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Lang’s conjecture and sharp height estimates for
the elliptic curves y2 = x3 + b

by

Paul Voutier (London) and Minoru Yabuta (Osaka)

1. Introduction. The canonical height, ĥ (defined in Section 2), on an
elliptic curve E defined over a number field K is a measure of the arithmetic
complexity of points on the curve. It has many desirable properties. For
example, it is a positive definite quadratic form on the lattice E(K)/(torsion),
behaving well under the group law on E(K). See [17, Chapter VIII] and [1,
Chapter 9] for more information on this height.

There is another important, and closely related, height function defined
for points on elliptic curves, the absolute logarithmic height (also defined
in Section 2). It has a very simple definition which makes it very easy to
compute.

In this paper, we provide sharp lower bounds for the canonical height as
well as bounding the difference between the heights for a well-known and
important family of elliptic curves, the Mordell curves defined by Eb : y

2 =
x3 + b where b is a sixth-power-free integer (i.e., quasi-minimal Weierstrass
equations for all Eb/Q).

1.1. Lower bounds. Lang’s conjecture proposes a lower bound for the
heights of nontorsion points on a curve which varies with the curve.

Conjecture 1.1 (Lang’s conjecture). Let E/K be an elliptic curve with
minimal discriminant DE/K. There exist constants C1 > 0 and C2, depending
only on [K : Q], such that for all nontorsion points P ∈ E(K) we have

ĥ(P ) > C1 log(NK/Q(DE/K)) + C2.

See [13, p. 92] along with the strengthened version in [17, Conjecture
VIII.9.9].
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Such lower bounds have applications to counting the number of integral
points on elliptic curves [10], questions involving elliptic divisibility sequences
[4, 5, 23] and several other problems.

Silverman [16, Section 4, Theorem] showed that Lang’s conjecture holds
for any elliptic curve with j-invariant nonintegral for at most R places of K
(note that this includes our curves, Eb, since their j-invariant is 0), but with
C1 dependent on K and R. Gross and Silverman [9, Proposition 3(3)] proved
an explicit version of this result from which it follows that for nontorsion
points, P , on Eb, we have

ĥ(P ) > 3 · 10−14 log |∆(Eb)|.
Furthermore, Hindry and Silverman [10] proved an explicit version of

Lang’s conjecture whenever Szpiro’s ratio, σE/K, of E/K is known. Hence
Lang’s conjecture follows from Szpiro’s conjecture (or the ABC conjecture).
Subsequently, David [3] and Petsche [14] improved Hindry and Silverman’s
result. It can be shown that σEb/Q < 5, hence from Petsche’s Theorem 2, for
example, a weaker result than the above follows with 3 · 10−14 replaced by
2 · 10−22.

However, these results for Eb/Q all follow from more general results. By
focusing specifically on Eb/Q, much better results can be obtained.

When b is a nonzero integer that is sixth-power-free, Krir [12, Proposi-
tion 3.1] showed that for any nontorsion point, P ,

ĥ(P ) > 10−3 log |b|+ 10−3.

In the special case of b = −432m2 for a cube-free integer m, Jędrzejak
[11] proved a sharper result, which was improved by Everest, Ingram and
Stevens [4, Lemma 4.3] and further improved very recently by Fujita and
Nara [8, Proposition 2.5]:

ĥ(P ) > 1
18 log |b| − 1.1009.

The coefficient of log |b| is correct in their result, but as we show below in
Theorem 1.2(c), the constant should be −2

9 log 2−
1
4 log 3 = −0.4286 . . . .

Also, if b is a positive square-free integer, Fujita and Nara [7, Proposi-
tion 4.3] showed that

ĥ(P ) > 1
24 log |b| − 0.073576,

upon noting that their canonical height is twice ours (compare with our
results for this case in Theorem 1.2(a) or (5.3) below).

We express the hypotheses of our theorem in terms of the Tamagawa
index at p for p a prime. Letting E0(Qp) be the connected component of
the identity in E(Qp), the Tamagawa index, cp, at p is the order of the
component group, E(Qp)/E0(Qp), of E at p. See [2] and [20, Section IV.9]
for more details.
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Theorem 1.2. Let b be an integer which is sixth-power-free and let P in
Eb(Q) be a nontorsion point.

(a) If cp = 1 for all primes p > 3, then

ĥ(P ) >

{
1
6 log |b| − log 2− 1

2 log 3 if b < 0,
1
6 log |b| −

2
3 log 2−

3
4 log 3− 0.006 if b > 0.

(b) If cp | 4 for all primes p > 3 and 2 | cp for at least one such prime,
then

ĥ(P ) >

{
1
24 log |b| −

1
4 log 2−

5
48 log 3 if b < 0,

1
24 log |b| −

1
6 log 2−

1
6 log 3− 0.002 if b > 0.

(c) If cp | 3 for all primes p > 3 and cp = 3 for at least one such prime,
then

ĥ(P ) >

{
1
18 log |b| −

2
9 log 2−

1
4 log 3− 0.004 if b < 0,

1
18 log |b| −

1
3 log 2−

1
6 log 3− 0.004 if b > 0.

(d) If cp | 12 for all primes p > 3, 2 | cp for at least one such prime p, and
3 | cq for at least one other such prime q, then

ĥ(P ) >

{
1
36 log |b| − 0.2247 if b < 0,
1
36 log |b| − 0.2262 if b > 0.

Remark. In the course of the proof of Theorem 1.2, we establish the
minimum value of ĥ(P ) for all possibilities of b modulo powers of 2 and 3. As
such bounds can be important for obtaining sharp results for other problems
(e.g., primitive divisor problems for elliptic divisibility sequences), we refer
the reader to these bounds in (5.2) and (5.3) for part (a), (5.5) and (5.6) for
part (b), (5.18) and (5.19) (as well as (5.17) and (5.20)) for part (c), and
(5.13) and (5.14) for part (d).

All that is required to apply these bounds is knowing the congruence
classes of bmodulo powers of 2 and 3, the reduction of P (or [2]P for part (b))
at 2 and 3, and then referring to Tables 4 and 5.

In [24], we were able to show that our results are best possible. See
Section 7 below for examples showing that Theorem 1.2(a) and (b) for b < 0
are the best possible results, and the other lower bounds are within 0.006 of
the best possible result. By “best possible”, we mean that the value for C1 in
Conjecture 1.1 is best possible and then, fixing C1, the value for C2 is best
possible.

The constants in part (d) are not as “nice” as the ones in (a)–(c), but
they do arise in a natural way in this setting. For example, the best possible
constant for b < 0 is 0.19155 . . . − 1

3 log 2 −
1
6 log 3, and the minimal value

of 1
2 log c −

1
12 log(c

5 − c2) plus the sum in (3.4) is −0.19155 . . . , where c is
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defined by x(P ) = c|b|1/3. The log terms here again arise naturally in the
proof of the theorem.

As in [24], our proof is based on the decomposition of the canonical height
as the sum of local height functions. However, there are differences in the
behaviour of the local height functions for the curves in each family. One of
particular interest to us is that the local archimedean height function here
has an error term near its critical point that is O(ε2), whereas in [24], the
analogous error term is O(ε). In general, it appears that the archimedean
height function for all elliptic curves behaves in one of these two ways near
critical points. Our work to understand this function better is ongoing.

Lastly, note that while the formulation of our results is not in terms of
∆(Eb), it is equivalent to such a formulation since ∆(Eb) = −432b2.

1.2. Difference of heights. Our proof of our lower bound for the
canonical height also allows us to prove sharp bounds on the difference be-
tween the canonical height and the logarithmic height of points on Eb(Q).

In [19, Example 2.1], Silverman showed that

−1
6 log |b| − 1.576 ≤ 1

2h(P )− ĥ(P ) ≤
1
6 log |b|+ 1.48

and that the coefficients of log |b| are best possible.
Using a combination of [15, Proposition 5.18(a) and Theorem 5.35(c)],

one can obtain

−1
6 log |b| − 0.578 ≤ 1

2h(P )− ĥ(P ) ≤
1
6 log |b|+ 1.156.

Theorem 1.3. Let b be a nonzero integer and let P ∈ Eb(Q). Then for
b < 0,

−1
4 log 3− 0.005 < 1

2h(P )− ĥ(P ) <
1
6 log |b|+

1
3 log 2 +

1
4 log 3,

and for b > 0,

−1
6 log |b| −

1
3 log 2− 0.007− 0.076b−1/3

< 1
2h(P )− ĥ(P ) <

1
6 log |b|+

1
3 log 2 +

1
4 log 3 + 0.004.

