ N.

From among these, the requirement that there be an element of Γ within
distance 1 from every z in C (enabling continued fraction expansions to be
defined for all z ∈ C) is met for Z[i

√
k], 1 ≤ k ≤ 3, and Z

[
1
2 + i

2

√
4l − 1

]
,

1 ≤ l ≤ 3; for k = 1 and l = 1 these are the rings of Gaussian integers
and Eisenstein integers respectively. With respect to the nearest integer al-

gorithm the fundamental set is the square with vertices at ±1
2 + ±

√
k
2 i for

Γ = Z[i
√
k], k = 1, 2, 3, and for Γ = Z

[
1
2 + i

2

√
τ
]

with τ = 3, 7 or 11 it is a
hexagon (not regular in the last two cases) with vertices at

±1

2
± τ − 1

4
√
τ
i and ± τ + 1

4
√
τ
i

respectively; thus the vertices lie on the circle, centered at the origin, with
radius 1

2

√
(1 + k), k = 1, 2, 3, in the former case, and τ+1

4
√
τ

with τ = 3, 7, 11

in the latter; consequently, the fundamental set is contained in the open
unit ball, except for Z[i

√
3]. Hence, except when Γ = Z[i

√
3] (a case not

considered in the literature), by Theorem 2.4, we have qn 6= 0 for all n ≥ 0,
and pn/qn → z as n→∞ for the continued fraction expansion with respect
to the respective nearest integer algorithms.

Remark 2.6. The second assertion in Theorem 2.4 highlights the useful-
ness of establishing the monotonicity of {|qn|}, to complete the picture; the
monotonicity condition will also be involved in proving the analogue of the
Lagrange theorem (see Theorem 4.2). The latter was proved by Hurwitz for
the nearest integer algorithms with respect to the rings of Gaussian integers
and Eisenstein integers. It was proved by Lund for the nearest integer algo-
rithm on Z[i

√
2], as noted in [5], where it is also stated without proof that

monotonicity holds for Z
[
1
2 + i

2

√
τ
]
, τ = 3, 7 or 11, for the nearest integer

algorithm as well as another variation of it (in each case; see [5] for details).
These verifications involve elaborate arguments involving “succession rules”,
which are certain restrictions that hold for the succeeding partial quotient
in the expansion.
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In [1] we established monotonicity for a variety of algorithms with values
in the ring of Gaussian integers, under a general condition. In the following
section we extend the idea and introduce a condition on the partial quotients
which ensures such monotonicity independent of the algorithm involved, and
even of the domain for drawing the partial quotients.

3. Monotonicity of the denominators of the convergents. In this
section we describe certain general conditions which ensure that the denom-
inators of the convergents grow monotonically in size, viz. |qn+1| > |qn| for
all n ≥ 0 in the notation as above.

For z ∈ C and r > 0 we denote by B(z, r) and B̄(z, r) respectively the
open and closed balls with center at z and radius r. We note that if |z| > r
then B̄(z, r) ⊂ C∗ and the sets B(z, r)−1 and B̄(z, r)−1 (consisting of the
inverses of elements from the respective sets) are respectively

B

(
z̄

|z|2 − r2
,

r

|z|2 − r2

)
and B̄

(
z̄

|z|2 − r2
,

r

|z|2 − r2

)
.

Definition 3.1. A sequence {an}∞n=0 in C is said to satisfy Condition C
if |an| > 1 for all n ≥ 1, and whenever |an+1| < 2 for some n ≥ 1 then

|(|an+1|2 − 1)an + ān+1| ≥ |an+1|2.

Theorem 3.2. Let {an}∞n=0 be a sequence in C satisfying Condition C
and let {pn}, {qn} be the corresponding Q-pair. Then |qn+1| > |qn| for all
n ≥ 1.

Proof. Suppose, if possible, that there exists n ≥ 1 such that |qn+1|
≤ |qn|, and let m ≥ 1 be the smallest such number. Thus |qm+1| ≤ |qm| and
|qn+1| > |qn| for n = 1, . . . ,m− 1. In particular qn 6= 0 for n = 1, . . . ,m. For
all 0 ≤ n ≤ m let rn = qn+1/qn; then |rn| > 1 for n = 0, 1, . . . ,m − 1, and
|rm| ≤ 1. From the recurrence relations for {qn} we have rn = an+1 + r−1n−1
for all 1 ≤ n ≤ m. In particular r−1m−1 ∈ B̄(−am+1, |rm|) ⊂ B̄(−am+1, 1),
and since |am+1| > 1, this implies

rm−1 ∈ B̄
(
−ām+1

|am+1|2 − 1
,

1

|am+1|2 − 1

)
.

