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Shimura lifting on weak Maass forms

by

Youngju Choie (Pohang) and Subong Lim (Seoul)

1. Introduction. In his famous paper [12], Shimura constructed a map
between modular forms of a half-integral weight and modular forms of an
even integral weight, which is now called the Shimura lifting. This lifting
has played an important role in many areas of modern number theory (for
example, see [11, 14]). An important turning point was understanding it as
a theta lifting. Shintani [13] showed how to construct a lifting from the theta
series associated with an indefinite quadratic form; subsequently, Niwa [10]
studied the Shimura lifting using the theta lifting, and Cipra [7] extended
the Shimura lifting to all positive half-integral weights.

Since the theta lifting is given by integration against a two-variable theta
series, only cusp forms have been used because the integral is not well-defined
for forms which permit bad behavior at the cusps (called “weak forms”). To
solve this problem, Borcherds [1] used the regularized integral introduced
by Harvey and Moore [8] to construct modular forms of integral weight on a
higher-dimensional Hermitian homogeneous domain. After the breakthrough
of Borcherds, many researchers began to study the theta lifting on weak
forms and found interesting applications. Two examples are the work of
Bruinier and Funke [5] on traces of CM values of modular functions and
the recent work of Bruinier and Ono [6] on central values and derivatives of
quadratic twists of weight 2 modular L-functions.

In this note, we use the regularized integral to treat the Shimura lifting
for weak Maass forms of arbitrary positive half-integral weight with arbitrary
eigenvalue that satisfy a certain growth condition at the cusps. The resulting
functions are automorphic with possible singularities on the upper half-
plane H. We also study their convergence regions and singularity types.
Finally, we compute the value of the lifted function on the imaginary axis.
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Let Γ be a congruence subgroup of level N , let k ∈ Z and let χ be a
character modulo N . Assume that 4 |N if k is not an even integer. A weak
Maass form of weight k/2 on Γ is a real analytic function on H with possible
poles at cusps that transforms like a modular form of weight k/2 and is an
eigenfunction of the weight k/2 Laplace operator

∆k/2 := −v2
(
∂2

∂u2
+

∂2

∂v2

)
+
k

2
iv

(
∂

∂u
+ i

∂

∂v

)
,

where u = Re z and v = Im z for z ∈ H. If the eigenvalue λ is zero,
then a weak Maass form is called harmonic. We denote the space of weak
Maass forms of weight k/2 on Γ with eigenvalue λ ∈ C and character χ by
WMFk/2,λ(Γ, χ). Furthermore, let WMF∗k/2,λ(Γ, χ) be the subspace consist-

ing of forms satisfying a certain condition on Fourier coefficients (for the
precise definition see Section 2).

The groups SL2(R) and O(2, 1) form a dual reductive pair in the sense
of Howe [9]. Thus we can consider the theta lifting given by the Siegel theta
function θ(z, w). If k is a positive odd integer and g is a weak Maass form
of weight k/2 on Γ0(4N), then we define

(1.1) Φ(g)(w) :=
�reg
F

∑
α∈Γ0(4N)\SL2(Z)

gα(z)θα(z, w)vk/2
du dv

v2

using the regularized integral, where F denotes the standard fundamental
domain for the action of SL2(Z) on H, and gα(z) = (cz+d)−k/2g

(
az+b
cz+d

)
and

θα(z, w) = (cz + d)−k/2θ
(
az+b
cz+d , w

)
for α =

(
a b
c d

)
∈ SL2(Z). This gives an

extension of the Shimura lifting to weak Maass forms.

Theorem 1.1. Let k be a positive odd integer, let λ ∈ C and let χ be a
character modulo 4N . For a weak Maass form g ∈ WMF∗k/2,λ(Γ0(4N), χ),

the lifted function Φ(g) in (1.1) is a singular weak Maass form of weight k−1
on Γ0(2N) with eigenvalue 4λ and character χ2, and has singularities sup-

ported on
{x2+√x22−x1x3

2Nx3

∣∣ x1, x2, x3 ∈ Z and x22 − x1x3 < 0
}

. In particular,

Φ(g) is harmonic if g is harmonic.

Here, a singular weak Maass form is a function that has all the properties
of a weak Maass form except that it may have singularities on H (for the
precise definition see Section 2). The main part of the proof consists of
analyzing the constant term of the function∑

α∈Γ0(4N)\SL2(Z)

gα(z)θα(z, w).

Furthermore, we determine the singularity type of Φ(g). Let U ⊂ H be an
open subset, and let f and g be functions on a dense open subset of U .
Then we say that f has singularity type g if f − g can be continued to a real
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analytic function on U . For an open subset U of H define

S(U) :=

{
(x1, x2, x3) ∈ Z3

∣∣∣∣ x22 − x1x3 < 0 and
x2 +

√
x22 − x1x3

2Nx3
∈ U

}
.

Then we have the following theorem about the singularity type of Φ(g).

Theorem 1.2. Suppose that k, λ, χ and g are as in Theorem 1.1. If
U ⊂ H is an open subset with compact closure, then the lifted function Φ(g)
has singularity type∑
α∈Γ0(4N)\SL2(Z)

∑
(x1,x2,x3)∈S(U)

ãα(x22 − x1x3, sλ)hα(x, z; k)(−1)−k/4

×
{ (k−3)/2∑

n=0

1

(4π(x22 − x1x3))nn!