In all cases,

−1
6 log |b| − 0.299 < 1

2h(P )− ĥ(P ) <
1
6 log |b|+ 0.51.

Remark. Only the upper bound when b < 0 is best possible here. It
appears that the terms −0.005 in the lower bound for b < 0, −0.007 in the
lower bound for b > 0, and 0.004 in the upper bound for b > 0 are not
required. Examples demonstrating these claims are provided in Section 7.

Remark. As with Theorem 1.2, improved results can often be obtained
for specific congruence classes of b modulo powers of 2 and 3, here by using
(6.2) and (6.3).
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2. Notation. For what follows in the remainder of this paper, we will
require some standard notation (see [17, Chapter 3], for example).

Let K be a number field and let E/K be an elliptic curve given by the
Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, . . . , a6 ∈ K.
Set

b2 = a21 + 4a2, b6 = a23 + 4a6,

b4 = 2a4 + a1a3, b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Then E/K is also given by y2 = 4x3 + b2x
2 + 2b4x+ b6.

Furthermore, for any m ∈ Z, [m] : E/K → E/K is the multiplication-
by-m isogeny.

For a point P ∈ E(K), we define the canonical height of P by

ĥ(P ) = 1
2 lim
n→∞

h([2n](P ))

4n
,

with h(P ) = h(x(P )), where h(P ) and h(x(P )) are the absolute logarithmic
heights of P and x(P ), respectively (see [17, Sections VIII.6, 7 and 9]). Also
recall that for Q, h(s/t) = logmax{|s|, |t|} with s/t in lowest terms is the
absolute logarithmic height of s/t.

Let MK be the set of valuations of K, and for each v ∈MK, let nv be the
local degree and let λ̂v(P ) : E(Kv) \ {O} → R be the local height function,
where Kv is the completion of K at v. From [20, Theorem VI.2.1], we have the
following decomposition of the canonical height into local height functions:

ĥ(P ) =
∑
v∈MK

nvλ̂v(P ).

For K = Q, the nonarchimedean valuations on K can be identified with
the set of rational primes. For a nonarchimedean valuation, v, we let qv be
the associated prime,

v(x) = −log |x|v = ordqv(x) log qv

for x 6= 0 and v(0) = +∞.

Remark. We refer the reader to [2, Section 4] and [17, Remark VIII.9.2]
for notes about the various normalisations of both the canonical and local
height functions. In what follows, our local height functions, λ̂v(P ), are those
that [2] denotes as λSilBv (P ), that is, as defined in Silverman’s book [20, Chap-
ter VI]. So as stated in [2, (11)], their λv(P ) equals 2λ̂v(P ) + 1

6 log |∆(E)|v
here.

Our canonical height also follows Silverman and is half that found in [2]
as well as half that returned from the height function, ellheight, in PARI.
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3. Archimedean estimates

3.1. Case b < 0

Lemma 3.1. Suppose b ∈ R is negative and let P = (x(P ), y(P )) ∈ Eb(R)
be a point of infinite order.

(a) We have

(3.1) λ̂∞(P ) > −1
3 log 2 = 1

6 log |b|+
1
4 log 3−

1
12 log |∆(Eb)|.

(b) Suppose that x(P ) = c|b|1/3 where c > 1. Then

(3.2) λ̂∞(P ) > 1
3 log c−

1
36 log 6912− 0.004

= 1
6 log |b|+

1
3 log c+

1
18 log 108− 0.004− 1

12 log |∆(Eb)|
and

(3.3) λ̂∞(P ) > 1
12 log

c5 − c2

432
+ 0.1895

= 1
6 log |b|+

1
12 log(c

5 − c2) + 0.1895− 1
12 log |∆(Eb)|.

(c) We have

−1
4 log 3− 0.005 <

(
1
2 logmax{1, |x(P )|} − 1

12 log |∆(Eb)|
)
− λ̂∞(P ) < 0.

Remark. We have expressed the bounds in parts (a) and (b) both with
and without the 1

12 log |∆(Eb)| term. The former expression will be used in
the proof of our theorems, while the latter is of interest as it demonstrates
that these results are actually independent of b.

All of the bounds are either best possible or within at most 0.005 of the
best possible results.

The actual dependence of λ̂∞(P ) on c as c→∞ is 1
2 log c, but the lower

bounds in (3.2) and (3.3) allow us to obtain nearly best possible lower bounds
for the canonical height.

Proof of Lemma 3.1. We will estimate the archimedean contribution to
the canonical height by using Tate’s series (see [22] as well as the presentation
in [18]). Let

t(P ) = 1/x(P ) and z(P ) = 1− b4t(P )2 − 2b6t(P )
3 − b8t(P )4,

for a point P = (x(P ), y(P )) ∈ E(R). Then the archimedean local height of
P ∈ E(R) is given by the series

(3.4) λ̂∞(P ) = 1
2 log |x(P )|+

1
8

∞∑
k=0

4−k log |z([2k](P ))| − 1
12 log |∆(E)|,

provided x([2k](P )) 6= 0 for all k 6= 0.
Here we have b2 = b4 = b8 = 0 and b6 = 4b, so t(P ) = 1/x(P ) and

z(P ) = 1− 8bt(P )3.
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Since b < 0, for any Q ∈ Eb(R), x(Q) ≥ |b|1/3. Hence 1 ≤ z(Q) ≤ 9. In
particular, 1 ≤ z([2k](P )) ≤ 9.

(a) Applying the above inequality for k ≥ 1 and the definition of z(P )
to (3.4), we obtain

0 ≤ λ̂∞(P )−
(
1
8 log(x(P )

4 − 8bx(P ))− 1
12 log |∆(Eb)|

)
≤ 1

12 log 3.

Since x(P ) ≥ |b|1/3, we have x(P )4 − 8bx(P ) ≥ 9|b|4/3. Hence
λ̂∞(P ) ≥ 1

8 log(x(P )
4 − 8bx(P ))− 1

12 log |∆(Eb)|
≥ 1

6 log |b|+
1
4 log 3−

1
12 log |∆(Eb)|.

(b) We first consider (3.2). From (3.4), our expression for x(P ) and our
lower bound for z([2k](P )), we have

λ̂∞(P ) ≥ 1
6 log |b|+

1
2 log c+

1
8

2∑
k=0

4−k log |z([2k](P ))| − 1
12 log |∆(E)|,

so we now proceed to bound from below
(3.5) 1

6 log c+
1

128 log
(
z16(P )z4([2](P ))z([4](P ))

)
.

The derivative of this quantity is a rational function of c whose numer-
ator is of degree 63 with leading coefficient 1 and whose denominator is
of degree 64 with leading coefficient 6. The numerator has only one root
≥ 1, which is 1.71216 . . . , while the denominator has no roots ≥ 1. There-
fore, the minimum value of (3.5) is 1

18 log 108− 0.00372 . . . , which occurs at
c = 1.71216 . . . .

We now consider (3.3). Proceeding as in the proof for (3.2), we bound
from below

1
2 log c−

1
12 log(c

5 − c2) + 1
128 log

(
z16(P )z4([2](P ))z([4](P ))

)
.

The derivative of this quantity is a rational function of c whose numer-
ator is of degree 66 with leading coefficient 1 and whose denominator is of
degree 67 with leading coefficient 12. The numerator has only one root ≥ 1,
which is 4.21378 . . . , while the denominator has no roots > 1. Therefore, the
minimum value occurs at 4.21378 . . . and is 0.1895 . . . .

(c) We estimate
∞∑
k=0

4−k log |z([2k](P ))|.

We will proceed in a similar way to the proof of (b). We group adjacent
triples of summands together and consider z16(P )z4([2](P ))z([4](P )), which
is a rational function of c whose numerator and denominator are both of
degree 63.

Neither the numerator nor the denominator of the derivative of this ra-
tional function has a root ≥ 1. So this function is decreasing for c ≥ 1. Hence
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it takes its maximum value, 332, at c = 1 and its minimum value is 1, which
is approached from above as c→∞.