We have rm−1 = am + r−1m−2, and together with the preceding conclusion we
get

am ∈ B̄
(
−ām+1

|am+1|2 − 1
, |r−1m−2|+

1

|am+1|2 − 1

)
.

In turn, since |rm−2| > 1, we have

am ∈ B
(
−ām+1

|am+1|2 − 1
, 1 +

1

|am+1|2 − 1

)
.
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Thus

|(|am+1|2 − 1)am + ām+1| < (|am+1|2 − 1) + 1 = |am+1|2.

On the other hand, since rm=am+1+r−1m−1 we have |am+1|≤|rm|+|r−1m−1|<2.
Together with the above conclusion this contradicts the hypothesis. There-
fore |rn| > 1 for all n ≥ 0, or equivalently |qn+1| > |qn| for all n ≥ 0.

Remark 3.3. Let Γ be a discrete subring of C and f : C → Γ be a
Γ -valued algorithm such that the fundamental set of f is contained in a ball
of radius 0 < r < 1. Let z ∈ C∗ \K, where K is the subfield generated by Γ ,
and let {an}∞n=0 be the sequence of partial quotients for z with respect to f ,
and {pn}, {qn} be the Q-pair corresponding to {an}∞n=0. If {an}∞n=0 satisfies
Condition C, then by Theorem 3.2, |qn+1| > |qn| for all n ≥ 0, and by
Theorem 2.4, |z − pn/qn| ≤ c|qn|−2 for all n ≥ 0 with c = r/(1− r). From a
Diophantine point of view these are only weak estimates—but seem to be of
significance on account of generality of their context. In [5] optimal values
for such a constant c are described for continued fraction expansions with
respect to the nearest integer algorithms, and also a variation in the case of
Z
[
1
2 + i

2

√
τ
]
, τ = 3, 7 or 11. It would be interesting to know similar optimal

values for more general algorithms.

Remark 3.4. Let G=Z[i] denote the ring of Gaussian integers. Let z∈C
and {zn}∞n=0 be an iteration sequence for z such that an = zn − z−1n+1 ∈ G
for all n ≥ 0. For a ∈ G, we have 1 < |a| < 2 if and only if a = ±1 ± i, or
equivalently |a| =

√
2. Thus in this case Condition C reduces to the condition

that for all n ≥ 1, we have |an| > 1 and either |an+1| ≥ 2 or |an+ ān+1| ≥ 2.
This corresponds to Condition (H′) in [1], used for obtaining a conclusion
as in Theorem 3.2 above; a special case of Theorem 3.2 was obtained in [1,
Theorem 6.11], only after proving other results about the asymptotic growth
of |qn|’s.

It may also be recalled here that the sequence {an} obtained by applica-
tion of the nearest (Gaussian) integer algorithm, starting with a z ∈ C\Q(i),
may not satisfy Condition C (the second part) (see [1, §5] for details). The
sequences corresponding to the nearest integer algorithm satisfy a weaker
condition, named Condition (H) in [1], which also suffices to obtain the con-
clusion as in Theorem 3.2; the condition however is rather technical and not
amenable to generalization.

In [1] another algorithm, named PPOI (acronym for partially preferring
odd integers), was introduced, producing a continued fraction expansion in
terms of Gaussian integers for which Condition (H′) is satisfied. We shall
however show in the following sections that in the case of the Eisenstein
integers the sequences corresponding to the nearest integer algorithm, as
also certain other algorithms, satisfy Condition C.



362 S. G. Dani

4. Lagrange theorem for continued fractions. In this section we
prove an analogue of the classical Lagrange theorem, about the continued
fraction expansion being eventually periodic if and only if the number is a
quadratic surd. We follow the previous notation.

Let K be a subfield of C. A number z ∈ C is called a quadratic surd over
K if z /∈ K and it is a root of a quadratic polynomial over K.