(√
π |Λ(x, z)|

2N

)2n−k+1

Γ

(
k − 1

2
− n

)
×

n∏
j=1

[(
sλ −

1

2

)2

−
(
k

4
− j +

1

2

)2]

+
−1

(4π(x22 − x1x3))(k−1)/2
(
k−1
2

)
!

(k−1)/2∏
j=1

[(
sλ −

1

2

)2

−
(
k

4
− j +

1

2

)2]

× log

((√
π

2N
|Λ(x, z)|

)2)}
,

where ãα(n, sλ) is a Fourier coefficient of gα as in (2.1) and sλ is given by
the relation λ = sλ(1 − sλ) + (k2 − 2k)/4 (for the definition of hα(x, z; k)
and Λ(x, z) see Section 3).

On the other hand, using the unfolding method we can compute the
value of the lifted function on the imaginary axis.

Theorem 1.3. Suppose that k, λ, χ and g are as in Theorem 1.1. Let
a(n, sλ) be the Fourier coefficients of g as in (2.1) for γ = I. If k > 1, then

Φ(g)(iv) = C ′
(k−1)/2∑
ν=0

(
(k − 1)/2

ν

)
(2π)−ν

∞�

0

(
a(0, sλ)

(
t2

8π

)sλ−k/4
Hν(0)

+
∑
n6=0

a(n2, sλ)

∣∣∣∣n2t22

∣∣∣∣−k/4Wk/4,sλ−1/2

(
n2t2

2

)
exp

(
−n

2t2

4

)
Hν(tn)

)(
v

t

)1−ν
×

∞∑
m=−∞

χ1(m)m(k−1)/2−ν exp

(
−2π2m2

(
v

t

)2) dt

t

for v > 0, where C ′ = (−1)(k−1)/22−2k+4Nk/4(2π)1/2, Wk,m is the standard
W -Whittaker function and Hν is the Hermite polynomial given by Hν(x) =
(−1)ν exp(x2/2) dν

dxν exp(−x2/2) for ν ∈ Z≥0.
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This result is comparable to [7, Theorem 2.12], which gives the Fourier
expansion of the lifted function when g is a holomorphic modular form.
In our case, since the lifted function is not holomorphic and the Fourier
coefficients of weak Maass forms do not give an L-function, we cannot deduce
the Fourier expansion from this result. But if we assume that λ = 0, then
one can see that only the holomorphic part of g appears (for the definition
of holomorphic part, see [4]). This suggests that the Fourier expansion of
the lifted function is completely determined by the holomorphic part of g.

The remainder of the paper is organized as follows. In Section 2, we
review the basic notions of a weak Maass form and a theta kernel studied
by Shintani [13] and Cipra [7], and explain how to regularize integrals. We
also define theta liftings for weak Maass forms in the sense of Borcherds [1].
In Section 3 we prove Theorems 1.1–1.3.

2. Review of basic material

2.1. Weak Maass forms. Let k be an integer. For z and w in H we
will often use without further explanation u = Re z, v = Im z, ξ = Rew,
and η = Imw. Let

j(γ, z) = ε−1d

(
c

d

)
(cz + d)1/2 for γ =

(
a b

c d

)
∈ Γ0(4),

where εd = 1 or i as d ≡ 1 or 3 (mod 4), and
(
c
d

)
is the quadratic residue

symbol as defined in [12]. We have a slash operator defined by

(f |k/2γ)(z) :=

{
(cz + d)−k/2f(γz) if k is even and γ =

(
a b
c d

)
∈ SL2(Z),

j(γ, z)−kf(γz) if k is odd and γ ∈ Γ0(4).

Now we introduce the definition of a weak Maass form.

Definition 2.1. Let Γ be a congruence subgroup of level N and χ a
character modulo N . A singular weak Maass form of weight k/2 on Γ with
eigenvalue λ ∈ C and character χ is a real analytic function f : H→ C with
possible singularities satisfying

(1) f |k/2γ = χ(d)f for all γ =
(
a b
c d

)
∈ Γ ,

(2) ∆k/2f = λf , and

(3) (f |k/2γ)(z) = O(vδ) as v → ∞, uniformly in u for all γ ∈ SL2(Z),
for some fixed real δ > 0.

We denote by WMFsk/2,λ(Γ, χ) the space of such forms. If f does not have
singularities on H, it is called a weak Maass form, and the space of weak
Maass forms is denoted by WMFk/2,λ(Γ, χ). When Γ = Γ0(N) for a positive
integer N , the Fourier expansion of a weak Maass form f ∈WMFk/2,λ(Γ, χ)
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at the cusp corresponding to γ ∈ SL2(Z) is given by

(2.1) (fγ)(z) = ãγ(0, sλ)v1−sλ−k/4 + aγ(0, sλ)vsλ−k/4

+
∑

−nγ≤n≤mγ
n∈Z\{0}

ãγ(n/N, sλ)|4πnv/N |−k/4W− sgn(n)k/4,sλ−1/2(−4π|n|v/N)

× exp(2πinu/N)