Therefore

0 < 1
8

∞∑
k=0

4−k log
(
z([2k](P ))

)
≤ 1

8

∞∑
k=0

log(332)

16 · 64k
= 16

63 log 3 = 1
4 log 3 + 0.0043 . . . ,

so part (c) follows from (3.4) and since max{1, |x(P )|} = |x(P )| here.

3.2. Case b > 0. We use Tate’s series here too. However, for b > 0,
Eb(R) includes the point (0, b1/2), which causes a problem since we require
x([2k](P )) to be bounded away from 0 to ensure that Tate’s series converges.
To get around this, we use an idea of Silverman’s (see [18, p. 340]) and
translate the curve to the right using x′ = x+2b1/3, noting that λ̂∞ is fixed
under such translations. In this way, we obtain the elliptic curve

E′b : y
2 = x3 − 6b1/3x2 + 12b2/3x− 7b,

and every point P ′(x, y) in E′b(R) satisfies x(P ′) ≥ b1/3. Here we have b2 =

−24b1/3, b4 = 24b2/3, b6 = −28b and b8 = 24b4/3. Hence

t(P ′) = 1/x(P ′) and z(P ′) = 1− 24b2/3t(P ′)2 +56bt(P ′)3− 24b4/3t(P ′)4.

We could take the same approach here as in the proof of [24, Lemma 3.4].
However, there is a significant complication. Whereas in [24], for x(P ′) =
(1 + ε)

√
a, we have

λ̂∞(P ′)−
{
1
4 log a−

1
12 log |∆(Ea)|

}
= O(ε),

here we find that for x(P ′) = 2(1 + ε)b1/3,

λ̂∞(P ′)−
{
1
6 log b+

1
3 log 2−

1
12 log |∆(Eb)|

}
= O(ε2),

so we would need to proceed much more carefully. We have done so in an
earlier version of this paper. Here we take a more direct, although more
computational, approach and instead work with the actual expressions in
the first terms of Tate’s series. The cost is a small additional constant term.

Despite this change in approach from earlier versions, the following result
may still be of interest to readers.

Lemma 3.2. Suppose b ∈ R is positive and P ′ ∈ E′b(R) where x(P ′) =

2(1 + ε)b1/3.

(a) For −0.1745 ≤ ε ≤ 0.6,

log |x(P ′)4z(P ′)| ≥ log(8b4/3)− 2ε− 2ε2 + 16
3 ε

3 + 9.7ε4.
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(b) Suppose k is a positive integer and −0.379 ≤ (−2)k−1ε ≤ 1.044. Then∣∣∣∣x([2k](P ′))2b1/3
− {1 + (−2)kε+ ((−2)4k − (−2)k)ε4}

∣∣∣∣ ≤ 2 · 27k|ε|7.

(c) If k is a positive integer and −1.0 ≤ (−2)kε ≤ 0.36, then

log
(
z([2k](P ′))

)
≥ −log 2− 6(−2)kε+ 4(−2)3kε3

+
(
9(−2)4k + 6(−2)k

)
ε4 + (144/5)(−2)5kε5.

Proof. These are parts (a), (b) and (d) of Lemma 3.2 in the first arXiv
version of this paper (arXiv:1305.6560v1).

Lemma 3.3. Suppose b ∈ R is positive and P ′ ∈ E′b(R) is a point of
infinite order. If K is a nonnegative integer, then

(3.6) −1.8 · 4−K <
∞∑

k=K

4−k log
(
z([2k](P ′))

)
< 2.24 · 4−K .

Remark. These bounds are close to best possible. The best possible
constants appear to be −1.7835 . . . when x(P ′) is near 2.9399 . . . · b1/3, and
log 9 = 2.197 . . . as x(P ′) approaches b1/3.

Proof of Lemma 3.3. We write x(P ′) = 2(1+ε)b1/3, noting that ε ≥ −0.5.
We will group adjacent triples of summands together and consider

f16(ε) = z16(P ′)z4([2](P ′))z([4](P ′)),

which is a rational function of ε whose numerator and denominator are both
of degree 64.

For ε ≥ −0.5, the numerator of the derivative of f16(ε) has just one
root, ε = 0.41859 . . . . The denominator of the derivative is 262144(1 + ε)65

and is positive for ε ≥ −0.5. So f16(ε) is decreasing in the interval −0.5 ≤
ε ≤ 0.41859 . . . and increases towards 1 for larger ε. Hence f16(ε) takes its
maximum value 332 at ε = −0.5 and its minimum value 5.182 . . . · 10−13 at
ε = 0.41859 . . . .

Therefore

−1.8 · 4−K < 4−K
∞∑
k=0

log(5.182 . . . · 10−13)
16 · 64k

<

∞∑
k=K

4−k log
(
z([2k](P ′))

)
< 4−K

∞∑
k=0

log(332)

16 · 64k
< 2.24 · 4−K .

Lemma 3.4. Let b ∈ R be positive and let P ∈ Eb(R) be a point of infinite
order.
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(a) We have

(3.7) λ̂∞(P ) > −1
4 log 3− 0.006

= 1
6 log |b|+

1
3 log 2− 0.006− 1

12 log |∆(Eb)|.

(b) Suppose that x(P ) = c|b|1/3 with c > −1 and c 6= 0. Then

(3.8) λ̂∞(P ) > 1
3 log |c| −

1
3 log 2− 0.004

= 1
6 log |b|+

1
3 log |c|+

1
4 log 3− 0.004− 1

12 log |∆(Eb)|,
(3.9) λ̂∞(P ) > 1

12 log(c
5 + c2)− 1

12 log 432 + 0.188

= 1
6 log |b|+

1
12 log(c

5 + c2) + 0.188− 1
12 log |∆(Eb)|.

(c) For b ≥ 2,

− 1
6 log b−

1
3 log 2− 0.007− 0.076b−1/3

<
(
1
2 logmax{1, |x(P )|} − 1

12 log |∆(Eb)|
)
− λ̂∞(P ) < 0.004.

Remark. As in Lemma 3.1, we have expressed the bounds in parts (a)
and (b) both with and without the 1

12 log |∆(Eb)| term.
All of the bounds are either best possible or within at most 0.007 of the

best possible results.
For (3.7), our proof shows that the −0.006 term is not required if x(P ′) =

2(1+ ε)b1/3 with ε ≤ −0.033 or ε ≥ 0.128. It is only for ε approaching 0 that
a more careful analysis is required to eliminate this term. Likewise, the small
constant terms in the other inequalities are only required for small intervals
around the location of the minimal value.

As in Lemma 3.1, the actual dependence of λ̂∞(P ) on c as c → ∞ is
1
2 log c, but the lower bounds in (3.8) and (3.9) allow us to obtain nearly
best possible lower bounds for the canonical height.

Lastly, in part (c), it appears that the correct lower order term isO(b−2/3),
not O(b−1/3).

Proof of Lemma 3.4. (a) Write x(P ′) = 2(1+ ε)b1/3 where ε ≥ −0.5 (i.e.,
we use the point where λ̂∞(P ′) takes its minimum value as the centre).

We proceed in a similar way to the proof of Lemma 3.3 and consider
f64(ε) = x(P ′)64z(P ′)16z([2](P ′))4z([4](P ′))/b64/3. This is a polynomial in ε
of degree 64.

The derivative of f64(ε) has two roots ≥ −0.5, one at ε = −0.48899 . . .
and the second at ε = 0.07196 . . . . The former is a local maximum, while
the latter is a local minimum. We find that

λ̂∞(P ′)− 1
6 log |b|+

1
12 log |∆(E)| > log(f64(ε))

8 · 42
− 1.8

8 · 43
− 1

3 log 2 = −0.0056 . . .
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(the second term coming from Lemma 3.3 with K = 3), and the desired
inequality follows.

(b) We apply (3.4) with P ′ rather than P , where x(P ′) = (c + 2)|b|1/3
with c ≥ −1, and the lower bound in Lemma 3.3 with K = 3. We have

λ̂∞(P ′) ≥ 1
6 log |b|+

1
2 log(c+ 2)− 1.8

512
− 1

12 log |∆(E)|(3.10)

+ 1
128 log

(
z16(P ′)z4([2](P ′))z([4](P ′))

)
.

For (3.8), we proceed similarly, using (3.10), and bound from below
1
2 log(c+ 2)− 1

3 log c+
1

128 log
(
z16(P ′)z4([2](P ′))z([4](P ′))

)
.