Proposition 4.1. Let z ∈ C \K and {zn}∞n=0 be an iteration sequence
for z such that |zn| > 1 for all n ≥ 1. Let an = zn − z−1n+1, n ≥ 0, be the
corresponding sequence of partial quotients and suppose that an, n ≥ 0, are
all contained in a discrete subring Γ of C contained in K. Let {pn}, {qn}
be the corresponding Q-pair. If zm = zn for some 0 ≤ m < n, then z is a
quadratic surd over K.

Proof. Clearly, for all m ≥ 0, {zm+k}∞k=0 is an iteration sequence for zm,
and z is a quadratic surd if and only if zm is. Hence we may assume that
zm = z, or equivalently that m = 0. Let n ≥ 1 be such that zn = z. By
Proposition 2.1 we have

(qn−1z − pn−1)zn = (−1)n−1(z1 · · · zn)−1zn = (qn−2z − pn−2).

Since by hypothesis zn = z, we get qn−1z
2 − (pn−1 + qn−2)z + pn−2 = 0.

Suppose, if possible, that qn−1 = 0. Then |pn−1| = |qn−1z − pn−1| =
|z1 · · · zn|−1 ∈ (0, 1), which is not possible since pn−1 is contained in a
discrete subring Γ of C. Thus qn−1 6= 0, and we see that z satisfies a
quadratic polynomial over K. Since z /∈ K, it follows that z is a quadratic
surd over K.

We now prove the following converse of this. The proof follows what is
now a standard strategy (cf. [2] for instance) for proving such a result, with
variations in the hypothesis; the main purpose here is to bring out a general
formulation which at the same time is focused enough and amenable to a
brief treatment.

Theorem 4.2. Let Γ be a discrete subring of C and K be the quotient
field of Γ . Let z be a quadratic surd over K. Let {zn}∞n=0 be an itera-
tion sequence for z such that the corresponding sequence {an}∞n=0 of partial
quotients is contained in Γ . Let {pn}, {qn} be the Q-pair corresponding to
{an}∞n=0. Suppose that:

(i) there exists α > 0 such that |zn| > 1 + α for all n ≥ 1;
(ii) |qn−1| < |qn| for all n ≥ 1.

Then the set {ζ ∈ C | ζ = zn for some n} is finite. Consequently, if {zn}∞n=0

is an iteration sequence associated with an algorithm then {an}∞n=0 is even-
tually periodic.
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Proof. Let a, b, c ∈ K, with a 6= 0, be such that az2 + bz + c = 0. Since
K is the quotient field of Γ , we may without loss of generality assume that
a, b, c ∈ Γ . By Proposition 2.1(iii) we have

z =
zn+1pn + pn−1
zn+1qn + qn−1

for all n ≥ 0,

and hence

a

(
zn+1pn + pn−1
zn+1qn + qn−1

)2

+ b

(
zn+1pn + pn−1
zn+1qn + qn−1

)
+ c = 0.

For all n ≥ 0 let

An = ap2n + bpnqn + cq2n, Cn = An−1,

Bn = 2apnpn−1 + b(pnqn−1 + qnpn−1) + 2cqnqn−1.

Then An, Bn, Cn ∈ Γ for all n, and the above equation can be readily
simplified to Anz

2
n+1 + Bnzn+1 + Cn = 0. The polynomial aζ2 + bζ + c has

no root in K, and hence it now follows that An 6= 0 for all n. Now, we have
An = (ap2n+bpnqn+cq2n)−q2n(az2 +bz+c), and the latter expression can be
rewritten as (pn − zqn)(a(pn − zqn) + (2az + b)qn). Under the conditions in
the hypothesis, by Proposition 2.2 we have |qnz−pn| ≤ α−1|qn|−1. Therefore
by substitution we get

|An| ≤ α−1|qn|−1(aα−1|qn|−1 + |2az + b| |qn|) = α−1|2az + b|+ α−2a|qn|−2.
Since |qn| ≥ 1 for all n, the above observation implies that {An | n ≥ 0} is a
bounded set, and since An ∈ Γ for all n, it further follows that {An | n ≥ 0}
is finite. Since Cn = An−1 for all n ≥ 1, {Cn | n ≥ 0} is also finite. An easy
computation shows that B2

n − 4AnCn = b2 − 4ac for all n ≥ 0. It follows
that {Anζ2 + Bnζ + Cn | n ≥ 0} is a finite collection of polynomials. Since
each zn is a root of one of these polynomials, the set {zn | n ≥ 0} is finite.