+
∑

n∈Z\{0}

aγ(n/N, sλ)|4πnv/N |−k/4Wsgn(n)k/4,sλ−1/2(4π|n|v/N)

× exp(2πinu/N),

where mγ , nγ > 0 and λ = sλ(1− sλ) + (k2 − 4k)/16 (for example, see [2]).
Here, for t ∈ R we denote by Wk/2,m(t) and W−k/2,m(−t) the standard
W -Whittaker functions, which can be distinguished by their asymptotic
behavior

|W±k/2,m(±t)| = exp(∓t/2)|t|±k/2(1 +O(t−1))

as |t| → ∞. It is also known that aγ(n, sλ) = O(exp(δ
√
n)) for some

δ > 0 (see [3, 4]). In the case γ = I, we abbreviate ã(n, sλ) = ãγ(n, sλ)
and a(n, sλ) = aγ(n, sλ). We denote by WMF∗k/2,λ(Γ, χ) the subspace of

WMFk/2,λ(Γ, χ) which consists of f such that ãγ(n, sλ) = 0 for n ≥ 0.

2.2. Indefinite theta series. In this subsection, we recall the definition
of the Weil representation following the discussion in [7], and explain how to
construct a theta series using the Weil representation. Let Q be a rational
symmetric matrix of signature (p, q) with p+q = n. For x, y ∈ Rn we have an
inner product defined by 〈x, y〉 := txQy. Let S(Rn) be the space of Schwartz
functions on Rn. For a matrix γ =

(
a b
c d

)
∈ SL2(R) and a Schwartz function

f ∈ S(Rn), the Weil representation is defined by

(r(γ,Q)f)(x)

=


|a|n/2e

(
ab

2
〈x, x〉

)
f(ax) if c = 0,

|detQ|1/2|c|−n/2
�

Rn
e

(
a〈x, x〉 − 2〈x, y〉+ d〈y, y〉

2c

)
f(y) dy if c 6= 0,

where e(x) := exp(2πix). The Weil representation has the following proper-
ties.

Proposition 2.2 ([7]). Let γ =
(
a b
c d

)
∈ SL2(R) and

σz =

(
v1/2 uv−1/2

0 v−1/2

)
for z = u+ iv ∈ H.

Define φ (mod 2π) by exp(−iφ) = cz+d
|cz+d| and let κ(φ) =

( cosφ sinφ
− sinφ cosφ

)
. Then

(1) γσz = σγzκ(φ),
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(2) r(γ,Q)r(σz, Q) = r(σγz, Q)r(κ(φ), Q), and
(3) if we let

γt =
(

a bt2

ct−2 d

)
=
(
t
t−1

)
γ
(
t−1

t

)
for t ∈ R∗,

then

γtσt2z = σt2(γz)κ(φ),

r(γt, Q)r(σt2z, Q) = r(σt2(γz), Q)r(κ(φ), Q).

Let L be an even lattice in Rn such that 〈x, x〉 ∈ 2Z for all x ∈ L, and let
L∗ be its dual lattice defined by L∗ := {x ∈ Rn | 〈x, y〉 ∈ Z for all y ∈ L}.
The volume v(L) of a fundamental parallelotope of L in Rn is defined by
v(L) =

	
Rn/L dx.

Definition 2.3 (First permutation and spherical property). We say
that a function ω : L∗/L→ C has the first permutation property for Γ0(4N)
with character χ modulo 4N if

(a) ω(l) = 0 if 〈l, l〉 6∈ 2Z,
(b) ω(dl) = χ(d)ω(l) for γ =

(
a b
c d

)
∈ Γ0(4N).

We say that a function f ∈ S(Rn) has the first spherical property for
weight k/2, k ∈ Z, if

r(κ(φ), Q)f = ε(κ(φ))p−q exp(iφk/2)f

for all κ(φ), where for
(
a b
c d

)
∈ SL2(R),

ε

((
a b

c d

))
:=


√
i if c > 0,

i(1−sgn d)/2 if c = 0,√
i
−1

if c < 0.

With this we construct a theta series as follows. For f ∈ S(Rn) and
h ∈ L∗/L let

θ(f, h) :=
∑
x∈L

f(x+ h).

Take f and ω having the first spherical property for weight k/2 and the first
permutation property for Γ0(4N) with character χ, respectively. Consider

θ(z, f, h) := v−k/4θ(r(σz, Q)f, h) for h ∈ L∗/L,

θ(z, f ;ω) :=
∑

h∈L∗/L

ω(h)θ(z, f, h).

The following was proved by Shintani.

Theorem 2.4 ([13]). Let γ =
(
a b
c d

)
∈ SL2(Z). Then

(cz + d)−k/2θ(γz, f, h) =
√
i
−(p−q) sgn c ∑

j∈L∗/L

c(h, j)γθ(z, f, j),
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where

c(h, j)γ =
δh,aje

(
ab

2
〈h, j〉

)
if c = 0,

|detQ|−1/2v(L)−1|c|−n/2
∑

r∈L/cL

e

(
a〈h+ r, h+ r〉 − 2〈j, h+ r〉+ d〈j, j〉

2c

)
if c 6= 0,

where δa,b is the Kronecker delta. In particular, if γ =
(
a b
c d

)
∈ Γ0(4N), then

j(γ, z)−kθ(γz, f ;ω) = χ′(d)θ(z, f ;ω),

where

χ′(d) =

(
−1

d

)(k−n)/2(2

d

)n(B
d

)
((−1)qB, d)∞χ(d)

with the Hilbert symbol

(x, y)∞ :=

{
−1 if x, y < 0,

1 otherwise.