The derivative of this quantity is a rational function of c whose numerator
is of degree 64 with leading coefficient 1 and whose denominator is of degree
65 with leading coefficient 6. The numerator has only one positive root,
which is 1.71508 . . . , while the denominator has no such roots. Therefore,
the minimum value occurs at c = 1.71508 . . . and is 1

4 log 3 − 0.00029 . . . ,
establishing (3.8) for c > 0.

For −1 ≤ c < 0, we proceed in the same way, but bound from below
1
2 log(c+ 2)− 1

3 log(−c) +
1

128 log
(
z16(P ′)z4([2](P ′))z([4](P ′))

)
.

For (3.9), we again proceed similarly using (3.10), and here bound from
below

1
2 log(c+ 2)− 1

12 log(c
5 + c2) + 1

128 log
(
z16(P ′)z4([2](P ′))z([4](P ′))

)
.

Using the derivative of this quantity, we find that its minimum value
occurs at c = 3.6038 . . . and is 0.1880 . . . .

(c) We handle separately the cases of |x(P )| > 1 and |x(P )| ≤ 1. In both,
we write x(P ) = cb1/3 and consider

log
x(P ′)64z(P ′)16z([2](P ′))4z([4](P ′))

max{1, |x(P )|}64
.

So for |x(P )| ≤ 1, we consider

g64(c) = x(P ′)64z(P ′)16z([2](P ′))4z([4](P ′)).

This is b64/3 times a polynomial in c of degree 64 with integer coefficients. For
c ≥ −1, g64(c) has roots at c = −0.9779 . . . and c = 0.1439 . . . . The former
is a local maximum, while the latter is a local minimum. The value of g64(c)
at this local minimum is 5.28 . . . · 1012b64/3. Note that the local maximum
corresponds to |x(P )| ≤ 1 only if b < 1.069 . . . , while the same holds for
the local minimum for b < 335.59 . . . . So for 1.069 . . . < b < 335.59 . . . ,
g64(c) decreases from x(P ) = −1 to x(P ) = 0.1439 . . . · b1/3 (where its value
is greater than 1) and then increases to x(P ) = 1. For b > 335.59 . . . , g64(c) is
decreasing for x(P ) ∈ [−1, 1].
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Now we must examine the values of g64(c) corresponding to x(P ) =
±1. At x(P ) = −1, we have g64(c) = 243b64/3 + 4 · 243b63/3 − 48 · 243b61/3
+ · · · , and we find that for b ≥ 18.5, g64(c)− 243b64/3 < 245b63/3, so

log(g64(c)) < log(243b64/3) + 4b−1/3,

since log(1 + x) < x for x > 0.
By considering the extrema found via calculus, we find that

log(g64(c)) < log(243b64/3) + 9.7b−1/3

for 2 ≤ b ≤ 18.5 too.
At x(P ) = 1, we have g64(c) = 243b64/3−4·243b63/3+48·243b61/3+· · · and

we proceed in the same way to show log(g64(c)) < log(243b64/3) + 9.7b−1/3

for b ≥ 2 here too. Furthermore, g64(c) > 1 for such b as well.
Therefore,

0 < log(g64(c)) <
64
3 log b+ 43 log 2 + 9.7b−1/3.

Now we consider the case |x(P )| ≥ 1 and

x(P ′)64z(P ′)16z([2](P ′))4z([4](P ′))

|x(P )|64
,

which is a rational function of c. The numerator of the derivative of this
rational function is of degree 63, has −128 as its leading coefficient and no
roots ≥ −1, while the denominator is of degree 65, has 1 as its leading
coefficient and only has a root at c = 0. Therefore, the rational function is
increasing for −1 ≤ c < 0 and decreasing for c > 0. Combining this with the
above results for x(P ) = ±1 establishes

0 < log
x(P ′)64z(P ′)16z([2](P ′))4z([4](P ′))

max{1, |x(P )|}64

< 64
3 log b+ 43 log 2 + 9.7b−1/3

for b ≥ 2.
Applying this to our expression for λ̂∞(P ′) in (3.4), we obtain

1
6 log b−

43
128 log 2 + 0.076b−1/3

<
(
1
2 logmax{1, |x(P )|}+ 1

8

∞∑
k=3

4−k log |z([2k](P ′))| − 1
12 log |∆(Eb)|

)
− λ̂∞(P ′) < 0.

Using Lemma 3.3 with K = 3, we find that

−1
6 log b−

1
3 log 2− 0.007− 0.076b−1/3

<
(
1
2 logmax{1, |x(P )|} − 1

12 log |∆(Eb)|
)
− λ̂∞(P ′) < 0.004.
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Part (c) now follows upon recalling that λ̂∞ is fixed under translation,
so the same inequalities also hold for λ̂∞(P ).

4. Nonarchimedean estimates

4.1. Nonarchimedean estimates for qv > 3

Lemma 4.1. Let v be a nonarchimedean valuation on Q associated with
a prime number qv > 3, and let b be an integer such that q6v - b. The Kodaira
types and Tamagawa indices of Eb at v are as in Table 1.

Table 1. Eb reduction information for qv > 3

b Kodaira type cv

ordqv(b) = 0 I0 1

ordqv(b) = 1 II 1

ordqv(b) = 2

b/q2v a quadratic residue modulo qv IV 3

ordqv(b) = 2

b/q2v a quadratic nonresidue modulo qv IV 1

ordqv(b) = 3, qv ≡ 1 mod 6

b/q3v a cubic nonresidue modulo qv I∗0 1

ordqv(b) = 3, qv ≡ 5 mod 6 I∗0 2

ordqv(b) = 3, qv ≡ 1 mod 6

b/q3v a cubic residue modulo qv I∗0 4

ordqv(b) = 4

b/q4v a quadratic residue modulo qv IV∗ 3

ordqv(b) = 4

b/q4v a quadratic nonresidue modulo qv IV∗ 1

ordqv(b) = 5 II∗ 1

Proof. We use Tate’s algorithm with K = Qv (using the steps and nota-
tion in Silverman’s presentation of Tate’s algorithm in [20, Section IV.9]).

Step 1. This step applies when ordqv(∆(Eb)) = 0. Since ∆(Eb) =
−432b2 and 432 = 2433, the reduction type is I0 at v when ordqv(b) = 0.

Step 2. We have ordqv(∆(Eb))>0. The singular point, P =(x(P ), y(P )),
is already at (0, 0) since ordqv(2y(P )), ordqv(3x(P )) > 0 implies that we have
ordqv(x(P )) > 0 too, so no change of variables is needed. Therefore, b2 = 0
and hence ordqv(b2) > 0. Thus Step 2 does not apply.

Step 3. Since a6 = b, if ordqv(b) = 1, then the reduction type is II.
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Step 4. We may now assume that ordqv(b) ≥ 2. Note that b6 = 4b and
b8 = 0. Hence ordqv(b8) ≥ 3 and so Step 4 cannot apply.

Step 5. If ordqv(b) = 2, then the reduction type is IV. If b/q2v is a
quadratic residue modulo qv, then cv = 3. Otherwise, cv = 1.

Step 6. We write P (T ) = T 3+ b/q3v , since a2 = a4 = 0. Its discriminant
is −27b2/q6v . If ordqv(b) = 3, then the discriminant is not zero modulo qv and
the reduction type is I∗0.

If −b/q3v is a cubic residue modulo qv, then P (T ) has at least one root
in k. Since −1 is always a cubic residue, this condition is equivalent to b/q3v
being a cubic residue modulo qv, so we will always consider b/q3v instead
in what follows. Note that if −3 is a quadratic residue modulo qv (that is,
qv ≡ 1 mod 6), then P (T ) has three roots in k and cv = 4, otherwise (that
is, qv ≡ 5 mod 6) it only has one root in k and cv = 2.

If b/q3v is not a cubic residue modulo qv, then cv = 1. It is an easy
consequence of Fermat’s little theorem that this is only possible for qv ≡
1 mod 6.

Step 7. Here we assume that P (T ) has one simple root and one double
root. But the third roots of unity are distinct, since qv > 3, so this is not
possible.

Step 8. Again, since the third roots of unity are distinct, this can only
occur if the triple root of P (T ) is zero. That is, ordqv(b) > 3. So we consider
the polynomial Y 2 − b/q4v . It has distinct roots if and only if ordqv(b) = 4.