Now suppose that {zn}∞n=0 is an iteration sequence associated with an al-
gorithm. By the first part, there exist m ≥ 0 and k ≥ 1 such that zm+k = zm.
Since {zn}∞n=0 are determined algorithmically, this implies that zn+k = zn
for all n ≥ m. In turn we get an+k = an for all n ≥ m, that is, {an}∞n=0 is
eventually periodic.

The following corollary (together with Proposition 4.1) gives a general-
ization of the classical Lagrange theorem on quadratic irrationals.

Corollary 4.3. Let Γ be a discrete subring of C and K be the quotient
field of Γ . Let f : C→ Γ be a Γ -valued algorithm such that the fundamental
set of f is contained in a ball of radius 0 < r < 1. Let z be a quadratic surd
over K. Let {an}∞n=0 ⊂ Γ be the sequence of partial quotients with respect to
f and let {pn}, {qn} be the corresponding Q-pair. Suppose that {an} satisfies
Condition C. Then {an}∞n=0 is eventually periodic.
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Proof. This follows from Theorem 4.2: Condition (i) in the theorem is
satisfied since the fundamental set of f is contained in a ball of radius
r < 1. Under Condition C, by Theorem 3.2, {|qn|} is strictly increasing, so
condition (ii) also holds.

5. Continued fractions for Eisenstein integers. We shall now apply
the results of the preceding sections to a class of algorithms with values in
the ring E = {x+yω | x, y ∈ Z} of Eisenstein integers, where ω is a primitive

cube root of unity, which we shall realize as −1
2+
√
3
2 i. Let ρ = 1

2+
√
3
2 i (which

is a primitive 6th root of unity). Then ρ = ω + 1, and every z ∈ E can also
be expressed as x+ yρ with x, y ∈ Z. For convenience we shall also use the
notation j for

√
3 i. Then every z ∈ E can be expressed as 1

2(x + yj) with
x+ y ∈ 2Z, that is, x+ y is an even integer. We shall write the 6th roots of
unity as ρk with k ∈ Z, the integer k being understood to be modulo 6.

Given a E-valued algorithm f we shall denote by Φf its fundamental set,
and by Cf (a), for a ∈ E, the set {z ∈ C | f(z) = a}.

Theorem 5.1. Let E be the ring of Eisenstein integers, let f : C → E
be a E-valued algorithm and let Φ = Φf . Suppose that:

(a) Φ ⊂ B(0, r) for some 0 < r < 1;
(b) |f(ζ)| > 1 for all ζ ∈ Φ−1;
(c) for 0 ≤ k ≤ 5 and t ∈ {−1 + j, j, 1 + j}, the sets ρ−kt+ (Cf (ρkj))−1

and Cf (ρ−kt) ∩ Φ−1 are disjoint.

Let K be the subfield generated by E. Let z ∈ C\K, {an}∞n=0 be the sequence
of partial quotients of z corresponding to the algorithm f , and {pn}, {qn} be
the Q-pair corresponding to {an}∞n=0. Then:

(i) |qn| > |qn−1| for all n ≥ 1, and in particular qn 6= 0 for all n;
(ii) pn/qn → z as n → ∞, and moreover |z − pn/qn| ≤ r

1−r |qn|
−2 for

all n;
(iii) z is a quadratic surd over K if and only if {an} is eventually peri-

odic.

Proof. Let {zn}∞n=0 denote the corresponding iteration sequence for z
with respect to f . From (b) it follows that |an| > 1 for all n ≥ 1.

We shall show that {an} satisfies Condition C. For this we first note that
for a ∈ E, if 1 < |a| < 2 then |a| =

√
3, and a = ρkj for some k ∈ Z. Hence

we need to show that for n ≥ 1, if an+1 = ρkj, k ∈ Z, then |2an−ρ−kj| ≥ 3.

Let if possible n ≥ 1 be such that an+1 = ρkj, k ∈ Z, and |2an−ρ−kj| < 3.
We write an as 1

2ρ
−k(x+ yj) with x+ y ∈ 2Z. Then by the above condition

we have

3 > |2an − ρ−kj| = |2anρk − j| = |x+ yj − j|,
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and hence x2 +3(y−1)2 < 9. Also, since |an| > 1 we have x2 +3y2 ≥ 12. The
only common solutions to this, with x+ y even, are x = 0 or ±2 with y = 2.
Thus an ∈ ρ−k{−1 + j, j, 1 + j}. We have zn ∈ Φ−1 (as n ≥ 1), zn ∈ Cf (an),
and also zn = an+z−1n+1 ∈ an+(Cf (ρkj))−1. Since an ∈ ρ−k{−1+j, j, 1+j},
this contradicts (b) for t = ρkan.