Here, B := det(〈λi, λj〉), where {λ1, . . . , λn} is a Z-basis for L.

2.3. Niwa’s theta kernel. In this subsection we recall the theta series
given by Niwa [10]. Let O(Q) be the orthogonal group of Q defined by
O(Q) := {g | tgQg = Q}. Let SO(Q) denote the connected component of
the identity in O(Q) consisting of those matrices g with det g = 1. Define a
unitary representation p : SO(Q)→ GL(L2(Rn)) by letting

(p(g)f)(x) = f(g−1x).

By definition of SO(Q), p(g) commutes with the Weil representation (see [7,
p. 64]), i.e.

(2.2) p(g)(r(γ,Q)f) = r(γ,Q)(p(g)f).

Take a special

Q =
2

N

 −2

1

−2


with signature (2, 1) and let L = 4NZ ⊕ NZ ⊕ N

4 Z. One can check that

v(L) = N3, L∗ = Z⊕ 1
2Z⊕

1
16Z and B = −32N3. As a quadratic form, Q is

given by the determinant of a matrix as follows. For x = (x1, x2, x3) we have

Q(x) = txQx =
2

N
(x22 − 4x1x3) =

−8

N

∣∣∣∣∣ x1 x2/2

x2/2 x3

∣∣∣∣∣ .
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It is known that there is an isomorphism from SL2(R)/±I to SO(Q) given
by (for more details, see [7])

(2.3)

(
a b

c d

)
7→

 a2 ab b2

2ac ad+ bc 2bd

c2 cd d2

 .

Definition 2.5 (Second permutation and spherical property). Let ΓQ
be a discrete subgroup of SO(Q) which leaves L invariant, and let Γ ∗Q be the
(normal) subgroup of ΓQ which fixes L∗/L.

(1) Let χ be a character of ΓQ which is trivial on Γ ∗Q. We say that
ω : L∗/L→ C has the second permutation property for ΓQ with character χ
if ω(γl) = χ(γ)ω(l) for γ ∈ ΓQ and l ∈ L∗.

(2) Let m ∈ Z. We say f ∈ S(R3) has the second spherical property for
weight 2m if p(κ(φ))f = exp(−2imφ)f for all 0 ≤ φ < 2π, where we identify
κ(φ) as an element of a maximal compact subgroup of SO(Q) via (2.3).

Now we consider the Hermite polynomials Hν defined by

Hν(x) = (−1)ν exp

(
x2

2

)
dν

dxν
exp

(
−x

2

2

)
for 0 ≤ ν ∈ Z. For example, H0(x) = 1 and H1(x) = x.

Theorem 2.6 ([7]). Let m and λ be integers. For every positive integer
µ such that |m| ≤ λ + µ there is a function Lm,λ,µ on R3 such that the
function

(2.4) fm,λ,µ(x)

= Lm,λ,µ(x)Hµ

(√
8π

N
(x1 + x3)

)
exp

(
−2π

N
(2x21 + x22 + 2x23)

)
has the first spherical property for weight k/2 = λ + 1/2 and the second
spherical property for weight 2m. The function Lm,λ,µ(x) is defined by

Lm,λ,µ(x) =
1

2π

2π�

0

exp(2miφ)Lλ,µ(κ(φ)−1x) dφ,

where Lλ,µ(x) = Hν1(
√

8π/N (x1 − x3))Hν2(
√

8π/N x2) with any choice of
ν1 and ν2 such that ν1 + ν2 − µ = λ. In particular, we may take Lλ,λ,0(x) =
(x1 − ix2 − x3)λ.

Let fk,m = fm,λ,µ for some fixed µ as in Theorem 2.6 with k/2 = λ+1/2.
For z, w ∈ H and a given character χ on Γ0(4N) consider a theta kernel of
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weight k/2 given by

θ(z, w; fk,m) := (32N3)−1/2iλv−k/4(4η)−m(2.5)

×
∑

x=(x1,x2,x3)∈L∗N

ˇ̄χ1(4x1){r(σ4Nz, Q)p(σ2Nw)fk,m}(x),

where

χ1(d) =

(
−1

d

)λ
χ(d), ˇ̄χ1(l) =

4N∑
h=1

χ̄1(h) exp

(
2πi

(
lh

4N

))
and L∗N = 1

4Z ⊕
1
2Z ⊕

1
4Z (the dual lattice of LN = NZ ⊕ NZ ⊕ NZ). In

particular, if we take

(2.6) fk,(k−1)/2(x) = (x1 − ix2 − x3)(k−1)/2 exp

(
−2π

N
(2x21 + x22 + 2x23)

)
,

then θ(z, w) := θ(z, w; fk,(k−1)/2) is the theta function studied by Cipra [7]
and Niwa [10].