If ordqv(b) = 4 and b/q4v is a quadratic residue modulo qv, then the
reduction type is IV∗ and cv = 3. If ordqv(b) = 4 and b/q4v is a nonquadratic
residue modulo qv, then the reduction type is IV∗ and cv = 1.

Step 9. Since a4 = 0, this step does not apply.

Step 10. This is the last remaining case if b is sixth-power-free. Here
the reduction type is II∗.

This completes the proof of Lemma 4.1.

Lemma 4.2. Let v be a nonarchimedean valuation on Q associated with
a prime number qv > 3, and let b be an integer such that q6v - b.

(a) P ∈ Eb(Qv) has singular reduction if and only if

ordqv(x(P )), ordqv(y(P )) > 0.
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(b) For any P ∈ Eb(Qv) \ {O},

(4.1) λ̂v(P ) =
1
2 logmax{1, |x(P )|v} − 1

12 log |∆(Eb)|v

−



1
3 log qv if ordqv(x(P )) > 0, ordqv(b) = 2 and

b/q2v is a quadratic residue modulo qv,
1
2 log qv if ordqv(x(P )) > 0, ordqv(b) = 3 and

b/q3v is a cubic residue modulo qv,
2
3 log qv if ordqv(x(P )) > 0, ordqv(b) = 4 and

b/q4v is a quadratic residue modulo qv,
0 otherwise.

Proof. (a) We require ordqv(3x(P )2)=2 ordqv(x(P ))>0 and ordqv(2y(P ))
= ordqv(y(P )) > 0.

(b) This follows from our results in Lemma 4.1 along with [2, Proposi-
tion 6, Table 2, and equation (11)].

4.2. Nonarchimedean estimates for qv = 3

Lemma 4.3. Let b be an integer and suppose that 36 - b. The Kodaira
types and Tamagawa indices of Eb at 3 are as in Table 2.

Table 2. Eb reduction information for qv = 3

b Kodaira type c3

2, 3, 4, 5, 6, 7 mod 9 II 1

1, 8 mod 9 III 2

9 mod 27 IV 3

18 mod 27 IV 1

54, 81, 108 mod 243 IV∗ 3

135, 162, 189 mod 243 IV∗ 1

27, 216 mod 243 III∗ 2

0 mod 243 II∗ 1

Proof. As in the proof of the previous lemma, Tate’s algorithm is used
here. But we do not provide all the details. The conservative reader is re-
ferred to an earlier version of this paper, arXiv:1305.6560v2, which contains
the full exposition. Also, since Q∗3/Q∗63 is a finite group of small size, the
reader can verify this lemma using an implementation of Tate’s algorithm
like elllocalred in PARI.

Lemma 4.4. Let b be an integer and suppose that 36 - b.
(a) P ∈ Eb(Q3) has singular reduction if and only if ord3(x(P )+ b) > 0.
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(b) For any P ∈ Eb(Q3) \ {O},

(4.2) λ̂3(P ) =
1
2 logmax{1, |x(P )|3} − 1

12 log |∆(Eb)|3

−



1
4 log 3 if b ≡ 1, 8 mod 9 and ord3(x(P ) + b) > 0,
1
3 log 3 if b ≡ 9 mod 27 and ord3(x(P )) > 0,
2
3 log 3 if b ≡ 54, 81, 108 mod 243 and ord3(x(P )) > 0,
3
4 log 3 if b ≡ 27, 216 mod 243 and ord3(x(P )) > 0,
0 otherwise.

Proof. (a) We require ord3(3x(P )
2) > 0 and ord3(2y(P )) = ord3(y(P ))

> 0, so ord3(x(P )
3 + b) > 0.

Writing x(P ) = xn/xd, we have x(P )3 + b = (x3n + bx3d)/x
3
d. Since x

3 ≡
x mod 3 for all x, we see that x3n + bx3d ≡ xn + bxd mod 3, and therefore
ord3(x(P )

3 + b) > 0 if and only if ord3(x(P ) + b) > 0.
(b) This follows from Lemma 4.3, along with [2, Proposition 6 and equa-

tion (11)].

4.3. Nonarchimedean estimates for qv = 2

Lemma 4.5. Let b be an integer with 26 - b. The Kodaira types and
Tamagawa indices of Eb at 2 are as in Table 3.

Table 3. Eb reduction information for qv = 2

b Kodaira type c2

16 mod 64 − 1

2, 3 mod 4 II 1

5 mod 8 IV 1

1 mod 8 IV 3

8, 12 mod 16 I∗0 2

4 mod 32 IV∗ 3

20 mod 32 IV∗ 1

32, 48 mod 64 II∗ 1

Remark. For b ≡ 16 mod 64, the minimal model is given by y2 + y =
x3 + (b− 16)/64 and its Kodaira type is I0.

Proof of Lemma 4.5. As above, we apply Tate’s algorithm and refer the
reader to either the earlier version of this paper arXiv:1305.6560v2, or the
use of an implementation of Tate’s algorithm like elllocalred in PARI.

We only add that in Step 9 for b ≡ 16 mod 64 we need to apply the
translation y = y′ + 4, obtaining the curve y2 + 8y = x3 + b − 16. Neither
Step 9 nor Step 10 apply, and in Step 11 we find that our Weierstrass equation
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is not minimal and we obtain a new Weierstrass equation

y′2 + y′ = x′3 + (b− 16)/64.

The discriminant of the latter is −27b2/28. Since this is odd, the reduction
type is I0.

Lemma 4.6. Let b be an integer and suppose that 26 - b.
(a) P ∈ Eb(Q2) has singular reduction if and only if ord2(x(P )) > 0.
(b) For any P ∈ Eb(Q2) \ {O},

(4.3) λ̂2(P ) =
1
2 logmax{1, |x(P )|2} − 1

12 log |∆(Eb)|2

−



1
3 log 2 if b ≡ 1 mod 8 and ord2(x(P )) > 0,
1
2 log 2 if b ≡ 8, 12 mod 16 and ord2(x(P )) > 0,
2
3 log 2 if b ≡ 4 mod 32 and ord2(x(P )) > 0,
log 2 if b ≡ 16 mod 64 and ord2(x(P )) > 0,
0 otherwise.

Remark. Note that for b ≡ 16 mod 64, Eb is not a minimal model.
However, since it arises in several cases, including the Mordell curve y2 =
x3− 432m2 associated with the cubic twists of the Fermat cubic, we include
the result here.

Furthermore, this inclusion allows us to handle all Eb by simply removing
any sixth powers.

Proof of Lemma 4.6. (a) We require ord2(3x(P )
2) = 2 ord2(x(P )) > 0

and ord2(2y(P )) > 0. Since b ∈ Z and ord2(x(P )) > 0, ord2(2y(P )) > 0
always holds. Hence ord2(x(P )) > 0 is a necessary and sufficient condition.

(b) The proof is identical to that for parts (b) of Lemmas 4.2 and 4.4,
unless b ≡ 16 mod 64 when ord2(x(P )) > 0 (in which case P has singular
reduction).

When b ≡ 16 mod 64 and ord2(x(P )) > 0, we will use a minimal model.
From Step 11 in the proof of Lemma 4.5, if P = (x(P ), y(P )) ∈ Eb(Q2),
then Q = (x(P )/4, y(P )/8 − 1/2) ∈ Eb,min(Q2) is defined by y2 + y =
x3 + (b− 16)/64. We observe that Q has nonsingular reduction and so

λ̂2(P ) = λ̂2(Q) = 1
2 logmax{1, |x(P )/4|2} − 1

12 log |∆(Eb,min)|2
= 1

2 logmax{1, |x(P )|2} − 1
12 log |∆(Eb)|2 − log 2,

since ord2(x(P )) > 0 implies ord2(x(P )) ≥ 2 (because ord2(b) = 4) and
∆(Eb,min) = ∆(Eb)/2

12.

4.4. Contributions from p = 2 and 3. It will be useful for the proofs
of our theorems to collect the information required for the contributions from
p = 2 and p = 3. We do so in Tables 4 and 5.
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Below, C3,2 and C3,3 are the reciprocals of the exponentials of the quan-
tities from Lemmas 4.4(b) and 4.6(b) above.

For a point P ∈ Eb(Q), we have C4,p = pmax(0,ordp(x(P ))). Similarly, C5,p =
pmax(0,2 ordp(y(P ))) and C6,p = pmax(0,− ordp(x(2P ))). Our computations showed
that C6,3 = 1 is possible for each entry in our table below, so we leave it out
and write C6 for C6,2.