Assertion (i) now follows from Theorem 3.2, and together with con-
dition (a) it implies assertions (ii) and (iii), in view of Theorem 2.4 and
Corollary 4.3 respectively.

Corollary 5.2. Let E be the ring of Eisenstein integers and let f :
C→ E be a E-valued algorithm such that:

(a) Cf (a) is contained in B(a, 12(
√

5− 1)) for all a ∈ E;

(b) for 0 ≤ k ≤ 5, Cf (ρkj) ⊂ B(ρkj,
√
λ), where λ = 1

4(5−
√

13).

Then statements (i)–(iii) as in Theorem 5.1 are satisfied. In particular they
are satisfied for the nearest integer algorithm.

Proof. Condition (a) as in Theorem 5.1 is evidently satisfied for any
f as above. We show that (b) and (c) are also satisfied. By (a) we have
Φf ⊂ B(0, r) for r = 1

2(
√

5−1). Hence for ζ ∈ Φ−1f we have |ζ| > r−1 = 1+r,

and since f(ζ) ∈ B(ζ, r) this shows that |f(ζ)| > 1, proving (b).
Now let 0 ≤ k ≤ 5 and t ∈ {−1 + j, j, 1 + j}. To begin, consider any

r > 0 such that Cf (ρkj) ⊂ B(0, r); we shall show that condition (c) of

Theorem 5.1 holds when r <
√
λ. Setting σ = (3 − r2)−1 (as temporary

notation for convenience), we have

ρ−kt+ (Cf (ρkj))−1 ⊂ ρ−kt+B(ρkj, r)−1 = ρ−kt+ ρ−kB(−σj, σr),
which is the same as ρ−kB(t − σj, σr). Since Φ−1f is complementary to

B(0, r−1), to prove (c) it now suffices to show that B(t−σj, σr) ⊂ B(0, r−1)
for all t ∈ {j − 1, j, j + 1}; the condition is now independent of k. For t = j
it suffices to note that

|t− σj|+ σr = (1− σ)
√

3 + σr =
√

3− σ(
√

3− r) =
√

3− (
√

3 + r)−1,

on substituting for σ. The last expression is less than r−1 when
√

3r2 + r−√
3 < 0, viz. if r < (

√
13− 1)/2

√
3 ≈ 0.752 . . . , so it holds in particular for

r <
√
λ ≈ 0.590 . . . as in the hypothesis.

It remains to consider the case of t = ±1+j, and by symmetry it suffices
to consider the case t = 1+j. We need to verify that |1+(1−σ)j|+σr < r−1,
or equivalently

1 + 3(1− σ)2 < (r−1 − rσ)2 = r−2(1− r2σ)2.

Substituting σ = (3 − r2)−1 and eliminating the denominators we reduce
the condition to

(3− r2)2r2 + 3(2− r2)2r2 − (3− 2r2)2 < 0.
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Let s = r2 and P (s) = 4s3 − 22s2 + 33s − 9; the above expression then
coincides with P (r2). Now we see that

P (s) = (s− 3)(4s2 − 10s+ 3) = (s− 3)(s− λ)(s− µ),

where λ is as in the hypothesis and µ = 1
4(5+

√
13) is its quadratic conjugate.

Hence P (s) < 0 for s < λ, and so P (r) < 0 for r <
√
λ. Thus (c) holds, and

therefore by Theorem 5.1 assertions (i)–(iii) as in the theorem hold. For the
nearest integer algorithm the fundamental set is a regular hexagon contained
in B̄(0, 1/

√
3) ⊂ B(0,

√
λ) and so the assertions hold as a particular case.