Theorem 2.7. Let Ak/2(Γ, χ) be the space of functions f : H → C
such that f |k/2γ = χ(d)f for all γ =

(
a b
c d

)
∈ Γ . Then θ(z, w; fk,m) ∈

Ak/2(Γ0(4N), χ) as a function of z, and θ(z, w; fk,m) ∈ A2m(Γ0(2N), χ2) as
a function of w.

Proof. The Fricke involution W (N) is defined by

(f |k/2W (N))(z) :=

{
N−k/4(−iz)−k/2f(−1/(Nz)) if k is odd,

N−k/4z−k/2f(−1/(Nz)) if k is even.

Let |k/2W (4N) act on the variable z, and |2mW (2N) act on w. Now we
consider the theta series given by

Θ(z, w; fk,m) := (4η)−mv−k/4
∑
x∈L′

χ̄1(x1){r(σz, Q)p(σ4w)fk,m}(x),

where L′ = Z⊕NZ⊕ (N/4)Z. Then one can see that

θ(z, w; fk,m) =
(
Θ|k/2W (4N)|2mW (2N)

)
(z, w; fk,m),

where f |2mW (2N)(z, w) = N−mw−2mf(z,−1/(Nw)). So it is enough to
prove that

Θ(z, w; fk,m) ∈ Ak/2
(
Γ0(4N), χ̄

(
N

·

))
as a function of z, and

Θ(z, w; fk,m) ∈ A2m(Γ0(2N), χ̄2)

as a function of w.
With the notation of Theorem 2.4 we see that

Θ(z, w; fk,m) = (4η)−mθ(z, p(σ4w)fk,m;ω)
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with ω : L∗/L→ C defined by

ω(l) =

{
0 if l 6∈ L′,
χ̄1(l1) if l = (l1, l2, l3) ∈ L′,

where L = 4NZ⊕NZ⊕ N
4 Z and its dual is L∗ = Z⊕ 1

2Z⊕
1
16Z. Note that

L ⊂ L′ ⊂ L∗ and ω has the first permutation property for Γ0(4N) with
character χ̄1. Moreover, we can observe that if γ =

(
a b
c d

)
∈ Γ0(2N), then

the map

γ2 =

(
2

1/2

)(
a b

c d

)(
1/2

2

)
=

(
a 4b

c/4 d

)
7→

 a2 4ab 16b2

ac/2 ad+ bc 8bd

c2/16 cd/4 d2


leaves L and L′ invariant and that

ω(γ2l) = χ̄1(a
2l1 + 4abl2 + 16b2l3) = χ2(d)χ̄1(l1) = χ2(d)ω(l)

for (l1, l2, l3) ∈ L′ because χ has modulus 4N . So ω has the second per-
mutation property for ΓQ =

( 2
1/2

)
Γ0(2N)

(
1/2

2

)
with character χ2 (for

more details, see [7, Proposition 2.2]). Also note that p(σ4w)fk,m has the
first spherical property of weight k/2 since p commutes with the Weil rep-
resentation as in (2.2). By Theorem 2.4, Θ(z, w; fk,m) is a non-holomorphic
modular form of weight k/2 on Γ0(4N) with character

(
N
·
)
χ̄ as a function

of z.
Next, using Proposition 2.2(3) we see that

p(σ4(γw)) = p(γ2σ4wκ(φ)−1)

for γ =
(
a b
c d

)
∈ Γ0(2N) and exp(−iφ) = cw+d

|cw+d| . Since γ2 ∈ ΓQ, if we use

the second spherical property of fk,m and the second permutation property
of ω, we find that

Θ(z, γw; fk,m) = (4η)−m|cw + d|2mv−k/4

×
∑
x∈L′

ω(x)

{
r(σz, Q)

(
cw̄ + d

|cw + d|

)2m

p(σ4w)fk,m

}
(γ−12 x)

= (cw̄ + d)2mχ2(d)(4η)−mv−k/4
∑
x∈L′

ω(x){r(σz, Q)p(σ4w)fk,m}(x)

= (cw̄ + d)2mχ2(d)Θ(z, w; fk,m).

This completes the proof.

Furthermore, this theta function satisfies the following differential equa-
tion.

Proposition 2.8 ([7]). The theta function θ(z, w; fk,m) defined in (2.5)
satisfies the partial differential equation
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4

[
v2
(
∂2

∂u2
+

∂2

∂v2

)
− ik

2
v

(
∂

∂u
+ i

∂

∂v

)
+
k

4

(
k

4
− 1

)]
θ(z, w; fk,m)

=

[
η2
(
∂2

∂ξ2
+

∂2

∂η2

)
+ 2miη

(
∂

∂ξ
− i ∂

∂η

)
+m(m− 1)− 3

4

]
θ(z, w; fk,m).

2.4. Regularized theta lifting. In the case of weak Maass forms,
because of singularities at the cusps the integral in a theta lifting may not
converge. In this subsection we describe how to regularize the integral to
get a theta lifting for weak Maass forms. We use a regularized integral
introduced by Borcherds [1] as follows. We integrate over the region Ft,
where F = {z ∈ H | |z| ≥ 1, |Re(z)| ≤ 1/2} is the usual fundamental
domain of SL2(Z) and Ft is the subset of F of points z with Im(z) ≤ t.
Suppose that

(2.7) lim
t→∞

�

Ft

F (z)v−s
du dv

v2

exists for Re(s) � 0 and can be continued to a meromorphic function
on C. Borcherds [1] defined a regularized integral

	reg
F F (z) du dv

v2
to be the

constant term of the Laurent expansion of the function (2.7) at s = 0.
This is a regularized integral for SL2(Z). Furthermore, in the case when
g(z) ∈WMF∗k/2,λ(Γ0(4N), χ), we define

(2.8) Φm(g)(w) =
�reg
F

vk/2
∑

α∈Γ0(4N)\SL2(Z)

gα(z)θα(z, w; fk,m)
du dv

v2
.