Letting ord2(b) = k and ord3(b) = `, we set C7,2 = C3,2/2
k/6 and C7,3 =

C3,3/3
`/6.

We define C3 = C3,2C3,3, C4 = C4,2C4,3, C5 = C5,2C5,3 and C7 =
C7,2C7,3.

In the tables below, the values of C3,p, C4,p and C5,p are expressed as
(v1 : v2), where v1 is the minimum possible value when x(P ) has good
reduction modulo p and under the conditions on b, while v2 is the minimum
possible value when x(P ) has singular reduction modulo p and under the
conditions on b. A “−” indicates that the given case is not possible.

Table 4. Quantities for p = 2

b C3,2 C4,2 C5,2 C6,2 C7,2

1 mod 8 (1 : 21/3) (1 : 2) (1 : 1) (16 : 1) (1 : 21/3)

8 mod 16 (1 : 21/2) (1 : 2) (1 : 16) (4 : 4) (2−1/2 : 1)

12 mod 16 (1 : 21/2) (1 : 2) (1 : 4) (4 : 1) (2−1/3 : 21/6)

4 mod 32 (1 : 22/3) (1 : 4) (1 : 4) (4 : 1) (2−1/3 : 21/3)

16 mod 64 (1 : 2) (1 : 4) (1 : 16) (4 : 1) (2−2/3 : 21/3)

32 mod 64 (1 : −) (1 : −) (1 : −) (4 : −) (2−5/6 : −)

48 mod 64 (1 : −) (1 : −) (1 : −) (4 : −) (2−2/3 : −)

20 mod 32 (1 : −) (1 : −) (1 : −) (4 : −) (2−1/3 : −)

2 mod 4 (1 : −) (1 : −) (1 : −) (4 : −) (2−1/6 : −)

3, 5, 7 mod 8 (1 : −) (1 : −) (4 : −) (16 : −) (1 : −)

The values of C4,p, C5,p and C6,2 are obtained by computation. Using
PARI, we calculate these values for each possibility modulo p6 of x(P )
= α/δ2, where α and δ are relatively prime integers, and b modulo p6.

4.5. Global minimal Weierstrass equation for Eb/Q. Putting to-
gether the information we obtained from Tate’s algorithm in the above three
subsections, we obtain the following result.

Lemma 4.7. Let b1 be the sixth-power-free part of b. If b1 ≡ 16 mod 64,
then a global minimal Weierstrass equation for Eb/Q is

y2 + y = x3 + (b1 − 16)/64.

Otherwise, a global minimal Weierstrass equation for Eb/Q is
y2 = x3 + b1.
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Table 5. Quantities for p = 3

b C3,3 C4,3 C5,3 C7,3

1, 8 mod 9 (1 : 31/4) (1 : 1) (1, 9) (1 : 31/4)

9 mod 27 (1 : 31/3) (1 : 3) (1, 9) (3−1/3 : 1)

54, 108 mod 243 (1 : 32/3) (1 : 3) (1, 81) (3−1/2 : 31/6)

81 mod 243 (1 : 32/3) (1 : 9) (1, 81) (3−2/3 : 1)

27, 216 mod 243 (1 : 33/4) (1 : 3) (1, 729) (3−1/2 : 31/4)

243, 486 mod 729 (1 : −) (1 : −) (1 : −) (3−5/6 : −)

162 mod 243 (1,−) (1 : −) (1 : −) (3−2/3 : −)

135, 189 mod 243 (1,−) (1 : −) (1 : −) (3−1/2 : −)

18 mod 27 (1,−) (1 : −) (1 : −) (3−1/3 : −)

3, 6 mod 9 (1,−) (1 : −) (1 : −) (3−1/6 : −)

2, 4, 5, 7 mod 9 (1,−) (1 : −) (1 : −) (1 : −)

5. Proof of Theorem 1.2

5.1. Proof of part (a) (cp = 1). We compute the canonical height by
summing local heights.

From Lemma 4.1 and our hypotheses, P has nonsingular reduction for
all P ∈ Eb(Qv) and all primes qv > 3. Hence we can apply Lemma 4.2(b)
for these primes. Combining this with Lemmas 4.4(b) and 4.6(b) gives

(5.1)
∑
v 6=∞

λ̂v(P ) ≥ −logC3 +
1
12 log |∆(Eb)|.

Case b < 0. Adding (5.1) to the lower bound obtained from (3.1) for
λ̂∞(P ), we get

(5.2) ĥ(P ) > 1
6 log |b| − logC3 +

1
4 log 3.

From Tables 4 and 5, we see that the minimum value of C3 is 2 · 33/4, which
occurs when b ≡ 16 mod 64 and b ≡ 27, 216 mod 243.

Case b > 0. Adding (5.1) to the lower bound from (3.7) for λ̂∞(P ), we
obtain

(5.3) ĥ(P ) > 1
6 log |b| − logC3 +

1
3 log 2− 0.006.

5.2. Proof of part (b) (cp | 4). Again, we compute the canonical height
by summing local heights.

From Lemma 4.1 and our hypotheses, [2]P has nonsingular reduction for
all P ∈ Eb(Qv) and all primes qv > 3. Hence we can apply Lemma 4.2(b) for
these primes. Combining this with Lemmas 4.4(b) and 4.6(b), and writing
x([2]P ) = α/δ2 as a fraction in lowest terms with δ > 0, gives the inequality
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v 6=∞

λ̂v([2](P )) ≥ log δ − logC ′3 +
1
12 log |∆(Eb)|(5.4)

≥ 1
2 logC6 − logC ′3 +

1
12 log |∆(Eb)|,

where C ′3 is the value of C3 for [2]P (not P ). These values can be different
since c3 = 2 for b ≡ 1, 8 mod 9 and b ≡ 27, 216 mod 243, so all points have
nonsingular reduction, and c2 = 2 for b ≡ 8, 12 mod 16, so again all points
have nonsingular reduction.

Note that the worst cases occur for b ≡ 54, 81, 108 mod 243 and b ≡
16 mod 64, when C ′3/C

1/2
6 = 2 · 32/3.

Case b < 0. Adding (5.4) to the lower bound obtained from (3.1) for
λ̂∞([2](P )) and using ĥ([2](P )) = 4ĥ(P ), we get

(5.5) ĥ(P ) > 1
24 log |b|+

1
8 logC6 − 1

4 logC
′
3 +

1
16 log 3.

In the worst cases, C ′1/43 /(C
1/8
6 · 31/16) = 21/4 · 35/48, Theorem 1.2(b) imme-

diately follows.

Case b > 0. Adding (5.4) to the lower bound from (3.7) for λ̂∞([2](P ))

and using ĥ([2](P )) = 4ĥ(P ), we obtain

(5.6) ĥ(P ) > 1
24 log |b|+

1
8 logC6 − 1

4 logC
′
3 +

1
12 log 2− 0.002.

Here in the worst cases, C ′1/43 /(C
1/8
6 · 31/16) = 21/6 · 31/6, completing the

proof of Theorem 1.2(b).

5.3. Proof of part (d) (cp | 12). We prove part (d) first as we can then
use simplified versions of some of the statements here in the proof of part (c).

Write b = 2k3`q22q
3
3q

4
4q where q2 is the product of all distinct primes

p ≥ 5 with ordp(b) = 2, ordp(x(P )) > 0 and b/p2 a quadratic residue
modulo p; q3 is the product of all distinct primes p ≥ 5 with ordp(b) = 3,
ordp(x(P )) > 0 and b/p3 a cubic residue modulo p; q4 is the product of
all distinct primes p ≥ 5 with ordp(b) = 4, ordp(x(P )) > 0 and b/p4 a
quadratic residue modulo p; and q denotes the remaining divisors of b with
gcd(6q2q3q4, q) = 1. We set Q2 = q2q

2
4.

Notice that if a prime p is a divisor of q4 and ordp(x(P )) > 0, then, in fact,
ordp(x(P )) ≥ 2. Otherwise, if p is a prime dividing q4 with ordp(x(P )) = 1,
then ordp(x(P )

3 + b) = 3, but it must be even (since it equals ordp(y(P )2)).
Similarly, if k ≥ 4 or ` ≥ 4, then ord2(x(P )) ≥ 2 or ord3(x(P )) ≥ 2,
respectively.