Example 5.3. Let P denote the closed parallelogram with vertices at
0, 1, ρ and 1 + ρ. Then C is tiled by {a + P}a∈E and it suffices to define
the algorithm on each a + P , a ∈ P ; the points on the boundaries may
be assigned a specific tile a + P by some convention. Let 0 < r < 1 and
V = {0, 1, ρ, 1 + ρ}. Let Pv, v ∈ V , be disjoint subsets of P such that
Pv ⊂ B(v, r) and P =

⋃
v∈V Pv. It may be seen that such partitions exist

for r > 1/
√

3. Then we can define an algorithm f : C → E by setting
f(a + ζ) = a + v for any a ∈ E and ζ ∈ Pv. (The choice of the partition
as above may also be made dependent on a.) Then Cf (a) ⊂ B(a, r) for all

a ∈ E. If we choose r ≤ 1
2

√
(5−

√
13), then the conditions in Corollary 5.2

are satisfied, and therefore the statements in the conclusion hold for such
an algorithm.

6. Exponential growth of {|qn|}. It is known in the case of various
algorithms over the ring of Gaussian integers that the sequence {|qn|} in-
creases exponentially (see [1]). We shall show that an analogous assertion
also holds in the case of Eisenstein integers. For simplicity we shall restrict
to the nearest integer algorithm; extension to some of the algorithms as in
the second half of Theorem 5.1 seems feasible but involves some cumbersome
computations, which do not seem worthwhile for the present.

Theorem 6.1. Let E be the ring of Eisenstein integers, and K the sub-
field generated by E. Let z /∈ K and let {an} be the sequence of partial
quotients of z corresponding to the nearest integer algorithm. Let {pn}, {qn}
be the Q-pair corresponding to {an}. Then |qn+1/qn−1| > 3/2 for all n ≥ 1.

We first prove the following.

Proposition 6.2. Let the notation be as in Theorem 6.1. Then for all
n ≥ 1:

(i) if an = jρk, k ∈ Z, then an+1ρ
k = 1

2(x + yj) with x + y ∈ 2Z such

that
∣∣1
2x
∣∣ ≤ 2− 3

2y;

(ii) if an = 2ρk, k ∈ Z, then an+1ρ
k = 1

2(x + yj) with x + y ∈ 2Z and
x ≥ −2.
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Proof. Let {zn} be the iteration sequence of z (with respect to the
nearest integer algorithm). Let H be the hexagon with vertices at 1

3ρ
kj,

0 ≤ k ≤ 5, the fundamental set of the algorithm.
Let n ≥ 1 be such that an = jρk for some k. Since n ≥ 1 we have

zn ∈ H−1, and so zn /∈
⋃
m∈ZB(ρm, 1). Hence zn−an /∈

⋃
m∈ZB(ρm−jρk, 1).

We have B(ρm−jρk, 1) = ρkB(ρm−k−j, 1), and whenm−k = 1 and 2, we see
that ρm−k−j = ρ−1 and ρ−2 respectively. Thus in particular (zn−an)ρ−k /∈
B(ρ−1, 1) ∪B(ρ−2, 1). Hence

zn+1ρ
k = ((zn − an)ρ−k)−1 /∈ B(ρ−1, 1)−1 ∪B(ρ−2, 1)−1.

The complements of B(ρ−1, 1)−1 and B(ρ−2, 1)−1 may be seen to be {σ+τi |
σ+
√

3 τ ≤ 1} and {σ+τi | −σ+
√

3 τ ≤ 1} respectively (σ and τ understood
to be real). When zn+1ρ

k belongs to the wedge shaped intersection of these two
sets, an+1ρ

k has to belong to the intersection of {σ+ τi ∈ C | σ+
√

3 τ ≤ 2}
and {σ+ τi ∈ C | −σ+

√
3 τ ≤ 2}. With an+1ρ

k written as 1
2(x+ yj), x+ y

even, this condition yields
∣∣1
2x
∣∣ ≤ 2− 3

2y, proving (i).

Let n ≥ 1 be such that an = 2ρk for some k. Arguing as above we deduce
that zn − an /∈ ρkB(ρm−k − 2, 1) for any m, and in particular choosing
m = k we get (zn − an)ρ−k /∈ B(−1, 1). Hence zn+1ρ

k /∈ B(−1, 1)−1. The
complement of B(−1, 1)−1 is {σ + τi | σ ≥ −1/2}, and we see that when
zn+1ρ

k belongs to it, an+1ρ
k belongs to {σ + τi | σ ≥ −1}. Writing an+1ρ

k

as 1
2(x+ yj), x+ y even, we get x ≥ −2. This proves (ii).

In the proof of Theorem 6.1 we use the following simple observation,
which may be of independent interest.