We use the notation Φ(g) instead of Φm(g) if we take fk,m = fk,(k−1)/2 as in
(2.6).

3. Proof of the main theorems. First we prove the following more
general result which implies Theorem 1.1 as a corollary.

Theorem 3.1. Assume that k is a positive odd integer and m is an
integer. Let χ be a character modulo 4N and g be a weak Maass form in
WMF∗k/2,λ(Γ0(4N), χ). Then Φm(g) has the following properties:

(1) Φm(g)|2mγ = χ2(γ)Φm(g) for all γ ∈ Γ0(2N),
(2) ∆2mΦm(g) = (m(m− 1)− 3/4− k(k/4− 1) + 4λ)Φm(g), and
(3) the singularities of Φm(g)(w) are supported on the set of Heegner

points of the form w = (b±
√
b2 − ac)/(2Nc) in H for a, b, c ∈ Z.
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Proof. First we show the convergence of the regularized integral Φm(g)
for g ∈WMF∗k/2,λ(Γ0(4N), χ). It suffices to prove the convergence of

(3.1) lim
t→∞

t�

1

1/2�

−1/2

∑
α∈Γ0(4N)\SL2(Z)

gα(z)θα(z, w; fk,m) vk/2−s
du dv

v2
.

By the translation invariance of
∑

α∈Γ0(4N)\SL2(Z) gα(z)θα(z, w; fk,m) vk/2,

this function has a Fourier expansion of the form∑
n∈Z

a(n, v, w) exp(2πinu).

Then
t�

1

1/2�

−1/2

∑
α∈Γ0(4N)\SL2(Z)

gα(z)θα(z, w; fk,m) vk/2−s
du dv

v2
=

t�

1

a(0, v, w)v−s−2 dv.

To ensure the convergence of the regularized theta lifting, we need to find
the constant term of gα(z)θα(z, w; fk,m).

Let Q4 := 1
2

( −2
1

−2

)
and

f4(x1, x2, x3) := (x1 − ix2 − x3)λ exp

(
−π

2
(2x21 + x22 + 2x23)

)
.

Since these are just the original Q and f with N = 4, f4 has the first and
second spherical properties for the weights k/2 and 2m, respectively. Now,
let L = 4NZ⊕ 2Z⊕ Z, L′ := Z⊕ 2Z⊕ Z and

ω(l) :=

{
0 if l 6∈ L′,
ˇ̄χ(l1) if l = (l1, l2, l3) ∈ L′.

Then L∗ = Z ⊕ Z ⊕ 1
4NZ, and ω has the first permutation property for

Γ0(4N) with character χ1 and the second permutation property for ΓQ =( 2
1/2

)
Γ0(2N)

(
1/2

2

)
with character χ̄2. One can see that θ(z, w; fk,m) is

the same as η−mθ(z, p(σ2Nw)f4;ω) up to a constant multiple. By Theorem
2.4, θα(z, w; fk,m) can be written as

v1/2
∑
x∈Z3

hα(x,w; k) exp

(
−πv
4N2
|Λ(x,w)|2 + 2πiz̄(x22 − x1x3)

)
for each α ∈ Γ0(4N) \SL2(Z), where Λ(x,w) := 1

η (x1− 4Nwx2 + 4N2w2x3)

and hα(x,w; k) is a polynomial in x1, x2, x3 and w.
If gα has the Fourier expansion gα(z) =

∑
n∈Q bα(n, v) exp(2πinu), then

the constant term of gα(z)θα(z, w; fk,m) is a sum of terms of the form

bα(x22 − x1x3, v) exp(2π(x22 − x1x3)v)v1/2 hα(x,w; k) exp

(
−πv
4N2
|Λ(x,w)|2

)
,
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where x = (x1, x2, x3) ∈ Z3. Since g ∈ WMF∗k/2,λ(Γ0(4N), χ), the func-

tion bα(x22 − x1x3, v) exp(2π(x22 − x1x3)v) has polynomial growth when v
tends to infinity, and thus every term with Λ(x,w) 6= 0 is exponentially
decreasing. Therefore, the integral in (3.1) converges and Φm(g) is well-
defined if Λ(x,w) 6= 0 for all x ∈ Z3, and singularities may only occur when

w =
x2+
√
x22−x1x3

2Nx3
∈ H for some (x1, x2, x3) ∈ Z3.

The transformation properties of Φm(g) come easily from the fact that
the function θ(z, w; fk,m) is in A2m(Γ0(2N), χ2) as a function of w. Finally,
to prove the property of Φm(g) involving the weight 2m Laplace operator,
consider the Maass differential operators on smooth functions defined on H
(see [3, p. 97]) by

Rk = 2i
∂

∂z
+ kv−1 and Lk = 2iv2

∂

∂z̄
.