Writing x(P ) = α/δ2 with α and δ > 0 relatively prime integers (see, for
example, [21, §III.2]), we have

(5.7) (C4q
′
2q
′
3q
′2
4 ) |α,

where C4 is as above, q′2 | q2, q′3 | q3 and q′4 | q4. We set Q′2 = q′2q
′2
4 , noting that

Q′2 |Q2. So we can write α = C4Q
′
2q
′
3q
′ for an integer q′.
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We write x(P ) = c|b|1/3 for c ≥ −1; combining this with (5.7), we find
that C4Q

′
2q
′
3 ≤ c|b|1/3δ2. That is,

(5.8) Q′22 q
′2
3 ≤ c2|b|2/3δ4/C2

4 .

Since x(P )3 + b = (C4q
′Q′2q

′
3/δ

2)3 + 2k3`qQ2
2q

3
3 is a perfect square, so is

q′3

(
C3
4q
′3Q′2 + 2k3`q

(
Q2q3
Q′2q

′
3

)2

(q3/q
′
3)δ

6

)
= q′3Q

′.

Since gcd(6, q′3) = 1, it must be the case that q′3 divides Q′/C5. Thus

q′3 ≤
(
C3
4q
′3Q′2 + 2k3`q

(
Q2q3
Q′2q

′
3

)2

(q3/q
′
3)δ

6

)
/C5.

Substituting q′ = c|b|1/3δ2/(C4Q
′
2q
′
3) and our expression for b into this

upper bound for q′3, we have

(5.9) q′3 ≤ 2k3`|q|δ6(c3 + sgn(b))/C5.

Combining (5.9) with our expression for b to eliminate q, we obtain

(5.10) Q′22 q
′4
3 ≤

δ6(c3 + sgn(b))

C5
|b|.

So, from (5.8) and (5.10), we have

(5.11) (Q′22 q
′3
3 )

2 ≤ c2δ10(c3 + sgn(b))

C2
4C5

|b|5/3.

From Lemmas 4.2(b), 4.4(b) and 4.6(b), along with (5.7) and (5.11), we
obtain ∑

v 6=∞
λ̂v(P ) ≥ log δ − 1

6 log(Q
′2
2 q
′3
3 )− logC4 +

1
12 log |∆(Eb)|(5.12)

≥ log δ − 1
12 log

(
c2δ10(c3 + sgn(b))|b|5/3/(C2

4C5)
)

− logC3 +
1
12 log |∆(Eb)|.

Case b < 0. Here we have x(P ) = c|b|1/3 for c ≥ 1.
For c > 1, we combine (5.12) with (3.3) of Lemma 3.1 to obtain

ĥ(P ) > 1
6 log |b|+

1
12 log(c

5−c2)+0.1895+log δ(5.13)

− 1
12 log(c

2δ10(c3−1)|b|5/3/(C2
4C5))− logC3+

1
12 log |∆(Eb)|

≥ 1
36 log |b|+

1
12 log(C

2
4C5/C

12
3 )+0.1895,

since δ ≥ 1.
From Tables 4 and 5, the minimum value of C2

4C5/C
12
3 is 2−4 ·3−2, which

can occur for b ≡ 54, 108 mod 243 and b ≡ 16 mod 64.
Note that in Lemma 3.1(b), we exclude c = 1. However, this is a torsion

point, which is excluded from our results (see the argument in the next
section using [6]).
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Case b > 0. Here we have x(P ) = cb1/3 for c ≥ −1.
The argument is identical to that for b < 0, except that we use (3.9) of

Lemma 3.4 rather than (3.3) of Lemma 3.1. Thus

(5.14) ĥ(P ) > 1
36 log |b|+

1
12 log(C

2
4C5/C

12
3 ) + 0.188.

In Lemma 3.4(b), we exclude c = −1 and c = 0. But, as above, these are
torsion points and are not under consideration here.

Hence the theorem holds for b > 0 too.

5.4. Proof of part (c) (cp | 3). We proceed as in the proof of part (d),
using the same notation, except here we have q3 = q′3 = 1. Thus

(5.15)
∑
v 6=∞

λ̂v(P ) ≥ log δ − 1
3 logQ

′
2 − logC3 +

1
12 log |∆(Eb)|

and

(5.16) Q′22 ≤ c2|b|2/3δ4/C2
4 .

Case b < 0. Note that here c ≥ 1.
We combine (5.15) with (3.2) of Lemma 3.1(b) to obtain

ĥ(P ) > 1
6 log |b|+

1
3 log c+

1
18 log 108(5.17)

− 0.004 + log δ − 1
3 logQ

′
2 − logC3.

Now we apply δ ≥ 1 and (5.16) to (5.17), obtaining

ĥ(P ) > 1
6 log |b|+

1
3 log c+

1
18 log 108− 0.004 + log δ − logC3(5.18)

− 1
3 log c−

1
9 log |b| −

2
3 log δ +

1
3 logC4

≥ 1
18 log |b|+

1
18 log 108 +

1
3 log(C4/C

3
3 )− 0.004.

Again, from Tables 4 and 5, the minimum value of C4/C
3
3 is 2−4 · 3−9/2,

which can occur for b ≡ 27, 216 mod 243 and b ≡ 16 mod 64.

Case b > 0. We proceed in the same way as for b < 0, except for using
(3.8) of Lemma 3.4(b), to obtain

(5.19) ĥ(P ) > 1
18 log |b|+

1
12 log 27 +

1
3 log(C4/C

3
3 )− 0.004.

The minimum value of 27C4
4/C

12
3 is 2−4 · 3−2, which can occur for b ≡

27, 216 mod 243 and b ≡ 16 mod 64.
We also record here the analogue of (5.17) which can be useful in many

specific cases:

ĥ(P ) > 1
6 log |b|+

1
3 log c+

1
27 log 27− 0.004(5.20)

+ log δ − 1
3 logQ

′
2 − logC3.
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As in the proof of part (d), where appropriate, the points with c = −1, 0
or 1, correspond to torsion points and are not considered here. Hence part (c)
of Theorem 1.2 holds too.

6. Proof of Theorem 1.3. As in the previous section, write b =
2k3`q22q

3
3q

4
4q and x(P ) = C4q

′
2q
′
3q

2
4q
′. From Lemmas 4.2(b), 4.4(b) and 4.6(b),

along with the definitions of C3 and C7 in Subsection 4.4, we get

0 ≤
∑
v 6=∞

(
1
2 logmax{1, |x(P )|v} − 1

12 log |∆(Eb)|v − λ̂v(P )
)

(6.1)

= 1
3 log |q

′
2|+ 1

2 log |q
′
3|+ 2

3 log |q
′
4| − k

6 log 2−
`
6 log 3 + logC3

≤ 1
6 log |b|+ logC7,

with the upper bound achieved when for every prime p > 3 that divides b,
we are in one of the first three cases of (4.1). That is, |q′| = |q| = 1, q′2 = q2,
q′3 = q3 and q′4 = q4.

If b < 0, then from Lemma 3.1(c) and (6.1),

(6.2) − 1
4 log 3− 0.005 < 1

2h(P )− ĥ(P ) <
1
6 log |b|+ logC7.

Note from Tables 4 and 5 that the maximum value of C7 is 21/3 · 31/4,
which can occur for b ≡ 1 mod 8, 4 mod 32 or 16 mod 64, and b ≡ 1, 8 mod 9
or 27, 216 mod 243.

Now suppose that b ≥ 2; then from Lemma 3.4(c) and (6.1),

(6.3) − 1
6 log |b| −

1
3 log 2− 0.007− 0.076b−1/3

< 1
2h(P )− ĥ(P ) <

1
6 log |b|+ logC7 + 0.004.

For b = 1, Eb(Q) consists only of torsion points, which we consider next
for all b.

From [6] (see also [15, Proposition 6.31]), the torsion group of Eb(Q) is
isomorphic to:

• Z/6Z if b = 1 (the torsion points are (2,±3), (0,±1), (−1, 0), O);
• Z/3Z if b = b21 6= 1 or b = −432 (the torsion points are (0,±b1) and O

in the former case, and (12,±36) and O in the latter);
• Z/2Z if b = b31 6= 1 (the torsion points are (−b1, 0) and O);
• {O} otherwise.