Remark 6.3. Let {an}∞n=0 be a sequence in C and let {pn}, {qn} be the
corresponding Q-pair. Then for all n ≥ 1 we have

qn+1 = an+1qn + qn−1 = anan+1qn−1 + an+1qn−2 + qn−1,

and hence if |qn−2| ≤ |qn−1| then∣∣∣∣qn+1

qn−1

∣∣∣∣ =

∣∣∣∣anan+1 + 1 + an+1
qn−2
qn−1

∣∣∣∣ ≥ |anan+1 + 1| − |an+1|.

Proof of Theorem 6.1. In view of Remark 6.3 it would suffice to show
that |anan+1 + 1| > |an+1|+ 3/2 for all n ≥ 1. We have

|anan+1 + 1| − |an+1| ≥ |anan+1| − 1− |an+1| = (|an| − 1)|an+1| − 1.

If |an| > 2 then |an| ≥
√

7, and since |an+1| ≥
√

3, we get |anan+1 + 1| −
|an+1| ≥ (

√
7− 1)

√
3− 1 > 3/2. It remains to consider the cases |an| =

√
3

or 2.
Suppose that |an| =

√
3, so an = jρk with k ∈ Z. Then by Proposition 6.2

we have an+1ρ
k = 1

2(x+yj) with x+y ∈ 2Z such that
∣∣1
2x
∣∣ ≤ 2− 3

2y. The last
part implies that y ≤ 1, and when y = 1 it further implies, together with x+y
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being even, that x = ±1, which however is not possible since |an+1| ≥
√

3.
Hence y ≤ 0. If y = 0 then |x| = 4 and |anan+1 + 1| =

√
13 > |an+1|+ 3/2.

Now,

|anan+1 + 1| =
∣∣jρk · 12(x+ yj)ρ−k + 1

∣∣ =
∣∣1
2(xj − 3y) + 1

∣∣.
Therefore for y ≤ −1 we have

|anan+1 + 1|2 = 1
4{3x

2 + (2− 3y)2} ≥ 3
4(x2 + 3y2) + 4 = 3|an+1|2 + 4.

We note that 3|an+1|2+4 ≥ (|an+1|+
√

8/3)2, as may be seen by considering
the discriminant of the quadratic difference expression. Thus

|anan+1 + 1| ≥ |an+1|+
√

8/3 > |an+1|+ 3/2,

which settles the case at hand.
Now suppose that |an| = 2, so an = 2ρk for some k ∈ Z. Then by

Proposition 6.2 we have an+1ρ
k = 1

2(x + yj) with x + y ∈ 2Z and x ≥ −2.
Hence |anan+1 + 1| = |x+ yj + 1|. Suppose first that x ≥ 0. Then

|anan+1 + 1|2 = |x+ yj + 1|2

= (x+ 1)2 + 3y2 > 4
∣∣1
2(x+ yj)

∣∣2 = 4|an+1|2.

Hence |anan+1 + 1| − |an+1| ≥ |an+1| ≥
√

3 > 3/2, as desired.
The only possibilities that remain are x = −2 or −1. We note that

since x2 + 3y2 ≥ 12, if x = −2 then |y| ≥ 2 and if x = −1 then |y| ≥ 3.
Now, |anan+1 + 1|2 = |x + yj + 1|2 = (x + 1)2 + 3y2 < 4y2 and |an+1|2 =
|12(x+ yj)|2 = 1

4x
2 + 3

4y
2 ≤ y2. Hence |anan+1 + 1|+ |an+1| < 3|y|.

Suppose x = −2. Then |anan+1+1|2−|an+1|2 = 1+3y2− 1
4(4+3y2) = 9

4y
2,

and dividing by the expression estimated above we get |anan+1+1|−|an+1| >
3
4 |y| ≥

3
2 , since |y| ≥ 2, as desired.

Finally suppose x = −1. Then |anan+1+1|2−|an+1|2 = 3y2− 1
4(1+3y2) >

2y2, and hence |anan+1 + 1| − |an+1| > 2
3 |y| ≥ 2, since |y| ≥ 3 in this case.

Thus |anan+1+1|−|an+1| > 3/2 in this case too. This proves the theorem.

Remark 6.4. The constant 3/2 involved in Theorem 6.1 is not optimal;
it can be improved upon with some detailed computations in various special
cases. We shall however not concern ourselves here with improving it.
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