For any smooth function f : H → C and γ ∈ SL2(Z), it is well known that
(Rkf)|k+2γ = Rk(f |kγ) and (Lkf)|k−2γ = Lk(f |kγ). The operator ∆k can
be expressed in terms of Rk and Lk by

(3.2) ∆k = Lk+2Rk − k = Rk−2Lk = −4v2
∂2

∂z∂z̄
+ 2ivk

∂

∂z̄
.

We write ∆2m for the Laplace operator with respect to w, and ∆k/2 for the
Laplace operator with respect to z.

Lemma 3.2. If f, g ∈ Ak(Γ0(4N), χ) are smooth, then
�

Ft

∑
α∈Γ0(4N)\SL2(Z)

∆kfα(z)gα(z)vk−2 du dv

−
�

Ft

∑
α∈Γ0(4N)\SL2(Z)

fα(z)∆kgα(z)vk−2 du dv

=

1/2�

−1/2

[ ∑
α∈Γ0(4N)\SL2(Z)

vk−2fα(z)Lkgα(z)
]
v=t

du

−
1/2�

−1/2

[ ∑
α∈Γ0(4N)\SL2(Z)

vk−2Lkfα(z)gα(z)
]
v=t

du.

Proof. The proof is based on the argument in [3]. Note that by the
definition of the differential d,

d

(
vk−2

∑
α∈Γ0(4N)\SL2(Z)

fα(z)Lkgα(z) dz̄

)

= vk−2
[

1

v2

∑
α∈Γ0(4N)\SL2(Z)

(
Lkfα(z)Lkgα(z)− fα(z)Rk−2Lkgα(z)

)]
du dv.



14 Y. Choie and S. Lim

Using this and Stokes’ theorem one can see that

(3.3)
�

∂Ft

vk−2
∑

α∈Γ0(4N)\SL2(Z)

fα(z)Lkgα(z) dz̄

=
�

Ft

vk−2
[

1

v2

∑
α∈Γ0(4N)\SL2(Z)

(
Lkfα(z)Lkgα(z)− fα(z)Rk−2Lkgα(z)

)]
du dv.

Since f |kγ = χ(d)f and g|kγ = χ(d)g for γ =
(
a b
c d

)
∈ Γ0(4N), we have

Im(γz)k−2(fLkg)(γz)d(γz) =

(
v

|cz + d|2

)k−2
χ(d)(cz + d)kf(z)

×χ(d)(cz + d)k−2Lkg(z)(cz + d)−2dz̄

= vk−2(fLkg)(z)dz̄.

From this, one can check that the integrand on the left hand side in (3.3) is
SL2(Z)-invariant. Therefore, if C is the subset of ∂Ft consisting of the arc of
the unit circle from exp(πi/3) to exp(2πi/3), then in the integral over ∂Ft
on the left side the contributions from the lines u = ±1/2 and those from
the two halves of C cancel each other, so we get

�

∂Ft

vk−2
∑

α∈Γ0(4N)\SL2(Z)

fα(z)Lkgα(z) dz̄

=

1/2�

−1/2

[ ∑
α∈Γ0(4N)\SL2(Z)

vk−2 fα(z)Lkgα(z)
]
v=t

du.

If we continue this process and use the fact that ∆k = Rk−2Lk, we obtain
the desired result.

We now prove part (2) of Theorem 3.1. By (2.8) and (3.2),∆2m(Φm(g))(w)
is equal to

(3.4) − 4
�reg
F

vk/2

×
∑

α∈Γ0(4N)\SL2(Z)

gα(z)

(
η2

∂2

∂w∂w̄
+miη

∂

∂w

)
θα(z, w; fk,m)

du dv

v2
.

From this and Proposition 2.8 we see that(
−4η2

∂2

∂w∂w̄
− 4iηm

∂

∂w

)
θα(z, w; fk,m)

=

(
−η2

(
∂2

∂ξ2
+

∂2

∂η2

)
− 2iηm

(
∂

∂ξ
− i ∂

∂η

))
θα(z, w; fk,m)
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=

(
−4v2

(
∂2

∂u2
+

∂2

∂v2

)
+ 2ikv

(
∂

∂u
+ i

∂

∂v
− k
(
k

4
− 1

)
+m(m− 1)− 3

4

))
θα(z, w; fk,m)

=

(
4∆k/2 − k

(
k

4
− 1

)
+m(m− 1)− 3

4

)
θα(z, w; fk,m).

So the integral (3.4) is equal to

4
�reg
F

vk/2
∑

α∈Γ0(4N)\SL2(Z)

gα(z)∆k/2θα(z, w; fk,m)
du dv

v2

+

(
m(m− 1)− 3

4
− k
(
k

4
− 1

))
Φm(g)(w).

By Lemma 3.2 we see that
�reg
F

vk/2
∑

α∈Γ0(4N)\SL2(Z)

gα(z)∆k/2θα(z, w; fk,m)
du dv

v2
− λΦm(g)(w)

= lim
t→∞

1/2�

−1/2

vk/2−2
[ ∑
α∈Γ0(4N)\SL2(Z)

Lk/2gα(z)θα(z, w; fk,m)

]
v=t

du

− lim
t→∞

1/2�

−1/2

[
vk/2−2

∑
α∈Γ0(4N)\SL2(Z)

gα(z)Lk/2θα(z, w; fk,m)

]
v=t

du.