In the first case, 0 ≤ 1
2h(P )− ĥ(P ) ≤

1
2 log 2.

In the second case, when b = b21, h(P ) = ĥ(P ) = 0.
In the second case, when b = −432, 0 ≤ 1

2h(P )− ĥ(P ) ≤
1
2 log 12.

Lastly, in the third case, 0 ≤ 1
2h(P )− ĥ(P ) ≤

1
2 log b1 =

1
6 log b.

So in all these cases, Theorem 1.3 holds as well.
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For the last inequality in the theorem, we observe that for b = ±1, Eb(Q)
contains only the torsion points, so we may assume that |b| ≥ 2.

For b ≤ −2, −1
6 log |b| − 0.299 < −0.41 < −1

4 log 3− 0.005.
For b ≥ 2, −1

3 log 2− 0.007− 0.076/b1/3 = −0.298 . . . , so this inequality
holds.

7. Sharpness of results. For each part of our theorems, we produce
infinite families of pairs of curves and points on those curves demonstrating
that the results, without the small constant “error terms”, are best possi-
ble (excluding Theorem 1.2(d) where our examples are within a very small
constant of what we believe are the best possible results).

7.1. Theorem 1.2(a)

Case b < 0. Set

b = −46656b31 − 93312b21 − 62208b1 − 2160 and P = (36b1 + 24, 108)

where b1 is a positive integer and we let it approach ∞. We find that
x(P )→ |b|1/3 and hence the archimedean height approaches the lower bound
in Lemma 3.1(a). Since b ≡ 16 mod 64 and b ≡ 27 mod 243, such values of
b have the smallest nonarchimedean height functions at both 2 and 3. Fur-
thermore, by our conditions on b in Theorem 1.2(a), our points P have
nonsingular reduction for the other primes.

Case b > 0. Take

b = 46656b21 + 46656b1 + 13392 and P = (−12, 54(4b1 + 2))

where b1 is a positive integer and we let it approach ∞.
For such pairs of curves and points, we find that x(P )/|b|1/3 → 0 as

b1 → ∞, and hence the archimedean height approaches the lower bound in
Lemma 3.4(a). As in the case of b < 0, the required conditions at each of
the primes are satisfied too.

7.2. Theorem 1.2(b)

Case b < 0. Let b1 be an odd positive integer, and define b2 =
[12b31/(3 + 2

√
3)] where [z] is the nearest integer to z. Set

b = −432(12b31 − b2)3(3b2 − 4b31), P =
(
24b1(12b

3
1 − b2), 36(12b31 − b2)2

)
.

Suppose that b1 and b2 are relatively prime and that 26 - b and 36 - b.
For such pairs,

x([2](P )) = 48b1b2 and x([2](P ))3 ≈ 191102976b121 /(3 + 2
√
3)3.

We also find that b=−191102976b121 /(3+2
√
3)3+O(b91). Therefore, x([2](P ))

→ |b|1/3 as b1 →∞ and the lower bound for the archimedean height is sharp.
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Case b > 0. Let b1 be a positive integer, and set

b = 432(162b1 + 31)(6b1 + 1)3 and P = (−72b1 − 12, 108(6b1 + 1)2).

For such pairs, x([2](P )) = 144b1+28, so x([2](P ))/|b|1/3 → 0 as b→∞
and the lower bound for the archimedean height in Lemma 3.4(a) is sharp
as b1 → ∞. As above, the desired conditions on all the primes are satisfied
too (note b ≡ 16 mod 64 and b ≡ 27 mod 243).

7.3. Theorem 1.2(c)

Case b < 0. Let b1 be a positive integer; set b2 = 36b21 + 36b1 + 11,
b = −432(b2 + 6)b22 and P = (12b2, 324(2b1 + 1)b2).

Here x([2n](P )) → 41/3|b|1/3 and z([2n](P )) → 3 as b1 → ∞ for n ≥ 0.
Therefore λ̂∞(P )→ 1

6 log |b|+
1
6 log 12−

1
12 log |∆b|.

Note that b → −432b32, so the sum of the nonarchimedean heights is
−1

9 log |b| −
5
9 log 2 −

5
12 log 3 + 1

12 log |∆b|. Combining this with the above,
we find that

ĥ(P )→ 1
18 log |b| −

2
9 log 2−

1
4 log 3 as b1 →∞.

Case b > 0. Let b1 be a positive integer; set b2 = 24b21 + 24b1 + 5,
b = 216(b2 + 9)b22 and P = (12b2, 324(2b1 + 1)b2).

Here x(P ) → 2b1/3 as b1 → ∞. We translate the point and see that
x(P ′) → 4b1/3. So x(P ′)4z(P ′) → 72b4/3. Furthermore x([2n](P ′)) → 2b1/3

and z([2n](P ′)) → 1/2 for n ≥ 1. Therefore λ̂∞(P ′) → 1
6 log b +

1
8 log 72 −

1
24 log 2−

1
12 log |∆b|.

Note that b → 216b32, so the sum of the nonarchimedean heights is
−1

9 log |b| −
2
3 log 2−

5
12 log 3 +

1
12 log |∆b|. So in this case,

ĥ(P )→ 1
18 log |b| −

1
3 log 2−

1
6 log 3 as b1 →∞.

7.4. Theorem 1.2(d). Here we produce families where the constants
are slightly larger than in the theorem.

Case b < 0. Let k be a positive integer and set b1 = 54k−1, b2 = 720k−1
and b3 = 942k−1. Note that they are relatively prime and none of them are
divisible by 2 or 3. Further, assume that b1 and b3 are square-free and that
b2 is cube-free. Let b = −432b1b22b33 and P = (12b2b3, 36b2b

2
3).

As k increases, x(P )/|b|1/3 approaches (160/3)1/3 = 3.764 . . . . Hence
λ̂∞(P )→ 1

6 log |b|+ 0.74341680776086 . . .− 1
12 log |∆b|.

The sum of the nonarchimedean heights is −1
3 log b2 −

1
2 log b3 − log 2 −

2
3 log 3 +

1
12 log |∆b|. Now

b62 →
28 · 54

3 · 1573
|b| and b63 →

1573

210 · 37 · 52
|b|,
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so we find that

ĥ(P )→ 1
36 log |b| − 0.221457178 . . . as k →∞.

Here the constant is approximately 2 · 10−7 larger than the conjectured
constant. The actual value of b1 required to obtain the constant in the con-
jecture is smaller than we used here. Here we have b1 ≈ (3/40)b2, whereas
for the conjecture we require b1 ≈ 0.074429578933 . . . · b2.

Case b > 0. We proceed just as for b < 0.
Let k be a positive integer, and set b1 = 54k − 1, b2 = 720k + 1 and

b3 = 978k + 1. Note that these numbers are relatively prime and none of
them are divisible by 2 or 3. Further, assume that b1 and b3 are square-free
and b2 is cube-free. Let b = 432b1b

2
2b

3
3 and P = (12b2b3, 36b2b

2
3).

With this family of examples, we obtain

ĥ(P )→ 1
36 log |b| − 0.22252005826 . . . as k →∞.

As for b < 0, the constant here is slightly larger than the conjectured
constant, and for the same reason. Here we require b1 ≈ 0.085629143 . . . · b2.

7.5. Theorem 1.3. Silverman (see [19, Example 2.1]) shows that the
coefficients of the log |b| terms are best possible.

For the upper bound for b < 0, we consider b = −22 · 33 · 53b21 where
b1 = 2160b22 + 1350b2 + 211 and P = (60b1, 1350b1(16b2 + 5)), with the
condition that b1 be cube-free.

For the upper bound for b > 0, we consider

b = b21 and P = (2b1, 3b1(8b2 + 15))

where b1 = (6b2 + 11)(12b2 + 23) and is cube-free.
For the lower bound for b > 0, we consider b = (3b1 + 1)2 + 1 and

P = (−1, 3b1 + 1).
For the lower bound for b < 0, we consider b = 1 − (2b1 + 1)3 and

P = (2b1 + 1, 1).
In the last inequality of the theorem, −0.299 cannot be replaced by any-

thing greater than −0.29228 . . . . Indeed, consider the point [956](−1, 1) on
y2 = x3 + 2 (note that x([956](−1, 1)) = 0.99818 . . .). Taking the archime-
dean height function evaluated at x = 1 for b = 2, we see that −0.29250 . . .
is the smallest possible constant.
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