One can see that all the integrals except for the first one vanish if we apply
the same argument as in the proof of convergence. So, we conclude that
∆2m(Φm(g))(w) = (4λ + m(m − 1) − 3/4 − k(k/4 − 1))Φm(g)(w), which
completes the proof.

Proof of Theorem 1.2. If we substitute the Fourier expansion of gα(z) as
in (2.1) into (2.8), only the part involving Wk/4,s−1/2(4π(x22 − x1x3)v) with

x22−x1x3 < 0 contributes to the singularity. Hence Φ(g) has singularity type∑
α∈Γ0(4N)\SL2(Z)

∑
(x1,x2,x3)∈S(U)

ãα(x22 − x1x3, sλ)hα(x,w; k)

×
∞�

1

exp

(
−πv
4N2
|Λ(x,w)|2 + 2πv(x22 − x1x3)

)
|4π(x22 − x1x3)v|−k/4

×Wk/4,sλ−1/2(4π(x22 − x1x3)v)v(k−3)/2 dv.

Now we apply the asymptotic expansion of Wk,m(t) (see [15])

Wk,m(t) ∼ exp

(
− t

2

)
tk
∞∑
n=0

[
1

n!tn

n∏
j=1

(
m2 −

(
k − j +

1

2

)2)]
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as |t| → ∞, where we let
∏n
j=1(m

2 − (k − j + 1/2)2) = 1 if n = 0. Then we
need to compute the singularity type of the function

(3.5)

∞�

1

exp

(
−πv
4N2
|Λ(x,w)|2

)
v(k−3)/2−n dv

for non-negative integers n. Note that the integral in (3.5) converges regard-
less of the value of Λ(x,w) when n > (k − 1)/2. By [1, Lemma 6.1], the
function (3.5) has singularity type(√

π

2N
|Λ(x,w)|

)2n−k+1

Γ

(
k − 1

2
− n

)
unless (k − 1)/2− n is a non-positive integer, in which case it has a singu-
larity of type

(−1)(k+1)/2−n
(√

π

2N
|Λ(x,w)|

)2n−k+1 log
((√π

2N |Λ(x,w)|
)2)(

n− k−1
2

)
!

.

Now we compute the value of the lifted function on the imaginary axis
when k > 1 by using the unfolding method. For this we need to rewrite the
theta kernel as follows.

Lemma 3.3 ([7]). Let θ(z, w; fk,m) be the theta function defined in (2.5).
Then

θ(z, iη; fk,(k−1)/2)

= C

(k−1)/2∑
ν=0

(
(k − 1)/2

ν

)(
2

π

)ν/2
η1−ν

∑
γ∈Γ∞\Γ0(4N)

χ(d)

(Im γz)(k−1)/2−ν/2j(γ, z)k

×
∞∑

m,n=−∞
χ̄1(m)m(k−1)/2−νHν(2

√
2π Im γz n) exp

(
2πin2γz − πm2η2

4 Im γz

)
,

where C = (−1)(k−1)/22−2(k−1)N (k−1)/4−1/4 and Γ∞ = {
(
a b
c d

)
∈ Γ0(4N) |

c = 0}.

Proof of Theorem 1.3. By Lemma 3.3 and the Rankin–Selberg method,

Φ(g)(iη) = C

(k−1)/2∑
ν=0

(
k − 1/2

ν

)(
2

π

)ν/2
η1−ν

∞�

0

1�

0

g(z)v(ν+1)/2
∞∑

m,n=−∞
χ1(m)

×m(k−1)/2−νHν(2
√

2πv n) exp

(
−2πin2z̄ − πη2m2

4v

)
du dv

v2
.

If we use the Fourier expansion of g given in (2.1), we find that Φ(g)(iη) is
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the same as

C

(k−1)/2∑
ν=0

(
(k − 1)/2

ν

)(
2

π

)ν/2
η1−ν

×
∞�

0

v(ν−1)/2
( ∞∑
n=−∞
n6=0

a(n2, sλ)|4πn2v|−k/4Wk/4,sλ−1/2(4πn
2v)Hν(2

√
2πv n)

+ a(0, sλ)vsλ−k/4Hν(0)
) ∞∑
m=−∞

χ1(m)m(k−1)/2−ν exp

(
−πη

2m2

4v
−2πn2v

)
dv

v

= C ′
(k−1)/2∑
ν=0

(
(k − 1)/2

ν

)
(2π)−ν

∞�

0

(
a(0, sλ)

(
t2

8π

)sλ−k/4
Hν(0)

+
∑
n6=0

a(n2, sλ)

∣∣∣∣n2t22

∣∣∣∣−k/4Wk/4,sλ−1/2

(
n2t2

2

)
exp

(
−n

2t2

4

)
Hν(tn)

)(
η

t

)1−ν
×

∞∑
m=−∞

χ1(m)m(k−1)/2−ν exp

(
−2π2m2

(
η

t

)2) dt

t
,

where C ′ = 2C(8π)1/2. This completes the proof.
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